JP4876744B2 - Inspection device - Google Patents

Inspection device Download PDF

Info

Publication number
JP4876744B2
JP4876744B2 JP2006193418A JP2006193418A JP4876744B2 JP 4876744 B2 JP4876744 B2 JP 4876744B2 JP 2006193418 A JP2006193418 A JP 2006193418A JP 2006193418 A JP2006193418 A JP 2006193418A JP 4876744 B2 JP4876744 B2 JP 4876744B2
Authority
JP
Japan
Prior art keywords
unit
defect
light receiving
light
inspection apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006193418A
Other languages
Japanese (ja)
Other versions
JP2008020371A (en
Inventor
和彦 深澤
健雄 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2006193418A priority Critical patent/JP4876744B2/en
Publication of JP2008020371A publication Critical patent/JP2008020371A/en
Application granted granted Critical
Publication of JP4876744B2 publication Critical patent/JP4876744B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば半導体ウエハ、液晶ガラス基板などの被検査物の周縁部位における、レジストの残渣、ひび、欠け、パーティクルの付着などの欠陥を検査する検査装置に関する。   The present invention relates to an inspection apparatus for inspecting defects such as resist residues, cracks, chipping, and particle adhesion at peripheral portions of an inspection object such as a semiconductor wafer or a liquid crystal glass substrate.

半導体チップを製造するリソグラフィ工程では、レジスト塗布工程、露光工程、洗浄工程、エッチング工程、レジスト除去工程などがあり、通常、これら工程毎に欠陥検査を行う。この欠陥検査中には、半導体ウエハの周縁部位に生じる各種の欠陥、例えばレジストの残渣、ひび、欠け、パーティクルの付着などの検査がある。この周縁部位の欠陥検査は欠陥がその付近にあるチップ領域に及んで、半導体チップの歩留まりに大きく影響するので、重要である。   A lithography process for manufacturing a semiconductor chip includes a resist coating process, an exposure process, a cleaning process, an etching process, a resist removal process, and the like. Usually, a defect inspection is performed for each of these processes. During this defect inspection, there are various defects occurring at the peripheral portion of the semiconductor wafer, such as resist residues, cracks, chips, and adhesion of particles. This defect inspection at the peripheral portion is important because the defect extends to the chip region in the vicinity thereof and greatly affects the yield of the semiconductor chip.

半導体ウエハの周縁部位の欠陥を検査する装置として、例えば、半導体ウエハのエッジ部をCCDカメラで撮影し、この撮影画像に画像処理を施し、エッジカット量を算出してエッジ部での欠陥を検出する装置が提案されている(特許文献1)。また、楕円鏡の第1焦点位置に半導体ウエハのエッジ部をおき、該エッジ部に平行光を照射し、発生した回折光のうち低次元の回折光を遮光して高次元の回折光を楕円鏡にて集光し、楕円鏡の第2焦点位置に配置したフォトダイオードにより該高次元の回折光を受光してエッジ部での欠陥を検出する装置が提案されている(特許文献2)。   As a device for inspecting defects on the peripheral part of a semiconductor wafer, for example, the edge portion of a semiconductor wafer is photographed with a CCD camera, image processing is performed on the photographed image, and the edge cut amount is calculated to detect defects at the edge portion. An apparatus has been proposed (Patent Document 1). In addition, the edge portion of the semiconductor wafer is placed at the first focal position of the elliptical mirror, and the edge portion is irradiated with parallel light. Of the generated diffracted light, low-dimensional diffracted light is shielded to ellipse high-dimensional diffracted light. An apparatus has been proposed in which a high-dimensional diffracted light is received by a photodiode that is focused by a mirror and placed at the second focal position of an elliptical mirror to detect defects at the edge (Patent Document 2).

WO03/028089号公報WO03 / 028089 Publication 特開平9−269298号公報JP-A-9-269298

前者の検査装置ではCCDを使用しており、信号出力に時間を要し、検査の効率化を図る上で障害になっていた。また、後者の検査装置ではフォトダイオードを使用しており、CCDに比して信号出力の時間は短いが、楕円鏡で高次元の回折光を集光し、これをフォトダイオードで受光して欠陥を検出するために、欠陥の内容、例えばエッジ部に付着したパーティクルなどのゴミとエッジ部に生じたひびなどとの判別が困難であった。   The former inspection apparatus uses a CCD, and it takes time to output signals, which is an obstacle to improving the efficiency of inspection. In the latter inspection device, a photodiode is used and the signal output time is shorter than that of a CCD. However, high-dimensional diffracted light is collected by an elliptical mirror and received by the photodiode. Therefore, it is difficult to discriminate between the contents of the defect, for example, dust such as particles attached to the edge portion and cracks generated on the edge portion.

本発明は、検査の効率化を図ることが出来る上に、短時間で欠陥の内容が判別可能な検査装置を提供することを目的とする。   An object of the present invention is to provide an inspection apparatus that can improve the efficiency of inspection and can determine the contents of defects in a short time.

上記目的を達成する本発明の請求項1に記載の検査装置は、被検査物の周縁部位に光を照射する照明部と、前記光が照射される前記周縁部位の照射領域よりも前記照明部が配置された側に進行する前記周縁領域からの散乱光を受光する第1受光部と、前記照射領域に対して、前記照明部とは反対側に進行する前記照射領域からの散乱光を受光する第2受光部と、前記第1受光部の出力と前記第2受光部の出力とから前記周縁部位の欠陥箇所の欠陥内容を判別する判別部と、前記判別部で判別された前記欠陥内容に応じて、前記欠陥箇所への照明方法を切り替えて該欠陥箇所の表面状態を検出する欠陥観察部を備えることを特徴とする。 The inspection apparatus according to claim 1 of the present invention that achieves the above object includes an illuminating unit that irradiates light to a peripheral part of an object to be inspected, and an illuminating unit that is more than an irradiation region of the peripheral part irradiated with the light. A first light-receiving unit that receives scattered light from the peripheral region that travels to the side where the light is disposed, and light that is scattered from the irradiation region that travels to the opposite side of the illumination unit with respect to the irradiation region A second light receiving unit that performs determination, a determination unit that determines a defect content of a defective portion of the peripheral portion from an output of the first light receiving unit and an output of the second light receiving unit, and the defect content determined by the determination unit And a defect observation unit that detects a surface state of the defect portion by switching an illumination method for the defect portion .

前記被検査物としては、例えば、シリコンウエハなどの半導体ウエハや、液晶ガラス基板などが含まれる。   Examples of the inspection object include a semiconductor wafer such as a silicon wafer, a liquid crystal glass substrate, and the like.

前記照明部としては、例えば、被検査物の周縁部位にスリット光を照射するものがあるが(図4参照)、これに限定されるものではない。   As the illumination unit, for example, there is a unit that irradiates slit light to a peripheral portion of an object to be inspected (see FIG. 4), but is not limited thereto.

前記第1受光部、第2受光部としては、例えば、フォトダイオードが使用されるが、これに限定されるものではなく、散乱光を受光して信号を出力するものであればよい。   For example, a photodiode is used as the first light receiving unit and the second light receiving unit, but the first light receiving unit and the second light receiving unit are not limited thereto, and any light receiving unit that receives scattered light and outputs a signal may be used.

本発明の請求項2に記載の検査装置は、前記被検査物を支持して回転させる回転支持部を備えることを特徴とする。 Inspection apparatus according to claim 2 of the present invention is characterized in that it comprises a rotation supporting portion for rotating and supporting the object to be inspected.

本発明の請求項3に記載の検査装置は、前記判別部が、前記第1受光部の出力の大きさと前記第2受光部の出力の大きさとの少なくとも一方の出力の大きさと、所定の閾値とを比較した結果と、前記第1受光部の出力と前記第2受光部の出力との大きさを比較した結果とに基づいて、前記周縁部位の欠陥箇所の欠陥内容を判別することを特徴とする。 In the inspection apparatus according to claim 3 of the present invention, the discriminating unit has an output magnitude of at least one of an output magnitude of the first light receiving part and an output magnitude of the second light receiving part, and a predetermined threshold value. And the defect content of the defective portion of the peripheral part is determined based on the result of comparing the output of the first light receiving unit and the result of comparing the output of the second light receiving unit. And

前記判別部としては、例えば電圧比較器(コンパレータ)があるが、これに限定されるものではない。   An example of the determination unit is a voltage comparator (comparator), but is not limited thereto.

本発明の請求項4に記載の検査装置は、前記被検査物に設けた指標部を検出する指標検出部と、前記指標部から前記第1受光部、前記第2受光部の出力に基づいて検出された前記被検査物の周縁部位の欠陥箇所までの位置情報を記憶する記憶部とを備えることを特徴とする。   An inspection apparatus according to claim 4 of the present invention is based on an index detection unit that detects an index unit provided on the inspection object, and outputs from the index unit to the first light receiving unit and the second light receiving unit. And a storage unit that stores positional information of the detected peripheral part of the inspection object up to the defective part.

前記指標部としては、例えば、前記被検査物の周縁部位を略V字状に切り欠いた切欠部(ノッチ)、周縁部位の一部を平坦となるように切除したオリエンテーションフラットなどがあるが、これに限定されるものではない。   Examples of the indicator part include a notch part in which a peripheral part of the inspection object is cut out in a substantially V shape, an orientation flat in which a part of the peripheral part is cut out to be flat, and the like. It is not limited to this.

前記位置情報は、例えば、前記回転支持部にエンコーダを装備し、前記指標部を検出した時点から前記第1受光部、第2受光部から検出信号が出力された時点まで前記回転支持部が回転するのに伴って該エンコーダから発せられるパルス信号の数をカウントすることにより得られるが、これに限定されるものではない。前記位置情報は、本発明の検査装置に使用される以外に、前記被検査物の検査後、別の検査装置に搬送されて検査する際などにも利用され得る。   For example, the position information is obtained by equipping the rotation support unit with an encoder and rotating the rotation support unit from the time when the indicator unit is detected until the detection signal is output from the first light receiving unit and the second light receiving unit. This is obtained by counting the number of pulse signals emitted from the encoder, but is not limited to this. In addition to being used in the inspection apparatus of the present invention, the position information can also be used when the inspection object is inspected by being transported to another inspection apparatus.

本発明の請求項5に記載の検査装置は、前記第1受光部が、前記照射領域からの後方散乱光を受光し、前記第2受光部は、前記照射領域からの前方散乱光を受光することを特徴とする。 In the inspection apparatus according to claim 5 of the present invention, the first light receiving unit receives back scattered light from the irradiation region, and the second light receiving unit receives forward scattered light from the irradiation region. It is characterized by that.

前記欠陥箇所への照明の仕方としては、例えば、明視野照明と暗視野照明があるが、これに限定されるものではない。   Examples of the method of illuminating the defective portion include bright field illumination and dark field illumination, but are not limited thereto.

本発明の検査装置によれば、検査の効率化を図ることが可能である上に、短時間で欠陥の内容が判別可能となる。   According to the inspection apparatus of the present invention, it is possible to increase the efficiency of inspection and to determine the contents of defects in a short time.

以下本発明の表面検査装置の一実施形態について図1乃至図7を参照して説明する。図1は本発明の検査装置の一実施形態を示す概略平面図、図2は同概略正面図である。   An embodiment of the surface inspection apparatus of the present invention will be described below with reference to FIGS. FIG. 1 is a schematic plan view showing an embodiment of the inspection apparatus of the present invention, and FIG. 2 is a schematic front view thereof.

検査装置100は、図1に示すように、回転支持部としての回転テーブル20上の被検査物(半導体ウエハ)10の周辺に偏心状態検出部と指標検出部の機能を併せ持つ位置合わせ機構30と、欠陥検出部40と、欠陥観察部50が、半導体ウエハ10の回転方向に順に配置される。   As shown in FIG. 1, the inspection apparatus 100 includes an alignment mechanism 30 having the functions of an eccentricity detection unit and an index detection unit around an object to be inspected (semiconductor wafer) 10 on a rotary table 20 as a rotation support unit. The defect detection unit 40 and the defect observation unit 50 are sequentially arranged in the rotation direction of the semiconductor wafer 10.

リソグラフィ工程のレジスト塗布工程、露光工程、洗浄工程などの各工程終了後、未検査ウエハ収納カセット70内に収納された、被検査物としての半導体ウエハ10は、搬送アーム60により取り出されて、回転テーブル20上に移送される。そして、回転テーブルの回転に伴い、半導体ウエハ10を、先ず位置合わせ機構30に移動し、次いで欠陥検出部40に移動し、この後欠陥観察部50に移動する。観察終了後、回転テーブル20を回転させて、半導体ウエハ10を、搬出位置まで移動し、搬送アーム60により回転テーブル10から取り出して検査済みウエハ収納カセット75内に収納する。この検査済みウエハ収納カセット75は、リソグラフィ工程の別の工程に搬送されるか、あるいは別の検査装置に搬送される。   After each process such as a resist coating process, an exposure process, and a cleaning process in the lithography process, the semiconductor wafer 10 as the inspection object stored in the uninspected wafer storage cassette 70 is taken out by the transfer arm 60 and rotated. It is transferred onto the table 20. As the turntable rotates, the semiconductor wafer 10 is first moved to the alignment mechanism 30, then moved to the defect detection unit 40, and then moved to the defect observation unit 50. After the observation is completed, the rotary table 20 is rotated to move the semiconductor wafer 10 to the carry-out position. The semiconductor wafer 10 is taken out of the rotary table 10 by the transfer arm 60 and stored in the inspected wafer storage cassette 75. The inspected wafer storage cassette 75 is transported to another process of the lithography process or transported to another inspection apparatus.

次に上述した位置合わせ機構30と、欠陥検出部40と、欠陥観察部50について詳細に説明する。   Next, the alignment mechanism 30, the defect detection unit 40, and the defect observation unit 50 described above will be described in detail.

位置合わせ機構30は、上述したように偏心状態検出部と指標検出部の機能を併せ持つもので、図3、図5に示すように、半導体ウエハ10を載置する載置台21を昇降可能に構成した回転テーブル20と、この回転テーブル20を搭載したXYテーブル31(回転XYステージ)と、半導体ウエハ10の周縁部位において該半導体ウエハ10の裏面側から光を照射する発光ダイオード(LED)などからなる発光部32と、表面側で該発光部32の光を受光するCCDなどからなる受光部33と、載置台21を下降させた際に該載置台21に代わって半導体ウエハ10の周縁部位を一時的に支持する複数本(例えば3本)の支持ピン34と、回転テーブル20の回転に伴ってパルス信号を発するエンコーダ35などを備える。   As described above, the alignment mechanism 30 has the functions of the eccentricity detection unit and the index detection unit. As shown in FIGS. 3 and 5, the mounting table 21 on which the semiconductor wafer 10 is mounted can be moved up and down. The rotary table 20, an XY table 31 (rotary XY stage) on which the rotary table 20 is mounted, and a light emitting diode (LED) that emits light from the back side of the semiconductor wafer 10 at the peripheral portion of the semiconductor wafer 10. A light emitting unit 32, a light receiving unit 33 composed of a CCD or the like that receives light from the light emitting unit 32 on the front surface side, and a temporary peripheral portion of the semiconductor wafer 10 instead of the mounting table 21 when the mounting table 21 is lowered. A plurality of (for example, three) support pins 34 to be supported in general, and an encoder 35 for generating a pulse signal as the turntable 20 rotates.

発光部32と受光部33は、偏心状態検出部と指標検出部として機能する。すなわち、半導体ウエハ10の周縁部位10aが発光部32と受光部33との間の光路を横切るようにして、半導体ウエハ10は回転テーブル20の載置台21に載置され、この状態で回転テーブル20を駆動して半導体ウエハ10を回転させつつ、受光部33の出力変化をモニターすることにより偏心状態を検出することが出来、またノッチ11を検出することが出来る。   The light emitting unit 32 and the light receiving unit 33 function as an eccentric state detecting unit and an index detecting unit. That is, the semiconductor wafer 10 is mounted on the mounting table 21 of the turntable 20 so that the peripheral portion 10a of the semiconductor wafer 10 crosses the optical path between the light emitting unit 32 and the light receiving unit 33. In this state, the turntable 20 The eccentric state can be detected and the notch 11 can be detected by monitoring the output change of the light receiving unit 33 while rotating the semiconductor wafer 10 by driving.

例えば、半導体ウエハ10の中心と回転テーブル20の回転中心とが一致せずにずれて(偏心して)いる場合には、半導体ウエハ10の回転に伴い、半導体ウエハ10の周縁部位10aによって遮断される、発光部32から受光部33への光量が変化して、受光部33の出力は、図6(a)の二点鎖線に示すように正弦波(余弦波)状に変化する。この受光部33の出力の最高値と最低値との差が偏心量に比例する。これに対し、半導体ウエハ10の中心部と回転テーブル20の回転中心とが一致する(偏心しない)場合には、半導体ウエハ10の周縁部位10aにより遮断される、発光部32から受光部33への光量は一定で、受光部33の出力は図6の実線に示すように一定で直線状になる。この偏心していない場合における受光部33の出力を基準として、これを越えるか又は下回るかで偏心方向が検出される。   For example, when the center of the semiconductor wafer 10 and the rotation center of the turntable 20 are not coincident with each other and are shifted (eccentric), they are blocked by the peripheral portion 10 a of the semiconductor wafer 10 as the semiconductor wafer 10 rotates. The amount of light from the light emitting unit 32 to the light receiving unit 33 changes, and the output of the light receiving unit 33 changes in a sine wave (cosine wave) as shown by a two-dot chain line in FIG. The difference between the maximum value and the minimum value of the output of the light receiving unit 33 is proportional to the amount of eccentricity. On the other hand, when the center portion of the semiconductor wafer 10 and the rotation center of the turntable 20 coincide (is not eccentric), the light emitting portion 32 to the light receiving portion 33 blocked by the peripheral portion 10a of the semiconductor wafer 10 is obtained. The amount of light is constant, and the output of the light receiving unit 33 is constant and linear as shown by the solid line in FIG. The eccentric direction is detected based on the output of the light receiving unit 33 when it is not decentered, whether it exceeds or falls below this.

また、半導体ウエハ10のノッチ11の部分が発光部32と受光部33との間の光路に移動してくると、該ノッチ11の部分で遮断される光量が他の部分に比して大きく変化するため、受光部33の出力変化からノッチ11を検出することができる(図6(a)の実線部分の出力変化があった部分を参照)。なお、偏心している場合の受光部33の出力変化を示す、図6(a)の二点鎖線では図の複雑化を避けるためにノッチ11部分での受光部33の出力変化を省略してある。   Further, when the portion of the notch 11 of the semiconductor wafer 10 moves to the optical path between the light emitting portion 32 and the light receiving portion 33, the amount of light blocked by the portion of the notch 11 changes greatly compared to other portions. Therefore, the notch 11 can be detected from the output change of the light receiving unit 33 (see the portion where the output change of the solid line portion in FIG. 6A). Note that the output change of the light receiving unit 33 at the notch 11 portion is omitted in the two-dot chain line of FIG. 6A showing the output change of the light receiving unit 33 when it is eccentric. .

受光部33の出力は、偏心状態(偏心量、偏心方向)の情報とノッチ11の検出情報とを含んでおり、不図示のAD変換器、インターフェース80を介して、検査装置100全体の制御を行うCPU82に入力される。CPU82では、受光部33からの出力に基づいて、先ず載置台21を所定量下降させ、次いでXYテーブル31を所定方向に所定量駆動させ、この後載置台21を所定量上昇させる、駆動信号を、位置合わせ機構30に不図示のDA変換器、インターフェース80を介して出力する。また、ノッチ11の検出情報は記憶部84に記憶される。   The output of the light receiving unit 33 includes information on the eccentric state (the amount of eccentricity and the eccentric direction) and detection information on the notch 11, and controls the entire inspection apparatus 100 via an AD converter (not shown) and the interface 80. Input to the CPU 82 to perform. In the CPU 82, based on the output from the light receiving unit 33, first, the mounting table 21 is lowered by a predetermined amount, then the XY table 31 is driven by a predetermined amount in a predetermined direction, and thereafter, a driving signal for raising the mounting table 21 by a predetermined amount. And output to the alignment mechanism 30 via a DA converter and interface 80 (not shown). Further, the detection information of the notch 11 is stored in the storage unit 84.

位置合わせ機構30では、CPU82から出力される駆動信号により、先ず駆動台21を、半導体ウエハ10が支持ピン34上に支持されて載置台21が半導体ウエハ10から離れるまで下降させる。次いで、XYテーブル31を、偏心状態を無くす方向において回転テーブル20の回転中心が半導体ウエハ10の中心を通る垂直線上に位置するように駆動する。この後、載置台21を、半導体ウエハ10を支持ピン34から外して持ち上げるように上昇させる。   In the alignment mechanism 30, first, the drive table 21 is lowered by the drive signal output from the CPU 82 until the semiconductor wafer 10 is supported on the support pins 34 and the mounting table 21 is separated from the semiconductor wafer 10. Next, the XY table 31 is driven so that the rotation center of the turntable 20 is positioned on a vertical line passing through the center of the semiconductor wafer 10 in the direction in which the eccentric state is eliminated. Thereafter, the mounting table 21 is raised so that the semiconductor wafer 10 is lifted off the support pins 34.

半導体ウエハ10が支持ピン34から離れると、回転テーブル20が駆動して半導体ウエハ10の周縁部位10aを欠陥検出部40に移動させる。   When the semiconductor wafer 10 is separated from the support pins 34, the turntable 20 is driven to move the peripheral portion 10 a of the semiconductor wafer 10 to the defect detection unit 40.

欠陥検出部40は、図4に示すように、半導体ウエハ10の周縁部位10aに該半導体ウエハ10の径方向に延びるスリット光を照射する照明部としての照明光学系41と、周縁部分10aからの散乱光を受光する第1受光部としての後方散乱光検出光学系42と、同様に周縁部分10aからの散乱光を受光する第2受光部としての前方散乱光検出光学系43と、これら後方散乱光検出光学系42,前方散乱光検出光学系43からの出力であって所定の閾値を越えた出力に基づいて欠陥の内容を判別する判別部44とを備える。   As shown in FIG. 4, the defect detection unit 40 includes an illumination optical system 41 as an illumination unit that irradiates a peripheral portion 10a of the semiconductor wafer 10 with slit light extending in the radial direction of the semiconductor wafer 10, and a peripheral portion 10a. Backscattered light detection optical system 42 as a first light-receiving unit that receives scattered light, forward-scattered light detection optical system 43 as a second light-receiving unit that similarly receives scattered light from the peripheral portion 10a, and backscattering And a discriminator 44 that discriminates the content of the defect based on the outputs from the light detection optical system 42 and the forward scattered light detection optical system 43 that exceed a predetermined threshold.

照明光学系41は、光源41aと、スリット41bと、レンズ41cとを備え、回転テーブル20により半導体ウエハ10が回転している間に、光源41aの光を、スリット41bを通してレンズ41cにより集光しスリット光として周縁部位10aに照射する。   The illumination optical system 41 includes a light source 41a, a slit 41b, and a lens 41c. While the semiconductor wafer 10 is rotated by the rotary table 20, the light from the light source 41a is collected by the lens 41c through the slit 41b. Irradiate the peripheral portion 10a as slit light.

後方散乱光検出光学系42は、シリコンフォトダイオード(SPD)42aと、レンズ42bを備え、照明光学系41による照射位置よりも該照明光学系41が配置された側に位置し、照明光が照射されている周縁部位10aから後方(図4の左側)に進行する散乱光を受光、検出する。   The backscattered light detection optical system 42 includes a silicon photodiode (SPD) 42a and a lens 42b. The backscattered light detection optical system 42 is positioned on the side where the illumination optical system 41 is disposed with respect to the irradiation position of the illumination optical system 41, and is irradiated with illumination light. Scattered light traveling backward (left side in FIG. 4) from the peripheral edge portion 10a is received and detected.

前方散乱光検出光学系43は、シリコンフォトダイオード(SPD)43aと、レンズ43bを備え、照明光学系41による照射位置よりも該照明光学系41と反対側に位置し、照明光が照射されている周縁部位10aから前方(図4の右側)に進行する散乱光を受光、検出する。   The forward scattered light detection optical system 43 includes a silicon photodiode (SPD) 43a and a lens 43b. The forward scattered light detection optical system 43 is located on the opposite side of the illumination optical system 41 from the irradiation position of the illumination optical system 41 and is irradiated with illumination light. Scattered light traveling forward (right side in FIG. 4) from the peripheral edge portion 10a is received and detected.

SPD42a、43aは周縁部位10aから散乱光を受光したときに図6(b)に示すような瞬間的にピーク値となる信号を出力する。なお、同図では複数の箇所からの散乱光を受光した場合を示す。周縁部位10aが鏡面状態の場合、該周縁部分10aからは正反射光が発せられ、散乱光は発せられず、SPD42a、43aの出力は略ゼロレベルのままである。周縁部位10aに鏡面状態ではない箇所(非鏡面箇所)例えばレジストの残渣、パーティクルなどのゴミの付着、あるいはひび、欠けなどが存在する箇所からは散乱光が発せられる。正反射光は法線に対する照明光の入射角と等しい反射角を有するので、この反射角以外の位置ならば、正反射光を受光せずに散乱光のみを受光することができる。   The SPDs 42a and 43a output signals having instantaneous peak values as shown in FIG. 6B when receiving scattered light from the peripheral portion 10a. In the figure, a case where scattered light from a plurality of locations is received is shown. When the peripheral portion 10a is in a mirror state, specularly reflected light is emitted from the peripheral portion 10a, scattered light is not emitted, and the outputs of the SPDs 42a and 43a remain at substantially zero level. Scattered light is emitted from a portion that is not in a mirror surface state (non-mirror surface portion), such as a resist residue, adhesion of dust such as particles, cracks, or chipping, in the peripheral portion 10a. Since the regular reflection light has a reflection angle equal to the incident angle of the illumination light with respect to the normal line, at any position other than the reflection angle, only the scattered light can be received without receiving the regular reflection light.

SPD42a、43aは、上述したように周縁部位10aの非鏡面箇所からの散乱光を受光することにより信号を出力する。この非鏡面箇所のなかには、レジストの残渣、パーティクルなどのゴミの付着、あるいはひび、欠けなどの欠陥の外に実際には問題とならない曇りが生じた箇所も含まれる。この曇りが生じた箇所からの散乱光を受光した際のSPD42a、43aの出力信号レベルはゴミが付着した箇所などからの散乱光を受光した際のSPD42a、43aの出力信号レベルに比して低い。そこで、不図示のフィルタがSPD42a、43aの出力のうち所定の閾値を越えた出力のみを欠陥の検出信号として抽出して、不図示のAD変換器、インターフェース80を介してCPU82に送る。これによりCPU82はSPD42a、43aから欠陥の検出信号のみを入力することになる。   As described above, the SPDs 42a and 43a output signals by receiving scattered light from the non-specular portions of the peripheral portion 10a. Among the non-mirror surface portions, there are also portions where fogging that does not actually cause a problem occurs in addition to defects such as resist residues, adhesion of dust such as particles, or cracks and chips. The output signal level of the SPDs 42a and 43a when receiving the scattered light from the cloudy part is lower than the output signal level of the SPDs 42a and 43a when receiving the scattered light from the part where dust is attached. . Therefore, the filter (not shown) extracts only the output of the SPDs 42a and 43a that exceeds a predetermined threshold as a defect detection signal and sends it to the CPU 82 via the AD converter and interface 80 (not shown). As a result, the CPU 82 inputs only a defect detection signal from the SPDs 42a and 43a.

閾値を越えたSPD42a、43aの出力は上述したように判別部44にも入力される。判別部44は、電圧比較器(コンパレータ)を備え、SPD42aからの出力とSPD43aからの出力とを比較し、SPD42aの出力がSPD43aの出力よりも大きいとき(SPD42a>SPD43a)、ローレベルの信号(L)を出力し、SPD42aの出力がSPD43aの出力よりも小さいとき(SPD42a<SPD43a)、ハイレベルの信号(H)を出力する。半導体ウエハ10の周縁部位10aにパーティクルなどのゴミが付着している場合、散乱光は後方(図4左側)に強く発するので、SPD42aの出力がSPD43aの出力よりも大きく、ローレベルの信号(L)を出力する。また、周縁部位10aにひび、欠けがある場合、散乱光は前方(図4の右側)に強く発するので、SPD42aの出力がSPD43aの出力よりも小さいく、ハイレベルの信号(H)を出力する。判別部44のこれら出力はインターフェース80を介してCPU82に送られる。   The outputs of the SPDs 42a and 43a exceeding the threshold value are also input to the determination unit 44 as described above. The determination unit 44 includes a voltage comparator (comparator), compares the output from the SPD 42a with the output from the SPD 43a, and when the output of the SPD 42a is larger than the output of the SPD 43a (SPD42a> SPD43a), L) is output, and when the output of the SPD 42a is smaller than the output of the SPD 43a (SPD 42a <SPD 43a), a high level signal (H) is output. When dust such as particles is attached to the peripheral portion 10a of the semiconductor wafer 10, the scattered light is strongly emitted backward (left side in FIG. 4), so that the output of the SPD 42a is larger than the output of the SPD 43a and the low level signal (L ) Is output. Further, when the peripheral portion 10a is cracked or chipped, the scattered light is strongly emitted forward (right side in FIG. 4), so the output of the SPD 42a is smaller than the output of the SPD 43a and outputs a high level signal (H). . These outputs from the determination unit 44 are sent to the CPU 82 via the interface 80.

CPU82では、SPD42a、43aからの出力、エンコーダ35からの出力を入力しており、SPD42a、43aからの出力を入力したとき、ノッチ11からの距離(図6(b)の回転角度θ、θ、θ参照)、すなわちSPD42a、43aで検出された欠陥箇所の位置情報を求める。例えば、ノッチ11を検出した時点からSPD42a、43aからの検出信号を入力した時点までの間にエンコーダ35から発せられるパルス信号の数をカウントすることにより、その間の回転テーブル20の回転角度を演算して欠陥箇所の位置情報を求める。この位置情報は記憶部84に記憶される。 The CPU 82 inputs the outputs from the SPDs 42a and 43a and the output from the encoder 35. When the outputs from the SPDs 42a and 43a are input, the distance from the notch 11 (the rotation angles θ 1 and θ in FIG. 6B). 2 , θ 3 ), that is, the position information of the defective portion detected by the SPDs 42 a and 43 a is obtained. For example, by counting the number of pulse signals emitted from the encoder 35 between the time when the notch 11 is detected and the time when the detection signals from the SPDs 42a and 43a are input, the rotation angle of the rotary table 20 between them is calculated. The position information of the defective part is obtained. This position information is stored in the storage unit 84.

CPU82は記憶部84に記憶された位置情報を読み出し、この位置情報に基づいて回転テーブル20の駆動を制御し、欠陥箇所を欠陥観察部50まで移動させて、回転テーブル20を停止させる。   The CPU 82 reads the position information stored in the storage unit 84, controls the driving of the rotary table 20 based on this position information, moves the defective part to the defect observation unit 50, and stops the rotary table 20.

欠陥観察部50は、図5に示すように、欠陥箇所を明視野照明あるいは暗視野照明する照明部51と、照明された欠陥箇所を撮影するCCDカメラ52と、このCCDカメラ52の撮影信号を処理する画像処理部53と、この画像処理部53によって処理された撮影画像を表示するディスプレイ54を備える。   As shown in FIG. 5, the defect observing unit 50 includes an illumination unit 51 for illuminating a defective portion with bright field illumination or dark field illumination, a CCD camera 52 for photographing the illuminated defective portion, and a photographing signal of the CCD camera 52. An image processing unit 53 for processing and a display 54 for displaying a photographed image processed by the image processing unit 53 are provided.

CPU82は、判別部44からのローレベル信号(L)、ハイレベル信号(H)に基づき、欠陥内容に応じて最適な照明方法により欠陥箇所が照明されるように照明部51を暗視野照明あるいは明視野照明に切り替える。半導体ウエハ10の周縁部位10aのひび、欠けなどは例えば明視野照明により、またパーティクルなどゴミでは暗視野照明により照明することにより、欠陥箇所の鮮明な撮影画像を得ることが可能になる。   Based on the low level signal (L) and the high level signal (H) from the determination unit 44, the CPU 82 illuminates the illumination unit 51 with dark field illumination or illumination so that the defective part is illuminated by an optimal illumination method according to the defect content. Switch to bright field illumination. By illuminating the peripheral portion 10a of the semiconductor wafer 10 with bright field illumination, for example, with particles such as particles with dark field illumination, a clear photographed image of the defective portion can be obtained.

欠陥観察部50では、欠陥箇所がCCDカメラ52の撮影領域(観察領域)内に位置したとき、暗視野照明あるいは明視野照明により照明しつつ、CCDカメラ52により欠陥箇所を撮影する。欠陥箇所が複数ある場合には各箇所を撮影領域内に位置させ、欠陥の内容に応じて暗視野照明あるいは明視野照明に切り替えて順次撮影する。CCDカメラ52の撮影信号は画像処理部53で画像処理され、欠陥の程度などが精査される。画像処理された撮影画像はディスプレイ54に表示される。また、欠陥の程度、種類、位置などの情報は記憶部84に記憶される。   In the defect observing unit 50, when the defective part is located in the photographing region (observing region) of the CCD camera 52, the defective part is photographed by the CCD camera 52 while illuminating with dark field illumination or bright field illumination. When there are a plurality of defect locations, each location is positioned within the imaging region, and shooting is sequentially performed by switching to dark field illumination or bright field illumination depending on the content of the defect. The image signal of the CCD camera 52 is subjected to image processing by the image processing unit 53, and the degree of defects is examined closely. The captured image that has undergone image processing is displayed on the display 54. Information such as the degree, type, and position of defects is stored in the storage unit 84.

図7は本実施形態の検査装置100の動作のフローチャートを示している。   FIG. 7 shows a flowchart of the operation of the inspection apparatus 100 of this embodiment.

ステップ100でリソグラフィ工程のレジスト塗布工程、露光工程、洗浄工程などの各工程終了後、未検査ウエハ収納カセット70(図1参照)内に収納された半導体ウエハ10を、搬送アーム60(図1参照)により取り出して、回転テーブル20上に搬送する。   In step 100, after completion of each process such as a resist coating process, an exposure process, and a cleaning process in the lithography process, the semiconductor wafer 10 stored in the uninspected wafer storage cassette 70 (see FIG. 1) is transferred to the transfer arm 60 (see FIG. 1). ) And transported onto the rotary table 20.

ステップS101で、回転テーブル20を駆動し、半導体ウエハ10を位置合わせ機構30に移動する。ステップS102で、半導体ウエハ10を回転させながら位置合わせ機構30において半導体ウエハ10の周縁部位10aとノッチ11を検出しつつ、半導体ウエハ10の中心部と回転テーブル20の回転中心との間の偏心状態を求め、この偏心状態に基づいてXYテーブル31により回転ステージ20を半導体ウエハ10に対して移動調整して偏心状態がゼロになるように位置合わせ(芯合わせ)を行う。この回転テーブル20の移動に際しては上述したように回転テーブル20から半導体ウエハ10を離しておく。ステップS103で位置合わせ操作が終了したか否かを判断し、終了していない場合には位置合わせ操作を続行し、終了した場合にはステップS104に移行する。   In step S <b> 101, the rotary table 20 is driven to move the semiconductor wafer 10 to the alignment mechanism 30. In step S102, the alignment mechanism 30 detects the peripheral portion 10a and the notch 11 of the semiconductor wafer 10 while rotating the semiconductor wafer 10, and the eccentric state between the center portion of the semiconductor wafer 10 and the rotation center of the turntable 20 is detected. Based on this eccentric state, the rotary stage 20 is moved and adjusted with respect to the semiconductor wafer 10 by the XY table 31 to perform alignment (center alignment) so that the eccentric state becomes zero. When the rotary table 20 is moved, the semiconductor wafer 10 is separated from the rotary table 20 as described above. In step S103, it is determined whether or not the alignment operation has been completed. If the alignment operation has not been completed, the alignment operation is continued. If it has been completed, the process proceeds to step S104.

ステップS104で半導体ウエハ10を欠陥検出部40に移動し、照明光学系41による照明で半導体ウエハ10の周縁部位10aから発せられる散乱光をSPD42a、43aで受光、検出する。検出された欠陥箇所の位置情報は、記憶部84に記憶され、この位置情報に基づいて回転テーブル20を駆動して欠陥箇所を欠陥観察部50に移動する。また、SPD42a、43aの出力に基づいて判別部44で欠陥内容がゴミの付着による欠陥か、ひび、欠けによる欠陥かが判別される。   In step S104, the semiconductor wafer 10 is moved to the defect detection unit 40, and scattered light emitted from the peripheral portion 10a of the semiconductor wafer 10 by illumination by the illumination optical system 41 is received and detected by the SPDs 42a and 43a. The detected position information of the defect location is stored in the storage unit 84, and the rotary table 20 is driven based on this position information to move the defect location to the defect observation unit 50. Further, based on the outputs of the SPDs 42a and 43a, the determination unit 44 determines whether the defect content is a defect due to adhesion of dust, a defect due to a crack or a chip.

ステップS105で欠陥箇所が欠陥観察部50に到達したか否かが判断され、到達していない場合には回転テーブル20の駆動を続行し、到達した場合にはステップS106に移行し、回転テーブル20を停止させて欠陥箇所をCCDカメラ52による撮影領域内に位置させる。ステップS107で欠陥内容に応じて暗視野照明あるいは明視野照明に切り換え、ステップS108で欠陥内容に応じた最適な照明をしつつ欠陥箇所を撮影し、これを画像処理部53で画像処理を施して観察し欠陥の程度を判断する。欠陥箇所が複数ある場合には、欠陥箇所毎にステップS105,S106,107,108を実行する。ステップS109で欠陥観察部50での観察が終了したか否かが判断され、終了していない場合にはステップS105に戻り、ステップS106,107,108を繰り返す。終了した場合にはステップS110に移行する。なお、ステップS102で偏心量が小さい場合は、欠陥検出・判別と欠陥観察との一方又は両方をステップS102で行ってもよい。   In step S105, it is determined whether or not the defective part has reached the defect observation unit 50. If not, the driving of the rotary table 20 is continued, and if it has reached, the process proceeds to step S106, and the rotary table 20 is reached. Is stopped, and the defective portion is positioned in the imaging region by the CCD camera 52. In step S107, switching to dark field illumination or bright field illumination is performed according to the defect content. In step S108, the defect portion is photographed while performing optimum illumination according to the defect content, and this is subjected to image processing by the image processing unit 53. Observe and determine the degree of defects. When there are a plurality of defective portions, Steps S105, S106, 107, and 108 are executed for each defective portion. In step S109, it is determined whether or not the observation with the defect observation unit 50 is finished. If not, the process returns to step S105, and steps S106, 107, and 108 are repeated. If completed, the process proceeds to step S110. If the amount of eccentricity is small in step S102, one or both of defect detection / determination and defect observation may be performed in step S102.

ステップS110で回転テーブル20を駆動し、半導体ウエハ10を搬出位置まで移動する。ステップS111で搬送アーム60により半導体ウエハ10を回転テーブル20から取り出して検査済ウエハ収納カセット75内に収納する。   In step S110, the rotary table 20 is driven to move the semiconductor wafer 10 to the unloading position. In step S <b> 111, the semiconductor wafer 10 is taken out from the turntable 20 by the transfer arm 60 and stored in the inspected wafer storage cassette 75.

ステップS112で半導体ウエハ10の周縁部位10aの検査を続行するか否かを判断し、続行する場合にはステップS100に戻り、上述した操作を繰り返す。続行しない場合には検査を終了する。検査を続行するか否かの判断は、例えば、予め未検査ウエハ収納カセット70内に収容されている、検査すべき半導体ウエハ10の枚数をCPU82にインプットしておき、検査終了毎に検査数をカウントすることにより行い、インプットした枚数に達した時点で検査を終了する。   In step S112, it is determined whether or not the inspection of the peripheral portion 10a of the semiconductor wafer 10 is to be continued. If so, the process returns to step S100 and the above-described operation is repeated. If it is not continued, the inspection is terminated. The determination of whether or not to continue the inspection is performed by, for example, inputting the number of semiconductor wafers 10 to be inspected previously stored in the uninspected wafer storage cassette 70 to the CPU 82 and determining the number of inspections every time inspection is completed. Counting is performed, and the inspection is terminated when the input number is reached.

上述した本実施形態の検査装置100によれば、後方に進行する散乱光を受光、検出するSPD42aと、前方に進行する散乱光を受光、検出するSPD43aにより欠陥を検出するので、短時間で欠陥を検出し且つ欠陥の内容を判別することが可能となる。   According to the inspection apparatus 100 of this embodiment described above, defects are detected in a short time because the SPD 42a that receives and detects scattered light traveling backward and the SPD 43a that receives and detects scattered light traveling forward are detected. Can be detected and the content of the defect can be determined.

また、判別部44で判別した欠陥内容に応じて欠陥観察部50での照明の仕方を切り替えるようにしているので、最適な照明で欠陥箇所の撮影が行え、鮮明な撮影画像を得ることが可能となる。   In addition, since the illumination method in the defect observation unit 50 is switched in accordance with the defect content determined by the determination unit 44, the defect portion can be imaged with optimum illumination, and a clear captured image can be obtained. It becomes.

さらに、回転テーブル20上の半導体ウエハ10の周辺に位置合わせ機構30と、欠陥検出部40と、欠陥観察部50が、半導体ウエハ10の回転方向に順に配置されて、位置合わせ機構30で半導体ウエハ10の中心と回転テーブル20の回転中心とを位置合わせし、次いで欠陥検出部40で欠陥箇所を特定し、この後欠陥箇所を欠陥観察部50でCCDカメラ52により撮影し、画像処理部53で画像処理して、半導体ウエハ10の周縁部位10aにおける欠陥を検出、観察するようにしてあるので、検査時間を大幅に短縮することが出来る。   Further, an alignment mechanism 30, a defect detection unit 40, and a defect observation unit 50 are sequentially arranged around the semiconductor wafer 10 on the turntable 20 in the rotation direction of the semiconductor wafer 10. 10 and the rotation center of the rotary table 20 are aligned, then the defect detection unit 40 specifies a defect location, and then the defect observation unit 50 takes a picture with the CCD camera 52, and the image processing unit 53 Since image processing is performed to detect and observe defects in the peripheral portion 10a of the semiconductor wafer 10, the inspection time can be greatly shortened.

すなわち、未検査ウエハカセット70から半導体ウエハ10を搬送アーム60で取り出して回転テーブル20上に移送してから、位置合わせをするので、カセットから取り出した半導体ウエハを一旦位置合わせ機構に移送して位置合わせをしてから検査装置の回転テーブル上に移送する(半導体ウエハの移送を2回行う)場合に比して、半導体ウエハ10の移送時間を短縮することができる。また、予め欠陥箇所を特定してから欠陥箇所を詳細に観察するので、欠陥の観察時間を短縮することができる。さらに、位置合わせ機構から検査装置の回転テーブル上に移送する過程で半導体ウエハに位置ずれが生じて、再度位置合わせが必要となる事態が生じるおそれがない。   That is, since the semiconductor wafer 10 is taken out from the uninspected wafer cassette 70 by the transfer arm 60 and transferred onto the rotary table 20, the alignment is performed. Therefore, the semiconductor wafer taken out from the cassette is once transferred to the alignment mechanism and positioned. The transfer time of the semiconductor wafer 10 can be shortened as compared with the case where the wafers are aligned and then transferred onto the rotary table of the inspection apparatus (transferring the semiconductor wafer twice). Moreover, since the defect location is observed in detail after the defect location is specified in advance, the defect observation time can be shortened. Furthermore, there is no possibility that the semiconductor wafer is displaced in the process of being transferred from the alignment mechanism onto the rotary table of the inspection apparatus, and the alignment is required again.

本発明は上記実施形態に限定されるものではない。例えば、欠陥検出部40では散乱光を受光することにより、欠陥箇所を検出し、これを欠陥観察部50で精査して欠陥の程度を観察しているが、欠陥検出部40の受光部であるSPD42a、43aに替えてラインセンサを配置し、ラインセンサの出力に基づいて欠陥の検出と欠陥の内容、程度を観察するようにしてもよい。   The present invention is not limited to the above embodiment. For example, the defect detection unit 40 receives the scattered light to detect a defect portion, and the defect observation unit 50 examines the defect to observe the degree of the defect. A line sensor may be arranged in place of the SPDs 42a and 43a, and the detection of the defect and the content and degree of the defect may be observed based on the output of the line sensor.

また、照明の仕方は特に暗視野照明、明視野照明に限定されるものではなく、SPD42a、43aの出力に基づいて欠陥内容に応じて最適な照明を選択して切り替えるようにすればよい。   The illumination method is not particularly limited to dark field illumination and bright field illumination, and the optimum illumination may be selected and switched according to the defect content based on the outputs of the SPDs 42a and 43a.

また、欠陥観察部50にCCDカメラ52の代わりに顕微鏡を設置し、この顕微鏡により得られた観察画像をディスプレイ54で拡大表示するようにしてもよい。   Further, a microscope may be installed in the defect observation unit 50 instead of the CCD camera 52, and an observation image obtained by the microscope may be enlarged and displayed on the display 54.

本発明の検査装置の一実施形態を示す概略平面図である。It is a schematic plan view which shows one Embodiment of the test | inspection apparatus of this invention. 概略正面図である。It is a schematic front view. 回転テーブルと位置合わせ機構の概略側面図である。It is a schematic side view of a rotary table and an alignment mechanism. 欠陥検出部の概略側面図である。It is a schematic side view of a defect detection part. 図1に示す検査装置のブロック図である。It is a block diagram of the inspection apparatus shown in FIG. 図6(a)は位置合わせ機構を構成する受光部の出力変化を示すグラフであり、図6(b)は欠陥検出部を構成するSPD42a、43aの出力変化を示すグラフである。FIG. 6A is a graph showing an output change of the light receiving unit constituting the alignment mechanism, and FIG. 6B is a graph showing an output change of the SPDs 42a and 43a constituting the defect detecting unit. 図1に示す検査装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the test | inspection apparatus shown in FIG.

符号の説明Explanation of symbols

10 半導体ウエハ
10a 周縁部位
11 ノッチ(指標部)
20 回転テーブル
32 発光部(指標検出部)
33 受光部(指標検出部)
40 欠陥検出部
41 照明光学系(照明部)
42 後方散乱光検出光学系(第1受光部)
43 前方散乱光検出光学系(第2受光部)
44 判別部
50 欠陥観察部
51 照明部
84 記憶部
10 Semiconductor wafer 10a Peripheral part 11 Notch (index part)
20 Rotary table 32 Light emitting part (index detection part)
33 Light receiver (index detector)
40 Defect detection unit 41 Illumination optical system (illumination unit)
42 Backscattered light detection optical system (first light receiving section)
43 Forward scattered light detection optical system (second light receiving part)
44 Discrimination unit 50 Defect observation unit 51 Illumination unit 84 Storage unit

Claims (7)

被検査物の周縁部位に光を照射する照明部と、
前記光が照射される前記周縁部位の照射領域よりも前記照明部が配置された側に進行する前記周縁領域からの散乱光を受光する第1受光部と、
前記照射領域に対して、前記照明部とは反対側に進行する前記照射領域からの散乱光を受光する第2受光部と、
前記第1受光部の出力と前記第2受光部の出力とから前記周縁部位の欠陥箇所の欠陥内容を判別する判別部と、
前記判別部で判別された前記欠陥内容に応じて、前記欠陥箇所への照明方法を切り替えて該欠陥箇所の表面状態を検出する欠陥観察部を備えることを特徴とする検査装置。
An illumination unit that irradiates light to the peripheral portion of the object to be inspected;
A first light-receiving unit that receives scattered light from the peripheral region that travels to a side where the illumination unit is disposed with respect to an irradiation region of the peripheral region irradiated with the light;
With respect to the irradiation region, a second light receiving section for receiving scattered light from the illuminated region that travels in opposite to the illumination unit,
A discriminating unit for discriminating the defect content of the defective portion of the peripheral portion from the output of the first light receiving unit and the output of the second light receiving unit;
An inspection apparatus comprising: a defect observing unit that detects a surface state of the defective part by switching an illumination method for the defective part according to the defect content determined by the determining part .
請求項1に記載の検査装置において、
前記被検査物を支持して回転させる回転支持部を備えることを特徴とする検査装置。
The inspection apparatus according to claim 1,
Inspection device characterized in that it comprises a rotation supporting portion for rotating and supporting the object to be inspected.
請求項1又は2に記載の検査装置において、
前記判別部は、前記第1受光部の出力の大きさと前記第2受光部の出力の大きさとの少なくとも一方の出力の大きさと、所定の閾値とを比較した結果と、前記第1受光部の出力と前記第2受光部の出力との大きさを比較した結果とに基づいて、前記周縁部位の欠陥箇所の欠陥内容を判別することを特徴とする検査装置。
The inspection apparatus according to claim 1 or 2,
The determination unit compares the output magnitude of at least one of the output magnitude of the first light receiving part and the output magnitude of the second light receiving part with a predetermined threshold value, and the first light receiving part. An inspection apparatus that discriminates the defect content of the defect portion of the peripheral portion based on a result of comparing the output and the output of the second light receiving unit .
請求項1乃至3の何れか一項に記載の検査装置において、
前記被検査物に設けた指標部を検出する指標検出部と、
前記指標部から前記第1受光部、前記第2受光部の出力に基づいて検出された前記被検査物の周縁部位の欠陥箇所までの位置情報を記憶する記憶部と、
を備えることを特徴とする検査装置。
The inspection apparatus according to any one of claims 1 to 3,
An index detection unit for detecting an index unit provided in the inspection object;
A storage unit for storing position information from the index unit to the defect portion of the peripheral portion of the inspection object detected based on the outputs of the first light receiving unit and the second light receiving unit;
An inspection apparatus comprising:
請求項1乃至4のいずれか一項に記載の検査装置において、
前記第1受光部は、前記照射領域からの後方散乱光を受光し、前記第2受光部は、前記照射領域からの前方散乱光を受光することを特徴とする検査装置。
The inspection apparatus according to any one of claims 1 to 4 ,
The inspection apparatus , wherein the first light receiving unit receives back scattered light from the irradiation region, and the second light receiving unit receives forward scattered light from the irradiation region .
請求項1乃至5のいずれか一項に記載の検査装置において、In the inspection apparatus according to any one of claims 1 to 5,
前記欠陥観察部は、前記欠陥箇所への照明方法を暗視野照明又は明視野照明に切り替えることを特徴とする検査装置。The said defect observation part switches the illumination method to the said defect location to dark field illumination or bright field illumination, The inspection apparatus characterized by the above-mentioned.
請求項4乃至6のいずれか一項に記載の検査装置において、  The inspection apparatus according to any one of claims 4 to 6,
前記指標検出部と、前記第1、第2受光部を含む欠陥検出部と、前記欠陥観察部とが前記被検査物の回転方向に順に配置されていることを特徴とする検査装置。  An inspection apparatus, wherein the index detection unit, a defect detection unit including the first and second light receiving units, and the defect observation unit are sequentially arranged in a rotation direction of the inspection object.
JP2006193418A 2006-07-13 2006-07-13 Inspection device Active JP4876744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006193418A JP4876744B2 (en) 2006-07-13 2006-07-13 Inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006193418A JP4876744B2 (en) 2006-07-13 2006-07-13 Inspection device

Publications (2)

Publication Number Publication Date
JP2008020371A JP2008020371A (en) 2008-01-31
JP4876744B2 true JP4876744B2 (en) 2012-02-15

Family

ID=39076413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006193418A Active JP4876744B2 (en) 2006-07-13 2006-07-13 Inspection device

Country Status (1)

Country Link
JP (1) JP4876744B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5144401B2 (en) * 2008-07-01 2013-02-13 直江津電子工業株式会社 Wafer inspection equipment
JP5648185B2 (en) * 2010-09-27 2015-01-07 Ncc株式会社 Particle detecting optical device and particle detecting device
TWI695441B (en) * 2013-12-02 2020-06-01 日商大亨股份有限公司 Workpiece processing device, workpiece conveying system
US9886029B2 (en) 2013-12-02 2018-02-06 Daihen Corporation Workpiece processing apparatus and workpiece transfer system
JP6348789B2 (en) * 2014-03-28 2018-06-27 株式会社ダイヘン Work processing equipment, work transfer system
CN107664476B (en) * 2016-07-28 2020-06-05 中微半导体设备(上海)股份有限公司 Optical detection device and detection method for semiconductor equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3013903B2 (en) * 1991-01-31 2000-02-28 セントラル硝子株式会社 Defect detection device for sheet glass
JP2999712B2 (en) * 1996-03-29 2000-01-17 住友金属工業株式会社 Edge defect inspection method and apparatus
MY123792A (en) * 1996-12-04 2006-06-30 Ade Optical Systems Wafer inspection system for distinguishing pits and particles
JPH10318933A (en) * 1997-05-16 1998-12-04 Sony Corp Method and apparatus for detecting substrate chipping
JPH11230917A (en) * 1998-02-12 1999-08-27 Nikon Corp Defect inspection apparatus
WO2003028089A1 (en) * 2001-09-19 2003-04-03 Olympus Optical Co., Ltd. Semiconductor wafer inspection system

Also Published As

Publication number Publication date
JP2008020371A (en) 2008-01-31

Similar Documents

Publication Publication Date Title
TWI502187B (en) Substrate inspection apparatus and substrate inspection method
JP3566589B2 (en) Defect inspection apparatus and method
JP5032114B2 (en) Patterned or non-patterned wafer and other specimen inspection systems
JP3709426B2 (en) Surface defect detection method and surface defect detection apparatus
TW522447B (en) Method and apparatus for embedded substrate and system status monitoring
JP5349742B2 (en) Surface inspection method and surface inspection apparatus
KR100516405B1 (en) Apparatus for inspecting an edge exposure area of wafer
TWI625519B (en) Surface inspection method and system
JP4876744B2 (en) Inspection device
WO2007075496A2 (en) System and method for conducting adaptive fourier filtering
JPH06294749A (en) Flaw inspection method for plat glass
TW533526B (en) Method and apparatus to provide for automated process verification and hierarchical substrate examination
US10598607B2 (en) Objective lens
KR100374762B1 (en) Apparatus for inspecting defects and method thereof
JP2008021884A (en) Inspection apparatus
JP2004093317A (en) Method for aligning wafer and wafer inspecting device
JP2006017685A (en) Surface defect inspection device
JP2004257776A (en) Inspection device for light transmission body
JP3078784B2 (en) Defect inspection equipment
KR101360251B1 (en) Reviewing apparatus of wafer defect and Method thereof
JP2000028535A (en) Defect inspecting device
JP6493136B2 (en) Wafer inspection method and wafer inspection apparatus
JP2000171227A (en) Apparatus and method for inspecting foreign matter on wafer with pattern
CN116539525A (en) Device and method for inspecting internal defects of electronic component
JP2009222629A (en) Device for inspecting edge of object to be inspected

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4876744

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250