JP5267754B1 - Porous polyolefin film and electricity storage device - Google Patents

Porous polyolefin film and electricity storage device Download PDF

Info

Publication number
JP5267754B1
JP5267754B1 JP2013506406A JP2013506406A JP5267754B1 JP 5267754 B1 JP5267754 B1 JP 5267754B1 JP 2013506406 A JP2013506406 A JP 2013506406A JP 2013506406 A JP2013506406 A JP 2013506406A JP 5267754 B1 JP5267754 B1 JP 5267754B1
Authority
JP
Japan
Prior art keywords
film
porous polyolefin
polyolefin film
modulus
young
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013506406A
Other languages
Japanese (ja)
Other versions
JPWO2013054930A1 (en
Inventor
康之 今西
正寿 大倉
琢也 久万
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2013506406A priority Critical patent/JP5267754B1/en
Application granted granted Critical
Publication of JP5267754B1 publication Critical patent/JP5267754B1/en
Publication of JPWO2013054930A1 publication Critical patent/JPWO2013054930A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/02Diaphragms; Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

LIBやEDLC組立の事前乾燥工程においてシワの発生や平面性が改善された多孔性ポリオレフィンフィルムを提供する。本発明の多孔性ポリオレフィンフィルムは、23℃における長手方向のヤング率f(23)(MPa)と、105℃における長手方向のヤング率f(105)(MPa)との関係が、下記(1)式および(2)式を満たすことを特徴とする。
(105)>80 ・・・(1)
(23)−f(105)<450 ・・・(2)
Provided is a porous polyolefin film having improved wrinkling and flatness in a pre-drying process of LIB and EDLC assembly. The porous polyolefin film of the present invention has the following relationship between the Young's modulus f (23) (MPa) in the longitudinal direction at 23 ° C. and the Young's modulus f (105) (MPa) in the longitudinal direction at 105 ° C. (1) It is characterized by satisfy | filling Formula and (2) Formula.
f (105) > 80 (1)
f (23) -f (105) <450 (2)

Description

本発明は、多孔性ポリオレフィンフィルム、及び蓄電デバイスに関する。   The present invention relates to a porous polyolefin film and an electricity storage device.

多孔性ポリオレフィンフィルムは、電池や電解コンデンサーのセパレータや各種分離膜、衣料、医療用途における透湿防水膜、フラットパネルディスプレイの反射板や感熱転写記録シートなど多岐に亘る用途への展開が検討されている。中でも、ノート型パーソナルコンピュータや携帯電話、デジタルカメラなどのモバイル機器などに広く使用されているリチウムイオン電池(LIB)や、定置用やバックアップ電源用の蓄電デバイスとして用いられる電気二重層キャパシタ(EDLC)やリチウムイオンキャパシタ(LIC)用のセパレータとして、多孔性フィルムは好適である。特に近年、電気自動車やハイブリッド車にLIBが使用されるようになり、電池の高出力化、高容量化に伴い、透気性が良く、厚みの薄いセパレータが求められている。また、EDLC用のセパレータとしては、従来低コストかつ透気性の良いセルロース系のセパレータが使用されてきたが、近年、電気容量向上のためにセパレータの薄膜化が望まれている。   Porous polyolefin films are being developed for use in a wide variety of applications, including separators for batteries and electrolytic capacitors, various separation membranes, clothing, moisture-permeable waterproof membranes for medical applications, reflectors for flat panel displays, and thermal transfer recording sheets. Yes. Among them, lithium ion batteries (LIBs) widely used in mobile devices such as notebook personal computers, mobile phones, and digital cameras, and electric double layer capacitors (EDLC) used as storage devices for stationary and backup power supplies A porous film is suitable as a separator for lithium ion capacitors (LIC). In particular, in recent years, LIB has been used in electric vehicles and hybrid vehicles, and separators with good air permeability and thin thickness have been demanded as batteries have higher output and capacity. In addition, as a separator for EDLC, a cellulose separator having low cost and good air permeability has been conventionally used. However, in recent years, it is desired to reduce the thickness of the separator in order to improve electric capacity.

多孔性ポリオレフィンフィルムとして、二軸延伸により広幅、大面積で低コスト製造が可能な乾式法で製膜され、ポリプロピレンの結晶多形であるα型結晶(α晶)とβ型結晶(β晶)の結晶密度の差と結晶転移を利用してフィルム中に空隙を形成させる、所謂β晶法と呼ばれる方法が提案されている(特許文献1〜3参照)。また、電池の高出力化要求に対し、該β晶法でより透気性を良化させる目的で、ポリプロピレン樹脂と該ポリプロピレン樹脂中に完全相溶しない第2成分樹脂ドメインを形成することにより、フィブリル開裂を促進させる提案もなされている(特許文献4参照)。   As a porous polyolefin film, α-type crystal (α crystal) and β-type crystal (β crystal), which are polymorphs of polypropylene, are formed by a dry process that can be manufactured at low cost with a wide, large area by biaxial stretching. A so-called β crystal method has been proposed in which voids are formed in a film using the difference in crystal density and crystal transition (see Patent Documents 1 to 3). In addition, in order to improve the air permeability by the β crystal method in response to the demand for higher output of the battery, a fibril is formed by forming a polypropylene resin and a second component resin domain that is not completely compatible with the polypropylene resin. There has also been a proposal for promoting cleavage (see Patent Document 4).

上記の特許文献1〜4に記載のポリオレフィンを用いた多孔性フィルムは薄膜化が可能であるものの、LIBやLIC、EDLC用途では、電池中の水分が電池特性に悪影響を及ぼすため(特許文献5および6参照)、セパレータを100℃前後で乾燥し水分を事前に除去する乾燥工程を設ける場合があり、この乾燥工程での搬送張力や乾燥温度に起因してシワが生じたり平面性が低下する場合があった。
また、これらの用途では電池のサイズが大きくなり使用する面積が増えることから、低コスト化も強く望まれている。
Although the porous film using the polyolefin described in Patent Documents 1 to 4 can be thinned, the moisture in the battery adversely affects the battery characteristics in LIB, LIC, and EDLC applications (Patent Document 5). And 6), a drying process may be provided in which the separator is dried at around 100 ° C. to remove moisture in advance, and wrinkles are generated or flatness is reduced due to the transport tension and drying temperature in this drying process. There was a case.
In these applications, since the size of the battery is increased and the area used is increased, cost reduction is also strongly desired.

特開昭63−199742号公報JP-A 63-199742 特開平6−100720号公報JP-A-6-100720 特開平9−255804号公報Japanese Patent Laid-Open No. 9-255804 国際公開第2007/046225号International Publication No. 2007/046225 特開2003−297428号公報JP 2003-297428 A 特開2007−287781号公報JP 2007-287781 A

本発明の課題は、上記した問題点を解決することにある。すなわち、LIBやEDLC組立の事前乾燥工程においてシワの発生や平面性の低下が改善された多孔性ポリオレフィンフィルムを提供することにある。   An object of the present invention is to solve the above-described problems. That is, an object of the present invention is to provide a porous polyolefin film in which the generation of wrinkles and the decrease in flatness are improved in the pre-drying process of LIB or EDLC assembly.

上述した課題を解決し、目的を達成するために、本発明の多孔性ポリオレフィンフィルムは、23℃における長手方向のヤング率f(23)(MPa)と、105℃における長手方向のヤング率f(105)(MPa)との関係が、下記(1)式および(2)式を満たすことを特徴とする。
(105)>80 ・・・(1)
(23)−f(105)<450 ・・・(2)
To solve the above problems and achieve the object, porous polyolefin film of the present invention, the longitudinal direction of the Young's modulus f at 23 ℃ (23) (MPa) , in the longitudinal direction at 105 ° C. Young's modulus f ( 105) The relationship with (MPa) satisfies the following formulas (1) and (2).
f (105) > 80 (1)
f (23) -f (105) <450 (2)

また、本発明の多孔性ポリオレフィンフィルムは、23℃における長手方向ヤング率f(23)(MPa)と、105℃における長手方向のヤング率f(105)(MPa)との関係が、下記(1)式および(3)式を満たすことを特徴とする。
(105)>80 ・・・(1)
(23)/f(105)<6 ・・・(3)
Further, the porous polyolefin film of the present invention has a relationship between the longitudinal Young's modulus f (23) (MPa) at 23 ° C. and the longitudinal Young's modulus f (105) (MPa) at 105 ° C. (1 ) And (3) are satisfied.
f (105) > 80 (1)
f (23) / f (105) <6 (3)

本発明の多孔性ポリオレフィンフィルムは、LIBやLIC、ならびにEDLC組立の事前乾燥工程においてシワの発生や平面性の低下が改善されることから、高出力のLIBやLIC、ならびにEDLC用セパレータとして好適に使用することができる。   The porous polyolefin film of the present invention is suitable as a separator for LIB, LIC, and EDLC with high output because wrinkles and flatness are reduced in the pre-drying process of LIB, LIC, and EDLC assembly. Can be used.

図1は、シワ発生度合いを評価する方法を示す図である。FIG. 1 is a diagram illustrating a method for evaluating the degree of occurrence of wrinkles.

本発明の多孔性ポリオレフィンフィルムは、23℃における長手方向ヤング率f(23)(MPa)と、105℃における長手方向のヤング率f(105)(MPa)との関係が、下記(1)式および(2)式を満たすことを特徴とする。
(105)>80 ・・・(1)
(23)−f(105)<450 ・・・(2)
尚、本願においては、フィルムの製膜する方向に平行な方向を、製膜方向あるいは長手方向あるいはMD方向と称し、フィルム面内で製膜方向に直交する方向を幅方向あるいはTD方向と称する。105℃における長手方向のヤング率f(105)が80MPa以下であると、LIBやEDLC組立の事前乾燥工程で水分を除去するために100℃付近に加熱したとき、乾燥オーブン内で多孔性ポリオレフィンフィルムが変形し、シワが発生したり平面性が低下する場合がある。f(105)は90MPa以上であることがより好ましく、100MPa以上であることがさらに好ましい。f(105)の上限値は特に設けないが、500MPa以上の場合、透過性が悪くなり高出力用途に適さない場合がある。
In the porous polyolefin film of the present invention, the relationship between the longitudinal Young's modulus f (23) (MPa) at 23 ° C and the longitudinal Young's modulus f (105) (MPa) at 105 ° C is expressed by the following formula (1). And (2) is satisfied.
f (105) > 80 (1)
f (23) -f (105) <450 (2)
In the present application, a direction parallel to the film forming direction is referred to as a film forming direction, a longitudinal direction, or an MD direction, and a direction perpendicular to the film forming direction in the film plane is referred to as a width direction or a TD direction. When the Young's modulus f (105) in the longitudinal direction at 105 ° C. is 80 MPa or less, when heated to around 100 ° C. in order to remove moisture in the pre-drying step of LIB or EDLC assembly, the porous polyolefin film is dried in the drying oven. May be deformed and wrinkles may occur or flatness may be reduced. f (105) is more preferably 90 MPa or more, and further preferably 100 MPa or more. The upper limit of f (105) is not particularly provided, but if it is 500 MPa or more, the permeability may be deteriorated and may not be suitable for high-power applications.

また、式(2)における、23℃における長手方向のヤング率f(23)と105℃における長手方向のヤング率f(105)の差が450MPaを超えると、多孔性ポリオレフィンフィルムが乾燥オーブンに導入される際、シワが発生したり平面性が低下する場合がある。一般的な乾燥装置は、常温で多孔性ポリオレフィンフィルムを巻出機から巻き出し、乾燥オーブンに導入して水や有機溶媒を乾燥させた後、常温で多孔性ポリオレフィンフィルムを巻き取る。この際、搬送される多孔性ポリオレフィンフィルムの張力は、巻出機と巻取機付近に設置された張力系で制御されるため、乾燥オーブン前後の多孔性ポリオレフィンフィルムにかかる張力は一定である。すなわち、式(2)における、23℃における長手方向のヤング率f(23)と105℃における長手方向のヤング率f(105)の差が大きくなると、乾燥オーブンに入る前の多孔性ポリオレフィンフィルムと、乾燥オーブン内の多孔性ポリオレフィンフィルムの変形挙動が大きく異なることとなる。一般的な空孔を有さないフィルムにおいてはこの変形挙動の差がフィルムのシワや平面性に及ぼす影響は大きくないが、多孔性ポリオレフィンフィルムは寸法が変形し易いため、シワが発生したり平面性の低下を引き起こすものと考えられる。上記観点から23℃における長手方向のヤング率f(23)と105℃における長手方向のヤング率f(105)の差は、好ましくは400MPa以下、さらに好ましくは350MPa以下である。If the difference between the Young's modulus f (23) in the longitudinal direction at 23 ° C. and the Young's modulus f (105) in the longitudinal direction at 105 ° C. in Formula (2) exceeds 450 MPa, the porous polyolefin film is introduced into the drying oven. When this is done, wrinkles may occur or flatness may be reduced. A general drying apparatus unwinds a porous polyolefin film from an unwinder at room temperature, introduces the porous polyolefin film into a drying oven to dry water and an organic solvent, and then winds the porous polyolefin film at room temperature. At this time, since the tension of the conveyed porous polyolefin film is controlled by a tension system installed in the vicinity of the unwinder and the winder, the tension applied to the porous polyolefin film before and after the drying oven is constant. That is, in Formula (2), when the difference between the Young's modulus f (23) in the longitudinal direction at 23 ° C. and the Young's modulus f (105) in the longitudinal direction at 105 ° C. becomes large, the porous polyolefin film before entering the drying oven The deformation behavior of the porous polyolefin film in the drying oven is greatly different. In a film having no general pores, this difference in deformation behavior does not greatly affect the wrinkle and flatness of the film, but since the porous polyolefin film is easily deformed, wrinkles may occur or It is thought to cause a decline in sex. From the above viewpoint, the difference between the Young's modulus f (23) in the longitudinal direction at 23 ° C. and the Young's modulus f (105) in the longitudinal direction at 105 ° C. is preferably 400 MPa or less, more preferably 350 MPa or less.

また、本発明の多孔性ポリオレフィンフィルムは、23℃における長手方向ヤング率f(23)(MPa)と、105℃における長手方向のヤング率f(105)(MPa)との関係が、下記(1)式および(3)式を満たすことを特徴とする。
(105)>80 ・・・(1)
(23)/f(105)<6 (3)
式(3)において、23℃と105℃のヤング率比f(23)/f(105)が6を越えると多孔性ポリオレフィンフィルムが乾燥オーブンに導入される際、シワが発生したり平面性が低下する場合がある。ヤング率比f(23)/f(105)は5未満が更に好ましく、4.5未満が最も好ましい。
Further, the porous polyolefin film of the present invention has a relationship between the longitudinal Young's modulus f (23) (MPa) at 23 ° C. and the longitudinal Young's modulus f (105) (MPa) at 105 ° C. (1 ) And (3) are satisfied.
f (105) > 80 (1)
f (23) / f (105) <6 (3)
In Formula (3), when the Young's modulus ratio f (23) / f (105) between 23 ° C. and 105 ° C. exceeds 6, when the porous polyolefin film is introduced into the drying oven, wrinkles are generated or flatness is reduced. May decrease. The Young's modulus ratio f (23) / f (105) is more preferably less than 5, and most preferably less than 4.5.

上記式(1)および式(2)を満たす、すなわち乾燥温度でのヤング率が高く、かつ常温と乾燥温度でのヤング率の差が小さい多孔性ポリオレフィンフィルムを得る方法としては、材料組成物として、後述するβ晶核剤、ポリプロピレン樹脂(A)、エチレン・α−オレフィン系共重合体(B)および分散剤(C)を所定量添加し、延伸時の条件を後述する範囲内とすることにより制御可能である。   As a method for obtaining a porous polyolefin film satisfying the above formulas (1) and (2), that is, having a high Young's modulus at the drying temperature and a small difference between the Young's modulus at room temperature and the drying temperature, Add a predetermined amount of a β crystal nucleating agent, a polypropylene resin (A), an ethylene / α-olefin copolymer (B) and a dispersing agent (C), which will be described later, and the conditions during stretching shall be within the range described later. It can be controlled by.

本発明の多孔性ポリオレフィンフィルムは、フィルムの両表面を貫通し、透気性を有する孔(以下、貫通孔という)を有している。この貫通孔を有する多孔性ポリオレフィンフィルムを得る方法としては、上記の特性を満たしていれば、製法や材質は特に限定されず、公知の方法を採用することができる。多孔性ポリオレフィンフィルムの材質としてポリオレフィンを用いると、材料コストを低減できセパレータを低価格で製造できるため好ましい。製法としては、後述するβ晶法を用いると二軸延伸により生産性良く製膜可能であり好ましい。   The porous polyolefin film of the present invention has pores that penetrate both surfaces of the film and have air permeability (hereinafter referred to as through-holes). As a method for obtaining the porous polyolefin film having through-holes, as long as the above characteristics are satisfied, the production method and the material are not particularly limited, and a known method can be adopted. It is preferable to use polyolefin as the material of the porous polyolefin film because the material cost can be reduced and the separator can be manufactured at low cost. As a production method, it is preferable to use the β crystal method described later, because the film can be formed with high productivity by biaxial stretching.

以下に、β晶法を例にとって、本発明の多孔性ポリオレフィンフィルムの好ましい形態について説明する。   Hereinafter, preferred embodiments of the porous polyolefin film of the present invention will be described by taking the β crystal method as an example.

本発明の多孔性ポリオレフィンフィルムは、β晶形成能が40%以上であるポリプロピレン樹脂(A)を主成分とすることが好ましい。「主成分」とは、特定の成分が全成分中に占める割合が、好ましくは50質量%以上、より好ましくは80質量%以上、さらに好ましくは90質量%以上、最も好ましくは95質量%以上であることを意味する。   The porous polyolefin film of the present invention preferably contains a polypropylene resin (A) having a β crystal forming ability of 40% or more as a main component. The “main component” means that the proportion of a specific component in all components is preferably 50% by mass or more, more preferably 80% by mass or more, further preferably 90% by mass or more, and most preferably 95% by mass or more. It means that there is.

β晶法とは、キャストシートに生成させたβ晶を、縦延伸により製膜方向に配向したフィブリルとし、そのフィブリルを横延伸で開裂させながら網目を形成させることにより、多孔性ポリプロピレンフィルムを得る方法であるが、従来、横延伸で製膜方向に配向したフィブリルを高度に均一に開裂させることは困難であった。不均一なフィブリル開裂が生じると、多孔性ポリオレフィンフィルムの長手方向の強度を担う太いフィブリルが減り、強度が低下するものと考えられる。本発明では後述する原料と製膜条件を採用することにより、長手方向に強く配向したフィブリルを均一に発生させ、すなわち乾燥温度でのヤング率が高く、かつ常温と乾燥温度でのヤング率の差が小さいフィルムを得るに至った。   The β crystal method is a method in which a β crystal formed in a cast sheet is used as fibrils oriented in the film forming direction by longitudinal stretching, and a porous polypropylene film is obtained by forming a network while cleaving the fibrils by transverse stretching. Although it is a method, conventionally, it has been difficult to highly uniformly cleave fibrils oriented in the film forming direction by transverse stretching. When non-uniform fibril cleavage occurs, thick fibrils that bear the strength in the longitudinal direction of the porous polyolefin film are reduced, and the strength is considered to be lowered. In the present invention, by adopting the raw materials and film forming conditions described later, fibrils strongly oriented in the longitudinal direction are uniformly generated, that is, the Young's modulus at the drying temperature is high, and the difference between the Young's modulus at the normal temperature and the drying temperature. Led to a small film.

β晶法において透気性を良くする方法として、ポリプロピレン樹脂(A)と、該ポリプロピレン樹脂(A)中に完全相溶せず、ドメインを形成することによりフィブリル開裂を促進させるエチレン・α−オレフィン系共重合体(B)を用いる多孔性ポリプロピレンフィルムが知られている(例えばWO2007/046225参照)。しかし、該方法を用いると透気性は良化するものの、横延伸工程でのフィブリル開裂の均一性が不十分であった。   As a method for improving air permeability in the β crystal method, polypropylene resin (A) and an ethylene / α-olefin system that promotes fibril cleavage by forming a domain that is not completely compatible with the polypropylene resin (A). A porous polypropylene film using the copolymer (B) is known (for example, see WO2007 / 046225). However, when this method is used, the air permeability is improved, but the uniformity of fibril cleavage in the transverse stretching step is insufficient.

本発明においては、ポリプロピレン樹脂(A)、およびエチレン・α−オレフィン系共重合体(B)に加え、第3成分として、エチレン・α−オレフィン系共重合体(B)のドメインを微細かつ均一に分散させるための分散剤(C)を用い、後述する製膜条件を採用すると、孔構造が均一化し、延伸による粗大な空孔を低減することができ、さらに高温と室温の機械特性の差を小さくできるため好ましい。   In the present invention, in addition to the polypropylene resin (A) and the ethylene / α-olefin copolymer (B), the domain of the ethylene / α-olefin copolymer (B) is fine and uniform as the third component. When the film-forming conditions described later are employed using the dispersing agent (C) for dispersing in the pores, the pore structure becomes uniform, coarse pores due to stretching can be reduced, and the difference in mechanical properties between high temperature and room temperature. Can be reduced, which is preferable.

まず本発明の多孔性ポリオレフィンフィルムに用いる原料について説明する。   First, raw materials used for the porous polyolefin film of the present invention will be described.

β晶法を用いてフィルムに貫通孔を形成せしめるためには、多孔性ポリオレフィンフィルムの材料としてβ晶形成能を備えるポリオレフィン組成物を使用する。ポリオレフィン組成物は、ポリプロピレン樹脂(A)を主成分とするポリプロピレン組成物であることが好ましく、該ポリプロピレン組成物のβ晶形成能が40%以上であることが好ましい。β晶形成能が40%未満ではフィルム製造時にβ晶量が少ないためにα晶への転移を利用してフィルム中に形成される空隙数が少なくなり、その結果、透過性の低いフィルムしか得られない場合がある。一方、β晶形成能が90%を超えるようにするのは、後述するβ晶核剤を多量に添加したり、使用するポリプロピレン樹脂(A)の立体規則性を極めて高くしたりする必要があり、製膜安定性が低下するなど工業的な実用価値が低い。工業的にはβ晶形成能は60〜90%が好ましく、65〜85%が特に好ましい。   In order to form through holes in the film using the β crystal method, a polyolefin composition having β crystal forming ability is used as a material for the porous polyolefin film. The polyolefin composition is preferably a polypropylene composition containing a polypropylene resin (A) as a main component, and the β crystal-forming ability of the polypropylene composition is preferably 40% or more. If the β-crystal forming ability is less than 40%, the amount of β-crystals is small at the time of film production, so the number of voids formed in the film is reduced by utilizing the transition to α-crystal, and as a result, only films with low permeability are obtained. It may not be possible. On the other hand, in order to make the β crystal forming ability exceed 90%, it is necessary to add a large amount of a β crystal nucleating agent described later or to make the stereoregularity of the polypropylene resin (A) to be used extremely high. The industrial practical value is low, for example, the film forming stability is lowered. Industrially, β-crystal forming ability is preferably 60 to 90%, particularly preferably 65 to 85%.

β晶形成能を40〜90%に制御するためには、アイソタクチックインデックスの高いポリプロピレン樹脂(A)を使用したり、β晶核剤と呼ばれる、ポリプロピレン樹脂(A)中に添加することでβ晶を選択的に形成させる結晶化核剤を添加剤として用いたりすることが好ましい。   In order to control the β crystal forming ability to 40 to 90%, a polypropylene resin (A) having a high isotactic index is used, or it is added to a polypropylene resin (A) called a β crystal nucleating agent. A crystallization nucleating agent that selectively forms β crystals is preferably used as an additive.

β晶核剤としては、たとえば、1,2−ヒドロキシステアリン酸カルシウム、コハク酸マグネシウムなどのカルボン酸のアルカリあるいはアルカリ土類金属塩、N,N’−ジシクロヘキシル−2,6−ナフタレンジカルボキシアミドに代表されるアミド系化合物、3,9−ビス[4−(N−シクロヘキシルカルバモイル)フェニル]−2,4,8,10−テトラオキサスピロ[5.5]ウンデカンなどのテトラオキサスピロ化合物、ベンゼンスルホン酸ナトリウム、ナフタレンスルホン酸ナトリウムなどの芳香族スルホン酸化合物、イミドカルボン酸誘導体、フタロシアンニン系顔料、キナクリドン系顔料を好ましく挙げることができるが、特に特開平5−310665号公報に開示されているアミド系化合物を好ましく用いることができる。β晶核剤の含有量としては、ポリプロピレン組成物全体を基準とした場合に、0.05〜0.5質量%であることが好ましく、0.1〜0.3質量%であればより好ましい。0.05質量%未満では、β晶の形成が不十分となり、多孔性ポリオレフィンフィルムの透気性が低下する場合がある。0.5質量%を超えると、粗大ボイドを形成し、LIB、LICやEDLCの組み立て工程の乾燥工程において搬送張力や乾燥温度でフィルム変形が生じ易く、シワの発生や平面性の低下が生じる原因となりうる。   Examples of the β crystal nucleating agent include alkali or alkaline earth metal salts of carboxylic acids such as calcium 1,2-hydroxystearate and magnesium succinate, and N, N′-dicyclohexyl-2,6-naphthalenedicarboxyamide. Amide compounds, tetraoxaspiro compounds such as 3,9-bis [4- (N-cyclohexylcarbamoyl) phenyl] -2,4,8,10-tetraoxaspiro [5.5] undecane, benzenesulfonic acid Preferable examples include aromatic sulfonic acid compounds such as sodium and sodium naphthalene sulfonate, imide carboxylic acid derivatives, phthalocyanine pigments, and quinacridone pigments. Particularly, amides disclosed in JP-A-5-310665 Compounds can be preferably usedThe content of the β crystal nucleating agent is preferably 0.05 to 0.5% by mass, more preferably 0.1 to 0.3% by mass, based on the entire polypropylene composition. . If it is less than 0.05% by mass, formation of β crystals becomes insufficient, and the air permeability of the porous polyolefin film may be lowered. If it exceeds 0.5% by mass, coarse voids are formed, and in the drying process of the assembly process of LIB, LIC and EDLC, film deformation is likely to occur due to the transport tension and drying temperature, causing wrinkles and flatness. It can be.

本発明で用いるポリプロピレン樹脂(A)には、メルトフローレート(以下、MFRと表記する)が2〜30g/10分のアイソタクチックポリプロピレン樹脂を用いることが押出成形性及び孔の均一な形成の観点から好ましい。ここで、MFRとはJIS K 7210(1995)で規定されている樹脂の溶融粘度を示す指標であり、ポリオレフィン樹脂の特徴を示す物性値である。本発明においては230℃、2.16kgで測定した値を指す。本発明においてはポリプロピレン樹脂(A)のアイソタクチックインデックスは90〜99.9%の範囲であることが好ましい。より好ましくは95〜99%である。アイソタクチックインデックスが90%未満の場合、樹脂の結晶性が低くなってしまい、製膜性が悪化したり、フィルムの強度が不十分となる場合がある。   For the polypropylene resin (A) used in the present invention, it is possible to use an isotactic polypropylene resin having a melt flow rate (hereinafter referred to as MFR) of 2 to 30 g / 10 minutes in order to achieve extrudability and uniform pore formation. It is preferable from the viewpoint. Here, MFR is an index indicating the melt viscosity of a resin defined in JIS K 7210 (1995), and is a physical property value indicating the characteristics of a polyolefin resin. In the present invention, it refers to a value measured at 230 ° C. and 2.16 kg. In the present invention, the isotactic index of the polypropylene resin (A) is preferably in the range of 90 to 99.9%. More preferably, it is 95 to 99%. When the isotactic index is less than 90%, the crystallinity of the resin is lowered, and the film forming property may be deteriorated or the strength of the film may be insufficient.

本発明の多孔性ポリオレフィンフィルムを形成するポリプロピレン組成物としては、ホモポリプロピレンを用いることができるのはもちろんのこと、製膜工程での安定性や造膜性、物性の均一性の観点から、ポリプロピレンにエチレン成分やブテン、ヘキセン、オクテンなどのα−オレフィン成分を5質量%以下、より好ましくは2.5質量%以下の範囲で共重合した樹脂を用いることもできる。   As a polypropylene composition for forming the porous polyolefin film of the present invention, not only homopolypropylene can be used, but also from the viewpoint of stability in the film-forming process, film-forming property, and uniformity of physical properties. In addition, a resin obtained by copolymerizing an ethylene component and an α-olefin component such as butene, hexene, and octene in an amount of 5% by mass or less, more preferably 2.5% by mass or less can also be used.

本発明の多孔性ポリオレフィンフィルムを形成するポリプロピレン組成物は、二軸延伸を行って貫通孔を形成する場合、延伸時の空隙形成効率の向上や、孔径が拡大することによる透気性向上の観点から、第2成分としてエチレン・α−オレフィン系共重合体(B)を含有することが好ましい。ここで、エチレン・α−オレフィン系共重合体(B)としては直鎖状低密度ポリエチレンや超低密度ポリエチレンを挙げることができ、中でも、オクテン−1を共重合した、融点が60〜90℃の共重合ポリエチレン樹脂(共重合PE樹脂)を好ましく用いることができる。この共重合ポリエチレンは市販されている樹脂、たとえば、ダウ・ケミカル社製“Engage(エンゲージ)(登録商標)”(タイプ名:8411、8452、8100など)を挙げることができる。   When the polypropylene composition forming the porous polyolefin film of the present invention is biaxially stretched to form a through-hole, from the viewpoint of improving the air permeability due to the improvement of void formation efficiency at the time of stretching and the pore diameter being enlarged. It is preferable to contain an ethylene / α-olefin copolymer (B) as the second component. Here, examples of the ethylene / α-olefin copolymer (B) include linear low-density polyethylene and ultra-low-density polyethylene. Among them, octene-1 is copolymerized, and the melting point is 60 to 90 ° C. Copolymer polyethylene resin (copolymer PE resin) can be preferably used. Examples of the copolymer polyethylene include commercially available resins such as “Engage (registered trademark)” (type names: 8411, 8452, 8100, etc.) manufactured by Dow Chemical.

本発明の多孔性ポリオレフィンフィルムを形成するポリプロピレン組成物は、ポリプロピレン組成物全体を100質量%としたときに、上記エチレン・α−オレフィン系共重合体(B)を10質量%以下含有することが透気向上の観点から好ましい。多孔性ポリオレフィンフィルムの機械強度の観点からは1〜7質量%であればより好ましく、さらに好ましくは1〜4質量%である。   The polypropylene composition forming the porous polyolefin film of the present invention may contain 10% by mass or less of the ethylene / α-olefin copolymer (B) when the entire polypropylene composition is 100% by mass. It is preferable from the viewpoint of improving air permeability. From the viewpoint of the mechanical strength of the porous polyolefin film, it is more preferably 1 to 7% by mass, and further preferably 1 to 4% by mass.

本発明の多孔性ポリオレフィンフィルムは、多孔性ポリオレフィンフィルムを形成するポリプロピレン組成物として、上記したポリプロピレン樹脂(A)とエチレン・α−オレフィン系共重合体(B)と、その分散剤(C)とを配合し、さらに後述する製膜条件を採用すると、孔構造が均一化し横延伸でのフィブリル開裂が均一化され、延伸による粗大な空孔が低減することで105℃における長手方向のヤング率f(105)の長手方向の強度が向上でき、さらに高温と室温の機械特性の差を小さくできるため好ましい。また、本発明の多孔性ポリオレフィンフィルムは、均一な構造を有し、23℃における長手方向のヤング率f(23)と105℃における長手方向のヤング率f(105)の差を所定値より小さくできるため、事前乾燥工程で水分を除去するために100℃付近に加熱したとき、乾燥オーブン内でのフィルムの変形や、シワの発生を防止することができる。The porous polyolefin film of the present invention includes, as a polypropylene composition forming the porous polyolefin film, the above-described polypropylene resin (A), an ethylene / α-olefin copolymer (B), and a dispersant (C) thereof. When the film forming conditions described below are further employed, the pore structure becomes uniform, the fibril cleavage in the transverse stretching becomes uniform, and the coarse pores due to stretching decrease, thereby reducing the Young's modulus f in the longitudinal direction at 105 ° C. (105) is preferred because the strength in the longitudinal direction can be improved and the difference in mechanical properties between high temperature and room temperature can be reduced. The porous polyolefin film of the present invention has a uniform structure, and the difference between the Young's modulus f (23) in the longitudinal direction at 23 ° C. and the Young's modulus f (105) in the longitudinal direction at 105 ° C. is smaller than a predetermined value. Therefore, when heated near 100 ° C. in order to remove moisture in the preliminary drying step, deformation of the film in the drying oven and generation of wrinkles can be prevented.

本発明で用いる分散剤(C)としては、エチレン・α−オレフィン系共重合体(B)のポリプロピレン樹脂(A)への分散性を高めることができるものであれば良い。ところで、国際公開第2007/046225号公報には、ポリプロピレン樹脂に非相溶なエチレン・α−オレフィン系共重合体を、所定温度での溶融、相溶化剤の添加、または押出時の高い剪断力等によりポリプロピレン樹脂中に分散させることにより、微細な孔を形成して空孔率および透気率を向上できる旨が記載されている。しかしながら、相溶化剤については具体的な化合物等について何ら記載されておらず、ポリプロピレン樹脂(A)とエチレン・α−オレフィン系共重合体(B)とを含むポリプロピレン組成物を、所定温度で溶融し、高い剪断力を加えて押出すること等のみでは、エチレン・α−オレフィン系共重合体(B)を所定の分散径に分散させ、ポリプロピレンフィルムの孔構造を高度に均一化することは困難である。本発明者らは、ポリプロピレン樹脂(A)との相溶性が高いセグメント(例えばポリプロピレンセグメント、エチレンブチレン共重合セグメント)とエチレン・α−オレフィン系共重合体(B)との相溶性が高いセグメント(ポリエチレンセグメントなど)とを各々有するブロック共重合体を分散剤(C)としてポリプロピレン組成物に配合することにより、ポリプロピレン樹脂(A)中に所定範囲の分散径を有するエチレン・α−オレフィン系共重合体(B)が分散したキャストシートが得られ、該キャストシートを延伸することにより、多孔性ポリオレフィンフィルムの孔構造が均一化できることを見出した。分散剤(C)としては、市販されている樹脂、例えばJSR社製オレフィン結晶・エチレンブチレン・オレフィン結晶ブロックポリマー(以下、CEBCと表記する)“DYNARON(ダイナロン)(登録商標)”(タイプ名:6100P、6200Pなど)や、ダウ・ケミカル社製オレフィンブロック共重合体“INFUSE OBC(登録商標)”を挙げることができる。分散剤(C)の添加量としてはエチレン・α−オレフィン系共重合体(B)100質量部に対して1〜50質量部であることが好ましく、5〜33質量部であることがより好ましい。また、エチレン・α−オレフィン系共重合体(B)のポリプロピレン樹脂(A)への分散性向上の観点および孔形成の均一性向上の観点から、分散剤(C)の融点は、エチレン・α−オレフィン系共重合体(B)の融点より、0〜60℃高いことが好ましく、15〜30℃高いことがより好ましい。   The dispersant (C) used in the present invention is not particularly limited as long as the dispersibility of the ethylene / α-olefin copolymer (B) in the polypropylene resin (A) can be enhanced. By the way, International Publication No. 2007/046225 discloses an ethylene / α-olefin copolymer incompatible with polypropylene resin, melting at a predetermined temperature, addition of a compatibilizing agent, or high shearing force during extrusion. It is described that fine pores can be formed and the porosity and air permeability can be improved by dispersing them in a polypropylene resin, etc. However, no specific compound or the like is described for the compatibilizer, and a polypropylene composition containing a polypropylene resin (A) and an ethylene / α-olefin copolymer (B) is melted at a predetermined temperature. However, it is difficult to disperse the ethylene / α-olefin copolymer (B) to a predetermined dispersion diameter and to make the pore structure of the polypropylene film highly uniform only by extruding by applying a high shear force. It is. The present inventors have a highly compatible segment (for example, a polypropylene segment, an ethylene butylene copolymer segment) and a highly compatible segment (B) with the polypropylene resin (A) ( An ethylene / α-olefin copolymer having a dispersion diameter in a predetermined range in the polypropylene resin (A) by blending a block copolymer having a polyethylene segment, etc.) into the polypropylene composition as a dispersant (C). It was found that a cast sheet in which the coalesced (B) was dispersed was obtained, and the pore structure of the porous polyolefin film could be made uniform by stretching the cast sheet. Examples of the dispersant (C) include commercially available resins such as olefin crystal, ethylene butylene, olefin crystal block polymer (hereinafter referred to as CEBC) “DYNARON (registered trademark)” manufactured by JSR (type name: 6100P, 6200P, etc.) and olefin block copolymer “INFUSE OBC (registered trademark)” manufactured by Dow Chemical Company. The addition amount of the dispersant (C) is preferably 1 to 50 parts by mass, more preferably 5 to 33 parts by mass with respect to 100 parts by mass of the ethylene / α-olefin copolymer (B). . From the viewpoint of improving the dispersibility of the ethylene / α-olefin copolymer (B) in the polypropylene resin (A) and improving the uniformity of pore formation, the melting point of the dispersant (C) is ethylene / α. -It is preferable that it is 0-60 degreeC higher than melting | fusing point of an olefin type copolymer (B), and it is more preferable that it is 15-30 degreeC higher.

本発明の多孔性ポリオレフィンフィルムを形成するポリプロピレン組成物には、本発明の効果を損なわない範囲において、酸化防止剤、熱安定剤、帯電防止剤や無機あるいは有機粒子からなる滑剤、さらにはブロッキング防止剤や充填剤、非相溶性ポリマーなどの各種添加剤を含有させてもよい。特に、ポリプロピレン樹脂(A)の熱履歴による酸化劣化を抑制する目的で、酸化防止剤を添加することが好ましい。酸化防止剤添加量は、ポリプロピレン組成物100質量部に対して2質量部以下とすることが好ましく、より好ましくは1質量部以下、更に好ましくは0.5質量部以下である。   The polypropylene composition for forming the porous polyolefin film of the present invention includes an antioxidant, a heat stabilizer, an antistatic agent, a lubricant composed of inorganic or organic particles, and further an anti-blocking agent, as long as the effects of the present invention are not impaired. Various additives such as an agent, a filler and an incompatible polymer may be contained. In particular, it is preferable to add an antioxidant for the purpose of suppressing oxidative deterioration due to the thermal history of the polypropylene resin (A). The addition amount of the antioxidant is preferably 2 parts by mass or less, more preferably 1 part by mass or less, still more preferably 0.5 parts by mass or less with respect to 100 parts by mass of the polypropylene composition.

本発明の多孔性ポリオレフィンフィルム中に含有されるエチレン成分の量は、多孔性ポリオレフィンフィルムを100質量部としたとき、10質量部未満であることが好ましい。エチレン成分の量が10質量部以上であると、低融点成分が多く含まれるため耐熱性が低下し、105℃における長手方向のヤング率f(105)(MPa)が低下して、多孔性ポリオレフィンフィルムが乾燥オーブンに導入される際、シワが発生したり平面性が低下する場合がある。エチレン成分の量は5質量部未満であることがより好ましく、3質量部未満であることがさらに好ましい。The amount of the ethylene component contained in the porous polyolefin film of the present invention is preferably less than 10 parts by mass when the porous polyolefin film is 100 parts by mass. When the amount of the ethylene component is 10 parts by mass or more, the heat resistance is lowered because many low-melting-point components are contained, and the Young's modulus f (105) (MPa) in the longitudinal direction at 105 ° C. is lowered. When the film is introduced into the drying oven, wrinkles may occur or flatness may be reduced. The amount of the ethylene component is more preferably less than 5 parts by mass, and still more preferably less than 3 parts by mass.

本発明の多孔性ポリオレフィンフィルムを形成するポリプロピレン組成物には、本発明の効果を損なわない範囲において、無機あるいは有機粒子からなる孔形成助剤を含有させてもよい。含有量はポリプロピレン組成物100質量部に対して5質量部以下とすることが好ましく、より好ましくは2質量部以下、更に好ましくは1質量部以下である。5質量部を超えると、セパレータとして使用したとき、脱落した粒子が電池性能を低下させたり、原料コストが高くなり、生産性が低下する場合がある。   The polypropylene composition for forming the porous polyolefin film of the present invention may contain a pore-forming aid composed of inorganic or organic particles as long as the effects of the present invention are not impaired. The content is preferably 5 parts by mass or less with respect to 100 parts by mass of the polypropylene composition, more preferably 2 parts by mass or less, and still more preferably 1 part by mass or less. When the amount exceeds 5 parts by mass, when used as a separator, the dropped particles may deteriorate battery performance, increase raw material costs, and decrease productivity.

本発明の多孔性ポリオレフィンフィルムは、10〜200秒/100mlであることが好ましい。透気抵抗が10秒/100ml未満であると、フィルムの強度が不十分となり、乾燥オーブン内でフィルムが変形し、シワが発生したり平面性が低下する場合がある。200秒/100mlを超えると、透過性が低下し、特にEDLC用セパレータとして用いたとき、必要な出力特性が得られない場合がある。透気抵抗は、50〜170秒/100mlであることがより好ましく、70〜140秒/100mlであることがさらに好ましい。透気抵抗は、後述するβ晶核剤、エチレン・α−オレフィン系共重合体(B)および分散剤(C)の添加量、キャストドラムの温度、長手方向の延伸倍率と温度、横延伸速度、熱処理工程での温度と時間、ならびにリラックスゾーンでの弛緩率を後述する範囲内とすることにより制御可能である。   The porous polyolefin film of the present invention is preferably 10 to 200 seconds / 100 ml. If the air permeation resistance is less than 10 seconds / 100 ml, the strength of the film becomes insufficient, the film is deformed in the drying oven, wrinkles may occur, and flatness may be lowered. When it exceeds 200 seconds / 100 ml, the permeability is lowered, and particularly when used as a separator for EDLC, the required output characteristics may not be obtained. The air resistance is more preferably 50 to 170 seconds / 100 ml, and further preferably 70 to 140 seconds / 100 ml. The air permeation resistance is the addition amount of a β crystal nucleating agent, an ethylene / α-olefin copolymer (B) and a dispersing agent (C) described later, the temperature of the cast drum, the stretching ratio and temperature in the longitudinal direction, and the transverse stretching speed. The temperature and time in the heat treatment step and the relaxation rate in the relaxation zone can be controlled within the ranges described later.

また、本発明の多孔性ポリオレフィンフィルムは、厚み当たりの透気抵抗が20秒/100ml/μm以下であることが好ましい。20秒/100ml/μmを超えると、透過性が低下し、特にEDLC用セパレータとして用いたとき、セパレータを薄膜化しても必要な出力特性が得られない場合がある。   The porous polyolefin film of the present invention preferably has an air resistance per thickness of 20 seconds / 100 ml / μm or less. If it exceeds 20 seconds / 100 ml / μm, the permeability decreases, and particularly when used as a separator for EDLC, the required output characteristics may not be obtained even if the separator is thinned.

本発明の多孔性ポリオレフィンフィルムは、フィルム総厚みが20μm以下であることが好ましい。20μmを超えると透過性が低下し、特にEDLC用セパレータとして用いたとき、必要な出力特性が得られなかったり、蓄電デバイス内に占める多孔性ポリオレフィンフィルムの体積割合が高くなりすぎてしまい、高いエネルギー密度を得ることができなくなる。フィルム強度と出力特性の両立の観点から、フィルム総厚みは3〜18μmであればより好ましく、5〜15μmであればなお好ましい。   The porous polyolefin film of the present invention preferably has a total film thickness of 20 μm or less. When the thickness exceeds 20 μm, the permeability decreases. Particularly when used as a separator for EDLC, the required output characteristics cannot be obtained, or the volume ratio of the porous polyolefin film in the electricity storage device becomes too high, resulting in high energy. The density cannot be obtained. From the viewpoint of achieving both film strength and output characteristics, the total film thickness is more preferably 3 to 18 μm, and even more preferably 5 to 15 μm.

本発明の多孔性ポリオレフィンフィルムは105℃における幅方向の熱収縮率が5%以下であることが好ましい。幅方向の熱収縮率が5%を超えると、乾燥オーブン内でフィルム幅の変化が大きくなり、シワが発生したり平面性が低下する場合がある。幅方向の熱収縮率は3%以下であることがより好ましく、1%以下であることがさらに好ましい。熱収縮率は小さいほど好ましいが、実質的には0.1%程度が下限である。熱収縮率は、β晶核剤、エチレン・α−オレフィン系共重合体(B)および分散剤(C)の添加量、キャストドラムの温度、長手方向の延伸倍率と温度、熱処理工程での温度と時間、ならびにリラックスゾーンでの弛緩率を後述する範囲内とすることにより制御可能である。   The porous polyolefin film of the present invention preferably has a thermal shrinkage in the width direction at 105 ° C. of 5% or less. When the thermal shrinkage in the width direction exceeds 5%, the change in the film width becomes large in the drying oven, and wrinkles may occur or flatness may be deteriorated. The thermal contraction rate in the width direction is more preferably 3% or less, and further preferably 1% or less. The smaller the heat shrinkage rate, the better. However, the lower limit is substantially about 0.1%. The heat shrinkage ratio is the amount of β-crystal nucleating agent, ethylene / α-olefin copolymer (B) and dispersant (C) added, the temperature of the cast drum, the stretching ratio and temperature in the longitudinal direction, and the temperature in the heat treatment step. And the time and the relaxation rate in the relaxation zone can be controlled within the range described later.

本発明の多孔性ポリオレフィンフィルムは空孔率が60〜80%であることが好ましい。空孔率が60%未満では、透過性が低下し、特にEDLC用セパレータとして用いたとき、必要な出力特性が得られない場合がある。一方、空孔率が80%を超えると、多孔性フィルムの機械強度が低くなりすぎてしまい、乾燥オーブン内でフィルムが変形し、シワが発生したり平面性が低下する場合がある。空孔率は62〜75%であればより好ましく、65〜70%であれば特に好ましい。空孔率は、β晶核剤、エチレン・α−オレフィン系共重合体(B)および分散剤(C)の添加量、キャストドラムの温度、長手方向の延伸倍率と温度、熱処理工程での温度と時間、ならびにリラックスゾーンでの弛緩率を後述する範囲内とすることにより制御可能である。   The porous polyolefin film of the present invention preferably has a porosity of 60 to 80%. When the porosity is less than 60%, the permeability decreases, and particularly when used as an EDLC separator, the required output characteristics may not be obtained. On the other hand, when the porosity exceeds 80%, the mechanical strength of the porous film becomes too low, the film is deformed in the drying oven, and wrinkles may occur or the flatness may be lowered. The porosity is more preferably 62 to 75%, and particularly preferably 65 to 70%. The porosity is the amount of β-crystal nucleating agent, ethylene / α-olefin copolymer (B) and dispersant (C) added, the temperature of the cast drum, the stretching ratio and temperature in the longitudinal direction, the temperature in the heat treatment step. And the time and the relaxation rate in the relaxation zone can be controlled within the range described later.

本発明の多孔性ポリオレフィンフィルムは、本発明の効果を損ねない範囲で、様々な効果を付与する目的で積層構成をとっても構わない。積層数としては、2層積層でも3層積層でも、また、それ以上の積層数でもいずれでも構わない。積層の方法としては、共押出によるフィードブロック方式やマルチマニホールド方式でも、ラミネートによる多孔性フィルム同士を貼り合わせる方法でもいずれでも構わない。積層構成としては、例えば、低温でのシャットダウン性を付与する目的でポリエチレンを含む層を積層したり、強度や耐熱性を付与する目的で粒子を含む層を積層することができる。積層構成とする場合には、表層を構成する樹脂にはポリエチレン系樹脂、エチレン共重合樹脂を含まないことが好ましい。表層にエチレン成分が存在すると電池用セパレータとして使用したとき耐酸化性が低下する場合がある。   The porous polyolefin film of the present invention may have a laminated structure for the purpose of imparting various effects as long as the effects of the present invention are not impaired. The number of stacked layers may be a two-layer stack, a three-layer stack, or a larger number of stacks. As a lamination method, either a feed block method by co-extrusion or a multi-manifold method, or a method of laminating porous films by lamination may be used. As a laminated structure, for example, a layer containing polyethylene can be laminated for the purpose of imparting shutdown properties at low temperatures, or a layer containing particles can be laminated for the purpose of imparting strength and heat resistance. In the case of a laminated structure, it is preferable that the resin constituting the surface layer does not contain a polyethylene resin or an ethylene copolymer resin. When an ethylene component is present in the surface layer, the oxidation resistance may decrease when used as a battery separator.

以下に本発明の多孔性ポリオレフィンフィルムの製造方法を具体的な一例をもとに説明する。なお、本発明のフィルムの製造方法はこれに限定されるものではない。   Below, the manufacturing method of the porous polyolefin film of this invention is demonstrated based on a specific example. In addition, the manufacturing method of the film of this invention is not limited to this.

ポリプロピレン樹脂(A)として、MFR8g/10分の市販のホモポリプロピレン樹脂99.5質量部、β晶核剤としてN,N’−ジシクロヘキシル−2,6−ナフタレンジカルボキシアミド0.3質量部、酸化防止剤0.2質量部がこの比率で混合されるように計量ホッパーから二軸押出機に原料供給して溶融混練を行い、ストランド状にダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットしてポリプロピレン原料(a)を準備する。この際、溶融温度は270〜300℃とすることが好ましい。また同様に、ポリプロピレン樹脂(A)として上記のホモポリプロピレン樹脂64.8質量部、エチレン・α−オレフィン系共重合体(B)として市販のMFR18g/10分の超低密度ポリエチレン樹脂エチレン・オクテン−1共重合体を30質量部、分散剤(C)として市販のCEBC5質量部、酸化防止剤0.2質量部がこの比率で混合されるように計量ホッパーから二軸押出機に原料供給し、240℃で溶融混練を行い、ストランド状にダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットしてポリプロピレン原料(b)を準備する。   As the polypropylene resin (A), 99.5 parts by mass of a commercially available homopolypropylene resin with an MFR of 8 g / 10 min, as the β crystal nucleating agent, 0.3 parts by mass of N, N′-dicyclohexyl-2,6-naphthalenedicarboxyamide, oxidation The raw material is supplied from the weighing hopper to the twin screw extruder so that 0.2 parts by mass of the inhibitor is mixed at this ratio, melted and kneaded, discharged from the die in a strand shape, and cooled and solidified in a 25 ° C. water tank. Then, it is cut into chips to prepare a polypropylene raw material (a). At this time, the melting temperature is preferably 270 to 300 ° C. Similarly, 64.8 parts by mass of the above-described homopolypropylene resin as the polypropylene resin (A) and a commercially available MFR 18 g / 10 min ultra low density polyethylene resin ethylene octene as the ethylene / α-olefin copolymer (B) 30 parts by mass of 1 copolymer, 5 parts by mass of commercially available CEBC as a dispersant (C), and 0.2 parts by mass of an antioxidant are fed to the twin screw extruder from the weighing hopper, Melt-kneading is performed at 240 ° C., discharged from a die in a strand shape, cooled and solidified in a water bath at 25 ° C., and cut into a chip shape to prepare a polypropylene raw material (b).

次に、ポリプロピレン原料(a)90質量部、ポリプロピレン原料(b)10質量部をドライブレンドにて混合して単軸の溶融押出機に供給し、200〜230℃にて溶融押出を行う。次に、途中に設置したフィルターにて、異物や変性ポリマーなどを除去した後、Tダイよりキャストドラム上に吐出し、未延伸のキャストシートを得る。本発明では、均一な孔構造を得るために、キャストシート中のエチレン・α−オレフィン系共重合体(B)のドメイン形状や分散状態を制御することが重要であり、上述した分散剤(C)を添加することに加え、押出の際、ダイでのせん断速度を100〜1000sec−1とすることが好ましい。より好ましくは150〜800sec−1であり、さらに好ましくは200〜600sec−1である。ダイでのせん断速度は(3)式で表される。ダイでのせん断速度が100sec−1未満であると、せん断が十分にかからずドメイン形状の制御が困難となる場合がある。また、ダイでのせん断速度が1000sec−1を超えると、必要以上にドメインにせん断がかかってしまいドメイン形状の制御が困難となる場合がある。
せん断速度(sec−1)=6Q/ρWt ・・・(3)
Q:流量(kg/sec)
ρ:比重(kg/cm
W:溝幅(cm)
t:溝間隙(cm)
Next, 90 parts by mass of the polypropylene raw material (a) and 10 parts by mass of the polypropylene raw material (b) are mixed by dry blending and supplied to a uniaxial melt extruder, and melt extrusion is performed at 200 to 230 ° C. Next, after removing foreign substances, modified polymers, and the like with a filter installed in the middle, they are discharged from a T-die onto a cast drum to obtain an unstretched cast sheet. In the present invention, in order to obtain a uniform pore structure, it is important to control the domain shape and dispersion state of the ethylene / α-olefin copolymer (B) in the cast sheet. In addition, it is preferable to set the shear rate at the die to 100 to 1000 sec −1 during the extrusion. More preferably, it is 150-800 sec < -1 >, More preferably, it is 200-600 sec < -1 >. The shear rate at the die is expressed by equation (3). When the shear rate at the die is less than 100 sec −1 , shearing is not sufficiently performed and it may be difficult to control the domain shape. Further, when the shear rate at the die exceeds 1000 sec −1 , the domain is sheared more than necessary, and it may be difficult to control the domain shape.
Shear rate (sec −1 ) = 6Q / ρWt 2 (3)
Q: Flow rate (kg / sec)
ρ: specific gravity (kg / cm 3 )
W: Groove width (cm)
t: Groove gap (cm)

上記のようにダイのせん断速度を好ましい範囲内とすることでキャストシート中のエチレン・α−オレフィン系共重合体(B)を主体とするドメイン(エチレン―α―オレフィン系共重合体(B)を主体とし、分散剤(C)が混合されてなる)を微細かつ均一に分散させることが可能である。ここで、TD/ZD断面のドメイン径は5〜100nmであることが好ましく、より好ましくは10〜90nm、さらに好ましくは、15〜80nmである。ただし、TD/ZD断面とは、フィルムを、厚み方向に平行な直線と幅方向に平行な直線を通る平面で切断したときの断面を示す。ドメイン径が5nm未満の場合、延伸時のフィブリルの開裂を促す効果が小さく、透気性が低下する場合がある。ドメイン径が100nmを超えると孔のサイズが大きくなり機械強度に劣る場合がある。通常、ダイのせん断のみによりドメイン径を制御しようとすると、せん断のかかりやすい厚み方向の表層付近はドメイン径が小さくなるが、厚み方向の中央付近はドメイン径が大きくなってしまい、均一な孔構造を得るのが困難であったが、本発明においては、上述した分散剤(C)を用い、上記範囲で製膜することにより、横延伸でのフィブリル開裂が均一化された多孔性ポリオレフィンフィルムが得られる。   By making the shear rate of the die within a preferable range as described above, the domain (ethylene-α-olefin copolymer (B)) mainly composed of the ethylene / α-olefin copolymer (B) in the cast sheet. Can be dispersed finely and uniformly. Here, the domain diameter of the TD / ZD cross section is preferably 5 to 100 nm, more preferably 10 to 90 nm, and still more preferably 15 to 80 nm. However, the TD / ZD cross section indicates a cross section when the film is cut along a plane passing through a straight line parallel to the thickness direction and a straight line parallel to the width direction. When the domain diameter is less than 5 nm, the effect of promoting fibril cleavage at the time of stretching is small, and air permeability may be lowered. If the domain diameter exceeds 100 nm, the size of the pores may increase and the mechanical strength may be inferior. Normally, when trying to control the domain diameter only by die shearing, the domain diameter becomes smaller near the surface layer in the thickness direction where shearing is easily applied, but the domain diameter becomes larger near the center in the thickness direction, resulting in a uniform pore structure. In the present invention, by using the dispersant (C) described above, a porous polyolefin film in which fibril cleavage in lateral stretching is uniformed by forming a film in the above range is obtained. can get.

ダイのせん断速度が上述した範囲となるようにポリマーの流量、Tダイの溝幅、溝間隙を適宜調整する。ポリマーの流量は押出安定性の観点から40〜500kg/hrの範囲が好ましい。Tダイの溝幅は生産性の観点から200〜1000mmの範囲が好ましい。Tダイの溝間隙は押出系内の内圧やキャスト精度の観点から0.8〜2mmの範囲が好ましい。また、キャストドラムは、表面温度が105〜130℃であることが、キャストシートのβ晶分率を高く制御する観点から好ましい。この際、特にシートの端部の成形が、後の延伸性に影響するので、端部にスポットエアーを吹き付けてドラムに密着させることが好ましい。また、シート全体のドラム上への密着状態から、必要に応じて全面にエアナイフを用いて空気を吹き付けてもよい。   The flow rate of the polymer, the groove width of the T die, and the groove gap are appropriately adjusted so that the shear rate of the die is in the above-described range. The flow rate of the polymer is preferably in the range of 40 to 500 kg / hr from the viewpoint of extrusion stability. The groove width of the T die is preferably in the range of 200 to 1000 mm from the viewpoint of productivity. The groove width of the T die is preferably in the range of 0.8 to 2 mm from the viewpoint of internal pressure in the extrusion system and casting accuracy. The cast drum preferably has a surface temperature of 105 to 130 ° C from the viewpoint of controlling the β crystal fraction of the cast sheet to be high. At this time, particularly, the forming of the end portion of the sheet affects the subsequent stretchability, and therefore it is preferable that the end portion is sprayed with spot air to be in close contact with the drum. Further, air may be blown over the entire surface using an air knife as necessary from the state in which the entire sheet is in close contact with the drum.

次に、得られたキャストシートを二軸配向させ、フィルム中に空孔を形成する。二軸配向させる方法としては、フィルム長手方向に延伸後幅方向に延伸、あるいは幅方向に延伸後長手方向に延伸する逐次二軸延伸法、またはフィルムの長手方向と幅方向をほぼ同時に延伸していく同時二軸延伸法などを用いることができるが、透気性とフィルム機械特性のバランスの取れたフィルムを得やすいという点で逐次二軸延伸法を採用することが好ましく、特に、長手方向に延伸後、幅方向に延伸することが好ましい。   Next, the obtained cast sheet is biaxially oriented to form pores in the film. As a biaxial orientation method, the film is stretched in the longitudinal direction of the film and then stretched in the width direction, or the sequential biaxial stretching method in which the film is stretched in the width direction and then stretched in the longitudinal direction. The simultaneous biaxial stretching method can be used, but it is preferable to adopt the sequential biaxial stretching method from the viewpoint that it is easy to obtain a film having a good balance between air permeability and film mechanical properties, and in particular, stretching in the longitudinal direction. Then, it is preferable to extend in the width direction.

具体的な延伸条件を、フィルム長手方向に延伸後幅方向に延伸する逐次二軸延伸法を例として説明する。キャストシートを長手方向に延伸する温度制御の方法は、温度制御された回転ロールを用いる方法、熱風オーブンを使用する方法などを採用することができる。長手方向の延伸温度としては、90〜140℃であることが好ましい。90℃未満では、フィルムが破断する場合がある。140℃を超えると、孔構造が不均一になったり、透気性が低下する場合がある。長手方向の延伸温度が高い方が長手方向のヤング率が高い傾向があり、この観点から、より好ましくは110〜135℃、特に好ましくは120〜130℃である。延伸倍率としては、3〜6倍であることが好ましい。延伸倍率を高くするほど長手方向のヤング率は向上するが、6倍を超えて延伸すると、次の横延伸工程でフィルム破れが起きやすくなる場合がある。延伸倍率はより好ましくは4.5〜6倍である。   Specific stretching conditions will be described by taking a sequential biaxial stretching method of stretching in the film longitudinal direction and then stretching in the width direction as an example. As a temperature control method for stretching the cast sheet in the longitudinal direction, a method using a temperature-controlled rotating roll, a method using a hot air oven, or the like can be adopted. The stretching temperature in the longitudinal direction is preferably 90 to 140 ° C. If it is less than 90 degreeC, a film may fracture | rupture. If it exceeds 140 ° C., the pore structure may become non-uniform or the air permeability may be reduced. A higher longitudinal stretching temperature tends to have a higher Young's modulus in the longitudinal direction. From this viewpoint, it is more preferably 110 to 135 ° C, and particularly preferably 120 to 130 ° C. As a draw ratio, it is preferable that it is 3-6 times. As the draw ratio is increased, the Young's modulus in the longitudinal direction is improved. However, if the draw ratio is more than 6 times, the film may be easily broken in the next transverse drawing step. The draw ratio is more preferably 4.5 to 6 times.

続いて、幅方向に延伸するために、縦延伸後のフィルムの端部をクリップで把持し、横延伸機で横延伸を行うが、クリップで縦延伸後のフィルムを把持する際に長手方向に張力をかけ、長手方向にフィルムを緊張させたまま横延伸を開始すると、得られる多孔性ポリオレフィンフィルムの105℃における長手方向のヤング率f(105)を向上することができるため好ましい。具体的な手法としては、縦延伸機の最終ロールの速度と横延伸機のライン速度に差(ドロー)を付け製膜する方法や、同時2軸延伸機を用い、クリップで把持した後、長手方向に微延伸して張力をかけたまま横延伸する方法などが挙げられる。ここで、ドローは103〜120%であることが好ましく、105〜110%であることがより好ましい。ドローが103%より低いと105℃における長手方向のヤング率f(105)が低下し、室温のヤング率f(23)との差が大きくなり、本発明の多孔性フィルムをLIBやLIC、ならびにEDLCのセパレータとして用いる場合、組立の事前乾燥工程でフィルムが変形し、シワが発生したり平面性が低下することがある。他方ドローが120%を超えると、フィルム製膜時に縦延伸機と横延伸機との区間でフィルムが破断する場合がある。Subsequently, in order to stretch in the width direction, the end of the film after longitudinal stretching is gripped with a clip, and transverse stretching is performed with a lateral stretching machine, but in the longitudinal direction when gripping the film after longitudinal stretching with a clip It is preferable to start stretching in the longitudinal direction while applying tension and stretching the film in the longitudinal direction because the Young's modulus f (105) in the longitudinal direction at 105 ° C. of the resulting porous polyolefin film can be improved. Specific methods include forming a film by adding a difference (draw) between the final roll speed of the longitudinal stretching machine and the line speed of the transverse stretching machine, or using a simultaneous biaxial stretching machine, For example, a method of slightly stretching in the direction and performing lateral stretching while applying tension can be used. Here, the draw is preferably 103 to 120%, more preferably 105 to 110%. If the draw is lower than 103%, the Young's modulus f (105) in the longitudinal direction at 105 ° C. decreases, and the difference from the Young's modulus f (23) at room temperature increases, so that the porous film of the present invention can be used as LIB, LIC, and When used as an EDLC separator, the film may be deformed in the pre-drying step of assembly, and wrinkles may occur or flatness may be reduced. On the other hand, if the draw exceeds 120%, the film may break in the section between the longitudinal stretching machine and the transverse stretching machine during film formation.

長手方向の張力を保ったまま横延伸を行う場合の横延伸温度は、好ましくは130〜155℃である。130℃未満ではフィルムが破断する場合があり、155℃を超えると透気性が低下する場合がある。より好ましくは145〜155℃である。幅方向の延伸倍率は2〜12倍であることが好ましい。2倍未満であると、透気性が低下したり、幅方向の平面性が低下する場合がある。12倍を超えるとフィルムが破断する場合がある。幅方向の延伸倍率は高すぎると長手方向のヤング率が低下する場合があるため、より好ましくは3〜8倍、更に好ましくは4〜6倍である。なお、このときの横延伸速度としては、500〜6,000%/分で行うことが好ましく、1,000〜5,000%/分であればより好ましい。面積倍率(縦延伸倍率×横延伸倍率)としては、好ましくは30〜60倍である。   The transverse stretching temperature in the case of conducting transverse stretching while maintaining the tension in the longitudinal direction is preferably 130 to 155 ° C. If it is less than 130 degreeC, a film may fracture | rupture, and if it exceeds 155 degreeC, air permeability may fall. More preferably, it is 145-155 degreeC. The draw ratio in the width direction is preferably 2 to 12 times. If it is less than 2 times, the air permeability may decrease or the planarity in the width direction may decrease. If it exceeds 12 times, the film may break. When the draw ratio in the width direction is too high, the Young's modulus in the longitudinal direction may be lowered, and therefore it is preferably 3 to 8 times, more preferably 4 to 6 times. The transverse stretching speed at this time is preferably 500 to 6,000% / min, more preferably 1,000 to 5,000% / min. The area magnification (longitudinal stretching magnification × lateral stretching magnification) is preferably 30 to 60 times.

横延伸に続いて、横延伸後の幅のまま熱処理工程を行う。ここで熱処理工程は、横延伸後の幅のまま熱処理を行う熱固定ゾーン(以後、HS1ゾーンと記す)、横延伸後の幅方向にクリップ幅を狭めてフィルムを幅方向へ弛緩させながら熱処理を行うリラックスゾーン(以後、Rxゾーンと記す)、リラックス後の幅のまま熱処理を行う熱固定ゾーン(以後、HS2ゾーンと記す)の3ゾーンに分かれていることが、透気性と機械物性の両立、さらには低熱収の観点から好ましい。   Subsequent to the transverse stretching, a heat treatment step is performed with the width after the transverse stretching. Here, the heat treatment step is a heat setting zone (hereinafter referred to as HS1 zone) in which heat treatment is performed with the width after transverse stretching, and the heat treatment is performed while the film is relaxed in the width direction by narrowing the clip width in the width direction after transverse stretching. It is divided into three zones: a relaxation zone (hereinafter referred to as Rx zone) to be performed, and a heat setting zone (hereinafter referred to as HS2 zone) in which heat treatment is performed with the width after relaxation, which is compatible with air permeability and mechanical properties. Furthermore, it is preferable from the viewpoint of low heat yield.

HS1ゾーンの温度は、140〜165℃であることが好ましい。140℃未満であると、幅方向の熱収縮率が大きくなる場合がある。165℃を超えると、フィルムの配向が緩和しすぎ、続くRxゾーンにおいて弛緩率を高くできず、透気性と機械強度との両立が困難であったり、高温により孔周辺のポリマーが溶けて透気抵抗が大きくなる場合がある。透気性と機械強度の両立の観点から150〜160℃であればより好ましい。   The temperature of the HS1 zone is preferably 140 to 165 ° C. If it is lower than 140 ° C., the thermal shrinkage in the width direction may increase. If the temperature exceeds 165 ° C, the orientation of the film is too relaxed, the relaxation rate cannot be increased in the subsequent Rx zone, and it is difficult to achieve both air permeability and mechanical strength. Resistance may increase. If it is 150-160 degreeC from a viewpoint of coexistence of air permeability and mechanical strength, it is more preferable.

HS1ゾーンでの熱処理時間は、幅方向の熱収縮率と生産性の両立の観点から0.1秒以上10秒以下であることが好ましい。   The heat treatment time in the HS1 zone is preferably 0.1 seconds or longer and 10 seconds or shorter from the viewpoint of achieving both a heat shrinkage ratio in the width direction and productivity.

本発明におけるRxゾーンでの弛緩率は13〜35%であることが好ましい。弛緩率が13%未満であると幅方向の熱収縮率が大きくなる場合がある。35%を超えると透気性が低下したり、幅方向の厚み斑や平面性が低下する場合がある。透気性向上と熱収縮率低減の観点から、15〜25%であるとより好ましい。   In the present invention, the relaxation rate in the Rx zone is preferably 13 to 35%. If the relaxation rate is less than 13%, the thermal contraction rate in the width direction may increase. If it exceeds 35%, the air permeability may decrease, or the thickness unevenness or flatness in the width direction may decrease. From the viewpoint of improving air permeability and reducing heat shrinkage, it is more preferably 15 to 25%.

Rxゾーンの温度は、155〜170℃であることが好ましい。Rxゾーンの温度が155℃未満であると、弛緩の為の収縮応力が低くなり、上述した高い弛緩率を達成できなかったり、幅方向の熱収縮率が大きくなる場合がある。170℃を超えると、高温により孔周辺のポリマーが溶けて透気性が低下する場合がある。透気性向上と熱収縮率低減の観点から、160〜165℃であるとより好ましい。   The temperature of the Rx zone is preferably 155 to 170 ° C. When the temperature of the Rx zone is lower than 155 ° C., the shrinkage stress for relaxation is lowered, and the above-described high relaxation rate may not be achieved or the thermal shrinkage rate in the width direction may be increased. If the temperature exceeds 170 ° C., the polymer around the pores may melt at a high temperature and the air permeability may be lowered. From the viewpoint of improving air permeability and reducing the heat shrinkage rate, it is more preferably 160 to 165 ° C.

Rxゾーンでの弛緩速度は、100〜1,000%/分であることが好ましい。弛緩速度が100%/分未満であると、製膜速度を遅くしたり、テンター長さを長くする必要があり、生産性に劣る場合がある。1,000%/分を超えると、テンターのレール幅が縮む速度よりフィルムが収縮する速度が遅くなり、テンター内でフィルムがばたついて破れたり、幅方向の物性ムラや平面性の低下を生じる場合がある。弛緩速度は、150〜500%/分であることがより好ましい。   The relaxation rate in the Rx zone is preferably 100 to 1,000% / min. When the relaxation rate is less than 100% / min, it is necessary to slow down the film forming rate or lengthen the tenter length, which may be inferior in productivity. If it exceeds 1,000% / min, the speed at which the film shrinks becomes slower than the speed at which the rail width of the tenter shrinks, the film flutters in the tenter and breaks, or the physical properties in the width direction are uneven and the flatness is lowered. There is a case. The relaxation rate is more preferably 150 to 500% / min.

HS2ゾーンの温度は、155〜165℃であることが好ましい。155℃未満であると、熱弛緩後のフィルムの緊張が不十分となり、幅方向の物性ムラや平面性低下を生じたり、幅方向の熱収縮率が大きくなる場合がある。また、HS2の温度が高い方が、105℃における長手方向のヤング率f(105)が高くなる傾向があり、155℃未満ではf(105)が不十分になる場合がある。165℃を超えると、高温により孔周辺のポリマーが溶けて透気性が低下する場合がある。透気性と機械強度の両立の観点から、HS2ゾーンの温度は、160〜165℃であることがより好ましい。The temperature of the HS2 zone is preferably 155 to 165 ° C. If the temperature is lower than 155 ° C., the tension of the film after thermal relaxation becomes insufficient, resulting in uneven physical properties and flatness in the width direction, and may increase the heat shrinkage rate in the width direction. Also, the higher the HS2 temperature, the higher the Young's modulus f (105) in the longitudinal direction at 105 ° C. tends to be higher, and f (105) may be insufficient below 155 ° C. When the temperature exceeds 165 ° C., the polymer around the pores may melt at a high temperature, and the air permeability may be lowered. From the viewpoint of achieving both air permeability and mechanical strength, the temperature of the HS2 zone is more preferably 160 to 165 ° C.

本発明におけるHS2ゾーンでの熱処理時間は、機械強度および幅方向の物性ムラや平面性と生産性の両立の観点から0.1秒以上10秒以下であることが好ましい。熱固定工程後のフィルムは、横延伸機のクリップで把持した耳部を除去して製品とする。   In the present invention, the heat treatment time in the HS2 zone is preferably from 0.1 second to 10 seconds from the viewpoint of mechanical strength, physical property unevenness in the width direction, and compatibility between flatness and productivity. The film after the heat setting step is made into a product by removing the ears gripped by the clips of the transverse stretching machine.

本発明の多孔性ポリオレフィンフィルムは、強度や耐熱性に優れることから、包装用品、衛生用品、農業用品、建築用品、医療用品、分離膜、光拡散板、反射シート用途で用いることができるが、特に乾燥温度でのヤング率が高く、かつ常温と乾燥温度でのヤング率の差が小さいため、LIBやEDLC組立の事前乾燥工程においてシワの発生や平面性が改善されることから、自動車用などの蓄電デバイス用セパレータとして好適に使用することができる。また、セラミックや耐熱樹脂層を塗工・乾燥してなる耐熱セパレータ用の基材としても好適に用いることができる。本発明の多孔性ポリプロピレンフィルムからなるセパレータは、蓄電デバイスの正極と負極の間に設けられ、該電極の接触を防止しつつ、電解液中のイオンを効率よく透過できる。ここで、蓄電デバイスとしては、リチウムイオン二次電池に代表される非水電解液二次電池や、リチウムイオンキャパシタや電気二重層キャパシタなどを挙げることができる。このような蓄電デバイスは充放電することで繰り返し使用することができるので、産業装置や生活機器、電気自動車やハイブリッド電気自動車などの電源装置として使用することができる。本発明の多孔性フィルムを用いたセパレータを使用した蓄電デバイスは、セパレータの優れた特性から産業機器や自動車の電源装置に好適に用いることができる。   Since the porous polyolefin film of the present invention is excellent in strength and heat resistance, it can be used for packaging products, sanitary products, agricultural products, building products, medical products, separation membranes, light diffusion plates, reflective sheets, In particular, because the Young's modulus at the drying temperature is high and the difference in Young's modulus between the normal temperature and the drying temperature is small, wrinkles and flatness are improved in the pre-drying process of LIB and EDLC assembly. It can use suitably as a separator for electrical storage devices. Moreover, it can use suitably also as a base material for the heat-resistant separator formed by coating and drying a ceramic or a heat-resistant resin layer. The separator made of the porous polypropylene film of the present invention is provided between the positive electrode and the negative electrode of the electricity storage device, and can efficiently permeate ions in the electrolytic solution while preventing contact between the electrodes. Here, examples of the electricity storage device include a non-aqueous electrolyte secondary battery represented by a lithium ion secondary battery, a lithium ion capacitor, and an electric double layer capacitor. Since such an electricity storage device can be repeatedly used by charging and discharging, it can be used as a power supply device for industrial devices, household equipment, electric vehicles, hybrid electric vehicles, and the like. The electricity storage device using the separator using the porous film of the present invention can be suitably used for power supplies of industrial equipment and automobiles because of the excellent characteristics of the separator.

以下、実施例により本発明を詳細に説明する。なお、特性は以下の方法により測定、評価を行った。   Hereinafter, the present invention will be described in detail by way of examples. The characteristics were measured and evaluated by the following methods.

(1)フィルム厚み
任意の場所の合計10箇所を接触式の膜厚計ミツトヨ社製ライトマチックVL−50A(10.5mmφ超硬球面測定子、測定荷重0.06N)にて測定し、その平均値を多孔性ポリオレフィンフィルムの厚みとした。
(1) Film thickness A total of 10 arbitrary positions were measured with a contact-type film thickness meter, Mitsutyo Lightmatic VL-50A (10.5 mmφ carbide spherical surface probe, measurement load 0.06 N), and the average The value was taken as the thickness of the porous polyolefin film.

(2)23℃での長手方向のヤング率;f(23)
JIS K7127(1999.)に規定された測定方法に準じて行った。多孔性ポリオレフィンフィルムを、フィルムの製膜方向の長さが150mm、幅方向の長さが10mmの矩形に切り出しサンプルとした。引張試験機(オリエンテック製テンシロンUCT−100)を用いて、初期チャック間距離50mm、引張速度を300mm/分とし、23℃、65%RHの雰囲気下でフィルムの長手方向に引張試験を行った。測定はサンプルを変更して5回行い、そのヤング率の平均値を求めた。
なお、フィルムの厚みは以下のように測定を行った。長さ150mm×幅10mmの矩形に切り出しサンプルの初期チャック間距離50mmの中で任意の5ヶ所について接触式の膜厚計ミツトヨ社製ライトマチックVL−50A(10.5mmφ超硬球面測定子、測定荷重0.06N)にて測定し、その平均値を多孔性ポリオレフィンフィルムの厚みとした。
(2) Young's modulus in the longitudinal direction at 23 ° C .; f (23)
The measurement was performed according to the measurement method defined in JIS K7127 (1999). A porous polyolefin film was cut into a rectangle having a length of 150 mm in the film forming direction and a length of 10 mm in the width direction, and used as a sample. Using a tensile tester (Orientec Tensilon UCT-100), the tensile test was performed in the longitudinal direction of the film under an atmosphere of 23 ° C. and 65% RH at an initial chuck distance of 50 mm and a tensile speed of 300 mm / min. . The measurement was performed 5 times while changing the sample, and the average value of Young's modulus was obtained.
The film thickness was measured as follows. Cut out into a rectangular shape with a length of 150 mm and a width of 10 mm. Contact type film thickness meter Mitutoyo's Lightmatic VL-50A (10.5 mmφ super hard spherical surface probe, measurement at an arbitrary 5 positions within the initial chuck distance of 50 mm. The load was measured at 0.06 N), and the average value was defined as the thickness of the porous polyolefin film.

(3)105℃での長手方向のヤング率;f(105)
JIS K7127(1999.)に規定された測定方法に準じて行った。多孔性ポリオレフィンフィルムを上記(2)と同様寸法に切りだしたサンプルを引張試験機(オリエンテック製テンシロンUCT−100)にセットし、105℃に加熱されたオーブン中へチャック毎投入し、1分間加熱した後、初期チャック間距離50mmとし、引張速度を300mm/分としてフィルムの長手方向に引張試験を行った。測定はサンプルを変更して5回行い、そのヤング率の平均値を求めた。
なお、フィルムの厚みは上記(2)と同様の方法で測定した。
(3) Young's modulus in the longitudinal direction at 105 ° C .; f (105)
The measurement was performed according to the measurement method defined in JIS K7127 (1999). A sample obtained by cutting the porous polyolefin film to the same size as in (2) above is set in a tensile tester (Orientec Tensilon UCT-100), and the chuck is put into an oven heated to 105 ° C. for 1 minute. After heating, the tensile test was performed in the longitudinal direction of the film at an initial chuck distance of 50 mm and a tensile speed of 300 mm / min. The measurement was performed 5 times while changing the sample, and the average value of Young's modulus was obtained.
The film thickness was measured by the same method as in (2) above.

(4)β晶形成能
多孔性ポリオレフィンフィルム中のポリプロピレン5mgを試料としてアルミニウム製のパンに採取し、示差走査熱量計(セイコー電子工業製RDC220)を用いて測定した。まず、窒素雰囲気下で室温から260℃まで10℃/分で昇温(ファーストラン)し、10分間保持した後、20℃まで10℃/分で冷却する。5分保持後、再度10℃/分で昇温(セカンドラン)した際に観測される融解ピークにについて、145〜157℃の温度領域にピークが存在する融解をβ晶の融解ピーク、158℃以上にピークが観察される融解をα晶の融解ピークとして、高温側の平坦部を基準に引いたベースラインとピークに囲まれる領域の面積から、それぞれの融解熱量を求め、α晶の融解熱量をΔHα、β晶の融解熱量をΔHβとしたとき、以下の式で計算される値をβ晶形成能とする。なお、融解熱量の校正はインジウムを用いて行った。
β晶形成能(%) = 〔ΔHβ / (ΔHα + ΔHβ)〕 × 100
なお、ファーストランで観察される融解ピークから同様にβ晶の存在比率を算出することで、その試料の状態でのβ晶分率を算出することができる。
(4) β crystal forming ability 5 mg of polypropylene in the porous polyolefin film was sampled on an aluminum pan and measured using a differential scanning calorimeter (RDC220 manufactured by Seiko Denshi Kogyo). First, the temperature is raised from room temperature to 260 ° C. at a rate of 10 ° C./minute (first run) in a nitrogen atmosphere, held for 10 minutes, and then cooled to 20 ° C. at a rate of 10 ° C./minute. After holding for 5 minutes, the melting peak observed when the temperature is raised again at 10 ° C./min (second run) is the melting peak of the β crystal at 145 ° C. to 157 ° C., 158 ° C. The melting at which the peak is observed is defined as the melting peak of the α crystal, and the melting heat amount of the α crystal is obtained from the baseline and the area of the region surrounded by the peak drawn from the flat portion on the high temperature side. Is the ΔHα, and the heat of fusion of the β crystal is ΔHβ, the value calculated by the following formula is the β crystal forming ability. The heat of fusion was calibrated using indium.
β crystal forming ability (%) = [ΔHβ / (ΔHα + ΔHβ)] × 100
In addition, the β crystal fraction in the state of the sample can be calculated by calculating the abundance ratio of the β crystal in the same manner from the melting peak observed in the first run.

(5)透気抵抗
多孔性ポリオレフィンフィルムから100mm×100mmの大きさの正方形を切取り試料とした。JIS P 8117(1998)のB形ガーレー試験器を用いて、23℃、相対湿度65%にて、100mlの空気の透過時間の測定を行った。測定は試料を替えて3回行い、透過時間の平均値をそのフィルムの透気性とした。なお、フィルムに貫通孔が形成されていることは、この透気性の値が有限値であることをもって確認できる。
(5) Air permeability resistance A square having a size of 100 mm × 100 mm was cut out from the porous polyolefin film and used as a sample. Using a JIS P 8117 (1998) B-type Gurley tester, the permeation time of 100 ml of air was measured at 23 ° C. and a relative humidity of 65%. The measurement was performed three times with the sample changed, and the average value of the permeation time was defined as the air permeability of the film. In addition, it can confirm that the through-hole is formed in the film that this air permeability value is a finite value.

(6)105℃熱収縮率(幅方向)
多孔性ポリオレフィンフィルムから10mm×200mmの大きさの矩形を5本切取り試料とした。なお、200mmの長さ方向をフィルムの幅方向に合わせた。試料の両端から25mmの位置に印を付けて試長150mm(l)とする。次に、荷重3gを付けて105℃に保温されたオーブン内に吊し、1時間加熱後に取り出して、室温で冷却後、寸法(l)を測定して下記式にて求め、5本の平均値を熱収縮率とした。
熱収縮率={(l−l)/l}×100(%)
(6) 105 ° C. thermal shrinkage (width direction)
Five rectangles each having a size of 10 mm × 200 mm were cut out from the porous polyolefin film and used as samples. In addition, the length direction of 200 mm was match | combined with the width direction of the film. Mark the position 25 mm from both ends of the sample to make the test length 150 mm (l 0 ). Next, it is hung in an oven kept at 105 ° C. with a load of 3 g, taken out after heating for 1 hour, cooled at room temperature, measured for dimensions (l 1 ), and calculated by the following formula. The average value was defined as the heat shrinkage rate.
Thermal contraction rate = {(l 0 −l 1 ) / l 0 } × 100 (%)

(7)シワの発生度合い(23℃)
多孔性ポリオレフィンフィルムを長手方向に300mm、幅方向に200mmにサンプリングし、多孔性ポリオレフィンフィルムの試料1を調製する。図1に示すように、試料1の長手方向の両端部30mmを全幅で各々2枚の金属板2に挟み込み、長手方向の下方部の金属板2とおもり3を合わせて2kgf荷重となるように負荷を掛ける。このとき、つり下げた時にセパレータの位置がずれないよう2枚の金属板2を固定する。23℃、65%RHの雰囲気下で前記サンプルをつり上げ、10秒間の観察においてシワの発生度合いを下記基準にて判断した。○、△が合格である
○:シワが1つも確認できない
△:シワが1〜2本確認できる
×:シワが3本以上
(7) Wrinkle occurrence (23 ° C)
A porous polyolefin film is sampled at 300 mm in the longitudinal direction and 200 mm in the width direction to prepare Sample 1 of the porous polyolefin film. As shown in FIG. 1, both end portions 30 mm in the longitudinal direction of the sample 1 are sandwiched between two metal plates 2 in full width, and the lower metal plate 2 and the weight 3 in the longitudinal direction are combined so that a load of 2 kgf is obtained. Apply a load. At this time, the two metal plates 2 are fixed so that the position of the separator does not shift when suspended. The sample was lifted in an atmosphere of 23 ° C. and 65% RH, and the degree of occurrence of wrinkles was determined according to the following criteria in 10 seconds of observation. ○, Δ is acceptable ○: No wrinkles can be confirmed Δ: One or two wrinkles can be confirmed ×: Three or more wrinkles

(8)シワの発生度合い(105℃)
上記(7)と同様にして、荷重を0.5kgfとしたサンプルを105℃雰囲気に加熱されたギアオーブンにつり下げ、10秒間の観察においてシワの発生度合いを下記基準にて判断した。○、△が合格である
○:シワが1つも確認できない
△:シワが1〜2本確認できる
×:シワが3本以上
(8) Wrinkle generation degree (105 ° C)
In the same manner as in (7) above, a sample with a load of 0.5 kgf was suspended in a gear oven heated to an atmosphere of 105 ° C., and the degree of wrinkle generation was determined based on the following criteria in 10 seconds of observation. ○, Δ is acceptable ○: No wrinkles can be confirmed Δ: One or two wrinkles can be confirmed ×: Three or more wrinkles

(9)加熱オーブン通過時のシワの発生度合い
幅300mmのロールサンプルを用意し、23℃で巻きだし、内部温度105℃のトンネル状オーブンを通過させた時、オーブン出口でのサンプルのシワ発生状態を下記基準にて判断した。なお、搬送張力は0.5kgf、オーブン長2m、搬送速度15m/分とした。トンネルオーブン入り口および出口にガイドロールをセットした。サンプルは予めトンネルオーブンを通しておき、搬送状態を安定化するため搬送開始後15秒間搬送した状態で維持し、その後20秒間通過させた時の状態で判定した。○、△が合格である。
○:シワが1つも確認できない
△:シワが1〜2本確認できる
×:シワが3本以上
(9) Wrinkle generation degree when passing through heating oven When a roll sample having a width of 300 mm is prepared, unrolled at 23 ° C., and passed through a tunnel-shaped oven having an internal temperature of 105 ° C., the wrinkle generation state of the sample at the outlet of the oven Was judged according to the following criteria. The transport tension was 0.5 kgf, the oven length was 2 m, and the transport speed was 15 m / min. Guide rolls were set at the entrance and exit of the tunnel oven. The sample was passed through a tunnel oven in advance, and was maintained in a state where it was transported for 15 seconds after the start of transportation in order to stabilize the transportation state, and then judged when it was passed through for 20 seconds. ○ and △ are acceptable.
○: No wrinkles can be confirmed Δ: One or two wrinkles can be confirmed ×: Three or more wrinkles

(10)キャストシート中の異種成分の分散径(ドメイン径)の測定
ミクロトーム法を用い、キャストシートの幅方向−厚み方向に断面(TD/ZD断面)を有する超薄切片を採取した。採取した切片をRuOで染色し、下記条件にて透過型電子顕微鏡(TEM)を用いて断面を観察した。この時例えば、ポリプロピレン樹脂より結晶性の低いエチレン−α−オレフィン系重合体(B)は、ポリプロピレンよりも黒く染まる。
・装置 :(株)日立製作所製 透過型電子顕微鏡(TEM)H−7100FA
・加速電圧:100kV
・観察倍率:20,000倍。
キャストシートの一方の表面からもう一方の表面までを、厚み方向に連続して観察した像を採取した。得られた像にキャストシートの厚み方向に平行に1μm相当の間隔をあけて直線を引き、2本の直線の間に存在する全てのエチレン−α−オレフィン系重合体(B)の分散径を測定した(単位:nm)。2本の直線間に存在する分散径を平均し、さらに厚み方向の平均値を算出し、得られた平均分散径をエチレン−α−オレフィン系重合体(B)の分散径とした。
(10) Measurement of dispersion diameter (domain diameter) of different components in cast sheet Using a microtome method, an ultrathin section having a cross section (TD / ZD cross section) in the width direction-thickness direction of the cast sheet was collected. The collected sections were stained with RuO 4 and the cross section was observed using a transmission electron microscope (TEM) under the following conditions. At this time, for example, the ethylene-α-olefin polymer (B) having lower crystallinity than polypropylene resin is dyed blacker than polypropylene.
-Apparatus: Transmission electron microscope (TEM) H-7100FA manufactured by Hitachi, Ltd.
・ Acceleration voltage: 100 kV
-Observation magnification: 20,000 times.
Images obtained by continuously observing from one surface of the cast sheet to the other surface in the thickness direction were collected. A straight line is drawn on the obtained image at an interval of 1 μm parallel to the thickness direction of the cast sheet, and the dispersion diameter of all the ethylene-α-olefin polymers (B) existing between the two straight lines is determined. Measured (unit: nm). The dispersion diameter existing between the two straight lines was averaged, the average value in the thickness direction was calculated, and the obtained average dispersion diameter was taken as the dispersion diameter of the ethylene-α-olefin polymer (B).

(実施例1)
ポリプロピレン樹脂(A)として、融点165℃、MFR=7.5g/10分の住友化学(株)製ホモポリプロピレンFLX80E4を99.5質量部、β晶核剤であるN,N’−ジシクロヘキシル−2,6−ナフタレンジカルボキシアミド(新日本理化(株)製、NU−100)を0.3質量部、さらに酸化防止剤であるチバ・スペシャリティ・ケミカルズ製IRGANOX1010、IRGAFOS168を各々0.1質量部ずつがこの比率で混合されるように計量ホッパーから二軸押出機に原料供給し、300℃で溶融混練を行い、ストランド状にダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットしてポリプロピレン組成物(I)を得た。
Example 1
As the polypropylene resin (A), 99.5 parts by mass of Homopolypropylene FLX80E4 manufactured by Sumitomo Chemical Co., Ltd. having a melting point of 165 ° C. and an MFR of 7.5 g / 10 min, N, N′-dicyclohexyl-2 which is a β crystal nucleating agent , 6-Naphthalenedicarboxyamide (manufactured by Shin Nippon Rika Co., Ltd., NU-100), 0.3 parts by mass, and IRGANOX 1010 and IRGAFOS168 by Ciba Specialty Chemicals, which are antioxidants, each by 0.1 part by mass The raw material is fed from the weighing hopper to the twin screw extruder so that the mixture is mixed at this ratio, melt kneaded at 300 ° C., discharged from the die in a strand shape, cooled and solidified in a 25 ° C. water tank, and chip-shaped. To obtain a polypropylene composition (I).

次に、ポリプロピレン樹脂(A)としてホモポリプロピレンFLX80E4を64.8質量部、エチレン・α−オレフィン系共重合体(B)としてエチレン−α−オクテン−1共重合体(ダウ・ケミカル製 “Engage(登録商標)”8411、メルトインデックス:18g/10分)を30質量部、分散剤(C)としてJSR社製オレフィン結晶・エチレンブチレン・オレフィン結晶ブロックポリマー (CEBC)“DYNARON(ダイナロン)(登録商標)”(タイプ名:6200P)を5質量部、さらに酸化防止剤であるチバ・スペシャリティ・ケミカルズ製“イルガノックス(登録商標)”1010、“イルガフォス(登録商標)”168を各々0.1質量部がこの比率で混合されるように計量ホッパーから二軸押出機に原料供給し、240℃で溶融混練を行い、ストランド状にダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットしてポリプロピレン組成物(II)を得た。   Next, 64.8 parts by mass of homopolypropylene FLX80E4 as the polypropylene resin (A), and ethylene-α-octene-1 copolymer (Deng Chemical “Engage” as the ethylene / α-olefin copolymer (B) (Registered Trademark) "8411, Melt Index: 18 g / 10 min) 30 parts by mass, Dispersant (C) Olefin Crystal / Ethylene Butylene / Olefin Crystal Block Polymer (CEBC)“ DYNARON ”(Registered Trademark) (Type name: 6200P), and 0.1 parts by mass of “Irganox (registered trademark)” 1010 and “Irgaphos (registered trademark)” 168 manufactured by Ciba Specialty Chemicals, which are antioxidants. Raw material from weighing hopper to twin screw extruder to be mixed at this ratio Feeding, and were melt-kneaded at 240 ° C., is ejected from the die into strands, it cooled and solidified at 25 ° C. water bath, was obtained by cutting into chips the polypropylene composition (II).

得られたポリプロピレン組成物(I)90質量部とポリプロピレン組成物(II)10質量部をドライブレンドして単軸の溶融押出機に供給し、220℃で溶融押出を行い、25μmカットの焼結フィルターで異物を除去後、Tダイから120℃に表面温度を制御したキャストドラムに吐出し、未延伸シートを得た。未延伸シート中のドメイン径は75nmであった。また、ドメイン径は、厚み方向の表層付近では80nm程度のドメインが多く観察され、中央部では70nm程度のドメインが多く観察された。ついで、125℃に加熱したセラミックロールを用いて予熱を行いフィルムの長手方向に5.0倍延伸を行った。次いで縦延伸後のロール速度に対し105%のドローを掛けた状態でフィルム端部をクリップで把持させて横延伸機へ導入し、150℃で5.0倍に、延伸速度1,800%/分で延伸した。そのまま幅方向を把持したままHS1ゾーンにて160℃で熱処理し、引き続き幅方向に20%のリラックスを掛けながら162℃で熱処理を行い、最後に幅方向を把持したままHS2ゾーンにて162℃の熱処理を行い、厚み12μmの多孔性ポリプロピレンフィルムを得た。   90 parts by mass of the obtained polypropylene composition (I) and 10 parts by mass of the polypropylene composition (II) were dry blended, supplied to a single screw melt extruder, melt extruded at 220 ° C., and sintered at 25 μm cut. After removing the foreign matter with a filter, it was discharged from a T-die onto a cast drum whose surface temperature was controlled at 120 ° C. to obtain an unstretched sheet. The domain diameter in the unstretched sheet was 75 nm. In addition, as for the domain diameter, many domains of about 80 nm were observed near the surface layer in the thickness direction, and many domains of about 70 nm were observed in the central part. Next, preheating was performed using a ceramic roll heated to 125 ° C., and the film was stretched 5.0 times in the longitudinal direction of the film. Next, with the draw speed of 105% applied to the roll speed after the longitudinal stretching, the end of the film was held with a clip and introduced into a horizontal stretching machine, and 5.0 times at 150 ° C., a stretching speed of 1,800% / Stretched in minutes. The heat treatment is performed at 160 ° C. in the HS1 zone while holding the width direction as it is, and the heat treatment is subsequently performed at 162 ° C. while relaxing 20% in the width direction. Finally, the heat treatment is performed at 162 ° C. in the HS2 zone while holding the width direction. Heat treatment was performed to obtain a porous polypropylene film having a thickness of 12 μm.

(実施例2)
ポリプロピレン樹脂(A)としてホモポリプロピレンFLX80E4を54.8質量部、エチレン−α−オレフィン系重合体(B)としてエチレン−オクテン−1共重合体(ダウ・ケミカル製 “Engage(登録商標)”8411、メルトインデックス:18g/10分)を30質量部、分散剤(C)としてJSR社製オレフィン結晶・エチレンブチレン・オレフィン結晶ブロックポリマー (CEBC)“DYNARON(ダイナロン)(登録商標)”(タイプ名:6200P)を15質量部、さらに酸化防止剤であるチバ・スペシャリティ・ケミカルズ製“イルガノックス(登録商標)”1010、“イルガフォス(登録商標)”168を各々0.1質量部がこの比率で混合されるように計量ホッパーから二軸押出機に原料供給し、240℃で溶融混練を行い、ストランド状にダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットしてポリプロピレン組成物(III)を得た。得られたポリプロピレン組成物(III)10質量部と実施例1で用いたポリプロピレン組成物(I)90質量部をドライブレンドして単軸の溶融押出機に供給し、実施例1と同じ製膜条件で厚み12μmの多孔性ポリプロピレンフィルムを得た。
(Example 2)
As the polypropylene resin (A), 54.8 parts by mass of homopolypropylene FLX80E4, and as the ethylene-α-olefin-based polymer (B), ethylene-octene-1 copolymer (“Engage (registered trademark)” 8411 manufactured by Dow Chemical, Melt index: 18 g / 10 min) as 30 parts by mass, dispersant (C) as olefin crystal / ethylene butylene / olefin crystal block polymer (CEBC) “DYNARON (registered trademark)” manufactured by JSR (type name: 6200P) 15 parts by weight, and 0.1 parts by weight of “Irganox (registered trademark)” 1010 and “Irgaphos (registered trademark)” 168 manufactured by Ciba Specialty Chemicals, which are antioxidants, are mixed in this ratio. Feed the raw material from the weighing hopper to the twin screw extruder, Melt kneading was carried out at 0 ° C., the strand was discharged from the die, solidified by cooling in a water bath at 25 ° C., and cut into chips to obtain a polypropylene composition (III). 10 parts by mass of the obtained polypropylene composition (III) and 90 parts by mass of the polypropylene composition (I) used in Example 1 were dry blended and supplied to a uniaxial melt extruder. Under the conditions, a porous polypropylene film having a thickness of 12 μm was obtained.

(実施例3、4、5)
表1に示す製造条件において実施例1の条件から延伸時のMD温度を縦延伸後のロール速度に対するドローを103%(実施例3)、MD延伸倍率を5.5倍(実施例4)、横延伸倍率を6.5倍(実施例5)、をそれぞれ変更し、厚み12μmの多孔性ポリプロピレンフィルムを得た。
(Examples 3, 4, and 5)
In the production conditions shown in Table 1, the MD temperature during stretching from the conditions of Example 1 was 103% for the roll speed after longitudinal stretching (Example 3), the MD stretch ratio was 5.5 times (Example 4), The transverse draw ratio was changed to 6.5 times (Example 5), and a 12 μm thick porous polypropylene film was obtained.

(比較例1)
ポリプロピレン樹脂(A)として、ホモポリプロピレンFLX80E4を69.8質量部、エチレン−α−オレフィン系重合体(B)としてエチレン−オクテン−1共重合体(ダウ・ケミカル製 “Engage(登録商標)”8411、メルトインデックス:18g/10分)を30質量部、さらに酸化防止剤であるチバ・スペシャリティ・ケミカルズ製“イルガノックス(登録商標)”1010、“イルガフォス(登録商標)”168を各々0.1質量部がこの比率で混合されるように計量ホッパーから二軸押出機に原料供給し、240℃で溶融混練を行い、ストランド状にダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットしてポリプロピレン組成物(IV)を得た。得られたポリプロピレン組成物(IV)10質量部と実施例1で用いたポリプロピレン組成物(I)90質量部をドライブレンドして単軸の溶融押出機に供給し、実施例1の条件から縦延伸後のロール速度に対するドローを100%とし、横延伸後の弛緩処理率を15%、HS1,Rxゾーン、HS2ゾーンを各160℃と変更し、厚み12μmの実質上で分散剤を含まない多孔性ポリプロピレンフィルムを得た。未延伸シート中のドメイン径は120nmであった。また、ドメイン径は、厚み方向の表層付近では100nm程度のドメインが多く観察され、中央部では150nm程度のドメインが多く観察された。本比較例のフィルムは105℃での長手方向のヤング率と23℃の長手方向のヤング率との差が大きかった。
(Comparative Example 1)
As the polypropylene resin (A), 69.8 parts by mass of homopolypropylene FLX80E4, and as the ethylene-α-olefin polymer (B), an ethylene-octene-1 copolymer (“Engage (registered trademark)” 8411 manufactured by Dow Chemical Co., Ltd. , Melt Index: 18 g / 10 min), 30 parts by mass, and 0.1 parts by mass of “Irganox (registered trademark)” 1010 and “Irgaphos (registered trademark)” 168 manufactured by Ciba Specialty Chemicals, which are antioxidants. The raw material is supplied from the weighing hopper to the twin screw extruder so that the parts are mixed at this ratio, melt kneaded at 240 ° C., discharged from the die in a strand shape, cooled and solidified in a 25 ° C. water tank, and chips The polypropylene composition (IV) was obtained by cutting into a shape. 10 parts by mass of the obtained polypropylene composition (IV) and 90 parts by mass of the polypropylene composition (I) used in Example 1 were dry blended and supplied to a uniaxial melt extruder. The draw rate with respect to the roll speed after stretching is 100%, the relaxation rate after transverse stretching is 15%, the HS1, Rx zone, and HS2 zone are each changed to 160 ° C., and the porosity is substantially 12 μm and contains no dispersant. A conductive polypropylene film was obtained. The domain diameter in the unstretched sheet was 120 nm. In addition, with regard to the domain diameter, many domains of about 100 nm were observed near the surface layer in the thickness direction, and many domains of about 150 nm were observed in the central part. The film of this comparative example had a large difference between the Young's modulus in the longitudinal direction at 105 ° C. and the Young's modulus in the longitudinal direction at 23 ° C.

(比較例2)
表1に示す製造条件において実施例1の条件から、横延伸後のHS1ゾーン、Rxゾーン、HS2ゾーンを各155℃とし、弛緩処理率を5%に変更し、厚み12μmの多孔性ポリプロピレンフィルムを得た。比較例2のフィルムは105℃での長手方向のヤング率が不十分、かつ23℃のヤング率との差が非常に大きいフィルムであった。
(Comparative Example 2)
In the production conditions shown in Table 1, the HS1 zone, the Rx zone, and the HS2 zone after transverse stretching were each changed to 155 ° C. from the conditions of Example 1, the relaxation treatment rate was changed to 5%, and a porous polypropylene film having a thickness of 12 μm was obtained. Obtained. The film of Comparative Example 2 was a film having an insufficient Young's modulus in the longitudinal direction at 105 ° C. and a very large difference from the Young's modulus at 23 ° C.

Figure 0005267754
Figure 0005267754

本発明の要件を満足する実施例では透気性、熱寸法安定性に優れるだけでなく、105℃の長手方向のヤング率が高く、かつ23℃の長手方向のヤング率差が小さいため、蓄電デバイス用のセパレータとして好適に用いることが可能であると考えられる。一方、比較例では、105℃での長手方向のヤング率が不十分、かつ23℃のヤング率との差が非常に大きく蓄電デバイス用のセパレータとして用いることが困難である。   In the examples satisfying the requirements of the present invention, not only are the air permeability and thermal dimensional stability excellent, but also the Young's modulus in the longitudinal direction at 105 ° C. is high and the Young's modulus difference in the longitudinal direction at 23 ° C. is small. It can be considered that it can be suitably used as a separator for a battery. On the other hand, in the comparative example, the Young's modulus in the longitudinal direction at 105 ° C. is insufficient, and the difference from the Young's modulus at 23 ° C. is so large that it is difficult to use as a separator for an electricity storage device.

本発明の多孔性ポリオレフィンフィルムは、LIBやLIC、ならびにEDLC組立の事前乾燥工程においてシワの発生や平面性が改善されることから、自動車用などの蓄電デバイス用セパレータとして好適に使用することができる。   The porous polyolefin film of the present invention can be suitably used as an electrical storage device separator for automobiles because wrinkles and flatness are improved in the pre-drying process of LIB, LIC, and EDLC assembly. .

1:試料
2:金属板
3:おもり
1: Sample 2: Metal plate 3: Weight

Claims (7)

23℃における長手方向のヤング率f(23)(MPa)と、105℃における長手方向のヤング率f(105)(MPa)との関係が、下記(1)式および(2)式を満たすことを特徴とする多孔性ポリオレフィンフィルム。
(105)>80 ・・・(1)
(23)−f(105)<450 ・・・(2)
The relationship between the Young's modulus f (23) (MPa) in the longitudinal direction at 23 ° C. and the Young's modulus f (105) (MPa) in the longitudinal direction at 105 ° C. satisfies the following formulas (1) and (2). A porous polyolefin film characterized by
f (105) > 80 (1)
f (23) -f (105) <450 (2)
23℃における長手方向ヤング率f(23)(MPa)と、105℃における長手方向のヤング率f(105)(MPa)との関係が、下記(1)式および(3)式を満たすことを特徴とする多孔性ポリオレフィンフィルム。
(105)>80 ・・・(1)
(23)/f(105)<6 ・・・(3)
The relationship between the longitudinal Young's modulus f (23) (MPa) at 23 ° C. and the longitudinal Young's modulus f (105) (MPa) at 105 ° C. satisfies the following formulas (1) and (3). A featured porous polyolefin film.
f (105) > 80 (1)
f (23) / f (105) <6 (3)
105℃における幅方向の熱収縮率が5%以下であることを特徴とする、請求項1または2に記載の多孔性ポリオレフィンフィルム。   The porous polyolefin film according to claim 1 or 2, wherein the thermal shrinkage in the width direction at 105 ° C is 5% or less. 透気抵抗が10〜200秒/100mlであることを特徴とする、請求項1〜3のいずれか一つに記載の多孔性ポリオレフィンフィルム。   Air permeability resistance is 10-200 seconds / 100ml, The porous polyolefin film according to any one of claims 1 to 3 characterized by things. 厚み当たりの透気抵抗が20秒/100ml/μm以下であることを特徴とする、請求項1〜4のいずれか一つに記載の多孔性ポリオレフィンフィルム。   The porous polyolefin film according to any one of claims 1 to 4, wherein an air resistance per thickness is 20 seconds / 100 ml / µm or less. β晶形成能が40%以上のポリプロピレンを主成分とすることを特徴とする請求項1〜5のいずれか一つに記載の多孔性ポリオレフィンフィルム。   The porous polyolefin film according to any one of claims 1 to 5, comprising a polypropylene having a β-crystal forming ability of 40% or more as a main component. 正極と負極の間に設けられ、両者の接触を防止しつつ、電解液中のイオンを透過させるセパレータを備えた蓄電デバイスにおいて、
前記セパレータが、請求項1〜6のいずれか一つに記載の多孔性ポリオレフィンフィルムを用いて形成されたことを特徴とする蓄電デバイス。
In an electricity storage device provided with a separator that is provided between a positive electrode and a negative electrode and transmits ions in an electrolyte while preventing contact between the two,
The said separator was formed using the porous polyolefin film as described in any one of Claims 1-6, The electrical storage device characterized by the above-mentioned.
JP2013506406A 2011-10-14 2012-10-12 Porous polyolefin film and electricity storage device Active JP5267754B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013506406A JP5267754B1 (en) 2011-10-14 2012-10-12 Porous polyolefin film and electricity storage device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011226461 2011-10-14
JP2011226461 2011-10-14
JP2013506406A JP5267754B1 (en) 2011-10-14 2012-10-12 Porous polyolefin film and electricity storage device
PCT/JP2012/076543 WO2013054930A1 (en) 2011-10-14 2012-10-12 Porous polyolefin film and electrical storage device

Publications (2)

Publication Number Publication Date
JP5267754B1 true JP5267754B1 (en) 2013-08-21
JPWO2013054930A1 JPWO2013054930A1 (en) 2015-04-02

Family

ID=48081974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013506406A Active JP5267754B1 (en) 2011-10-14 2012-10-12 Porous polyolefin film and electricity storage device

Country Status (4)

Country Link
JP (1) JP5267754B1 (en)
KR (1) KR101956950B1 (en)
CN (1) CN103874725B (en)
WO (1) WO2013054930A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105246692B (en) * 2013-05-31 2017-12-08 东丽株式会社 Polyolefin multilayer microporous membrane and its manufacture method
MY171677A (en) * 2013-05-31 2019-10-23 Toray Industries Multilayer, microporous polyolefin membrane, and production method thereof
KR102357542B1 (en) * 2015-02-20 2022-02-03 도레이 카부시키가이샤 Method for manufacturing microporous plastic film
HUE059953T2 (en) * 2015-12-28 2023-01-28 Zeon Corp Heat-sensitive layer for lithium ion secondary battery
KR20180100199A (en) 2016-01-29 2018-09-07 스미또모 가가꾸 가부시키가이샤 Battery separator film, nonaqueous electrolyte secondary battery separator, and nonaqueous electrolyte secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005103127A1 (en) * 2004-04-22 2005-11-03 Toray Industries, Inc. Microporous polypropylene film and process for producing the same
WO2007046225A1 (en) * 2005-10-18 2007-04-26 Toray Industries, Inc. Microporous polypropylene films and process for producing the same
JP2009026733A (en) * 2007-01-30 2009-02-05 Asahi Kasei Chemicals Corp Multilayer porous membrane and its manufacturing method
WO2010053172A1 (en) * 2008-11-10 2010-05-14 三菱樹脂株式会社 Laminated porous film, separator for lithium cell, and cell
WO2012105661A1 (en) * 2011-02-03 2012-08-09 東レ株式会社 Porous polypropylene film, separator for electricity storage device, and electricity storage device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005103127A1 (en) * 2004-04-22 2005-11-03 Toray Industries, Inc. Microporous polypropylene film and process for producing the same
WO2007046225A1 (en) * 2005-10-18 2007-04-26 Toray Industries, Inc. Microporous polypropylene films and process for producing the same
JP2009026733A (en) * 2007-01-30 2009-02-05 Asahi Kasei Chemicals Corp Multilayer porous membrane and its manufacturing method
WO2010053172A1 (en) * 2008-11-10 2010-05-14 三菱樹脂株式会社 Laminated porous film, separator for lithium cell, and cell
WO2012105661A1 (en) * 2011-02-03 2012-08-09 東レ株式会社 Porous polypropylene film, separator for electricity storage device, and electricity storage device

Also Published As

Publication number Publication date
WO2013054930A1 (en) 2013-04-18
CN103874725B (en) 2015-12-02
KR20140081797A (en) 2014-07-01
CN103874725A (en) 2014-06-18
KR101956950B1 (en) 2019-03-11
JPWO2013054930A1 (en) 2015-04-02

Similar Documents

Publication Publication Date Title
JP5354132B2 (en) Porous polypropylene film and power storage device
JP5626486B2 (en) Porous polypropylene film, separator for electricity storage device, and electricity storage device
JP5907066B2 (en) Porous polypropylene film, separator for electricity storage device, and electricity storage device
JP5672007B2 (en) Porous polypropylene film roll
JP5807388B2 (en) Porous polypropylene film
JP6273898B2 (en) Laminated porous film and power storage device
JP5267754B1 (en) Porous polyolefin film and electricity storage device
JP2010242060A (en) Porous polypropylene film roll
JP2013100487A (en) Porous film and electricity storage device
JP6089581B2 (en) Porous polyolefin film, laminated porous film, and electricity storage device
JP5251193B2 (en) Porous polyolefin film
WO2014103713A1 (en) Porous polyolefin film and method for producing same, and storage device separator formed using same
JP5672015B2 (en) Biaxially oriented porous film and power storage device
JP6361251B2 (en) Porous film, separator for electricity storage device, and electricity storage device
JP5724329B2 (en) Porous polypropylene film roll
JP2014060146A (en) Porous polyolefin film, and electric power storage device
JP5354131B2 (en) Porous polypropylene film, laminated porous film, and electricity storage device
WO2013187326A1 (en) Porous polypropylene film, separator for electricity storage devices, and electricity storage device
WO2012169510A1 (en) Porous polypropylene film and process for manufacturing same
JP2012022911A (en) Laminate separator and power storage device
JP2013100458A (en) Porous polyolefin film and electric storage system
WO2013054931A1 (en) Porous polypropylene film and electricity-storage device
JP2013199511A (en) Porous film, and electricity storage device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

R151 Written notification of patent or utility model registration

Ref document number: 5267754

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151