JP4876387B2 - Biaxially oriented microporous film and method for producing the same - Google Patents

Biaxially oriented microporous film and method for producing the same Download PDF

Info

Publication number
JP4876387B2
JP4876387B2 JP2004321976A JP2004321976A JP4876387B2 JP 4876387 B2 JP4876387 B2 JP 4876387B2 JP 2004321976 A JP2004321976 A JP 2004321976A JP 2004321976 A JP2004321976 A JP 2004321976A JP 4876387 B2 JP4876387 B2 JP 4876387B2
Authority
JP
Japan
Prior art keywords
film
resin
biaxially oriented
crystal
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004321976A
Other languages
Japanese (ja)
Other versions
JP2005171230A (en
Inventor
茂 田中
順一 増田
正寿 大倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2004321976A priority Critical patent/JP4876387B2/en
Publication of JP2005171230A publication Critical patent/JP2005171230A/en
Application granted granted Critical
Publication of JP4876387B2 publication Critical patent/JP4876387B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、二軸配向微多孔フィルムおよびその製造方法に関するものである。更に詳しく述べれば、本発明は、微細な空孔を有し、ガーレ透気度が低く、すなわち通気性に優れ、滑り性が良好で、伸張時の応力が高くフィルムの巻き取り性に優れ、更に、耐熱性(低熱収縮率)に優れ、電解コンデンサーやリチウム電池などのセパレーター、分離膜、透気防水シート、フィルターに有用な二軸配向微多孔フィルムおよびその製造方法に関するものである。   The present invention relates to a biaxially oriented microporous film and a method for producing the same. More specifically, the present invention has fine pores, low Gurley permeability, i.e., excellent air permeability, good slipperiness, high stress during stretching, and excellent film winding. Furthermore, the present invention relates to a biaxially oriented microporous film excellent in heat resistance (low thermal shrinkage) and useful for separators such as electrolytic capacitors and lithium batteries, separation membranes, air permeable waterproof sheets and filters, and a method for producing the same.

従来の白色フィルムまたは多孔性フィルムの技術として、ポリプロピレン樹脂とポリプロピレン樹脂より溶融結晶化温度が高いポリマー及びβ晶核剤からなる組成物を少なくとも一軸延伸するポリプロピレン微孔性フィルムの製造方法がある(例えば、特許文献1参照)。しかしながら、特許文献1では、β晶核剤のフタロシアニン系あるいはキナクリドンのβ晶生成率が低く、ポリプロピレン樹脂より溶融結晶化温度が高いポリマーを15重量部以上添加されているが、ガーレ透気度が10000sec/100ccを超え通気性が低く、また、表面粗さが大きく、機械強度が低いために、製膜工程ならびに二次加工工程にてポリマーの脱落やフィルム破れが起こる場合があった。また、アミド化合物系のβ晶核剤を含有して、二軸延伸したフィルム多孔性フィルム及びその製造方法がある(例えば、特許文献2,3参照)。特許文献2、3では透気度の値が低く通気性には優れるが、摩擦係数が高く滑り性に劣り、耐熱性(低熱収縮率)及び長尺巻き取り性と二次加工性に劣るものである。ポリプロピレン樹脂にβ晶核剤と樹脂粒子を添加して延伸した微多孔性膜の製造方法がある(例えば、特許文献4)。特許文献4では高い空隙率と粒子の脱落防止を目的に、β晶核剤と樹脂粒子を併用しているが、高い空隙率を得る目的で樹脂粒子を20〜50重量部と高添加しているために、製膜工程ならびに二次加工工程にて粒子の脱落やフィルム破れが起こる場合があった。また、平均孔径、窒素透過係数、延伸強度を規定したβ晶分率が高いミクロポーラスフィルム及びその製造方法がある(例えば、特許文献5)。特許文献5ではβ晶比率の高いポリプロピレン樹脂を、比較的低温で低面積倍率に延伸してミクロポーラスフィルムとしているが、フィルムの滑り性に劣り、巻き取り性及び二次加工時にしわや破れが発生する場合があり、また耐熱性(低熱収縮率)にも劣るものであった。
特公平7−5780号公報(請求項1、4項1〜11行、実施例1〜4) 特許第3341358号公報(請求項1〜2、実施例1〜5) 特開平7−33895号公報(請求項1〜5、実施例1〜17) 特開平9−176352号公報(請求項1、実施例1〜12) 特許第2509030号公報(請求項1〜8、実施例1〜7)
As a conventional white film or porous film technique, there is a method for producing a polypropylene microporous film in which a composition comprising a polypropylene resin and a polymer having a higher melting crystallization temperature than that of the polypropylene resin and a β crystal nucleating agent is uniaxially stretched ( For example, see Patent Document 1). However, in Patent Document 1, a β crystal nucleating agent phthalocyanine or quinacridone has a low β crystal production rate and a polymer having a melt crystallization temperature higher than that of polypropylene resin is added in an amount of 15 parts by weight or more. Since it exceeded 10,000 sec / 100 cc, the air permeability was low, the surface roughness was large, and the mechanical strength was low, there were cases where the polymer dropped off or the film was broken in the film forming process and the secondary processing process. Also, there are biaxially stretched film porous films containing an amide compound-based β crystal nucleating agent and methods for producing the same (see, for example, Patent Documents 2 and 3). In Patent Documents 2 and 3, the air permeability value is low and the air permeability is excellent, but the friction coefficient is high and the slip property is inferior, and the heat resistance (low heat shrinkage), the long winding property and the secondary workability are inferior. It is. There is a method for producing a microporous membrane that is drawn by adding a β crystal nucleating agent and resin particles to a polypropylene resin (for example, Patent Document 4). In Patent Document 4, the β crystal nucleating agent and the resin particles are used in combination for the purpose of preventing the particles from falling with a high porosity, but in order to obtain a high porosity, the resin particles are added in a high amount of 20 to 50 parts by weight. For this reason, in some cases, particle dropping or film tearing occurs in the film forming process and the secondary processing process. In addition, there is a microporous film having a high β crystal fraction that defines an average pore size, nitrogen permeability coefficient, and stretching strength, and a method for producing the same (for example, Patent Document 5). In Patent Document 5, a polypropylene resin having a high β crystal ratio is stretched to a low area ratio at a relatively low temperature to form a microporous film. However, the film is inferior in slipperiness, and is wrinkled and broken during secondary processing. The heat resistance (low thermal shrinkage rate) was inferior.
Japanese Patent Publication No. 7-5780 (Claims 1, 4, 1 to 11 lines, Examples 1 to 4) Japanese Patent No. 3341358 (Claims 1-2, Examples 1-5) JP-A-7-33895 (Claims 1 to 5, Examples 1 to 17) JP-A-9-176352 (Claim 1, Examples 1 to 12) Japanese Patent No. 25009030 (Claims 1 to 8, Examples 1 to 7)

本発明は、優れた通気性を有し、フィルム製造(製膜)工程での長尺巻き取り性に必要な滑り性や耐しわ発生に優れ、耐熱性(低熱収縮率)に例示される優れた加工適性、印刷特性を有する二軸配向微多孔フィルムを提供することを目的とする。   The present invention has excellent air permeability, is excellent in slipping and wrinkle generation necessary for long roll-up property in a film production (film formation) step, and is excellent in heat resistance (low heat shrinkage). Another object of the present invention is to provide a biaxially oriented microporous film having excellent processability and printing characteristics.

本発明は、上記問題点を解決する為に、主として、以下の構成を有する。すなわち、本発明は、β晶比率が50〜99%のポリプロピレン樹脂90〜99.8重量%と、ポリプロピレン樹脂に非相溶性の樹脂0.2〜10重量%からなり、ガーレ透気度が5〜10000sec/100ccであり、フィルム両面を重ね合わせた時の静摩擦係数μsが0.2〜2の範囲であり、80℃・1時間加熱時の熱収縮率がフィルムの長手方向(MD方向)、幅方向(TD方向)共に3%以下であり、少なくとも片面の最大表面粗さRtが0.5〜2μm、平均表面粗さRaが0.05〜0.3μmの範囲であり、フィルムの長手方向(MD方向)の2%伸張時の応力(F2値)が5〜12MPaの範囲であり、かつ空隙率が42〜80%であることを特徴とする二軸配向微多孔性フィルムである。 In order to solve the above-described problems, the present invention mainly has the following configuration. That is, the present invention comprises 90 to 99.8% by weight of a polypropylene resin having a β crystal ratio of 50 to 99% and 0.2 to 10% by weight of a resin that is incompatible with the polypropylene resin, and has a Gurley air permeability of 5%. a ~10000sec / 100cc, Ri range der coefficient of static friction μs is 0.2 to 2 when the superposed films sided, 80 ° C. · 1 hour longitudinal thermal shrinkage rate during heating the film (MD direction) The width direction (TD direction) is 3% or less, the maximum surface roughness Rt of at least one side is in the range of 0.5 to 2 μm, the average surface roughness Ra is in the range of 0.05 to 0.3 μm, and the length of the film in the range direction (MD direction) of a 2% elongation when the stress (F2 value) of 5~12MPa, and porosity is biaxially oriented microporous film according to claim 42 to 80% der Rukoto .

好ましい態様として、空隙率が50〜80%であり、フィルム厚みが5〜100μmであり、β晶比率が50〜99%のポリプロピレン樹脂が、β晶核剤を0.01〜2重量%含有し、ポリプロピレン樹脂に非相溶性の樹脂が、ガラス転移点(Tg)が100〜160℃、もしくは融解温度が200〜270℃の樹脂の1種以上の樹脂、またはエチレン・αオレフィン共重合体であることを特徴とする二軸配向微多孔性フィルムである。

In a preferred embodiment, an air gap ratio of 50% to 80%, a film thickness of 5 to 100 [mu] m, beta crystal ratio 50 to 99% of polypropylene resin, beta 0.01 to 2 wt% content of nucleating agent And a resin incompatible with the polypropylene resin is one or more resins having a glass transition point (Tg) of 100 to 160 ° C. or a melting temperature of 200 to 270 ° C., or an ethylene / α-olefin copolymer. It is a biaxially oriented microporous film characterized by being.

また、その製造方法として、ポリプロピレン樹脂とβ晶核剤とポリプロピレン樹脂に非相溶性の樹脂の混合組成を、該非相溶性樹脂の融解温度以上で溶融混合した後に、該混合樹脂を180℃〜240℃シート状に溶融押出し、80℃〜150℃の温度で1秒〜60秒保持して冷却固化したシートを、80℃〜130℃の温度で2〜7倍縦延伸後、120〜145℃の温度で3〜12倍横延伸を行い、130℃〜160℃で1秒〜10秒熱処理することを特徴とする二軸配向微多孔フィルムの製造方法である。   Further, as a production method thereof, after mixing a mixed composition of a polypropylene resin, a β crystal nucleating agent and a resin incompatible with the polypropylene resin at a melting temperature or higher of the incompatible resin, the mixed resin is mixed at 180 ° C. to 240 ° C. A sheet extruded by melt extrusion into a sheet at ℃, kept at a temperature of 80 ℃ to 150 ℃ for 1 second to 60 seconds, and cooled and solidified was stretched 2 to 7 times at a temperature of 80 ℃ to 130 ℃, and then 120 to 145 ℃ This is a method for producing a biaxially oriented microporous film, wherein the film is stretched 3 to 12 times at a temperature and heat-treated at 130 to 160 ° C. for 1 to 10 seconds.

本発明によれば、以下に説明するとおり、電解コンデンサーやリチウム電池などのセパレーター、分離膜、透気防水シート、フィルター用として優れた特性を有する二軸配向微多孔フィルムを提供することができる。   According to the present invention, as described below, a biaxially oriented microporous film having excellent characteristics for separators such as electrolytic capacitors and lithium batteries, separation membranes, air permeable waterproof sheets, and filters can be provided.

(1)空孔率が高く、ガーレ透気度の値が低く、電気素子のセパレータとした時に、電解液保持性に優れ、また、透気防水性に優れる。   (1) High porosity, low Gurley air permeability, excellent electrolyte solution retention when used as an electrical element separator, and excellent air permeability and waterproofness.

(2)滑り性が良好で耐しわ発生性に優れ、また伸張時の応力が高く、製膜時の長尺巻き取り性および二次スリット性に優れる。   (2) Good slipperiness, excellent wrinkle resistance, high stress during stretching, and excellent long winding and secondary slitting properties during film formation.

(3)低熱収縮率で熱寸法安定性に優れており、分離膜や透気防湿シートとして他基材とラミネートする際の二次加工性に優れ、またセパレータとしての耐熱性にも優れる。   (3) It has a low thermal shrinkage rate and excellent thermal dimensional stability, excellent secondary processability when laminated with another substrate as a separation membrane or a gas-permeable moisture-proof sheet, and excellent heat resistance as a separator.

以下、本発明のフィルムを得る最良の形態、ならびに本発明のフィルムを電池セパレータまたは透気防湿シートに適用した場合を例にとって説明する。   Hereinafter, the best mode for obtaining the film of the present invention and the case where the film of the present invention is applied to a battery separator or a moisture-proof moisture-proof sheet will be described as examples.

本発明の二軸配向微多孔性フィルムに用いる、β晶比率が50〜99%のポリプロピレン樹脂(以下、β晶PPと略称する)の極限粘度[η]は1.0〜3dl/g、好ましくは1.2〜2.5dl/gであることが二軸延伸性が良好となり好ましい。また、アイソタクチックインデックス(II)は85%以上、好ましくは90%以上であることが機械強度、耐折れじわ性が高くなるので好ましい。メルトフローレート(MFR)は1.0〜30g/10分(230℃、2.16kg)の範囲であることが、押出成形性及び開孔性(孔の均一性と空隙率向上)の点で好ましい。   The intrinsic viscosity [η] of a polypropylene resin having a β crystal ratio of 50 to 99% (hereinafter abbreviated as β crystal PP) used in the biaxially oriented microporous film of the present invention is preferably 1.0 to 3 dl / g. Is preferably from 1.2 to 2.5 dl / g because the biaxial stretchability is good. Further, the isotactic index (II) is preferably 85% or more, and preferably 90% or more, since the mechanical strength and crease resistance are increased. The melt flow rate (MFR) is in the range of 1.0 to 30 g / 10 min (230 ° C., 2.16 kg) in terms of extrudability and openability (improvement of pore uniformity and porosity). preferable.

該β晶PPにはポリプロピレン以外の第2成分、例えばエチレン、ブテン、ヘキセンなどを少量ランダムまたはブロックに共重合させてもよく、エチレンを1〜5重量%共重合させると、フィルム内の孔の均一性と耐しわ発生性が向上して好ましい場合がある。   The β crystal PP may be copolymerized with a second component other than polypropylene, for example, ethylene, butene, hexene, etc., in a small amount randomly or in a block, and when ethylene is copolymerized in an amount of 1 to 5% by weight, In some cases, uniformity and wrinkle resistance are improved.

また、公知の添加剤、例えば酸化防止剤、熱安定剤、帯電防止剤、滑り剤、ブロッキング防止剤、ポリテルペン樹脂、石油樹脂、充填剤などを製造工程やフィルム特性を低下させない程度に含有させてもよい。   Also, known additives such as antioxidants, heat stabilizers, antistatic agents, slipping agents, antiblocking agents, polyterpene resins, petroleum resins, fillers, and the like are included to such an extent that the production process and film properties are not deteriorated. Also good.


本発明の微多孔フィルムの該β晶PPのβ晶比率は、50〜99%の範囲であることが必要であり、より好ましくは60〜95%、さらに好ましくは70〜90%の範囲である。β晶比率が50%未満であるとフィルムの厚み方向に均一な孔が得られ難しく、貫通孔性も低くくなり、ガーレ透気度の値が大きくなるので好ましくない。また、β晶比率が99%を越えると、形成向上によるガーレ透気度と機械強度の両立が困難であり、また、製膜安定性に劣る。

The β crystal ratio of the β crystal PP of the microporous film of the present invention needs to be in the range of 50 to 99%, more preferably 60 to 95%, and still more preferably 70 to 90%. . If the β crystal ratio is less than 50%, it is difficult to obtain uniform holes in the thickness direction of the film, the through-hole property is lowered, and the value of the Gurley air permeability is increased. On the other hand, if the β crystal ratio exceeds 99%, it is difficult to satisfy both the Gurley permeability and the mechanical strength due to the formation improvement, and the film forming stability is inferior.

ここで、本発明の該β晶PPのβ晶比率とは、β晶PPチップ、または、二軸配向白色フィルムを走査型差動熱量計(DSC)を用いて、JIS K−7122に準拠して窒素雰囲気下で5mgの試料を20℃/分の速度で250℃まで昇温させ、その後5分間保持した後に20℃/分の冷却速度で20℃まで冷却し、ついで、再度20℃/分の速度で昇温していった際に、140℃〜157℃間にピークを持つポリプロピレン樹脂由来のβ晶の融解に伴う吸熱ピークの融解熱量(ΔHu−1)と、160℃以上にピークを持つβ晶以外のポリプロピレン樹脂由来の結晶の融解に伴う吸熱ピークの融解熱量(ΔHu−2)から、次式(1)を用いて求めたものである
β晶比率(%)= {ΔHu−1/(ΔHu−1+ΔHu−2)}×100 (1)
また、上記温度範囲に吸熱ピークが存在するがβ晶の融解に起因するか不明確な場合などは、DSCの結果と併せて、当該サンプルを下記特定条件で溶融結晶化させたサンプルについて、広角X線回折法を用いてβ晶に起因する2θ=16°付近に観測される(300)面の回折ピークが存在することをもって“β晶活性を有する”と判定してもよい。
Here, the β crystal ratio of the β crystal PP of the present invention refers to a β crystal PP chip or a biaxially oriented white film in accordance with JIS K-7122 using a scanning differential calorimeter (DSC). In a nitrogen atmosphere, the 5 mg sample was heated to 250 ° C. at a rate of 20 ° C./minute, held for 5 minutes, then cooled to 20 ° C. at a cooling rate of 20 ° C./minute, and then again 20 ° C./minute. When the temperature is raised at a rate of 150 ° C. to 157 ° C., the endothermic peak melting heat (ΔHu-1) accompanying melting of the β-crystal derived from polypropylene resin having a peak between 140 ° C. and 157 ° C. From the heat of fusion (ΔHu−2) of the endothermic peak accompanying the melting of the crystal derived from polypropylene resin other than the β crystal, the β crystal ratio (%) = {ΔHu−1 / (ΔHu-1 + ΔHu-2)} × 100 (1)
In addition, when there is an endothermic peak in the above temperature range but it is unclear whether it is due to the melting of β crystal, in addition to the result of DSC, the sample obtained by melting and crystallizing the sample under the following specific conditions is a wide angle. Using the X-ray diffraction method, the presence of a (300) plane diffraction peak observed near 2θ = 16 ° due to the β crystal may be determined as “having β crystal activity”.

該β晶PPのβ晶比率(以下Kと記す場合がある)を50〜99%にするには、上記ポリプロピレン樹脂にβ晶核剤を添加するのが好ましく、添加量はβ晶核剤の効果によるが、0.01重量%〜2重量%の範囲が好ましい。添加量が0.01重量%未満ではβ晶比率を50%以上とするのが難しく、2重量%以上からは効果が平衡となり、経済性から2重量%以下が好ましい。 Β crystal ratio of the β crystal PP (sometimes hereinafter referred to as K A) To 50 to 99% is preferably added a β crystal nucleating agent to the polypropylene resin, the addition amount β crystal nucleating agent However, the range of 0.01% by weight to 2% by weight is preferable. If the addition amount is less than 0.01% by weight, it is difficult to make the β crystal ratio 50% or more, and if it is 2% by weight or more, the effect is balanced, and 2% by weight or less is preferable from the viewpoint of economy.

β晶核剤としては、例えば、公知文献Journal of Applied Polymer Science,Vol.86,531−539,633−638(2002) 2002 Wiley Periodicals,Inc.に記載の新日本理化(株)製“エヌジェスターNU−100”や、SUNOCO社製“Bepol”などがある。中でも特に下記式(2)で示される一般式のアミド系化合物が、β晶生成効果が高く好ましい。   Examples of the β crystal nucleating agent include, for example, the publicly known document Journal of Applied Polymer Science, Vol. 86, 531-539, 633-638 (2002) 2002 Wiley Periodicals, Inc. “NJ Star NU-100” manufactured by Shin Nippon Rika Co., Ltd. and “Bepol” manufactured by SUNOCO. Among them, an amide compound represented by the general formula represented by the following formula (2) is particularly preferable because of its high β crystal generation effect.

−NHCO−R−CONH−R (2)
但し、式中のRは、炭素数1〜28の飽和あるいは不飽和の脂肪族、脂環式または芳香族のジカルボン酸残基、又はアミノ酸残基を表し、R、Rは同一または異なる炭素数3〜18のシクロアルキル基、炭素数3〜12のシクロアルケニル基で示される。
R 1 —NHCO—R 2 —CONH—R 3 (2)
R 2 in the formula represents a saturated or unsaturated aliphatic, alicyclic or aromatic dicarboxylic acid residue having 1 to 28 carbon atoms or an amino acid residue, and R 1 and R 3 are the same or It is represented by a different cycloalkyl group having 3 to 18 carbon atoms and a cycloalkenyl group having 3 to 12 carbon atoms.

上記一般式(2)のアミド系化合物の具体例としては、アジピン酸ジアニリド、スペリン酸ジアニリド、N,N’−ジシクロヘキシルテレフタルアミド、N,N’−ジシクロヘキシル−1,4−シクロヘキサンジカルボキシアミド、N,N’−ジシクロヘキシル−2,6−ナフタレンジカルボキシアミド、N,N’−ジシクロヘキシル−−4,4’−ビフェニルジカルボキシアミド、N,N’−ビス(p−エチルフェニル)ヘキサンジアミド、N,N’−ビス(4−シクロヘキシルフェニル)ヘキサンジアミド、p−(N−シクロヘキサンカルボニルアミノ)安息香酸シクロヘキシルアミド、δ−(N−ベンゾイルアミノ)−N−吉草酸アニリド等が挙げられ、特に、結晶性ポリプロピレン樹脂へのβ晶生成効果と分散性からN,N’−ジシクロヘキシル−2,6−ナフタレンジカルボキシアミドが好ましい。   Specific examples of the amide compound of the general formula (2) include adipic acid dianilide, peric acid dianilide, N, N′-dicyclohexyl terephthalamide, N, N′-dicyclohexyl-1,4-cyclohexanedicarboxamide, N , N′-dicyclohexyl-2,6-naphthalene dicarboxyamide, N, N′-dicyclohexyl-4,4′-biphenyldicarboxamide, N, N′-bis (p-ethylphenyl) hexanediamide, N, And N′-bis (4-cyclohexylphenyl) hexanediamide, p- (N-cyclohexanecarbonylamino) benzoic acid cyclohexylamide, δ- (N-benzoylamino) -N-valeric acid anilide, etc. N, N'-Disic from the effect of β crystal formation and dispersibility in polypropylene resin Rohexyl-2,6-naphthalenedicarboxamide is preferred.

次に、本発明は、β晶比率が50〜99%のβ晶PP90〜99.8重量%と、ポリプロピレン樹脂に非相溶性の樹脂0.2〜10重量%の混合物である必要がある。非相溶性樹脂の含有量が0.2重量%未満では、滑り性に劣り、熱収縮率も大きくなり耐熱性が悪化するので好ましくなく、また空孔が製膜工程及び二次加工工程で潰れて、ガーレ透気度が大きくなる場合があるので好ましくない場合がある。10重量%を越えると、表面粗さが大きくなり過ぎて、セパレータとして用いた時に電極板との密着性が悪化する場合や、他基材とのラミネート強度が低下する場合があり、また、フィルム中に過ボイドが生成してフィルム破れが多発して、製膜安定性が悪化するので好ましくない場合がある。品質安定上β晶PPへの非相溶性の樹脂の混合量は、0.5〜8重量%の範囲がより好ましい。   Next, the present invention needs to be a mixture of 90 to 99.8% by weight of β-crystal PP having a β-crystal ratio of 50 to 99% and 0.2 to 10% by weight of a resin incompatible with polypropylene resin. If the content of the incompatible resin is less than 0.2% by weight, the slipperiness is inferior, the heat shrinkage rate is increased and the heat resistance is deteriorated, which is not preferable, and the pores are crushed in the film forming process and the secondary processing process. In some cases, the Gurley air permeability may increase, which may be undesirable. If it exceeds 10% by weight, the surface roughness becomes too large, and when used as a separator, the adhesion to the electrode plate may be deteriorated, or the laminate strength with other substrates may be reduced, and the film In some cases, excessive voids are generated and film breaks occur frequently, resulting in deterioration of film formation stability. The amount of the incompatible resin mixed with β-crystal PP is more preferably in the range of 0.5 to 8% by weight in terms of quality stability.

ここで、相溶性とは、2種類以上の溶融混合物が相互作用して、その混合物の融解温度Tm、またはガラス転移点Tgのピークが1個以下のものをいい、非相溶性とは、混合物それぞれ単独のピークが観察されるものをいう。   Here, “compatible” means that two or more types of molten mixtures interact with each other, and the melting temperature Tm of the mixture or the peak of the glass transition point Tg is 1 or less. Incompatible means the mixture. Each of which a single peak is observed.

該非相溶性樹脂としては特に限定されないが、ポリエチレン(高密度ポリエチレン、低密度ポリエチレン、超高分子量ポリエチレン、メタロセン触媒法にて得られる直鎖状低密度ポリエチレン、超低密度ポリエチレン)や、ポリメチルペンテン-1、ポリブテン、環状オレフィンコポリマーなどのオレフィン系ポリマーや、ポリスチレン、ポリアミド、ポリイミド、ポリエステル、ポリカーボネートなどがあげられ、これらを2種類以上組み合わせて用いてもよい。特に非相溶性樹脂としては、ガラス転移点(Tg)が100〜160℃、もしくは融解温度が200〜270℃の樹脂の1種以上であることが好ましい。該非相溶性樹脂は空孔の核として有することが好ましい。β晶PPのみ、または、非相溶性樹脂添加のみでは微細で均一な空孔形成が得られ難く、同時含有することで非相溶性樹脂の分散径が小さくなり、延伸により発生する空孔をより均一に微細化でき、結果的にフィルムのガーレ透気度、滑り性、耐熱性(低熱収縮率)が向上し、更に、機械強度を向上させることができる。特に透過性が向上するメカニズムとしては、いまだ明らかでない部分もあるが、延伸時に、ポリプロピレンの結晶形態がβ晶からα晶へ変移する際に極微細なボイドが形成される際に該非相溶性樹脂との界面で剥離が生じるためと考えている。   The incompatible resin is not particularly limited, but polyethylene (high density polyethylene, low density polyethylene, ultrahigh molecular weight polyethylene, linear low density polyethylene obtained by metallocene catalyst method, ultra low density polyethylene), polymethylpentene -1, olefin polymers such as polybutene and cyclic olefin copolymer, polystyrene, polyamide, polyimide, polyester, polycarbonate, and the like, and two or more of these may be used in combination. In particular, the incompatible resin is preferably at least one resin having a glass transition point (Tg) of 100 to 160 ° C. or a melting temperature of 200 to 270 ° C. The incompatible resin is preferably contained as a pore core. It is difficult to form fine and uniform pores only by adding β-crystal PP alone or incompatible resin alone, and by containing it at the same time, the dispersion diameter of the incompatible resin is reduced, and the pores generated by stretching are further reduced. The film can be uniformly miniaturized, and as a result, the Gurley permeability, slipperiness and heat resistance (low heat shrinkage) of the film can be improved, and further the mechanical strength can be improved. In particular, there is a part that is still unclear as a mechanism for improving the permeability, but the incompatible resin is formed when a very fine void is formed when the crystal form of polypropylene is changed from β crystal to α crystal during stretching. This is thought to be due to peeling at the interface.

また、非相溶性樹脂のエチレン・αオレフィン共重合体として、(直鎖状)低密度ポリエチレン(LLDPE)、超低密度ポリエチレン(VLDPE)、エチレン・ブテンラバー(EBR)、エチレン・プロピレンラバー(EPR)、プロピレン・ブテンラバー(PBR)、エチレン酢酸ビニル(EVA)、エチレン・エタクリレート(EEA)、エチレン・メチルメタクリレート(EMMA)、エチレン・プロピレン・ジエン共重合体(EPDM)、イソプレンゴム(IR)、スチレン・ブタジエンラバー(SBR)、水添スチレブタジエンラバー(H−SBR)、スチレン・ブチレン・スチレン共重合体(SBS)、スチレン・エチレン・ブチレン・スチレン共重合体(SEBS)等のゴム状ポリマーを添加すると、製膜安定向上の効果が高く、それによって透気性も向上するので好ましく用いられる。中でもメタロセン触媒法によって得られたエチレン・αオレフィン共重合体は効果が高く、その中でも密度0.86〜0.90の超低密度ポリエチレンは特に好ましく、“エンゲージ”(デュポン・ダウ社製)や“カーネル”(三菱化学社製)などが例示され、ポリプロピレン樹脂への分散性がよく、製膜安定性向上の効果が高く、それに伴い、透気性も向上するので好ましい。該ゴム状ポリマーの添加量は、1〜5重量%であることが、機械的強度、特にF2値を低下させず、また熱収縮率を悪化させずに、製膜性が向上するので好ましい。添加量が1重量%未満では添加効果が見られず、5重量%を超えると、分散不良が起り、ゲル状の突起が形成されたり、F2値の低下が大きく、また熱収縮率が大きくなる場合があるので好ましくない。非相溶性樹脂として、ガラス転移点(Tg)が100〜160℃もしくは融解温度が200〜270℃の樹脂の1種以上とゴム状ポリマーを組み合わせて用いることにより、それぞれの添加効果が相乗的に得られるができる場合もある。   Further, as ethylene / α-olefin copolymers of incompatible resins, (linear) low density polyethylene (LLDPE), very low density polyethylene (VLDPE), ethylene butene rubber (EBR), ethylene propylene rubber (EPR) , Propylene / butene rubber (PBR), ethylene vinyl acetate (EVA), ethylene / ethacrylate (EEA), ethylene / methyl methacrylate (EMMA), ethylene / propylene / diene copolymer (EPDM), isoprene rubber (IR), styrene / When rubber-like polymers such as butadiene rubber (SBR), hydrogenated styrene rubber (H-SBR), styrene / butylene / styrene copolymer (SBS), styrene / ethylene / butylene / styrene copolymer (SEBS) are added. , Effect of improving film formation stability High, it is preferably used since thereby also improving air permeability. Among them, the ethylene / α-olefin copolymer obtained by the metallocene catalyst method is highly effective, and ultra low density polyethylene having a density of 0.86 to 0.90 is particularly preferable, and “engage” (manufactured by DuPont Dow) or “Kernel” (manufactured by Mitsubishi Chemical Co., Ltd.) and the like are exemplified, and the dispersibility in polypropylene resin is good, the effect of improving the film-forming stability is high, and the air permeability is improved accordingly, which is preferable. The amount of the rubbery polymer added is preferably 1 to 5% by weight because the film-forming property is improved without lowering the mechanical strength, particularly the F2 value, and without deteriorating the heat shrinkage rate. If the addition amount is less than 1% by weight, the effect of addition is not observed, and if it exceeds 5% by weight, poor dispersion occurs, gel-like protrusions are formed, the F2 value decreases greatly, and the heat shrinkage rate increases. Since it may be, it is not preferable. As an incompatible resin, by using one or more kinds of resins having a glass transition point (Tg) of 100 to 160 ° C. or a melting temperature of 200 to 270 ° C. and a rubbery polymer, each additive effect is synergistic. Sometimes it can be obtained.

本発明のフィルムの表から裏への貫通孔を有する二軸配向微多孔フィルムを得るには、まず、結晶性PPとβ晶核剤と非相溶性樹脂を、該非相溶性樹脂の融解温度以上の温度で溶融混合して、β晶核剤と非相溶性樹脂を十分に微分散させることが好ましい。非相溶性樹脂の融解温度未満で溶融混合すると、非相溶性性樹脂の分散性が悪化してフィルム破れが多発し、また、フィルムの摩擦係数が大きくなるので好ましくない。次に、該混合樹脂を180℃〜240℃の温度で溶融押出しを行う。溶融押出温度が180℃未満では押出不良となり、240℃よりも高い温度で溶融押出すると非相溶性樹脂の分散径が大きくなり、摩擦係数や熱収縮率の低下効果が低くなるので好ましくない。次に、該溶融押出シートを押出80℃〜150℃の温度、好ましくは100℃〜130℃の温度に保たれたキャスティングドラム上で1秒〜10秒保持して、β晶比率が50%以上、好ましくはβ晶比率が70%以上のシートとする。該シートのβ晶比率が50%未満では二軸延伸後のフィルムのガーレ透気度が高くなるので好ましくない。引き続き該シートを80℃〜130℃の温度で2〜7倍縦延伸することによりフィルムの空隙率を20%以上とし、次に、120〜145℃の温度範囲で横方向に3倍以上、好ましくは5倍以上延伸することにより、空隙率が50〜80%となり、貫通孔が得られ、ガーレ透気度が5〜10000sec/100ccの二軸配向微多孔フィルムが得られる。さらに、引き続き130℃〜160℃で1秒〜10秒熱処理することにより、80℃・1時間加熱時の熱収縮率を3%以下とすることができる。   In order to obtain a biaxially oriented microporous film having through-holes from the front to the back of the film of the present invention, first, crystalline PP, β-crystal nucleating agent and incompatible resin are mixed at a temperature equal to or higher than the melting temperature of the incompatible resin. It is preferable that the β crystal nucleating agent and the incompatible resin are sufficiently finely dispersed by melting and mixing at a temperature of 5 ° C. Melting and mixing at a temperature lower than the melting temperature of the incompatible resin is not preferable because the dispersibility of the incompatible resin is deteriorated, the film is frequently broken, and the coefficient of friction of the film is increased. Next, the mixed resin is melt-extruded at a temperature of 180 ° C. to 240 ° C. When the melt extrusion temperature is less than 180 ° C., extrusion failure occurs. When melt extrusion is performed at a temperature higher than 240 ° C., the dispersion diameter of the incompatible resin is increased, and the effect of lowering the friction coefficient and the heat shrinkage ratio is reduced. Next, the melt-extruded sheet is held for 1 second to 10 seconds on a casting drum maintained at a temperature of 80 ° C. to 150 ° C., preferably 100 ° C. to 130 ° C., and the β crystal ratio is 50% or more. The sheet preferably has a β crystal ratio of 70% or more. If the β crystal ratio of the sheet is less than 50%, the Gurley air permeability of the biaxially stretched film is increased, which is not preferable. Subsequently, the film is made to have a porosity of 20% or more by longitudinally stretching the sheet at a temperature of 80 ° C. to 130 ° C. 2 to 7 times. Is stretched 5 times or more, whereby the porosity becomes 50 to 80%, through-holes are obtained, and a biaxially oriented microporous film having a Gurley air permeability of 5 to 10000 sec / 100 cc is obtained. Furthermore, the heat shrinkage rate at the time of heating at 80 ° C. for 1 hour can be reduced to 3% or less by subsequent heat treatment at 130 ° C. to 160 ° C. for 1 second to 10 seconds.

本発明のフィルムは特に電池セパレータや透気防水シートとして特に好適に用いられ、フィルム特性として、ガーレ透気度、表面平滑性、耐熱性(低熱収縮率)が求められることから、二軸配向フィルムとする必要があり、上記二軸延伸工程において空孔の核の熱変形が小さく、生成した空孔がつぶれないことが重要である。非相溶性樹脂のガラス転移点(Tg)が100℃以上、もしくは融解温度が200℃以上であると、二軸延伸工程でマトリックスのβ晶PPと非相溶性樹脂の熱変形が異なり、β晶PPと非相溶性樹脂の界面剥離が起って空孔が形成され、必要とされるガーレ透気度、及び滑り性、耐熱性(低熱収縮率)が得られるので好ましい。また、ガラス転移点(Tg)が160℃、もしくは融解温度が270℃を越えると、溶融押出性とシート化が難しくなり、生産性が落ちるので好ましくない。即ち、製膜安定性と空孔形成を両立するには、β晶PPの溶融押出温度200℃〜270℃の範囲で、非相溶性樹脂がβ晶PP中に均一分散し、β晶PPの延伸温度100〜160℃の範囲で、非相溶性樹脂がβ晶PPと同様に変形しないことが好ましい。   The film of the present invention is particularly suitably used as a battery separator or an air permeable waterproof sheet, and the film characteristics require Gurley air permeability, surface smoothness, and heat resistance (low thermal shrinkage). In the biaxial stretching step, it is important that the thermal deformation of the nuclei of the vacancies is small and the generated vacancies are not crushed. If the glass transition point (Tg) of the incompatible resin is 100 ° C. or higher, or the melting temperature is 200 ° C. or higher, the thermal deformation of the β-crystal PP of the matrix and the incompatible resin differs in the biaxial stretching process, and the β-crystal Peeling between the PP and the incompatible resin occurs to form pores, and the required Gurley permeability, slipperiness, and heat resistance (low heat shrinkage) are obtained. On the other hand, a glass transition point (Tg) of 160 ° C. or a melting temperature exceeding 270 ° C. is not preferable because melt extrudability and sheeting become difficult and productivity decreases. That is, in order to achieve both film formation stability and pore formation, the incompatible resin is uniformly dispersed in the β-crystal PP at a melt extrusion temperature of 200 ° C. to 270 ° C. It is preferable that the incompatible resin is not deformed similarly to the β-crystal PP in the range of the stretching temperature of 100 to 160 ° C.

ガラス転移点(Tg)100〜160℃の非相溶性樹脂とは、例えば、環状ポリオレフィン、ポリカーボネート、ポリメチルメタクリレート、ポリフェニレンオキサイド、液晶樹脂(LCP)などが挙げられる。この中で、β晶PPとの界面剥離によるボイド形成性、取り扱い性(未乾燥)、製造コスト(原料価格)、PPへの分散性、耐加水分解性等からポリカーボネート(以下PCと略称することがある)が好ましい。   Examples of the incompatible resin having a glass transition point (Tg) of 100 to 160 ° C. include cyclic polyolefin, polycarbonate, polymethyl methacrylate, polyphenylene oxide, and liquid crystal resin (LCP). Among these, polycarbonate (hereinafter abbreviated as PC) is considered due to void-forming properties, handleability (undried), production cost (raw material price), dispersibility in PP, hydrolysis resistance, etc. due to interfacial peeling with β-crystal PP. Is preferred).

上記ポリカーボネートとは、芳香族ジヒドロキシ化合物、またはこれと少量のポリヒドロキシ化合物を、ホスゲンと反応させることによって製造される重合体であって、芳香族ジヒドロキシ化合物、またはこれと少量のポリヒドロキシ化合物を炭酸ジエステルでエステル交換反応しても製造することができる。さらに、必要により分岐剤として三官能化合物、分子量調節剤も反応に供することができる。このポリカーボネートは、直鎖状または分岐鎖状の熱可塑性芳香族ポリカーボネートである。   The polycarbonate is a polymer produced by reacting an aromatic dihydroxy compound or a small amount thereof with phosgene, and the aromatic dihydroxy compound or a small amount of the polyhydroxy compound is carbonated. It can also be produced by a transesterification reaction with a diester. Furthermore, if necessary, a trifunctional compound and a molecular weight regulator can also be used for the reaction as branching agents. This polycarbonate is a linear or branched thermoplastic aromatic polycarbonate.

上記芳香族ジヒドロキシ化合物の例としては、2,2−ビス(4−ヒドロキシフェニル)プロパン(以下、ビスフェノールAと略称することがある)、テトラメチルビスフェノールA、テトラブロモビスフェノールA、ビス(4−ヒドロキシフェニル)−p−イソプロピルベンゼン、ハイドロキノン、レゾルシノール、4,4’−ジヒドロキシフェニル、ビス(4−ヒドロキシフェニル)エーテル、ビス(4−ヒドロキシフェニル)スルホン、ビス(4−ヒドロキシフェニル)スルホキシド、ビス(4−ヒドロキシフェニル)スルフィド、ビス(4−ヒドロキシフェニル)ケトン、1,1−ビス(4−ヒドロキシフェニル)エタン、1,1−ビス(4−ヒドロキシフェニル)シクロへキサンなどを例示することができ、ビスフェノールAが特に好ましい。   Examples of the aromatic dihydroxy compound include 2,2-bis (4-hydroxyphenyl) propane (hereinafter sometimes abbreviated as bisphenol A), tetramethylbisphenol A, tetrabromobisphenol A, bis (4-hydroxy Phenyl) -p-isopropylbenzene, hydroquinone, resorcinol, 4,4′-dihydroxyphenyl, bis (4-hydroxyphenyl) ether, bis (4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl) sulfoxide, bis (4 -Hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) ketone, 1,1-bis (4-hydroxyphenyl) ethane, 1,1-bis (4-hydroxyphenyl) cyclohexane, etc. Bisphenol A is special Preferred.

また、分岐したポリカーボネートを得るには、フロログルシン、4,6−ジメチル−2,4,6−トリ(4−ヒドロキシフェニル)ヘプテン−2、4,6−ジメチル−2,4,6−トリ(4−ヒドロキシフェニル)ヘプタン、2,6−ジメチル−2,4,6−トリ(4−ヒドロキシフェニル)ヘプテン−3、2,6−ジメチル−2,4,6−トリ(4−ヒドロキシフェニル)ヘプタン、1,3,5−トリ(4−ヒドロキシフェニル)ベンゼン、1,1,1−トリ(4−ヒドロキシフェニル)エタンなどで例示されるポリヒドロキシ化合物および3,3−ビス(4−ヒドロキシアリール)オキシインドール[=イサチン(ビスフェノールA)]、5−クロロイサチン、5,7−ジクロルイサチン、5−ブロモイサチンなどを前記ジヒドロキシ化合物の一部、例えば、0.1〜2モル%をポリヒドロキシ化合物で置換する。   In order to obtain a branched polycarbonate, phloroglucin, 4,6-dimethyl-2,4,6-tri (4-hydroxyphenyl) heptene-2, 4,6-dimethyl-2,4,6-tri (4 -Hydroxyphenyl) heptane, 2,6-dimethyl-2,4,6-tri (4-hydroxyphenyl) heptene-3, 2,6-dimethyl-2,4,6-tri (4-hydroxyphenyl) heptane, Polyhydroxy compounds exemplified by 1,3,5-tri (4-hydroxyphenyl) benzene, 1,1,1-tri (4-hydroxyphenyl) ethane, and 3,3-bis (4-hydroxyaryl) oxy Dihydroxylation of indole [= isatin (bisphenol A)], 5-chloroisatin, 5,7-dichloroisatin, 5-bromoisatin and the like Some of the objects, for example, to replace the 0.1 to 2 mol% polyhydroxy compound.

さらに、分子量を調節するのに適した一価芳香族ヒドロキシ化合物は、m−およびp−メチルフェノール、m−およびp−プロピルフェノール、p−ブロモフェノール、p−第3級−ブチルフェノールおよびp−長鎖アルキル置換フェノールなどである。   Furthermore, monovalent aromatic hydroxy compounds suitable for adjusting the molecular weight include m- and p-methylphenol, m- and p-propylphenol, p-bromophenol, p-tertiary-butylphenol and p-length. Chain alkyl substituted phenols and the like.

本発明の非相溶性樹脂として用いる該ポリカーボネートには、ビス(4−ヒドロキシフェニル)アルカン系化合物、特に好ましくはビスフェノールAを主原料に用いることが好ましい。また、2種以上のジヒドロキシ化合物を併用して得られるポリカーボネート共重合体、3価のフェノール系化合物を少量併用して得られる分岐ポリカーボネートも好ましい。他の樹脂、例えばポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリスチレンなどを共重合したものでもよい。   In the polycarbonate used as the incompatible resin of the present invention, it is preferable to use bis (4-hydroxyphenyl) alkane compound, particularly preferably bisphenol A as the main raw material. Moreover, the polycarbonate copolymer obtained by using together 2 or more types of dihydroxy compounds, and the branched polycarbonate obtained by using together a small amount of trivalent phenolic compounds are also preferable. Other resins such as polyethylene terephthalate, polybutylene terephthalate, and polystyrene may be copolymerized.

該PCの重量平均分子量(Mw)は、30000以下、好ましくは20000以下であり、MFRは10以上(300℃、1.2kg)、好ましくは20以上であることが、PPへの分散性が良好となり、気泡も均一となるので好ましい。   The weight average molecular weight (Mw) of the PC is 30000 or less, preferably 20000 or less, and the MFR is 10 or more (300 ° C., 1.2 kg), preferably 20 or more. It is preferable because the bubbles are uniform.

また、該非相溶性樹脂の融解温度は200〜270℃の範囲であると、β晶PPと溶融混練りする際に該非相溶性樹脂が微分散し、ポリプロピレンフィルムの二軸延伸温度である110〜150℃で熱変形が抑えられて、空孔形状を維持でき、さらに、耐熱性が向上するので好ましい。該非相溶性樹脂の融解温度が200℃未満であると、二軸延伸で形成される空孔の量が不十分となる場合がある。また融解温度が270℃を越えるとポリプロピレンフィルム中への分散性が悪化して、均一な空孔が得難くなる。   Moreover, when the melting temperature of the incompatible resin is in the range of 200 to 270 ° C., the incompatible resin is finely dispersed when melt-kneaded with β-crystal PP, and the biaxial stretching temperature of the polypropylene film is 110 to 110. Thermal deformation is suppressed at 150 ° C., the pore shape can be maintained, and heat resistance is further improved, which is preferable. If the melting temperature of the incompatible resin is less than 200 ° C., the amount of pores formed by biaxial stretching may be insufficient. On the other hand, when the melting temperature exceeds 270 ° C., the dispersibility in the polypropylene film is deteriorated and it becomes difficult to obtain uniform pores.

該融解温度が200〜270℃の非相溶性樹脂としては、ポリメチルペンテン、シンジオタクチックポリスチレン、ポリエチレンテレフタレ−ト、ポリブチレンテレフタレ−ト、ポリアミドなどを例示することができる。中でも、取り扱い性、β晶PPへの分散性、微細な空孔形成性、及びフィルムの表面粗さなどの観点からポリメチルペンテン(以下PMPと略称する)を用いることが特に好ましい。   Examples of the incompatible resin having a melting temperature of 200 to 270 ° C. include polymethylpentene, syndiotactic polystyrene, polyethylene terephthalate, polybutylene terephthalate, and polyamide. Among these, it is particularly preferable to use polymethylpentene (hereinafter abbreviated as PMP) from the viewpoints of handleability, dispersibility in β-crystal PP, fine pore formation, and film surface roughness.

上記PMPは、260℃、5kgでのMFRが5〜100g/10分、好ましくは10〜50g/10分のものが、ポリプロピレンフィルムへの分散性が良好となり好ましい。均一で微細な空孔が形成できるので好ましい。   As the PMP, those having an MFR of 5 to 100 g / 10 min, preferably 10 to 50 g / 10 min at 260 ° C. and 5 kg are preferable because of good dispersibility in a polypropylene film. It is preferable because uniform and fine pores can be formed.

また、この時の該非相溶性樹脂の平均分散粒径は、0.2〜2μmの範囲であることが好ましい。平均分散粒径が0.2μm未満では摩擦係数が高く、滑り性に劣り、2μmを越えると空孔径が大きくなり表面劈開やフィルム破れが起る場合があり好ましくない。   Moreover, it is preferable that the average dispersion particle diameter of this incompatible resin at this time is the range of 0.2-2 micrometers. If the average dispersed particle size is less than 0.2 μm, the friction coefficient is high and the slipping property is poor, and if it exceeds 2 μm, the pore diameter increases and surface cleaving or film tearing may occur.

本発明のフィルムのガーレ透気度は、5〜10000sec/100ccの範囲であることが必要である。ガーレ透気度が10000sec/100ccを越えると貫通孔性が極めて低いことを示し、電池のセパレータや透気防水シート、フィルターとして使用することができない。また、ガーレ透気度が5sec/100cc未満では、貫通孔性が極めて高いことを示し、製膜工程及び二次加工工程での張力により、フィルム破れが起こる場合があるので好ましくない。本発明において、得られる微孔性フィルムの透気性の尺度の一つであるガーレ透気度は、フィルムを構成するポリプロピレン樹脂に添加するβ晶核剤の添加量や、その製造工程においては、キャスト工程における溶融ポリマーを固化させる際の結晶化条件(金属ドラム温度、金属ドラムの周速、得られる未延伸シートの厚みなど)や延伸工程における延伸条件(延伸方向(縦もしくは横)、延伸方式(縦もしくは横の一軸延伸、縦−横もしくは横−縦逐次二軸延伸、同時二軸延伸、二軸延伸後の再延伸など)、延伸倍率、延伸速度、延伸温度など)などにより制御できる。   The Gurley permeability of the film of the present invention needs to be in the range of 5 to 10000 sec / 100 cc. When the Gurley air permeability exceeds 10,000 sec / 100 cc, it indicates that the through-hole property is extremely low, and it cannot be used as a battery separator, a gas permeable waterproof sheet, or a filter. Moreover, if the Gurley air permeability is less than 5 sec / 100 cc, it indicates that the through-hole property is extremely high, and film breakage may occur due to the tension in the film forming step and the secondary processing step, which is not preferable. In the present invention, the Gurley air permeability, which is one of the measures of air permeability of the obtained microporous film, is the addition amount of the β crystal nucleating agent added to the polypropylene resin constituting the film, and the production process thereof. Crystallization conditions (metal drum temperature, peripheral speed of the metal drum, thickness of the unstretched sheet to be obtained, etc.) and the stretching conditions (stretching direction (longitudinal or lateral), stretching method) (Longitudinal or lateral uniaxial stretching, longitudinal-horizontal or lateral-longitudinal sequential biaxial stretching, simultaneous biaxial stretching, re-stretching after biaxial stretching, etc.), stretching ratio, stretching speed, stretching temperature, etc.).

また、電池のセパレータに用いる際に、貫通孔性および電解液の透過性を示す一つの尺度として、流動パラフィン透過時間は、0.1〜60秒/25μmであることが好ましい。ここで、流動パラフィン透過時間とは、流動パラフィンをフィルム表面に滴下し、これが厚み方向に透過して孔を充填して透明化する際に、流動パラフィンがフィルム表面に着地した時点から、フィルムが完全に透明化するまでの時間を測定し、滴下部近傍の平均フィルム厚みを用いて25μm厚み当たりに換算した値をいう。したがって、流動パラフィン透過時間は、フィルムの透過性の尺度の一つであり、流動パラフィン透過時間が低いほど透過性に優れ、高いほど透過性に劣ることに対応する。本発明の微孔性ポリプロピレンフィルムの流動パラフィン透過時間は、フィルムを構成するポリプロピレン樹脂に添加するβ晶核剤の添加量や、その製造工程においては、キャスト工程における溶融ポリマーを固化させる際の結晶化条件(金属ドラム温度、金属ドラムの周速、得られる未延伸シートの厚みなど)や延伸工程における延伸条件(延伸方向(縦もしくは横)、延伸方式(縦もしくは横の一軸延伸、縦−横もしくは横−縦逐次二軸延伸、同時二軸延伸、二軸延伸後の再延伸など)、延伸倍率、延伸速度、延伸温度など)などにより制御できる。透過性の高い微孔性フィルムとする場合、本発明の微孔性ポリプロピレンフィルムの流動パラフィン透過時間が上記範囲未満であると、製膜工程やその後の二次加工工程においてハンドリング性に劣る場合があり、上記範囲を超えると、透過性能が不十分で空孔率も低くなる場合がある。流動パラフィン透過時間は、より好ましくは1〜30秒/25μm、最も好ましくは1.5〜10秒/25μmである。   Further, when used as a battery separator, as one measure of the through-hole property and the electrolyte permeability, the liquid paraffin permeation time is preferably 0.1 to 60 seconds / 25 μm. Here, the liquid paraffin permeation time is the time when the liquid paraffin has landed on the film surface when liquid paraffin is dripped onto the film surface and permeated in the thickness direction to fill the holes and become transparent. The time until complete transparency is measured, and the average film thickness in the vicinity of the dropping part is used to indicate a value converted per 25 μm thickness. Accordingly, the liquid paraffin permeation time is one of the measures for the permeability of the film, and the lower the liquid paraffin permeation time, the better the permeability, and the higher the liquid paraffin permeation time, the lower the permeability. The liquid paraffin permeation time of the microporous polypropylene film of the present invention is the amount of β crystal nucleating agent added to the polypropylene resin constituting the film, and the crystal when solidifying the molten polymer in the casting process in the production process. Conditions (metal drum temperature, peripheral speed of the metal drum, thickness of the unstretched sheet to be obtained) and stretching conditions in the stretching process (stretching direction (longitudinal or lateral), stretching method (longitudinal or lateral uniaxial stretching, longitudinal-horizontal) Alternatively, it can be controlled by lateral-longitudinal sequential biaxial stretching, simultaneous biaxial stretching, re-stretching after biaxial stretching, etc.), stretching ratio, stretching speed, stretching temperature, and the like. In the case of a highly permeable microporous film, when the liquid paraffin permeation time of the microporous polypropylene film of the present invention is less than the above range, the handling property may be inferior in the film forming step or the subsequent secondary processing step. If the above range is exceeded, the transmission performance may be insufficient and the porosity may be low. The liquid paraffin permeation time is more preferably 1 to 30 seconds / 25 μm, and most preferably 1.5 to 10 seconds / 25 μm.

また、80℃・1時間加熱時の熱収縮率が、フィルム長手方向(MD方向)、幅方向(TD方向)共に3%以下であることが好ましい。フィルムの長手方向(MD方向)、幅方向(TD方向)共に、熱収縮率が3%を越えると、電池のセパレータとして用いた時に、電池の充放電時の熱によってセパレータが収縮して、陽極と陰極が触れてショートする場合があり、また、透気防水シート、フィルター用として他基材とラミネートして用いた時に、ラミネート時の熱によって収縮して孔が塞がり透気度が大きくなったり、製品がカールする場合があるので好ましくない。   Moreover, it is preferable that the thermal contraction rate at the time of heating at 80 ° C. for 1 hour is 3% or less in both the film longitudinal direction (MD direction) and the width direction (TD direction). When the thermal shrinkage rate exceeds 3% in both the longitudinal direction (MD direction) and the width direction (TD direction) of the film, when used as a battery separator, the separator shrinks due to heat during charging / discharging of the battery. The cathode may come into contact with the cathode and cause a short circuit. Also, when laminated with other substrates for air-permeable waterproof sheets and filters, the heat shrinks during laminating, closing the holes and increasing the air permeability. This is not preferable because the product may curl.

本発明の微多孔フィルムは、フィルム両面を重ね合わせた時の静摩擦係数μsは、0.2〜2の範囲であることが必要であり、より好ましくは0.3〜1.5の範囲である。静摩擦係数μsが0.2未満では、フィルムが滑り過ぎて、長尺に巻き取る際に巻きずれが起こり好ましくない。μsが2を越えると、フィルムまたは加工製品に皺ができて好ましくない。   In the microporous film of the present invention, the static friction coefficient μs when the film surfaces are superposed is required to be in the range of 0.2 to 2, more preferably in the range of 0.3 to 1.5. . When the static friction coefficient μs is less than 0.2, the film is too slippery and unwinding occurs when the film is wound up in a long length. When μs exceeds 2, wrinkles are formed on the film or processed product, which is not preferable.

本発明のフィルムの少なくとも片面の最大表面粗さRtが0.5〜2μm、平均表面粗さRaが0.1〜0.3μmとすることが好ましい。最大表面粗さRtと平均表面粗さRaが上記範囲であることにより、製膜時の長尺巻き取り性及び二次加工時の工程通過性がよくなる。RtまたはRaが上限を超えると、金属ロール通過時に表面の削れが起こり、金属ロールに白粉が付着して工程を汚す場合があり、下限以下では長尺巻き取り性が悪化し、また、製膜時及び二次加工工程通過時の金属ロールとの滑りが悪くなり、フィルム及び加工製品に皺ができる場合がある。   It is preferable that the maximum surface roughness Rt of at least one surface of the film of the present invention is 0.5 to 2 μm and the average surface roughness Ra is 0.1 to 0.3 μm. When the maximum surface roughness Rt and the average surface roughness Ra are within the above ranges, the long winding property during film formation and the process passability during secondary processing are improved. If Rt or Ra exceeds the upper limit, the surface may be scraped when passing through the metal roll, white powder may adhere to the metal roll and the process may be soiled. Sometimes, slipping with the metal roll during passage of the time and the secondary processing step becomes worse, and the film and processed product may be wrinkled.

本発明のフィルムの特性向上助剤として、帯電電防止および親水性付与として帯電防止剤、有機滑剤、無機粒子及び有機粒子の少なくとも1種以上を含有させてもよく、該助剤の添加量は1重量%以下であることが好ましく、より好ましくは0.5重量%以下である。添加量が1重量%を越えると、空孔形成を阻害し、また、PP製膜工程及び二次加工工程等で樹脂や粒子の脱落が起こり工程を汚す場合がある。   As an auxiliary agent for improving the properties of the film of the present invention, it may contain at least one or more of an antistatic agent, an organic lubricant, inorganic particles and organic particles for preventing electrostatic charge and imparting hydrophilicity. The content is preferably 1% by weight or less, more preferably 0.5% by weight or less. If the added amount exceeds 1% by weight, the formation of pores is hindered, and the resin and particles may fall off in the PP film forming process and the secondary processing process, and the process may be soiled.

帯電防止剤は特に限定されないが、例えば、ベタイン誘導体のエチレンオキサイド付加物、第4級アミン系化合物、アルキルジエタノールアミン脂肪酸エステル、グリセリン脂肪酸エステル、ステアリン酸モノグリセリド、ステアリン酸ジグリセリドなど、もしくはこれらの混合物を挙げることができる。この中でもアルキルジエタノールアミン脂肪酸エステルとグリセリン脂肪酸エステルを併用したものが好ましい。   The antistatic agent is not particularly limited, and examples thereof include ethylene oxide adducts of betaine derivatives, quaternary amine compounds, alkyldiethanolamine fatty acid esters, glycerin fatty acid esters, stearic acid monoglycerides, stearic acid diglycerides, and mixtures thereof. be able to. Among these, those using an alkyldiethanolamine fatty acid ester and a glycerin fatty acid ester in combination are preferable.

滑剤とは、JIS用語で表現されている熱可塑性樹脂の加熱成形時の流動性、離型性をよくするために添加されるもので、加工機械の金属面とポリマー表面、またポリマー同士の間の摩擦力を調節するために添加されるものである。例えばステアリン酸アミド、エルシン酸アミド、エルカ酸アミド、ステアリルエルカアミド、ライトアマイド等のアミド系化合物など、もしくはこれらの混合物が挙げられる。   Lubricant is added to improve fluidity and releasability during thermoforming of thermoplastic resin expressed in JIS terms. It is between the metal surface of the processing machine and the polymer surface, or between polymers. It is added to adjust the frictional force. Examples thereof include stearamide, erucamide, erucamide, stearyl erucamide, amide compounds such as light amide, and the like, or a mixture thereof.

本フィルム中の帯電防止剤と滑剤の合計含有量は0.3〜2.0重量部、好ましくは0.5〜1.5重量部が滑り性付与の点で好ましい。   The total content of the antistatic agent and the lubricant in the film is 0.3 to 2.0 parts by weight, preferably 0.5 to 1.5 parts by weight from the viewpoint of imparting slipperiness.

帯電防止剤および滑剤の添加量が上記範囲よりも多いと、β晶比率が低下し、透気性が低下する場合があるので好ましくない。   When the addition amount of the antistatic agent and the lubricant is larger than the above range, the β crystal ratio is lowered and the gas permeability may be lowered, which is not preferable.

無機粒子としては、例えば湿式および乾式シリカ、コロイダルシリカ、珪酸アルミ、酸化チタン、炭酸カルシウム、リン酸カルシウム、硫酸バリウム、アルミナ、炭酸マグネシウム、炭酸亜鉛、酸化チタン、酸化亜鉛(亜鉛華)、酸化アンチモン、酸化セリウム、酸化ジルコニウム、酸化錫、酸化ランタン、酸化マグネシウム、炭酸バリウム、炭酸亜鉛、塩基性炭酸鉛(鉛白)、硫酸バリウム、硫酸カルシウム、硫酸鉛、硫化亜鉛、マイカ、雲母チタン、タルク、クレー、カオリン、フッ化リチウムおよびフッ化カルシウム等を用いることができる。   Examples of inorganic particles include wet and dry silica, colloidal silica, aluminum silicate, titanium oxide, calcium carbonate, calcium phosphate, barium sulfate, alumina, magnesium carbonate, zinc carbonate, titanium oxide, zinc oxide (zinc white), antimony oxide, and oxidation. Cerium, zirconium oxide, tin oxide, lanthanum oxide, magnesium oxide, barium carbonate, zinc carbonate, basic lead carbonate (lead white), barium sulfate, calcium sulfate, lead sulfate, zinc sulfide, mica, titanium mica, talc, clay, Kaolin, lithium fluoride, calcium fluoride, and the like can be used.

有機粒子とは、高分子化合物を架橋剤を用いて架橋した粒子である。例えば、ポリメトキシシラン系化合物の架橋粒子、ポリスチレン系化合物の架橋粒子、アクリル系化合物の架橋粒子、ポリウレタン系化合物の架橋粒子、ポリエステル系化合物の架橋粒子、フッソ系化合物の架橋粒子、もしくはこれらの混合物を挙げることができる。   Organic particles are particles obtained by crosslinking a polymer compound using a crosslinking agent. For example, crosslinked particles of polymethoxysilane compounds, crosslinked particles of polystyrene compounds, crosslinked particles of acrylic compounds, crosslinked particles of polyurethane compounds, crosslinked particles of polyester compounds, crosslinked particles of fluorine compounds, or a mixture thereof Can be mentioned.

該無機粒子および架橋有機粒子は球状で、その平均粒径は0.5〜4μmの範囲であることが粒子の凝集が少なく、易滑性効果が高いので好ましい。平均粒径が0.5μm未満では易滑効果が低く、4μmを越えると粒子の脱落やフィルム同士を擦った時にフィルム表面に傷がつきやすくなるので好ましくない。   It is preferable that the inorganic particles and the crosslinked organic particles have a spherical shape and have an average particle size in the range of 0.5 to 4 μm because the aggregation of the particles is small and the slipperiness effect is high. If the average particle size is less than 0.5 μm, the slippery effect is low, and if it exceeds 4 μm, the film surface tends to be damaged when the particles fall off or when the films are rubbed together.

また、本発明のフィルムの長手方向(以下MD方向と略称する場合がある)の2%伸張時の応力(以下F2値と略称する場合がある)は、5〜12MPaの範囲であることが好ましい。従来の微多孔フィルムは、内部空隙を有することによってMD方向のF2値が低く、製膜工程及び二次加工工程における張力よってフィルムが伸び、縦じわが発生したり、破断する場合がある。MD方向のF2値が5MPa未満では、工程通過時または巻き張力によってフィルムが伸び、縦じわやフィルム切れが発生する場合がある。また、MD方向のF2値が12MPaを越えると柔軟さが低下し、二次加工時に折れじわが発生する場合があるので好ましくない。   Further, the stress (hereinafter sometimes abbreviated as F2 value) at 2% in the longitudinal direction (hereinafter sometimes abbreviated as MD direction) of the film of the present invention is preferably in the range of 5 to 12 MPa. . A conventional microporous film has an internal void and thus has a low F2 value in the MD direction, and the film may be stretched due to tension in the film forming process and the secondary processing process, causing vertical wrinkles or breaking. When the F2 value in the MD direction is less than 5 MPa, the film may be stretched by passing through the process or by the winding tension, and vertical wrinkles or film breakage may occur. Further, if the F2 value in the MD direction exceeds 12 MPa, the flexibility is lowered, and creases may occur during secondary processing, which is not preferable.

本発明のフィルムの空隙率は50〜80%、好ましくは50〜70%の範囲とすることが、透気度とF2値を両立することが容易であり好ましい。空隙率が50%未満ではガーレ透気度の値が大きく、電池セパレータや透気防水シートとしての特性に劣る。また、空隙率が80%を越えるとF2値が5MPa以下となり、製膜工程及び二次加工工程における張力よってフィルムが伸び、縦じわが発生したり、破断する場合がある。   The porosity of the film of the present invention is preferably 50 to 80%, and preferably 50 to 70%, since it is easy to achieve both air permeability and F2 value. When the porosity is less than 50%, the value of the Gurley air permeability is large, and the characteristics as a battery separator or a gas permeable waterproof sheet are inferior. Further, when the porosity exceeds 80%, the F2 value becomes 5 MPa or less, and the film is stretched due to the tension in the film forming process and the secondary processing process, and vertical wrinkles may occur or break.

本発明のフィルム厚みは、5〜100μmであることが実用上好ましい。フィルム厚みが5μm未満では、製膜工程及び二次加工工程における張力よってフィルムが伸び、縦じわが発生したり、破断する場合がある。また、100μmを越えると、ガーレ透気度が大きくなり、実用上好ましくない。   The film thickness of the present invention is preferably 5 to 100 μm practically. If the film thickness is less than 5 μm, the film may be stretched due to the tension in the film forming step and the secondary processing step, and vertical wrinkles may occur or break. On the other hand, if it exceeds 100 μm, the Gurley air permeability increases, which is not preferable for practical use.

本発明のフィルムは、単独で用いても、他の素材と貼合わせて用いてもよい。この時、親水性、印刷インキ塗布性、または他基材と貼り合わすために、フィルム表面を空気中または窒素ガス、炭酸ガスの1種以上の雰囲気中でコロナ放電処理を行うことが好ましい。   The film of the present invention may be used alone or in combination with other materials. At this time, it is preferable to perform corona discharge treatment on the film surface in the air or in one or more atmospheres of nitrogen gas and carbon dioxide gas in order to adhere to hydrophilicity, printing ink applicability, or another substrate.

上記他の素材としては、例えば普通紙、上質紙、中質紙、コート紙、アート紙、キャストコート紙、樹脂含浸紙、エマルジョン含浸紙、ラテックス含浸紙、合成樹脂内添紙、グラシン紙、ラミネート紙などの紙、合成紙、布あるいは不織布、または他種フィルム等を用いることができる。   Examples of the other materials include plain paper, fine paper, medium paper, coated paper, art paper, cast coated paper, resin-impregnated paper, emulsion-impregnated paper, latex-impregnated paper, synthetic resin internal paper, glassine paper, and laminate. Paper such as paper, synthetic paper, cloth or non-woven fabric, or other types of films can be used.

次に、本発明の二軸配向微多孔フィルムの製造方法について、その一例を説明するが、本発明は、かかる例のみに限定されるものではない。   Next, although an example is demonstrated about the manufacturing method of the biaxially-oriented microporous film of this invention, this invention is not limited only to this example.

例えば、結晶性ポリプロピレン樹脂とβ晶核剤と、ガラス転移点(Tg)が100〜160℃、もしくは融解温度が200〜270℃のポリプロピレン樹脂に非相溶性の樹脂、またはラバー状ポリマー等の非相溶性樹脂を混合して二軸押出機に供給し、非相溶性樹脂の融解温度以上の190〜300℃で溶融混合して非相溶性樹脂を微分散させて後にガット状に押出し、20〜50℃の水槽に通して冷却してチップカッターで3mm長にカットした後、80〜100℃で1時間乾燥する。次に、該β晶核剤と非相溶性樹脂混合PPを非相溶性樹脂性の融解温度以上に加熱された押出機に供給して溶融し、180℃〜240℃に加熱されたTダイ型口金内に導入して溶融押出シートを得る。この時、樹脂温度が220℃を越えると、二軸延伸して得られた二軸配向微多孔フィルムのガーレ透気度が大きくなり、通気性が悪化する場合がある。次に、この溶融押出シートを、表面温度80〜150℃に保たれたドラム上で、1〜60秒間保持して密着固化しキャストフィルムを作製する。キャストドラム温度が80℃未満では、二軸延伸して得られた二軸配向微多孔フィルムのガーレ透気度が大きくなり、通気性が悪化する。また、150℃を越えるとキャストドラムへの粘着が起こり、引き剥がす時に表面欠点が生じる場合がある。また、上記温度範囲での保持時間が、1秒未満ではキャストシートのβ晶が十分に生成されず、延伸後の透気性が高くなりにくい。また、上記温度範囲での保持時間は長い方が好ましいが、60秒を越えると、製膜速度が遅くなり、生産性が低下する場合がある。次に、該キャストフィルムを加熱保持したロール群またはオーブンに導き、シート温度を80〜130℃に加熱して、長手方向(縦方向、すなわちフィルムの進行方向)に2〜7倍延伸し、30℃〜120℃のロール群で冷却する。この時シート温度が80℃未満では二軸延伸時にフィルム破れが多発し、130℃を越えると、二軸延伸して得られた二軸配向微多孔フィルムのガーレ透気度が大きくなり、通気性が悪化する。縦延伸倍率が2倍未満では、二軸延伸フィルムのガーレ透気度が大きく通気性が悪化し、7倍を越えると、横延伸性が悪化するので好ましくない。続いて、長手方向に延伸したフィルムの両端をクリップで把持しながらテンターに導き、120〜145℃に加熱した雰囲気中で長手方向に垂直な方向(横方向)に3〜12倍に延伸する。横延伸温度が120℃未満では二軸延伸時にフィルム破れが多発し、145℃を越えると、二軸延伸して得られた二軸配向微多孔フィルムのガーレ透気度が大きくなり、通気性が悪化する。面積倍率(縦延伸倍率×横延伸倍率)は6倍〜84倍、製膜安定性から15倍〜50倍であることが好ましい。面積倍率が6倍未満であると、得られるフィルムの空孔形成が不十分となり、逆に面積倍率が84倍を超えると延伸時に破れを生じ易くなる傾向がある。このようにして得られた二軸配向微多孔フィルムの結晶配向を完了させて平面性、寸法安定性を付与するために、引き続きテンター内にて130〜160℃で1〜10秒間の熱処理を行ない、その後均一に徐冷後、室温まで冷却して巻き取ることにより、本発明の二軸配向微多孔フィルムを得ることができる。なお、上記熱処理工程中では、必要に応じて横方向あるいは縦方向に3〜12%の弛緩処理を施してもよい。熱処理温度が130℃未満では、80℃・1時間加熱時の熱収縮率が大きくなり、160℃を越えると、二軸延伸して得られた二軸配向微多孔フィルムのガーレ透気度が大きくなり、通気性が悪化するので好ましくない。また、熱処理時間が1秒未満では効果が見られず、10秒を超えると生産性が悪化するので好ましくない。また、二軸延伸は逐次二軸延伸あるいは同時二軸延伸のいずれでもよく、また二軸延伸後に縦、横いずれかの方向に再延伸してもよい。このようにして得られた本発明のフィルムの表面には、電池の電解液との親水性付与、布または他基材と貼り合わせ向上のために、必要に応じて、空気中または窒素ガス、炭酸ガスの1種以上の雰囲気中でコロナ放電処理を行い、表面の濡れ張力を向上させて巻き取る。   For example, a crystalline polypropylene resin, a β crystal nucleating agent, a glass transition point (Tg) of 100 to 160 ° C., or a polypropylene resin having a melting temperature of 200 to 270 ° C. A compatible resin is mixed and supplied to a twin-screw extruder, melt-mixed at 190 to 300 ° C. above the melting temperature of the incompatible resin to finely disperse the incompatible resin, and then extruded into a gut shape. It cools by passing through a 50 degreeC water tank, cuts into 3 mm length with a chip cutter, Then, it dries at 80-100 degreeC for 1 hour. Next, the β crystal nucleating agent and the incompatible resin mixed PP are supplied to an extruder heated above the melting temperature of the incompatible resin and melted, and the T die type heated to 180 ° C. to 240 ° C. It introduce | transduces in a nozzle | cap | die and obtains a melt-extrusion sheet | seat. At this time, if the resin temperature exceeds 220 ° C., the Gurley air permeability of the biaxially oriented microporous film obtained by biaxial stretching increases and the air permeability may deteriorate. Next, this melt-extruded sheet is held on a drum maintained at a surface temperature of 80 to 150 ° C. for 1 to 60 seconds to be solidified to produce a cast film. When the cast drum temperature is less than 80 ° C., the Gurley air permeability of the biaxially oriented microporous film obtained by biaxial stretching increases and the air permeability deteriorates. Moreover, when it exceeds 150 degreeC, the adhesion to a cast drum will occur and a surface defect may arise when peeling. Moreover, if the holding time in the said temperature range is less than 1 second, the beta crystal | crystallization of a cast sheet will not fully produce | generate, but the air permeability after extending | stretching does not become high easily. In addition, it is preferable that the holding time in the above temperature range is long, but if it exceeds 60 seconds, the film-forming speed becomes slow and the productivity may be lowered. Next, the cast film is guided to a roll group or oven that is heated and held, the sheet temperature is heated to 80 to 130 ° C., and stretched 2 to 7 times in the longitudinal direction (longitudinal direction, that is, the traveling direction of the film). It cools with the roll group of deg. At this time, when the sheet temperature is less than 80 ° C., film breakage frequently occurs at the time of biaxial stretching, and when it exceeds 130 ° C., the Gurley air permeability of the biaxially oriented microporous film obtained by biaxial stretching increases and the air permeability is increased. Gets worse. When the longitudinal stretching ratio is less than 2 times, the Gurley air permeability of the biaxially stretched film is large and the air permeability deteriorates. When it exceeds 7 times, the lateral stretchability deteriorates, which is not preferable. Subsequently, both ends of the film stretched in the longitudinal direction are guided to a tenter while being gripped by clips, and stretched 3 to 12 times in a direction (lateral direction) perpendicular to the longitudinal direction in an atmosphere heated to 120 to 145 ° C. When the transverse stretching temperature is less than 120 ° C., film breakage frequently occurs during biaxial stretching, and when it exceeds 145 ° C., the Gurley permeability of the biaxially oriented microporous film obtained by biaxial stretching increases and the air permeability is increased. Getting worse. The area ratio (longitudinal stretch ratio × lateral stretch ratio) is preferably 6 to 84 times, and preferably 15 to 50 times from the viewpoint of film formation stability. When the area magnification is less than 6 times, pore formation of the resulting film becomes insufficient, and conversely when the area magnification exceeds 84 times, there is a tendency that tearing tends to occur during stretching. In order to complete the crystal orientation of the biaxially oriented microporous film thus obtained and to impart flatness and dimensional stability, heat treatment is subsequently performed at 130 to 160 ° C. for 1 to 10 seconds in the tenter. Thereafter, the biaxially oriented microporous film of the present invention can be obtained by gradually cooling it uniformly and then cooling to room temperature and winding. In addition, in the said heat processing process, you may perform a 3-12% relaxation process in a horizontal direction or a vertical direction as needed. When the heat treatment temperature is less than 130 ° C., the heat shrinkage rate when heated at 80 ° C. for 1 hour increases, and when it exceeds 160 ° C., the Gurley permeability of the biaxially oriented microporous film obtained by biaxial stretching is large. This is not preferable because the air permeability deteriorates. Further, if the heat treatment time is less than 1 second, the effect is not seen, and if it exceeds 10 seconds, the productivity is deteriorated, which is not preferable. Biaxial stretching may be either sequential biaxial stretching or simultaneous biaxial stretching, and may be re-stretched in either the longitudinal or lateral direction after biaxial stretching. On the surface of the film of the present invention thus obtained, in the air or nitrogen gas, if necessary, for imparting hydrophilicity with the electrolytic solution of the battery and improving the bonding with a cloth or other base material, Corona discharge treatment is performed in one or more atmospheres of carbon dioxide gas to improve the surface wetting tension and take up.

[特性の測定方法および評価方法]
本発明の特性値は、次の評価方法、評価基準により求められる。
[Measurement and evaluation method of characteristics]
The characteristic value of this invention is calculated | required with the following evaluation method and evaluation criteria.

(1)極限粘度[η]
試料0.1gを135℃のテトラリン100mlに完全に溶解させ、この溶液を135℃の恒温槽中で粘度計で測定して、比粘度Sにより次式に従って極限粘度を求める。単位はdl/gとする。
[η]=S/0.1×(1+0.22×S)。
(1) Intrinsic viscosity [η]
0.1 g of a sample is completely dissolved in 100 ml of 135 ° C. tetralin, this solution is measured with a viscometer in a constant temperature bath at 135 ° C., and the intrinsic viscosity is obtained from the specific viscosity S according to the following formula. The unit is dl / g.
[Η] = S / 0.1 × (1 + 0.22 × S).

(2)アイソタクチックインデックス(II)沸騰n−ヘプタン抽出残分
アイソタクチックインデックス(II)は、沸騰n−ヘプタン抽出残分から求める。試料を沸騰n−ヘプタンで一定時間抽出を行い、抽出されない部分の重量(%)を求めてアイソタクチックインデックスを算出する。
(2) Isotactic index (II) boiling n-heptane extraction residue The isotactic index (II) is determined from the boiling n-heptane extraction residue. The sample is extracted with boiling n-heptane for a certain period of time, and the weight (%) of the portion not extracted is calculated to calculate the isotactic index.

詳しくは円筒濾紙を110±5℃で2時間乾燥し、恒温恒湿の室内で2時間以上放置してから、円筒濾紙中に試料(粉体またはフレーク状)10gを入れ、秤量カップ、ピンセットを用いて直示天秤にて精秤(小数点4桁まで)する。   Specifically, after drying the cylindrical filter paper at 110 ± 5 ° C. for 2 hours and leaving it in a constant temperature and humidity room for 2 hours or more, put 10 g of the sample (powder or flakes) into the cylindrical filter paper, and put a weighing cup and tweezers Use a precision balance (up to 4 digits after the decimal point).

これをヘプタン80ccの入った抽出器の上部にセットし、抽出器と冷却器を組み立てる。これをオイルバスまたは電機ヒーターで加熱し、12時間抽出する。加熱は冷却器からの滴下数が1分間130滴以上であるように調節する。抽出残分の入った円筒濾紙を取り出し、真空乾燥器にいれて80℃、100mmHg以下の真空度で5時間乾燥する。乾燥後恒温恒湿中に2時間放置した後精秤し、下記式で算出する。
アイソタクチックインデックス(II)(%)=(P/Po)×100
但し、Poは抽出前の試料重量(g),Pは抽出後の試料重量(g)である。
This is set on the top of the extractor containing 80 cc of heptane, and the extractor and the cooler are assembled. This is heated with an oil bath or an electric heater and extracted for 12 hours. Heating is adjusted so that the number of drops from the cooler is 130 drops or more per minute. The cylindrical filter paper containing the extraction residue is taken out, put in a vacuum dryer, and dried at 80 ° C. and a vacuum degree of 100 mmHg or less for 5 hours. After drying, the sample is allowed to stand for 2 hours in constant temperature and humidity, and then precisely weighed and calculated by the following formula.
Isotactic index (II) (%) = (P / Po) × 100
However, Po is the sample weight (g) before extraction, P is the sample weight (g) after extraction.

(3)MFR(メルトフローレート)
結晶性ポリプロピレン樹脂は、JIS K 7210の条件M(1995年)に従って測定する(230℃、2.16kg)。エチレン系樹脂は、JIS K 7210の条件4(1995年)に従って測定する(190℃、2.16kg)。ポリカーボネートはJIS K 7210の条件21(1995年)に従って測定する(300℃、1.2kg)。ポリメチルペンテン樹脂はASTM D 1238に従って測定する(260℃、5.0kg)。
(3) MFR (melt flow rate)
The crystalline polypropylene resin is measured according to JIS K 7210, Condition M (1995) (230 ° C., 2.16 kg). The ethylene-based resin is measured according to JIS K 7210, condition 4 (1995) (190 ° C., 2.16 kg). The polycarbonate is measured according to JIS K 7210, condition 21 (1995) (300 ° C., 1.2 kg). Polymethylpentene resin is measured according to ASTM D 1238 (260 ° C., 5.0 kg).

(4)β晶比率
ポリプロピレン樹脂、シートおよびフィルムを走査型差動熱量計(DSC)を用いて、JIS K−7122に準拠して測定する。具体的には、窒素雰囲気下で5mgの試料を20℃/分の速度で250℃まで昇温させ、その後5分間保持した後に20℃/分の冷却速度で20℃まで冷却する。次いで、再度20℃/分の速度で昇温していった際に、140℃〜157℃間にピークを持つポリプロピレン樹脂由来のβ晶の融解に伴う吸熱ピークの融解熱量(ΔHu−1)と、160℃以上にピークを持つβ晶以外のポリプロピレン樹脂由来の結晶の融解に伴う吸熱ピークの融解熱量(ΔHu−2)から次式で求める。
(4) β crystal ratio A polypropylene resin, a sheet, and a film are measured according to JIS K-7122 using a scanning differential calorimeter (DSC). Specifically, a 5 mg sample is heated to 250 ° C. at a rate of 20 ° C./min under a nitrogen atmosphere, and then held for 5 minutes, and then cooled to 20 ° C. at a cooling rate of 20 ° C./min. Next, when the temperature was raised again at a rate of 20 ° C./min, the heat of fusion (ΔHu−1) of the endothermic peak accompanying melting of the β crystal derived from the polypropylene resin having a peak between 140 ° C. and 157 ° C. From the heat of fusion (ΔHu−2) of the endothermic peak accompanying the melting of a crystal derived from polypropylene resin other than the β crystal having a peak at 160 ° C. or higher, the following formula is used.

β晶比率(%)= {ΔHu−1/(ΔHu−1+ΔHu−2)}×100 (1)
なお、上記の手法で140〜160℃に融解ピークが存在するが、β晶の融解に起因するものか不明確な場合は、140〜160℃に融解ピークが存在することと、広角X線回折法による回折プロファイルでβ晶に起因する回折ピークが存在することをもってβ晶の融解に起因する融解ピークであるものと判定すればよい。
β crystal ratio (%) = {ΔHu−1 / (ΔHu−1 + ΔHu−2)} × 100 (1)
In addition, although a melting peak exists at 140 to 160 ° C. by the above method, if it is unclear whether it is caused by the melting of the β crystal, the presence of a melting peak at 140 to 160 ° C. and wide-angle X-ray diffraction The presence of a diffraction peak due to the β crystal in the diffraction profile obtained by the method may be determined to be a melting peak due to the melting of the β crystal.

下記に広角X線回折法の測定条件を示す。
・サンプル:本発明のフィルムを方向を揃えて、熱プレス調整後のサンプル厚さが1mm程度になるよう重ね合わせた後、これを0.5mm厚みのアルミ板で挟み、280℃で熱プレスして融解・圧縮させた。得られたシートを、アルミ板ごと100℃の沸騰水中に5分間浸漬して結晶化させ、その後25℃の雰囲気下で冷却して得られるシートを幅1mmに切り出したものを測定に供した。
・X線回折装置:理学電気(株)社製 4036A2
・X線源:CuKα線(Niフィルター使用)
・出力:40kV、20mA
・スリット系:2mmφ−1°−1°
・検出器:シンチレーションカウンター
・計数記録装置:理学電気(株)社製 RAD−C型
・測定方法:2θ/θスキャン(ステップスキャン、2θ範囲10〜55°、0.05°ステップ、積算時間2秒)
得られた回折プロファイルに、2θ=16.1〜16.4°付近にβ晶の(300)面による最も強い回折ピークが観測されればよい。なお、ポリプロピレン樹脂の結晶型(α晶、β晶)の構造、得られる広角X線回折プロファイルなどは、例えば、エドワード・P・ムーア・Jr.著、“ポリプロピレンハンドブック”、工業調査会(1998)、p.135−163;田所宏行著、“高分子の構造”、化学同人(1976)、p.393;ターナージョーンズ(A.Turner−Jones)ら,“マクロモレキュラー ケミ”(Macromol. Chem.),75,p.134−158や、これらに挙げられた参考文献なども含めて多数の報告があり、それを参考にすればよい。
The measurement conditions of the wide angle X-ray diffraction method are shown below.
Sample: After aligning the direction of the film of the present invention so that the thickness of the sample after hot press adjustment is about 1 mm, the sample is sandwiched between 0.5 mm thick aluminum plates and hot pressed at 280 ° C. To melt and compress. The obtained sheet was immersed in 100 ° C. boiling water for 5 minutes and crystallized together with the aluminum plate, and then cooled in an atmosphere at 25 ° C., and a sheet obtained by cutting it to a width of 1 mm was subjected to measurement.
-X-ray diffractometer: 4036A2 manufactured by Rigaku Corporation
・ X-ray source: CuKα ray (using Ni filter)
・ Output: 40kV, 20mA
・ Slit system: 2mmφ-1 ° -1 °
-Detector: Scintillation counter-Count recording device: RAD-C type manufactured by Rigaku Denki Co., Ltd.-Measuring method: 2θ / θ scan (step scan, 2θ range 10-55 °, 0.05 ° step, integration time 2 Seconds)
In the obtained diffraction profile, the strongest diffraction peak due to the (300) plane of the β crystal may be observed in the vicinity of 2θ = 16.1 to 16.4 °. The structure of the crystal form (α crystal, β crystal) of polypropylene resin, the obtained wide-angle X-ray diffraction profile, etc. are described in, for example, Edward P. Moore Jr. Written by "Polypropylene Handbook", Industrial Research Committee (1998), p. 135-163; Hiroyuki Tadokoro, “Structure of Polymer”, Kagaku Dojin (1976), p. 393; A. Turner-Jones et al., “Macromolecular Chem.”, 75, p. There are a number of reports including 134-158 and references cited in these documents, which can be referred to.

(5)ガラス転移点Tg、融解温度Tm
走査型差動熱量計(DSC)を用いて、JIS K−7122に準拠して窒素雰囲気下で5mgの試料を20℃/分の速度で昇温させていった際に、二次転移に伴う比熱の変化をガラス転移点温度(Tg)として求めた。また、フィルム中の非相溶性樹脂のTgは、主原料のPPのTgが0℃以下であることから、0℃を越えた二次転移に伴う比熱の変化を非相溶性樹脂のTgとした。また、引き続き昇温を続け、樹脂の融解に伴う吸熱ピークの主ピーク温度を融解温度Tmとした。
(5) Glass transition point Tg, melting temperature Tm
When a 5 mg sample is heated at a rate of 20 ° C./min under a nitrogen atmosphere in accordance with JIS K-7122 using a scanning differential calorimeter (DSC), it accompanies the secondary transition. The change in specific heat was determined as the glass transition temperature (Tg). In addition, the Tg of the incompatible resin in the film is that the Tg of the main raw material PP is 0 ° C. or less, and therefore the change in specific heat accompanying the secondary transition exceeding 0 ° C. is defined as the Tg of the incompatible resin. . Further, the temperature was continuously raised, and the main peak temperature of the endothermic peak accompanying the melting of the resin was defined as the melting temperature Tm.

(6)フィルム厚み
ダイヤルゲージ式厚み計(JIS B−7509、測定子5mmφ平型)を用いて、PEACOCK社製UPRIGHT DIAL GAUGE(0.001×2mm)、No.25、測定子5mmφ平型、125gf荷重)を用いて、フィルムの長手方向及び幅方向に10cm間隔で10点測定して、その平均値とした(単位:μm)。
(6) Film thickness Using a dial gauge thickness gauge (JIS B-7509, measuring element 5 mmφ flat type), UPAIGHT DIAL GAUGE (0.001 × 2 mm) manufactured by PEACOCK, No. 25, measuring point 5 mmφ flat type, 125 gf load), 10 points were measured at intervals of 10 cm in the longitudinal direction and width direction of the film, and the average value was obtained (unit: μm).

(7)ガーレ透気度
JIS P−8117に準拠して、23℃、65%RHにて測定した(単位:秒/100ml)。同じサンプルについて同様の測定を5回行い、得られたガーレ透気度の平均値を当該サンプルのガーレ透気度とした。この際、ガーレ透気度の平均値が10000秒/100mlを越えるものについては実質的に透気性を有さないものとみなし、無限大(∞)秒/100mlとした。
(7) Gurley air permeability Based on JIS P-8117, it was measured at 23 ° C. and 65% RH (unit: second / 100 ml). The same measurement was performed 5 times for the same sample, and the average value of the obtained Gurley air permeability was taken as the Gurley air permeability of the sample. At this time, the case where the average value of the Gurley air permeability exceeded 10,000 seconds / 100 ml was regarded as substantially having no air permeability, and was set to infinity (∞) seconds / 100 ml.

(8)フィルムの平均空孔径
フィルムの表面をS−2100A形((株)日立製作所製)を用いて5000倍に拡大観察して平面写真を採取する。該平面写真において観察される網目状に観察される孔(黒く観察される部分)を全てマーキングし、該マーキング部分をハイビジョン画像解析装置PIAS−IV((株)ピアス製)を用いて画像処理することにより、平均空孔孔径を算出した。尚、フィルムの平均空孔径を求めるに当たっては、異なる測定視野から任意に選んだ計5箇所の写真計5枚を使用し、それらの平均値として算出した。
(8) Average pore diameter of film The surface of the film is magnified 5000 times using a S-2100A type (manufactured by Hitachi, Ltd.) and a plane photograph is taken. All the holes observed in a mesh shape (the portion observed in black) observed in the plane photograph are marked, and the marking portion is subjected to image processing using a high-definition image analysis apparatus PIAS-IV (manufactured by Pierce Co., Ltd.). Thus, the average pore diameter was calculated. In order to determine the average pore diameter of the film, a total of five photometers arbitrarily selected from different measurement fields were used, and the average value was calculated.

(9)空隙率
二軸配向フィルムを正方形に切り取り、一辺の長さL(cm)、重量W(g)、厚みD(cm)、を測定して、以下の式より求めた。
空隙率=100−100(W/ρ)/(L×D)
上記式中のρは、延伸前のフィルム密度を示す。ρはJIS K7112(1980)のD法の密度勾配菅法にて求めた値を用いる。この時の密度勾配菅用液は、エタノールと水を用いる。
(9) Porosity The biaxially oriented film was cut into a square, and the length L (cm), weight W (g), and thickness D (cm) of one side were measured and obtained from the following formula.
Porosity = 100-100 (W / ρ) / (L 2 × D)
Ρ in the above formula indicates the film density before stretching. ρ uses a value obtained by the density gradient method of D method of JIS K7112 (1980). At this time, ethanol and water are used as the density gradient liquid.

(10)非相溶性樹脂の分散粒径、無機及び有機粒子の粒径
二軸配向微多孔フィルムをミクロトームを用いて短手方向に切断し、断面を形成させた。フィルムの該内部平面および該断面を走査型電子顕微鏡(SEM)S−2100A形((株)日立製作所製)を用いて5000倍に拡大観察してそれぞれ平面写真および断面写真を採取する。該内部平面写真において、観察される非相溶性樹脂の長径長さを計測した。また、該断面写真において、観察される非相溶性樹脂の断面を全てマーキングし、該マーキング部分をハイビジョン画像解析装置PIAS−IV((株)ピアス製)を用いて画像処理することにより、各々の非相溶性樹脂の平均粒径を算出した。ただし、非相溶性樹脂の断面積の平均値は、内部平面および断面採取位置を変えて計5箇所の写真をとり、各5枚の写真から得られた各々の非相溶性樹脂の断面積を平均して算出した。
(10) Dispersed particle size of incompatible resin, particle size of inorganic and organic particles A biaxially oriented microporous film was cut in the short direction using a microtome to form a cross section. The internal plane and the cross section of the film are enlarged and observed 5000 times using a scanning electron microscope (SEM) model S-2100A (manufactured by Hitachi, Ltd.), and a plane photograph and a cross section photograph are taken, respectively. In the internal plan photograph, the major axis length of the incompatible resin observed was measured. Moreover, in the cross-sectional photograph, all the cross sections of the incompatible resin to be observed are marked, and the marking portion is subjected to image processing using a high-definition image analysis apparatus PIAS-IV (manufactured by Pierce Co., Ltd.). The average particle size of the incompatible resin was calculated. However, the average value of the cross-sectional area of the incompatible resin is that the cross-sectional area of each incompatible resin obtained from each of the five photographs is taken by changing the internal plane and the cross-section sampling position and taking a total of five photographs. Calculated on average.

(11)最大表面粗さRt及び平均表面粗さRa
JIS B0601(2001年)に従って、触針式表面粗さ計(小坂研究所(株)製、高精度薄膜段差測定器、形式ET30HK)を用いて、スキン層表面の最大表面粗さRt及び平均表面粗さRaを測定した。なお、この時の条件は、試長2mm、触針径円錐型0.5μmR、荷重16mg、カットオフ0.08mmとした。この時、中心線平均表面粗さRaは、粗さ曲線からその中心線の方向に測定長さLをの部分を抜き取り、この抜き取り部分の中心線をX軸、縦方向をY軸とし、粗さ曲線をy=f(X)で表した時、次の式によって求められる値をμmで表したものをいう。
(11) Maximum surface roughness Rt and average surface roughness Ra
According to JIS B0601 (2001), using a stylus type surface roughness meter (manufactured by Kosaka Laboratory Ltd., high-precision thin film level difference measuring instrument, type ET30HK), the maximum surface roughness Rt and average surface of the skin layer surface The roughness Ra was measured. The conditions at this time were a test length of 2 mm, a stylus diameter cone type of 0.5 μm R, a load of 16 mg, and a cutoff of 0.08 mm. At this time, the center line average surface roughness Ra is obtained by extracting a portion having a measurement length L in the direction of the center line from the roughness curve, and setting the center line of the extracted portion as the X axis and the vertical direction as the Y axis. When the length curve is represented by y = f (X), it means a value obtained by the following formula expressed in μm.

Figure 0004876387
Figure 0004876387

(12)静摩擦係数μs
東洋精機(株)製スリップテスターを用いて、JIS K 7125(1999年)に準じて、フィルム面の両面を重ねて摩擦させた時の値を測定し、初期の立ち上がり抵抗値を静摩擦係数μsdとした。
(12) Coefficient of static friction μs
Using a slip tester manufactured by Toyo Seiki Co., Ltd., according to JIS K 7125 (1999), the values when the film surfaces were rubbed on both sides were measured, and the initial rise resistance value was determined as the coefficient of static friction μsd. did.

(13)熱収縮率
フィルムの長手方向と幅方向それぞれついて、幅10mm、長さ300mmを5本切り出し、両端から50mmの位置に印を付けて試長200mm(l)とする。次に、荷重3gを付けて80℃に保温されたオーブン内に吊し、1時間加熱後に取り出して、室温で冷却後、寸法を測定(l)して下記式にて求め、5本の平均値とした。
熱収縮率S=(l−l)/l ×100(%)。
(13) Heat Shrinkage For each of the longitudinal direction and the width direction of the film, 5 pieces of 10 mm width and 300 mm length are cut out and marked at a position of 50 mm from both ends to make a test length of 200 mm (l 0 ). Next, it was suspended in an oven kept at 80 ° C. with a load of 3 g, taken out after heating for 1 hour, cooled at room temperature, measured for dimensions (l 1 ), and calculated by the following formula. The average value was used.
Thermal shrinkage S = (l 0 −l 1 ) / l 0 × 100 (%).

(14)濡れ張力(mN/m)
ホルムアミドとエチレングリコールモノエチルエーテルとの混合液を用いて、JIS K6768に規定された測定方法に基づいて測定した。
(14) Wetting tension (mN / m)
It measured based on the measuring method prescribed | regulated to JISK6768 using the liquid mixture of formamide and ethylene glycol monoethyl ether.

(15)2%伸張時の応力(F2値)
フィルム長手方向のF2値は、長手方向:15cm、幅方向:1cmのサイズで切り出した試料を試長50mmとし、JIS K7127(1999年)に規定された方法に従い、長手方向引張り速度300mm/分で伸張して、伸度2%に対する試料にかかる応力を測定した。
(15) Stress at 2% elongation (F2 value)
The F2 value in the longitudinal direction of the film is a longitudinal length: 15 cm, a width direction: 1 cm, and a sample length of 50 mm. The sample length is 50 mm according to the method defined in JIS K7127 (1999). The sample was stretched and the stress applied to the sample with respect to the elongation of 2% was measured.

(16)長尺巻き取り性
二軸配向フィルムを5m幅、10,000m巻き取った後に、1m幅、4000mにスリットして製品化したときの製品外観をみて以下のように評価した、
A級:製品ロールの巻きずれなく、端部及び表面外観が良好。
(16) Long roll-up property After winding a biaxially oriented film to a width of 5 m and 10,000 m, it was evaluated as follows by looking at the appearance of the product when slit into a 1 m width and 4000 m to produce a product.
Class A: Good end and surface appearance without product roll winding.

B級:製品ロールの端部に1〜5mmの巻きずれが見られ、表面に細かいしわ が見られる。   Class B: Winding deviation of 1 to 5 mm is observed at the end of the product roll, and fine wrinkles are observed on the surface.

C級:製品ロールの端部に5mmを越える巻きずれが見られ、表面に大きなし わが見られる。   Class C: Winding displacement exceeding 5 mm is observed at the end of the product roll, and large wrinkles are observed on the surface.

(17)二次加工性
透気防水シートとして、撥水加工された布に、ウレタン系の接着剤(固形分濃度20%)を10μm塗布して140℃・1分乾燥後、二軸配向フィルムと120℃の温度でラミネートする際に、熱収縮率が小さくて金属ロールとの滑りがよく、空孔形成剤(ボイド核)や粒子の脱落がなくて工程中の金属ロールへの白粉付着がなく、フィルムにしわが入らず、ラミネート後の透気度の値のアップがラミネート前の値に対し3割以下のものを○とし、金属ロールとの滑りが悪く、空孔形成剤(ボイド核)や粒子の脱落があって金属ロールに白粉が付着して工程通過性に劣り、フィルムにしわが入り、ラミネート後に透気度の値が5割以上アップしたもの、または透気度が高すぎて透気防水シートとして使用できないものを×として評価した。
(17) Secondary workability As an air-permeable waterproof sheet, a 10 μm urethane adhesive (solid content concentration 20%) is applied to a water-repellent cloth, dried at 140 ° C. for 1 minute, and then a biaxially oriented film. When laminating at a temperature of 120 ° C, the thermal shrinkage rate is small and the sliding with the metal roll is good, and the white powder adheres to the metal roll during the process without any void forming agent (void nuclei) or particles falling off. No film wrinkle, air permeability after lamination is less than 30% of the value before lamination, and slipping with metal roll is poor, and pore forming agent (void core) Or particles have fallen off and white powder adheres to the metal roll, resulting in inferior processability, wrinkles in the film, air permeability increased by 50% or more after lamination, or air permeability is too high What can not be used as a waterproof sheet × It was to evaluate.

本発明を以下の実施例を用いて説明するが、本発明はこれらに限定されるものではない。   The present invention will be described with reference to the following examples, but the present invention is not limited thereto.

(実施例1)
まず、結晶性ポリプロピレン樹脂(以下結晶性PPと略称する)(住友化学(株)製、タイプ:WF836DG3、極限粘度[η]:2.0dl/g、MFR:7g/10分、II:96%)94.95重量%と、β晶核剤として、N,N’−ジシクロヘキシル−2,6−ナフタレンジカルボキシアミド(新日本理化(株)製、“エヌジェスター”NU−100、以下NU−100と略称する)0.05重量%と、融解温度が240℃のポリメチルペンテン樹脂(三井化学(株)製、“TPX”RT−18、MFR:26、以下PMPと略称する)5重量%を添加混合して、二軸押出機に供給して280℃で溶融混合してガット状に押出し、30℃の水槽に通して冷却してチップカッターで3mm長にカットした後、100℃で2時間乾燥した。該β晶核剤添加PP(以下β晶PPと略称する)のβ晶比率は85%であった。次に、このβ晶PPを280℃に加熱された押出機(A)に供給して溶融し、200℃に加熱されたTダイ型口金よりシート状に押出して、表面温度120℃に保たれたキャストドラム上で密着固化しキャストフィルムを作製した。次に、該キャストフィルムを120℃に加熱保持されたオーブンに導いてフィルム温度を予熱後、長手方向(縦方向、すなわちフィルムの進行方向、以下MD方向と略称する)に4倍延伸し、30℃の冷却ロールで冷却した。続いて、MD方向に延伸したフィルムの両端をクリップで把持しながらテンターに導き、135℃に加熱した雰囲気中でMD方向に垂直な方向(横方向、以下TD方向と略称する)に8倍延伸した(面積倍率:縦延伸倍率×横延伸倍率=32倍)。引き続き二軸配向微多孔フィルムの結晶配向を完了させて平面性、寸法安定性を付与するために、テンター内にて150℃で横方向5%の弛緩熱処理を行い、均一に徐冷後、室温まで冷却した。さらに、本発明の二軸配向微多孔フィルムへの親水性付与と、表面に塗剤及びインキ塗布または他基材と貼り合わすために、両面を空気中でコロナ放電処理を行い巻き取った。本フィルムの樹脂組成を表1に、フィルム特性と巻き取り性及び二次加工性、を表2に示した。本発明のフィルムはガーレ透気度が低く透気性に優れ、滑り性がよくて製品ロールの外観がよく、熱収縮率が低くて二次加工性に優れた特性を示していることが分かる。
Example 1
First, crystalline polypropylene resin (hereinafter abbreviated as crystalline PP) (manufactured by Sumitomo Chemical Co., Ltd., type: WF836DG3, intrinsic viscosity [η]: 2.0 dl / g, MFR: 7 g / 10 min, II: 96%) ) 94.95% by weight and N, N′-dicyclohexyl-2,6-naphthalenedicarboxamide (manufactured by Shin Nippon Rika Co., Ltd., “NUJester” NU-100, hereinafter NU-100) 0.05% by weight) and 5% by weight of polymethylpentene resin having a melting temperature of 240 ° C. (Mitsui Chemicals, “TPX” RT-18, MFR: 26, hereinafter abbreviated as PMP) Add and mix, supply to twin screw extruder, melt and mix at 280 ° C, extrude into gut shape, pass through 30 ° C water bath, cool and cut to 3mm length with chip cutter, then at 100 ° C for 2 hours Dried. The β crystal ratio of the β crystal nucleating agent-added PP (hereinafter abbreviated as β crystal PP) was 85%. Next, this β-crystal PP is supplied to an extruder (A) heated to 280 ° C., melted, extruded into a sheet form from a T-die die heated to 200 ° C., and kept at a surface temperature of 120 ° C. The film was solidified on a cast drum to produce a cast film. Next, the cast film was introduced into an oven heated and held at 120 ° C., and after preheating the film temperature, the cast film was stretched 4 times in the longitudinal direction (longitudinal direction, that is, the film traveling direction, hereinafter abbreviated as MD direction), and 30 Cooled with a chill roll. Subsequently, the film stretched in the MD direction is guided to a tenter while gripping both ends with a clip, and stretched 8 times in a direction perpendicular to the MD direction (lateral direction, hereinafter referred to as TD direction) in an atmosphere heated to 135 ° C. (Area magnification: Longitudinal draw ratio × Horizontal draw ratio = 32 times). Subsequently, in order to complete the crystal orientation of the biaxially oriented microporous film and to impart flatness and dimensional stability, a relaxation heat treatment of 5% in the transverse direction at 150 ° C. is performed in the tenter, and after uniform cooling, room temperature Until cooled. Furthermore, in order to impart hydrophilicity to the biaxially oriented microporous film of the present invention and to apply a coating agent and an ink on the surface or to be bonded to another substrate, both surfaces were subjected to corona discharge treatment in air and wound. Table 1 shows the resin composition of this film, and Table 2 shows the film characteristics, winding property and secondary processability. It can be seen that the film of the present invention has low Gurley air permeability, excellent air permeability, good slipperiness, good product roll appearance, low heat shrinkage, and excellent secondary workability.

(実施例2)
フィルムの樹脂組成として、結晶性PP(三井化学(株)製、極限粘度[η]:2dl/g、MFR:4g/10分、II:98.5%)96.9重量%と、NU−100を0.1重量%、ガラス転移点(Tg)150℃の非相溶性樹脂ポリカーボネート(出光石油化学(株)製、タイプ:A1500、分子量:15000、MI:65g/分、以下PCと略称する)3重量%を添加混合し、二軸押出機に供給して280℃でガット状に押出し、20℃の水槽に通して冷却してチップカッターで3mm長にカットした後、100℃で2時間乾燥した。該β晶核剤添加PPのβ晶比率は90%であった。次に、このβ晶PPを260℃に加熱された押出機(A)に供給して溶融し、200℃に加熱されたTダイ型口金よりシート状に押出して、表面温度100℃に保たれたキャストドラム上で密着固化しキャストフィルムを作製した。次に、該キャストフィルムを120℃に加熱保持されたオーブンに導いてフィルム温度を予熱後、長手方向(縦方向、すなわちフィルムの進行方向、以下MD方向と略称する)に3.5倍延伸し、120℃のロールを通過させた後、30℃の冷却ロールで冷却した。続いて、MD方向に延伸したフィルムの両端をクリップで把持しながらテンターに導き、145℃に加熱した雰囲気中でMD方向に垂直な方向(横方向、以下TD方向と略称する)に7倍延伸した(面積倍率:縦延伸倍率×横延伸倍率=24.5倍)。引き続き二軸配向微多孔フィルムの結晶配向を完了させて平面性、寸法安定性を付与するために、テンター内にて160℃で横方向5%の弛緩熱処理を行い、均一に徐冷後、室温まで冷却した。さらに、本発明の二軸配向微多孔フィルムへの親水性付与と、表面に塗剤及びインキ塗布または他基材と貼り合わすために、両面を空気中でコロナ放電処理を行い巻き取った。本フィルムの樹脂組成を表1に、フィルム特性と巻き取り性及び二次加工性を表2に示した。本発明のフィルムはガーレ透気度が低く透気性に優れ、滑り性がよくて製品ロールの外観がよく、熱収縮率が低くて二次加工性に優れた特性を示していることが分かる。
(Example 2)
As the resin composition of the film, crystalline PP (manufactured by Mitsui Chemicals, Inc., intrinsic viscosity [η]: 2 dl / g, MFR: 4 g / 10 min, II: 98.5%) 96.9% by weight, NU- 100 is 0.1% by weight, glass transition point (Tg) 150 ° C. incompatible resin polycarbonate (manufactured by Idemitsu Petrochemical Co., Ltd., type: A1500, molecular weight: 15000, MI: 65 g / min, hereinafter abbreviated as PC) ) Add 3% by weight, feed to twin screw extruder, extrude into guts at 280 ° C, cool through 20 ° C water bath, cut to 3mm length with chip cutter, then at 100 ° C for 2 hours Dried. The β crystal ratio of the β crystal nucleating agent-added PP was 90%. Next, this β crystal PP is supplied to an extruder (A) heated to 260 ° C., melted, and extruded into a sheet form from a T-die die heated to 200 ° C., and the surface temperature is kept at 100 ° C. The film was solidified on a cast drum to produce a cast film. Next, the cast film is guided to an oven heated and held at 120 ° C., and after preheating the film temperature, it is stretched 3.5 times in the longitudinal direction (longitudinal direction, that is, the traveling direction of the film, hereinafter abbreviated as MD direction). After passing through a 120 ° C. roll, it was cooled with a 30 ° C. cooling roll. Subsequently, the film stretched in the MD direction is guided to a tenter while holding both ends of the film with clips, and stretched seven times in a direction perpendicular to the MD direction (lateral direction, hereinafter abbreviated as TD direction) in an atmosphere heated to 145 ° C. (Area magnification: Longitudinal draw ratio x Transverse draw ratio = 24.5 times). Subsequently, in order to complete the crystal orientation of the biaxially oriented microporous film and to impart flatness and dimensional stability, a relaxation heat treatment of 5% in the transverse direction is performed at 160 ° C. in the tenter, and after uniform cooling, room temperature Until cooled. Furthermore, in order to impart hydrophilicity to the biaxially oriented microporous film of the present invention and to apply a coating agent and an ink on the surface or to be bonded to another substrate, both surfaces were subjected to corona discharge treatment in air and wound. The resin composition of this film is shown in Table 1, and the film properties, winding properties and secondary processability are shown in Table 2. It can be seen that the film of the present invention has low Gurley air permeability, excellent air permeability, good slipperiness, good product roll appearance, low heat shrinkage, and excellent secondary workability.

(実施例3、4)
実施例1の樹脂組成において、実施例3ではPMPの混合量を0.5重量%とし、実施例4ではPMPの混合量を8重量%とした以外は、実施例1と同様に二軸配向微多孔フィルムを得た。本フィルムの樹脂組成を表1に、フィルム特性と巻き取り性及び二次加工性を表2に示した。本発明のフィルムはガーレ透気度が低く透気性に優れ、滑り性がよくて製品ロールの外観がよく、熱収縮率が低くて二次加工性に優れた特性を示していることが分かる。
(Examples 3 and 4)
In the resin composition of Example 1, biaxial orientation was performed in the same manner as in Example 1 except that the mixing amount of PMP in Example 3 was 0.5 wt% and that in Example 4 was 8 wt%. A microporous film was obtained. The resin composition of this film is shown in Table 1, and the film properties, winding properties and secondary processability are shown in Table 2. It can be seen that the film of the present invention has low Gurley air permeability, excellent air permeability, good slipperiness, good product roll appearance, low heat shrinkage, and excellent secondary workability.

(実施例5)
実施例1において、樹脂組成として、結晶性PP94.7重量%と、NU−100を0.05重量%と、PMP5重量%と、平均粒径2.1μmのアルミノシリケート粒子(水澤化学工業(株)製、タイプ:シルトンJC−20、以下SiO粒子と略称する)0.25重量%を添加混合して用いた以外は、実施例1と同様にして、厚み75μmの二軸配向微多孔フィルムを得た。本フィルムの樹脂組成を表1に、フィルム特性と巻き取り性及び二次加工性を表2に示した。本発明のフィルムはガーレ透気度が低く透気性に優れ、滑り性がよくて製品ロールの外観がよく、熱収縮率が低くて二次加工性に優れた特性を示していることが分かる。
(Example 5)
In Example 1, the resin composition was 94.7% by weight of crystalline PP, 0.05% by weight of NU-100, 5% by weight of PMP, and aluminosilicate particles having an average particle size of 2.1 μm (Mizusawa Chemical Co., Ltd.). ) Ltd., type: Silton JC-20, is hereinafter abbreviated as SiO 2 particles) except for using by adding and mixing 0.25 wt%, in the same manner as in example 1, a biaxially oriented thickness 75μm microporous film Got. The resin composition of this film is shown in Table 1, and the film properties, winding properties and secondary processability are shown in Table 2. It can be seen that the film of the present invention has low Gurley air permeability, excellent air permeability, good slipperiness, good product roll appearance, low heat shrinkage, and excellent secondary workability.

(実施例6)
実施例1において、PMPの代わりに、融解温度が270℃の非相溶性樹脂のシンジオタクチックポリスチレン樹脂(以下SPSと略称する)(出光石油化学(株)製、“ザレック”S100)を用い、さらに、帯電防止剤としてアルキルジエタノールアミン脂肪酸エステル(花王(株)製、エレクトロストリッパーTS−6B、以下TS6Bと略称する)0.5重量%と、滑剤としてステアリン酸モノグリセライド(花王(株)製、エキセル84、以下E84と略称する)0.2重量%を添加混合し、290℃で溶融混合した以外は実施例1と同様にして二軸配向微多孔フィルムを得た。本フィルムの樹脂組成を表1に、フィルム特性と巻き取り性及び二次加工性を表2に示した。本発明のフィルムはガーレ透気度が低く透気性に優れ、滑り性がよくて製品ロールの外観がよく、熱収縮率が低くて二次加工性に優れた特性を示していることが分かる。
(Example 6)
In Example 1, instead of PMP, an incompatible resin syndiotactic polystyrene resin (hereinafter abbreviated as SPS) having a melting temperature of 270 ° C. (“Zarek” S100, manufactured by Idemitsu Petrochemical Co., Ltd.) was used. Furthermore, 0.5% by weight of alkyldiethanolamine fatty acid ester (manufactured by Kao Corporation, electro stripper TS-6B, hereinafter abbreviated as TS6B) as an antistatic agent, and stearic acid monoglyceride (manufactured by Kao Corporation, Excel 84) as a lubricant. (Hereinafter abbreviated as E84) was added and mixed at 0.2% by weight, and a biaxially oriented microporous film was obtained in the same manner as in Example 1 except that it was melt-mixed at 290 ° C. The resin composition of this film is shown in Table 1, and the film properties, winding properties and secondary processability are shown in Table 2. It can be seen that the film of the present invention has low Gurley air permeability, excellent air permeability, good slipperiness, good product roll appearance, low heat shrinkage, and excellent secondary workability.

(実施例7)
フィルムの樹脂組成として、エチレン含有量10重量%の結晶性PP(サンアロマー(株)製、MFR:5g/10分)91.9重量%と、β晶核剤として、N,N’−ジシクロヘキシル−2,6−ナフタレンジカルボキシアミド(新日本理化(株)製、“エヌジェスター”NU−100、以下NU−100と略称する)0.1重量%と、PMP(“TPX”RT−18)8重量%を添加混合して、二軸押出機に供給して280℃で溶融混合してガット状に押出し、30℃の水槽に通して冷却してチップカッターで3mm長にカットした後、100℃で2時間乾燥した。該β晶核剤添加PP(以下β晶PPと略称する)のβ晶比率は92%であった。次に、このβ晶PPを280℃に加熱された押出機(A)に供給して溶融し、200℃に加熱されたTダイ型口金よりシート状に押出して、表面温度120℃に保たれたキャストドラム上で密着固化しキャストフィルムを作製した。次に、該キャストフィルムを110℃に加熱保持されたオーブンに導いてフィルム温度を予熱後、長手方向(縦方向、すなわちフィルムの進行方向、以下MD方向と略称する)に5倍延伸し、100℃のロールで冷却した。続いて、MD方向に延伸したフィルムの両端をクリップで把持しながらテンターに導き、125℃に加熱した雰囲気中でMD方向に垂直な方向(横方向、以下TD方向と略称する)に9倍延伸した(面積倍率:縦延伸倍率×横延伸倍率=45倍)。引き続き二軸配向微多孔フィルムの結晶配向を完了させて平面性、寸法安定性を付与するために、テンター内にて150℃で横方向5%の弛緩熱処理を行い、均一に徐冷後、室温まで冷却した。さらに、本発明の二軸配向微多孔フィルムへの親水性付与と、表面に塗剤及びインキ塗布または他基材と貼り合わすために、両面を空気中でコロナ放電処理を行い巻き取った。本フィルムの樹脂組成を表1に、フィルム特性と巻き取り性及び二次加工性、を表2に示した。本発明のフィルムはガーレ透気度が低く透気性に優れ、滑り性がよくて製品ロールの外観がよく、熱収縮率が低くて二次加工性に優れた特性を示していることが分かる。
(Example 7)
The resin composition of the film was 91.9% by weight of crystalline PP (manufactured by Sun Allomer Co., Ltd., MFR: 5 g / 10 min) having an ethylene content of 10% by weight, and N, N′-dicyclohexyl- 2,6-naphthalenedicarboxamide (manufactured by Shin Nippon Rika Co., Ltd., “NJESTER” NU-100, hereinafter abbreviated as NU-100) 0.1% by weight and PMP (“TPX” RT-18) 8 The mixture was added to and mixed by weight, supplied to a twin-screw extruder, melted and mixed at 280 ° C., extruded into a gut shape, cooled through a 30 ° C. water bath, cut into a 3 mm length with a chip cutter, and then 100 ° C. And dried for 2 hours. The β crystal ratio of the β crystal nucleating agent-added PP (hereinafter abbreviated as β crystal PP) was 92%. Next, this β-crystal PP is supplied to an extruder (A) heated to 280 ° C., melted, extruded into a sheet form from a T-die die heated to 200 ° C., and kept at a surface temperature of 120 ° C. The film was solidified on a cast drum to produce a cast film. Next, the cast film was introduced into an oven heated and held at 110 ° C., and after preheating the film temperature, it was stretched 5 times in the longitudinal direction (longitudinal direction, that is, the traveling direction of the film, hereinafter abbreviated as MD direction), and 100 Cooled with a roll at 0C. Subsequently, the film stretched in the MD direction is guided to a tenter while holding both ends of the film with clips, and stretched 9 times in a direction perpendicular to the MD direction (lateral direction, hereinafter referred to as TD direction) in an atmosphere heated to 125 ° C. (Area magnification: Longitudinal draw ratio × Horizontal draw ratio = 45 times). Subsequently, in order to complete the crystal orientation of the biaxially oriented microporous film and to impart flatness and dimensional stability, a relaxation heat treatment of 5% in the transverse direction at 150 ° C. is performed in the tenter, and after uniform cooling, room temperature Until cooled. Furthermore, in order to impart hydrophilicity to the biaxially oriented microporous film of the present invention and to apply a coating agent and an ink on the surface or to be bonded to another substrate, both surfaces were subjected to corona discharge treatment in air and wound. Table 1 shows the resin composition of this film, and Table 2 shows the film characteristics, winding property and secondary processability. It can be seen that the film of the present invention has low Gurley air permeability, excellent air permeability, good slipperiness, good product roll appearance, low heat shrinkage, and excellent secondary workability.

(実施例8)
実施例1において、β晶核剤NU−100の添加量を0.01重量%とし、キャスティングドラム温度を110℃とした以外は実施例1と同様にして二軸配向微多孔フィルムを得た。本フィルムの樹脂組成を表1に、フィルム特性と巻き取り性及び二次加工性を表2に示した。本発明のフィルムはβ晶PPのβ晶比率が52%と低く、二軸配向微多孔フィルムのガーレ透気度が本発明の範囲の上限に近いが透気防水シートとして問題なく使用でき、滑り性がよくて製品ロールの外観がよく、熱収縮率が低くて二次加工性に優れた特性を示していることが分かる。
(Example 8)
In Example 1, a biaxially oriented microporous film was obtained in the same manner as in Example 1 except that the addition amount of the β crystal nucleating agent NU-100 was 0.01% by weight and the casting drum temperature was 110 ° C. The resin composition of this film is shown in Table 1, and the film properties, winding properties and secondary processability are shown in Table 2. The film of the present invention has a β crystal ratio of β crystal PP as low as 52%, and the Gurley permeability of the biaxially oriented microporous film is close to the upper limit of the range of the present invention, but can be used without any problem as a gas permeable waterproof sheet. It can be seen that the product roll has good appearance, the appearance of the product roll is good, the heat shrinkage rate is low, and the secondary workability is excellent.

(実施例9)
樹脂組成として、Sunoco社製β晶核剤入りポリプロピレン“Bepol”(タイプ:BO22−SP、MFR:1.8g/10分)90重量%、非相溶性樹脂性として、融解温度が240℃のPMP(“TPX”RT−18)8重量%と、エチレン・αオレフィン共重合体の“エンゲージ”8411(デュポン・ダウ社製)2重量%を混合して、二軸押出機に供給して280℃で溶融混合してガット状に押出し、30℃の水槽に通して冷却してチップカッターで3mm長にカットした後、100℃で2時間乾燥した。該β晶核剤添加PP(以下β晶PPと略称する)のβ晶比率は80%であった。次に、このβ晶PP組成物を280℃に加熱された押出機(A)に供給して溶融し、220℃に加熱されたTダイ型口金よりシート状に押出して、表面温度120℃に保たれたキャストドラム上で密着固化しキャストフィルムを作製した。次に、該キャストフィルムを110℃に加熱保持されたオーブンに導いてフィルム温度を予熱後、長手方向(縦方向、すなわちフィルムの進行方向、以下MD方向と略称する)に5倍延伸し、100℃のロールで冷却した。続いて、MD方向に延伸したフィルムの両端をクリップで把持しながらテンターに導き、125℃に加熱した雰囲気中でMD方向に垂直な方向(横方向、以下TD方向と略称する)に9倍延伸した(面積倍率:縦延伸倍率×横延伸倍率=45倍)。引き続き二軸配向微多孔フィルムの結晶配向を完了させて平面性、寸法安定性を付与するために、テンター内にて150℃で横方向5%の弛緩熱処理を行い、均一に徐冷後、室温まで冷却し、厚さ25μmの微孔性ポリプロピレンフィルムをえた。本フィルムの樹脂組成を表1に、フィルム特性と巻き取り性及び二次加工性、を表2に示した。本発明のフィルムはガーレ透気度が低く透気性に優れ、滑り性がよくて製品ロールの外観がよく、熱収縮率が低くて二次加工性に優れた特性を示していることが分かる。
Example 9
As a resin composition, a polypropylene “Bepol” (type: BO22-SP, MFR: 1.8 g / 10 minutes) 90% by weight, a PMP having a melting temperature of 240 ° C. as a non-compatible resin. (“TPX” RT-18) 8 wt% and ethylene / α-olefin copolymer “engage” 8411 (manufactured by DuPont Dow) were mixed and supplied to a twin screw extruder at 280 ° C. The mixture was melt-mixed and extruded into a gut shape, passed through a 30 ° C. water bath, cooled, cut to a length of 3 mm with a chip cutter, and then dried at 100 ° C. for 2 hours. The β crystal ratio of the β crystal nucleating agent-added PP (hereinafter abbreviated as β crystal PP) was 80%. Next, this β-crystal PP composition is supplied to an extruder (A) heated to 280 ° C., melted, extruded into a sheet form from a T-die die heated to 220 ° C., and brought to a surface temperature of 120 ° C. A cast film was prepared by solidifying and solidifying on the retained cast drum. Next, the cast film was introduced into an oven heated and held at 110 ° C., and after preheating the film temperature, it was stretched 5 times in the longitudinal direction (longitudinal direction, that is, the traveling direction of the film, hereinafter abbreviated as MD direction), and 100 Cooled with a roll at 0C. Subsequently, the film stretched in the MD direction is guided to a tenter while holding both ends of the film with clips, and stretched 9 times in a direction perpendicular to the MD direction (lateral direction, hereinafter referred to as TD direction) in an atmosphere heated to 125 ° C. (Area magnification: Longitudinal draw ratio × Horizontal draw ratio = 45 times). Subsequently, in order to complete the crystal orientation of the biaxially oriented microporous film and to impart flatness and dimensional stability, a relaxation heat treatment of 5% in the transverse direction at 150 ° C. is performed in the tenter, and after uniform cooling, room temperature And a microporous polypropylene film having a thickness of 25 μm was obtained. Table 1 shows the resin composition of this film, and Table 2 shows the film characteristics, winding property and secondary processability. It can be seen that the film of the present invention has low Gurley air permeability, excellent air permeability, good slipperiness, good product roll appearance, low heat shrinkage, and excellent secondary workability.

(比較例1)
実施例1において、β晶核剤としてキナクリドン系核剤(東洋曹達(株)“Rubicron”400RG、以下400RGと略称する)を0.1重量%とし、溶融温度を220℃とした以外は、実施例1と同様に二軸配向微多孔フィルムを得た。本フィルムの樹脂組成を表1に、フィルム特性と巻き取り性及び二次加工性を表2に示した。本フィルムはβ晶核剤添加PPのβ晶比率が36%と低いために、ガーレ透気度が高くて透気性に劣り、また、溶融温度を非相溶性樹脂性の融解温度よりも低い温度としたために、非相溶性樹脂の分散性が悪く、摩擦係数および熱収縮率が大きいものであった。
(Comparative Example 1)
In Example 1, except that the quinacridone-based nucleating agent (Toyo Soda Co., Ltd. “Rubicron” 400RG, hereinafter abbreviated as 400RG) was 0.1% by weight and the melting temperature was 220 ° C. A biaxially oriented microporous film was obtained in the same manner as in Example 1. The resin composition of this film is shown in Table 1, and the film properties, winding properties and secondary processability are shown in Table 2. This film has a low β crystal ratio of PP added with a β crystal nucleating agent of 36%, so that the Gurley air permeability is high and the air permeability is poor, and the melting temperature is lower than the melting temperature of the incompatible resin. Therefore, the dispersibility of the incompatible resin was poor, and the friction coefficient and the heat shrinkage rate were large.

(比較例2、3)
比較例2では、実施例1において、非相溶性樹脂を添加せず、結晶PPとβ晶核剤の2成分とし、比較例3では、実施例1において、PMPの添加量を15重量%とした以外は、実施例1と同様に二軸配向微多孔フィルムを得た。本フィルムの樹脂組成を表1に、フィルム特性と巻き取り性及び二次加工性を表2に示した。比較例2のフィルムは、摩擦係数が大きく、熱収縮率も大きく、空孔が二次加工工程で潰れるためか二次加工後のガーレ透気度が大きく、長尺巻き取り性及び二次加工性に劣る。比較例3のフィルムは、表面粗さが大きくなり過ぎて製膜工程で脱落して工程を汚し、製膜中でフィルム破れが多発し、さらに長尺巻き取り性及び二次加工性に劣るものであった。
(Comparative Examples 2 and 3)
In Comparative Example 2, the incompatible resin was not added in Example 1, but two components of crystalline PP and β crystal nucleating agent were used. In Comparative Example 3, the amount of PMP added in Example 1 was 15% by weight. A biaxially oriented microporous film was obtained in the same manner as in Example 1 except that. The resin composition of this film is shown in Table 1, and the film properties, winding properties and secondary processability are shown in Table 2. The film of Comparative Example 2 has a large coefficient of friction, a large heat shrinkage rate, and voids are crushed in the secondary processing step, or the Gurley permeability after the secondary processing is large. Inferior to sex. The film of Comparative Example 3 has a surface roughness that is excessively large and drops off during the film forming process, fouling the process, causing frequent film tearing during film formation, and being inferior in long winding property and secondary processability. Met.

(比較例4)
実施例1において、結晶性PP59.95重量%と、β晶核剤NU−100を0.05重量%と、平均粒径4.9μmのSiO粒子(水澤化学(株)製、シルトンJC−50)を40重量%とした以外は、実施例1と同様に二軸配向微多孔フィルムを得た。本フィルムの樹脂組成を表1に、フィルム特性と巻き取り性及び二次加工性を表2に示した。本フィルムは、SiO粒子が製膜工程及び二次加工工程で脱落して工程を汚し、フィルムのF2値が低くて非常に脆く、二次加工性に劣るものであった。
(Comparative Example 4)
In Example 1, SiO 2 particles having a crystalline PP of 59.95% by weight, β crystal nucleating agent NU-100 of 0.05% by weight, and an average particle size of 4.9 μm (manufactured by Mizusawa Chemical Co., Ltd., Shilton JC-) A biaxially oriented microporous film was obtained in the same manner as in Example 1 except that 50) was changed to 40% by weight. The resin composition of this film is shown in Table 1, and the film properties, winding properties and secondary processability are shown in Table 2. In this film, SiO 2 particles dropped off in the film forming process and the secondary processing process, and the process was soiled. The F2 value of the film was low and very brittle, and the secondary processability was poor.

(比較例5)
実施例1において、PMPの代わりに、結晶性PPに相溶性が良く、Tgが70℃のポリテルペン樹脂(ヤスハラケミカル(株)製、“クリアロンP−125”、以下PTと略称する)を10重量%混合した以外は、実施例2と同様に二軸配向微多孔フィルムを得た。本フィルムの樹脂組成を表1に、フィルム特性と巻き取り性及び二次加工性を表2に示した。本フィルムは、摩擦係数が大きく、熱収縮率も大きくて長尺巻き取り性及び二次加工性に劣り、ガーレ透気度も大きい。
(Comparative Example 5)
In Example 1, 10% by weight of polyterpene resin (manufactured by Yashara Chemical Co., Ltd., “Clearon P-125”, hereinafter abbreviated as PT) having good compatibility with crystalline PP and having a Tg of 70 ° C. instead of PMP A biaxially oriented microporous film was obtained in the same manner as in Example 2 except for mixing. The resin composition of this film is shown in Table 1, and the film properties, winding properties and secondary processability are shown in Table 2. This film has a large coefficient of friction, a large thermal shrinkage rate, inferior long winding properties and secondary workability, and a large Gurley air permeability.

(比較例6)
実施例1において、縦延伸温度を110℃とし、横延伸後に熱処理を行わずに巻き取った以外は、実施例1と同様に二軸配向微多孔フィルムを得た。本フィルムの樹脂組成を表1に、フィルム特性と巻き取り性及び二次加工性を表2に示した。本フィルムは、熱収縮率が大きくて二次加工時の熱での寸法変化が大きく、製品にしわが入り、また加工後のガーレ透気度も大きくなった。
(Comparative Example 6)
In Example 1, a biaxially oriented microporous film was obtained in the same manner as in Example 1 except that the longitudinal stretching temperature was 110 ° C. and the film was wound without performing heat treatment after transverse stretching. The resin composition of this film is shown in Table 1, and the film properties, winding properties and secondary processability are shown in Table 2. This film had a large heat shrinkage ratio, a large dimensional change due to heat during secondary processing, wrinkles in the product, and increased Gurley permeability after processing.

(比較例7)
実施例2において、溶融押出温度を260℃とし、表面温度80℃に保たれたキャストドラム上で密着固化しキャストフィルムを作製し、次に、該キャストフィルムを135℃に加熱保持されたオーブンに導いてフィルム温度を予熱後、MD方向に5倍延伸した後、30℃の冷却ロールで冷却した。続いて、MD方向に延伸したフィルムの両端をクリップで把持しながらテンターに導き、150℃に加熱した雰囲気中でTD方向に10倍延伸(面積倍率:縦延伸倍率×横延伸倍率=50倍)にして巻き取った以外は、実施例1と同様に二軸配向微多孔フィルムを得た。本フィルムの樹脂組成を表1に、フィルム特性と巻き取り性及び二次加工性を表2に示した。本フィルムは、ガーレ透気度が測定限界以上に大きく、電池などのセパレーター、分離膜、透気防水シート、フィルターには使用できなかった。
(Comparative Example 7)
In Example 2, the melt extrusion temperature was set to 260 ° C., and the cast film was prepared by solidifying on a cast drum maintained at a surface temperature of 80 ° C. Then, the cast film was placed in an oven heated to 135 ° C. After guiding and preheating the film temperature, the film was stretched 5 times in the MD direction, and then cooled with a 30 ° C. cooling roll. Subsequently, the film stretched in the MD direction is guided to a tenter while holding both ends of the film with clips, and stretched 10 times in the TD direction in an atmosphere heated to 150 ° C. (Area magnification: Longitudinal stretching ratio × Horizontal stretching ratio = 50 times) A biaxially oriented microporous film was obtained in the same manner as in Example 1 except that the film was wound. The resin composition of this film is shown in Table 1, and the film properties, winding properties and secondary processability are shown in Table 2. This film had a Gurley air permeability higher than the measurement limit, and could not be used for separators such as batteries, separation membranes, air permeable waterproof sheets, and filters.

Figure 0004876387
Figure 0004876387

Figure 0004876387
Figure 0004876387

本発明の二軸配向微多孔フィルムは、ガーレ透気度が低くて通気性に優れ、滑り性が良好で伸張時の応力が高いことから長尺巻き取り性に優れ、更に耐熱性(低熱収縮率)に優れていることから二次加工性に優れ、電解コンデンサーやリチウム電池のセパレータ、分離膜、透気防水シート、フィルターなどに好適に用いることができる。   The biaxially oriented microporous film of the present invention has a low Gurley permeability, excellent air permeability, good slipperiness and high stress during stretching, and thus excellent long-winding properties, and further heat resistance (low heat shrinkage). The secondary processability is excellent, and it can be suitably used for electrolytic capacitors, lithium battery separators, separation membranes, air permeable waterproof sheets, filters, and the like.

図1は、走査型差動熱量計(DSC)を用いて、ポリプロピレン樹脂の融解に伴う吸熱ピークを求めた時のピークをモデル的に示した図である。FIG. 1 is a diagram schematically showing a peak when an endothermic peak accompanying melting of a polypropylene resin is obtained using a scanning differential calorimeter (DSC). 図2は、図1の中で、145℃〜157℃間にピークを持つポリプロピレン樹脂由来のβ晶の融解に伴う吸熱ピークの融解熱量(ΔHu−1)、160℃以上にピークを持つβ晶以外のポリプロピレン樹脂由来の結晶の融解に伴う吸熱ピークの融解熱量(ΔHu−2)を示した図である。FIG. 2 shows the endothermic peak heat of fusion (ΔHu−1) accompanying melting of β-crystal derived from polypropylene resin having a peak between 145 ° C. and 157 ° C. in FIG. 1, and β-crystal having a peak at 160 ° C. or higher. It is the figure which showed the calorie | heat amount ((DELTA) Hu-2) of the endothermic peak accompanying the melt | dissolution of the crystal | crystallization derived from polypropylene resins other than.

符号の説明Explanation of symbols

1・・β晶含有PP及びβ晶含有フィルムの全融解曲線
2・・β晶部分の融解熱量ΔHu−1
3・・β晶以外部分の融解熱量ΔHu−2
1. Total melting curve of β crystal containing PP and β crystal containing film 2. Heat of fusion ΔHu-1 of β crystal part
3. ・ The heat of fusion of the part other than β crystal ΔHu-2

Claims (8)

β晶比率が50〜99%のポリプロピレン樹脂90〜99.8重量%と、ポリプロピレン樹脂に非相溶性の樹脂0.2〜10重量%からなり、ガーレ透気度が5〜10000sec/100ccであり、フィルム両面を重ね合わせた時の静摩擦係数μsが0.2〜2の範囲であり、80℃・1時間加熱時の熱収縮率がフィルムの長手方向(MD方向)、幅方向(TD方向)共に3%以下であり、少なくとも片面の最大表面粗さRtが0.5〜2μm、平均表面粗さRaが0.05〜0.3μmの範囲であり、フィルムの長手方向(MD方向)の2%伸張時の応力(F2値)が5〜12MPaの範囲であり、かつ空隙率が42〜80%であることを特徴とする二軸配向微多孔フィルム。 It consists of 90 to 99.8% by weight of polypropylene resin with a β-crystal ratio of 50 to 99% and 0.2 to 10% by weight of resin incompatible with polypropylene resin, and the Gurley permeability is 5 to 10000 sec / 100 cc. The static friction coefficient μs when the both surfaces of the film are overlapped is in the range of 0.2 to 2, and the heat shrinkage rate when heated at 80 ° C. for 1 hour is the film longitudinal direction (MD direction) and width direction (TD direction). Both are 3% or less, at least one surface has a maximum surface roughness Rt of 0.5 to 2 μm, an average surface roughness Ra of 0.05 to 0.3 μm, and 2 in the longitudinal direction (MD direction) of the film. A biaxially oriented microporous film having a% elongation stress (F2 value) in the range of 5 to 12 MPa and a porosity of 42 to 80%. 空隙率が50〜80%であることを特徴とする請求項1に記載の二軸配向微多孔フィルム。 The biaxially oriented microporous film according to claim 1, wherein the porosity is 50 to 80%. フィルム厚みが5〜100μmであることを特徴とする請求項1または2に記載の二軸配向微多孔フィルム。 The biaxially oriented microporous film according to claim 1 or 2, wherein the film thickness is 5 to 100 µm. β晶比率が50〜99%のポリプロピレン樹脂が、β晶核剤を0.01〜2重量%含有してなることを特徴とする請求項1〜3のいずれかに記載の二軸配向微多孔フィルム。 The biaxially oriented microporous material according to any one of claims 1 to 3, wherein the polypropylene resin having a β crystal ratio of 50 to 99% contains 0.01 to 2% by weight of a β crystal nucleating agent. the film. ポリプロピレン樹脂に非相溶性の樹脂が、ガラス転移点(Tg)が100〜160℃、もしくは融解温度が200〜270℃の樹脂の1種以上であることを特徴とする請求項1〜4のいずれかに記載の二軸配向微多孔フィルム。 The resin incompatible with the polypropylene resin is at least one resin having a glass transition point (Tg) of 100 to 160 ° C or a melting temperature of 200 to 270 ° C. A biaxially oriented microporous film according to claim 1. ポリプロピレン樹脂に非相溶性の樹脂が、エチレン・αオレフィン共重合体、またはエチレン・αオレフィン共重合体とそれ以外の非相溶性樹脂の混合物であることを特徴とする請求項1〜5のいずれかに記載の二軸配向微多孔フィルム。 The resin incompatible with the polypropylene resin is an ethylene / α-olefin copolymer, or a mixture of an ethylene / α-olefin copolymer and another incompatible resin. A biaxially oriented microporous film according to claim 1. ポリプロピレン樹脂とβ晶核剤とポリプロピレン樹脂に非相溶性の樹脂の混合組成物を、該非相溶性樹脂の融解温度以上で溶融混合した後に、該混合樹脂を180℃〜240℃でシート状に溶融押出し、80℃〜150℃の温度で1秒〜60秒保持して冷却固化したシートを、80℃〜130℃の温度で2〜7倍縦延伸後、120〜145℃の温度で3〜12倍に横延伸を行い、130℃〜160℃で1秒〜10秒熱処理することを特徴とする請求項1〜6のいずれかに記載の二軸配向微多孔フィルムの製造方法。 After melting and mixing a mixed composition of a polypropylene resin, a β crystal nucleating agent and a resin incompatible with the polypropylene resin at a temperature higher than the melting temperature of the incompatible resin, the mixed resin is melted into a sheet at 180 ° C. to 240 ° C. The sheet which has been extruded and held at a temperature of 80 ° C. to 150 ° C. for 1 second to 60 seconds and cooled and solidified is longitudinally stretched 2 to 7 times at a temperature of 80 ° C. to 130 ° C., and then 3 to 12 at a temperature of 120 to 145 ° C. The method for producing a biaxially oriented microporous film according to any one of claims 1 to 6 , wherein the film is horizontally stretched twice and heat-treated at 130 to 160 ° C for 1 to 10 seconds. β晶核剤を含むポリプロピレン樹脂が90〜99.8重量%であり、ポリプロピレン樹脂に非相溶性の樹脂が0.2〜10重量%の混合組成物であることを特徴とする請求項7に記載の二軸配向微多孔フィルムの製造方法。

The polypropylene resin containing the β crystal nucleating agent is 90 to 99.8% by weight, and the resin incompatible with the polypropylene resin is a mixed composition of 0.2 to 10% by weight. The manufacturing method of the biaxially oriented microporous film of description.

JP2004321976A 2003-11-05 2004-11-05 Biaxially oriented microporous film and method for producing the same Expired - Fee Related JP4876387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004321976A JP4876387B2 (en) 2003-11-05 2004-11-05 Biaxially oriented microporous film and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003375218 2003-11-05
JP2003375218 2003-11-05
JP2004321976A JP4876387B2 (en) 2003-11-05 2004-11-05 Biaxially oriented microporous film and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005171230A JP2005171230A (en) 2005-06-30
JP4876387B2 true JP4876387B2 (en) 2012-02-15

Family

ID=34741384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004321976A Expired - Fee Related JP4876387B2 (en) 2003-11-05 2004-11-05 Biaxially oriented microporous film and method for producing the same

Country Status (1)

Country Link
JP (1) JP4876387B2 (en)

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4940808B2 (en) * 2005-07-28 2012-05-30 東レ株式会社 Porous polypropylene film for heat insulation panel and vehicle heat insulation panel using the same
JP2007061673A (en) * 2005-08-29 2007-03-15 Toray Ind Inc Microporous polypropylene sheet for medical separation membrane, and medical separation membrane using the same
JP4594837B2 (en) * 2005-09-22 2010-12-08 三菱樹脂株式会社 Method for producing porous laminate
KR100950189B1 (en) * 2005-09-22 2010-03-29 미쓰비시 쥬시 가부시끼가이샤 Process for producing porous laminate and porous laminate
JP4546910B2 (en) 2005-09-22 2010-09-22 三菱樹脂株式会社 Method for producing porous laminate and porous laminate
JP5417685B2 (en) * 2005-10-18 2014-02-19 東レ株式会社 Method for producing microporous polypropylene film
JP5145712B2 (en) * 2005-10-18 2013-02-20 東レ株式会社 Microporous film for power storage device separator and power storage device separator using the same
JP5085034B2 (en) * 2005-12-21 2012-11-28 三星エスディアイ株式会社 Lithium secondary battery, lithium secondary battery manufacturing method, separator
JP5151033B2 (en) * 2006-01-31 2013-02-27 東レ株式会社 Porous film composed of aromatic polyamide, battery separator, and method for producing the same
JP5310894B2 (en) * 2006-09-26 2013-10-09 東レ株式会社 Light reflection film
JP2008255326A (en) * 2006-11-22 2008-10-23 Japan Polypropylene Corp Propylenic resin composition and its molded article
JP5194476B2 (en) * 2007-02-16 2013-05-08 東レ株式会社 Porous polypropylene film
JP5256773B2 (en) * 2007-03-06 2013-08-07 東レ株式会社 Porous polypropylene film
JP5144979B2 (en) * 2007-07-17 2013-02-13 三菱樹脂株式会社 Lithium ion battery separator and method for producing the same
JP5144987B2 (en) * 2007-08-07 2013-02-13 三菱樹脂株式会社 Method for producing separator for lithium ion battery
JP5473041B2 (en) * 2007-08-07 2014-04-16 三菱樹脂株式会社 Laminated porous film and battery separator
JP5315648B2 (en) * 2007-09-06 2013-10-16 東レ株式会社 Laminated film and base paper for heat-sensitive stencil printing
US8859084B2 (en) 2008-01-29 2014-10-14 Fina Technology, Inc. Modifiers for oriented polypropylene
JP2009187724A (en) * 2008-02-05 2009-08-20 Hitachi Vehicle Energy Ltd Rolled lithium ion secondary battery
JP5245483B2 (en) * 2008-03-24 2013-07-24 東レ株式会社 Polypropylene porous film, method for producing the same, and power storage device
JP5251193B2 (en) * 2008-03-24 2013-07-31 東レ株式会社 Porous polyolefin film
JP5403932B2 (en) * 2008-03-31 2014-01-29 旭化成イーマテリアルズ株式会社 Polyolefin microporous membrane
US8298465B2 (en) * 2008-07-31 2012-10-30 Asahi Kasei E-Materials Corporation Microporous film and method for producing the same
JP5460024B2 (en) * 2008-11-10 2014-04-02 三菱樹脂株式会社 Porous film, separator for lithium battery using the same, and battery
JP5460025B2 (en) * 2008-11-10 2014-04-02 三菱樹脂株式会社 Porous film, separator for lithium battery using the same, and battery
JP5490131B2 (en) 2008-11-26 2014-05-14 東レバッテリーセパレータフィルム株式会社 Microporous membranes, methods for producing such films, and use of such films as battery separator films
EP2381510A4 (en) * 2008-12-24 2016-04-20 Mitsubishi Plastics Inc Separator for battery, and non-aqueous lithium battery
US9059448B2 (en) 2009-01-19 2015-06-16 Toray Industries, Inc. Process for producing polymeric electrolyte membrane
JP5604898B2 (en) * 2009-03-16 2014-10-15 東レ株式会社 Porous polypropylene film roll
JP2010244875A (en) * 2009-04-07 2010-10-28 Panasonic Corp Separator for lithium secondary battery, and lithium secondary battery using it
KR101249180B1 (en) * 2009-06-19 2013-04-03 미쓰비시 쥬시 가부시끼가이샤 Porous polypropylene film
KR101800685B1 (en) * 2009-06-19 2017-11-23 도레이 카부시키가이샤 Microporous membranes, methods for making such membranes, and the use of such membranes as battery separator film
CN102802771B (en) * 2009-06-19 2015-02-04 东丽电池隔膜株式会社 Microporous membranes, methods for making these membranes, and the use of these membranes as battery separator films
JP5241026B2 (en) * 2009-06-26 2013-07-17 竹本油脂株式会社 Polyolefin microporous membrane and lithium ion battery separator
JP5502707B2 (en) * 2009-11-20 2014-05-28 三菱樹脂株式会社 Multilayer porous film, battery separator and battery
DE102009060446A1 (en) 2009-12-22 2011-06-30 Treofan Germany GmbH & Co. KG, 66539 Microporous separator film for double-layer capacitors
US8592071B2 (en) 2010-02-26 2013-11-26 Mitsubishi Plastics, Inc. Laminated porous film and separator for battery
KR20120114342A (en) * 2010-03-02 2012-10-16 미쓰비시 쥬시 가부시끼가이샤 Porous polypropylene resin film, cell separator, and cell
EP2549565A4 (en) * 2010-03-18 2013-10-02 Mitsubishi Plastics Inc Porous polypropylene resin film, separator for use in a battery, and battery
JP5678754B2 (en) * 2010-03-23 2015-03-04 東レ株式会社 Method for producing composite polymer electrolyte membrane
JP5583998B2 (en) * 2010-03-24 2014-09-03 帝人株式会社 Polyolefin microporous membrane, non-aqueous secondary battery separator and non-aqueous secondary battery
JP5039817B2 (en) * 2010-08-16 2012-10-03 三菱樹脂株式会社 Porous laminate
JP5768599B2 (en) * 2010-08-30 2015-08-26 東レ株式会社 Porous polypropylene film and power storage device
KR101514901B1 (en) 2010-10-06 2015-04-23 미쓰비시 쥬시 가부시끼가이샤 Porous polyolefin resin film
JP5768359B2 (en) 2010-11-17 2015-08-26 ソニー株式会社 Heat-resistant microporous membrane, battery separator, and lithium ion secondary battery
CN103262305B (en) * 2010-12-14 2015-11-25 协立化学产业株式会社 Battery electrode or baffle surface protective agent composition, by battery electrode of its protection or dividing plate and the battery with this battery electrode or dividing plate
PL2660277T3 (en) * 2010-12-28 2019-01-31 Asahi Kasei Kabushiki Kaisha Polyolefin porous membrane and method of producing the same
JP5619701B2 (en) * 2011-10-03 2014-11-05 三菱樹脂株式会社 Method for producing porous body
KR20140081795A (en) * 2011-10-14 2014-07-01 도레이 카부시키가이샤 Porous polypropylene film and electricity-storage device
TWI589632B (en) * 2012-01-07 2017-07-01 克萊瑞特金融(Bvi)有限公司 Compositions for the production of a hydrophilic polystyrene article
CN102592824A (en) * 2012-03-09 2012-07-18 南通百正电子新材料有限公司 High-temperature-resistant polypropylene capacitive film and production method thereof
CN102543425A (en) * 2012-03-09 2012-07-04 南通百正电子新材料有限公司 Method for producing high temperature resistant polypropylene capacitance film
KR101395110B1 (en) * 2012-03-30 2014-05-13 에스케이씨 주식회사 Porous polypropylene film, preparation method thereof and separator for secondary battery comprising same
JP5298215B2 (en) * 2012-04-02 2013-09-25 三菱樹脂株式会社 Laminated porous film, battery separator and battery using the same
JP5671508B2 (en) * 2012-10-09 2015-02-18 三菱樹脂株式会社 Method for producing laminated porous film
JP5997000B2 (en) * 2012-10-19 2016-09-21 三菱樹脂株式会社 Polypropylene resin porous film
JP5833999B2 (en) * 2012-12-03 2015-12-16 三菱樹脂株式会社 Method for producing laminated porous film
JP2015181110A (en) * 2015-04-20 2015-10-15 ソニー株式会社 Heat resistance microporous film, separator for lithium ion secondary batteries, and lithium ion secondary battery
JP6004037B2 (en) * 2015-05-01 2016-10-05 ソニー株式会社 Separator and non-aqueous electrolyte battery using the same
WO2016204274A1 (en) * 2015-06-19 2016-12-22 宇部興産株式会社 Polyolefin micro porous film, separator film for power-storage device, and power-storage device
JP6194938B2 (en) * 2015-10-21 2017-09-13 三菱ケミカル株式会社 Laminated porous stretched film, battery separator and battery using the same
US20220105452A1 (en) * 2018-12-28 2022-04-07 Nitto Denko Corporation Filter pleat pack and air filter unit
JP6958586B2 (en) * 2019-03-11 2021-11-02 三菱ケミカル株式会社 Porous film wound body and its manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02311539A (en) * 1989-05-26 1990-12-27 Toray Ind Inc Porous polypropylene film
JP3523404B2 (en) * 1996-01-17 2004-04-26 株式会社トクヤマ Method for producing microporous membrane

Also Published As

Publication number Publication date
JP2005171230A (en) 2005-06-30

Similar Documents

Publication Publication Date Title
JP4876387B2 (en) Biaxially oriented microporous film and method for producing the same
JP4984890B2 (en) Microporous polypropylene film and method for producing the same
JP5354132B2 (en) Porous polypropylene film and power storage device
JP5835211B2 (en) Porous laminated film, separator for electricity storage device, and electricity storage device
JP5087906B2 (en) Microporous polypropylene film and method for producing the same
JP5626486B2 (en) Porous polypropylene film, separator for electricity storage device, and electricity storage device
WO2007046225A1 (en) Microporous polypropylene films and process for producing the same
JP2007003975A (en) Polypropylene film for light reflection board
JP6082699B2 (en) Porous film, separator for electricity storage device, and electricity storage device
JPWO2007132826A1 (en) Biaxially oriented white polypropylene film, reflector and thermal transfer recording receiving sheet
JP6273898B2 (en) Laminated porous film and power storage device
JP2006192889A (en) Biaxially stretched white polypropylene film and acceptance sheet for heat-sensitive transfer record using it
JP5267754B1 (en) Porous polyolefin film and electricity storage device
JP6361251B2 (en) Porous film, separator for electricity storage device, and electricity storage device
JP2016060061A (en) Laminated microporous film and method for producing the same and cell separator
JP2009226746A (en) Porous polyolefin film
JP2004160689A (en) White biaxially oriented polypropylene film, package, display, and receiving sheet for thermal transfer recording made of the film
JP2013032505A (en) Porous polyolefin film, separator for power storage, and power storage device
JP6331556B2 (en) Laminated porous film, method for producing the same, and separator for electricity storage device
WO2013187326A1 (en) Porous polypropylene film, separator for electricity storage devices, and electricity storage device
JPWO2012169510A1 (en) Porous polypropylene film and method for producing the same
JP2005059244A (en) Biaxially oriented white film
JP2014198832A (en) Porous film, separator for power storage device, and power storage device
JP2005059245A (en) Biaxially oriented white film for thermal transfer recording and receiving sheet for thermal transfer recording comprising the same
JP2008265267A (en) Polypropylene film for thermal stencil printing, and thermal stencil printing base sheet consisting of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111114

R151 Written notification of patent or utility model registration

Ref document number: 4876387

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees