JP2009026733A - Multilayer porous membrane and its manufacturing method - Google Patents

Multilayer porous membrane and its manufacturing method Download PDF

Info

Publication number
JP2009026733A
JP2009026733A JP2008013069A JP2008013069A JP2009026733A JP 2009026733 A JP2009026733 A JP 2009026733A JP 2008013069 A JP2008013069 A JP 2008013069A JP 2008013069 A JP2008013069 A JP 2008013069A JP 2009026733 A JP2009026733 A JP 2009026733A
Authority
JP
Japan
Prior art keywords
porous membrane
polyolefin resin
mass
inorganic filler
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008013069A
Other languages
Japanese (ja)
Other versions
JP4931083B2 (en
JP2009026733A5 (en
Inventor
Hiroshi Murata
博 村田
Kosuke Naruto
宏介 成戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2008013069A priority Critical patent/JP4931083B2/en
Publication of JP2009026733A publication Critical patent/JP2009026733A/en
Publication of JP2009026733A5 publication Critical patent/JP2009026733A5/ja
Application granted granted Critical
Publication of JP4931083B2 publication Critical patent/JP4931083B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multilayer porous membrane having high safety and applicability combined as a nonaqueous electrolyte battery separator, in particular. <P>SOLUTION: On at least one face of a polyolefin resin porous membrane, a porous layer is provided containing inorganic filler and resin bonder. A maximum value for the heat shrinkage stress of the polyolefin resin porous membrane is 10 g or smaller. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、多層多孔膜、非水電解液電池用セパレータ、非水電解液電池、及び多層多孔膜の製造方法に関する。   The present invention relates to a multilayer porous membrane, a separator for a nonaqueous electrolyte battery, a nonaqueous electrolyte battery, and a method for producing a multilayer porous membrane.

ポリオレフィン多孔膜は、優れた電気絶縁性やイオン透過性を示すことから、電池やコンデンサー等におけるセパレータとして広く利用されている。近年、携帯機器の多機能化、軽量化に伴い、その電源として高出力密度、高容量密度のリチウムイオン二次電池が使用されている。このような高出力密度、高容量密度のリチウムイオン二次電池にも、セパレータとしてポリオレフィン多孔膜が多く用いられている。
ここで、リチウムイオン二次電池には通常、電解液として有機溶媒が用いられている。従って、リチウムイオン二次電池に短絡や過充電などの異常事態が生じた場合には、電解液が分解して最悪の場合には発火に至る可能性がある。このような事態を防ぐため、リチウムイオン二次電池にはいくつかの安全機能が組み込まれている。セパレータのシャットダウン機能もその一例である。
Polyolefin porous membranes are widely used as separators in batteries, capacitors and the like because they exhibit excellent electrical insulation and ion permeability. In recent years, with the increase in functionality and weight of portable devices, lithium ion secondary batteries with high output density and high capacity density have been used as power sources. Polyolefin porous membranes are often used as separators in such high power density and high capacity density lithium ion secondary batteries.
Here, in the lithium ion secondary battery, an organic solvent is usually used as an electrolytic solution. Therefore, when an abnormal situation such as a short circuit or overcharge occurs in the lithium ion secondary battery, there is a possibility that the electrolytic solution is decomposed and, in the worst case, ignition occurs. In order to prevent such a situation, some safety functions are incorporated in the lithium ion secondary battery. An example is the separator shutdown function.

シャットダウン機能とは、電池が異常発熱を起こした際、セパレータの微多孔が熱溶融等により閉塞して電解液内のイオン伝導を抑制し、電気化学反応の進行をストップさせる機能を意味する。一般的にシャットダウン温度が低いほど、安全性が高いとされる。ポリエチレンは適度なシャットダウン温度を有するため、ポリエチレンはセパレータの成分として好ましく用いられている。   The shutdown function means a function of stopping the progress of the electrochemical reaction by suppressing the ionic conduction in the electrolytic solution by blocking the micropores of the separator due to heat melting or the like when the battery is abnormally heated. Generally, the lower the shutdown temperature, the higher the safety. Since polyethylene has an appropriate shutdown temperature, polyethylene is preferably used as a component of the separator.

しかしながら、高いエネルギーを有する電池においては熱暴走時の発熱量が大きい場合がある。シャットダウン温度を超えても温度が上昇し続けた場合、セパレータの破膜(以下、「ショート」と記載することがある。)により両極が短絡し、さらなる発熱が引き起こされる危険性がある。
このような事情のもと、セパレータと電極との間に、絶縁性無機フィラーを主成分とする層を形成する方法が提案されている(特許文献1、2、3、4、5、6、7)。また、これらの特許文献には、無機フィラーと樹脂バインダとを含有する分散液を、多孔膜であるセパレータ表面に塗布することにより、無機フィラー層をセパレータ表面に形成する方法が記載されている。
However, a battery having high energy may generate a large amount of heat during thermal runaway. If the temperature continues to rise even after the shutdown temperature is exceeded, there is a danger that both electrodes will be short-circuited due to the membrane breakage of the separator (hereinafter sometimes referred to as “short-circuit”), causing further heat generation.
Under such circumstances, a method of forming a layer mainly composed of an insulating inorganic filler between the separator and the electrode has been proposed (Patent Documents 1, 2, 3, 4, 5, 6, 7). Further, these patent documents describe a method of forming an inorganic filler layer on the separator surface by applying a dispersion containing an inorganic filler and a resin binder to the separator surface which is a porous film.

ここで、特許文献1,3,4には、上記絶縁性無機フィラーを主成分とする層中のバインダとしてポリビニルアルコールを使用する方法が記載されている。また、特許文献8、9、10には、電極層とセパレータの間を接着する接着剤としてポリビニルアルコールを使用する方法が記載されている。更に、特許文献11には、ポリオレフィン多孔膜の空孔壁面に無機物のみからなる薄膜を形成させる場合において、表面処理によって空孔壁面の接着性を増加させ、無機物のみからなる薄膜の剥離を防ぐ方法が記載されている。   Here, Patent Documents 1, 3 and 4 describe a method in which polyvinyl alcohol is used as a binder in a layer mainly composed of the insulating inorganic filler. Patent Documents 8, 9, and 10 describe a method in which polyvinyl alcohol is used as an adhesive for bonding between an electrode layer and a separator. Further, Patent Document 11 discloses a method of preventing adhesion of a thin film made of only an inorganic material by increasing the adhesion of the porous wall surface by surface treatment when forming a thin film made of only an inorganic material on the porous wall surface of a polyolefin porous film. Is described.

特許第3756815号公報Japanese Patent No. 3756815 特許第3752913号公報Japanese Patent No. 3752913 特開2005−276503号公報JP 2005-276503 A 特開2004−227972号公報JP 2004-227972 A 特開2000−040499号公報JP 2000-040499 A 特開平11−080395号公報Japanese Patent Laid-Open No. 11-080395 特開平09−237622号公報JP 09-237622 A 特許第3426253号公報Japanese Patent No. 3426253 特許第3393145号公報Japanese Patent No. 3393145 WO99/31750号公報WO99 / 31750 publication 特許第3797729号公報Japanese Patent No. 3797729

しかしながら、無機フィラーと樹脂バインダとを含有する分散液を、多孔膜であるセパレータ表面に塗布することにより無機フィラー層をセパレータ表面に形成する場合、無機フィラーおよび無機フィラーを結着するための樹脂バインダがセパレータの細孔に入り込み、多くの細孔を閉塞してセパレータの透過性が低下する場合があった。セパレータの透過性が低下すると、充放電特性が劣る傾向となりやすい。このような細孔の閉塞は、無機フィラー層の層厚が大きいほど、また、無機フィラーに対する樹脂バインダの比率が多いほど生じやすい。
一方、無機フィラー層の層厚を過度に薄くすると、シャットダウン温度を超えて温度が上昇し続けた場合に、溶融したセパレータと無機フィラー層とが共に破膜する場合がある。このような破膜は、両極の短絡を引き起こす場合があった。また、無機フィラーに対する樹脂バインダの比率が過度に少ないと、無機フィラーが十分に結着されない場合がある。無機フィラーの結着が十分でない場合、無機フィラーがセパレータ表面から容易に剥離、欠落する傾向となる。
However, when the inorganic filler layer is formed on the separator surface by applying a dispersion containing the inorganic filler and the resin binder to the separator surface, which is a porous film, the resin binder for binding the inorganic filler and the inorganic filler. May enter the pores of the separator and close many of the pores, thereby reducing the permeability of the separator. When the permeability of the separator is lowered, the charge / discharge characteristics tend to be inferior. Such blockage of pores is more likely to occur as the thickness of the inorganic filler layer increases and as the ratio of the resin binder to the inorganic filler increases.
On the other hand, if the layer thickness of the inorganic filler layer is excessively reduced, the melted separator and the inorganic filler layer may break together when the temperature continues to rise beyond the shutdown temperature. Such a rupture may cause a short circuit between the two electrodes. Further, if the ratio of the resin binder to the inorganic filler is excessively small, the inorganic filler may not be sufficiently bound. When the binding of the inorganic filler is not sufficient, the inorganic filler tends to be easily peeled off from the separator surface and missing.

また、無機フィラー層が積層されるポリオレフィン多孔膜の熱収縮応力が過度に大きいと、シャットダウン温度を超えて温度が上昇し続けた場合、溶融したセパレータと無機フィラー層とが共に破膜する場合がある。このような破膜は、両極の短絡を引き起こす場合がある。このような破膜は、セパレータの昇温速度が大きいほど顕著に生じる傾向となる。一方、このような破膜を防止するためにセパレータ表面の無機フィラー層の層厚を過度に厚くすることは、セパレータの透過性低下を引き起こす場合があった。   Also, if the heat shrinkage stress of the polyolefin porous film on which the inorganic filler layer is laminated is excessively large, the temperature may continue to rise beyond the shutdown temperature, and the molten separator and the inorganic filler layer may break together. is there. Such a rupture may cause a short circuit between the two electrodes. Such film breakage tends to occur more prominently as the temperature increase rate of the separator increases. On the other hand, excessively increasing the thickness of the inorganic filler layer on the separator surface in order to prevent such film breakage may cause a decrease in the permeability of the separator.

更に、無機フィラー層を形成する際の樹脂バインダや、無機フィラー層が積層される基材としてのセパレータの表面状態についての選択を誤ると、シャットダウン温度を超えて温度が上昇し続けた場合、破膜等によって両極の短絡が発生する温度(ショート温度)に大きなばらつきが発生する場合や、より高いショート温度を確保し難い場合があった。   Furthermore, if the resin binder used to form the inorganic filler layer or the surface condition of the separator as the substrate on which the inorganic filler layer is laminated are selected incorrectly, the temperature will continue to rise beyond the shutdown temperature. There is a case where a large variation occurs in a temperature (short circuit temperature) at which both electrodes are short-circuited due to a film or the like, or a case where it is difficult to ensure a higher short circuit temperature.

本発明は、耐熱性と透過性とに優れた多層多孔膜を提供することを目的とする。また、そのような多孔膜を高い生産性にて提供できる製造方法、高い安全性と実用性とを備えた非水電解液電池用セパレータおよび非水電解液電池を提供することを目的とする。   An object of this invention is to provide the multilayer porous membrane excellent in heat resistance and permeability | transmittance. Moreover, it aims at providing the manufacturing method which can provide such a porous membrane with high productivity, the separator for nonaqueous electrolyte batteries provided with high safety | security and practicality, and a nonaqueous electrolyte battery.

本発明者は、前記課題を解決するため鋭意検討した結果、本発明に到達した。すなわち、本発明は下記の通りである。
[1]
ポリオレフィン樹脂多孔膜の少なくとも片面に、無機フィラーと樹脂バインダとを含む多孔層を備え、
前記ポリオレフィン樹脂多孔膜の、熱収縮応力の最大値が10g以下であることを特徴とする多層多孔膜。
[2]
請求項1に記載の多層多孔膜を用いた非水電解液電池用セパレータ。
[3]
請求項2に記載の非水電解液電池用セパレータを用いた非水電解液電池。
[4]
熱収縮応力の最大値が10g以下のポリオレフィン樹脂多孔膜の少なくとも片面に、無機フィラーと樹脂バインダとを含有する分散液を塗布することで、ポリオレフィン樹脂多孔膜の少なくとも片面に、無機フィラーと樹脂バインダとを含む多孔層を形成することを特徴とする多層多孔膜の製造方法。
The inventor of the present invention has arrived at the present invention as a result of intensive studies to solve the above-mentioned problems. That is, the present invention is as follows.
[1]
Provided with a porous layer containing an inorganic filler and a resin binder on at least one side of the polyolefin resin porous membrane,
The multilayer porous membrane, wherein the polyolefin resin porous membrane has a maximum heat shrinkage stress of 10 g or less.
[2]
A separator for a non-aqueous electrolyte battery using the multilayer porous membrane according to claim 1.
[3]
A nonaqueous electrolyte battery using the separator for a nonaqueous electrolyte battery according to claim 2.
[4]
By applying a dispersion liquid containing an inorganic filler and a resin binder to at least one surface of a polyolefin resin porous membrane having a maximum heat shrinkage stress of 10 g or less, the inorganic filler and the resin binder are applied to at least one surface of the polyolefin resin porous membrane. A method for producing a multilayer porous membrane comprising forming a porous layer comprising:

本発明によれば、耐熱性と透過性とに優れた多層多孔膜が提供される。また、そのような多孔膜を高い生産性にて提供できる製造方法、高い安全性と実用性とを備えた非水電解液電池用セパレータおよび非水電解液電池が提供される。   According to the present invention, a multilayer porous membrane excellent in heat resistance and permeability is provided. In addition, a manufacturing method capable of providing such a porous membrane with high productivity, a separator for nonaqueous electrolyte batteries and a nonaqueous electrolyte battery having high safety and practicality are provided.

以下、本発明を実施するための最良の形態(以下、「実施の形態」と略記する。)について詳細に説明する。尚、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
本実施の形態の多層多孔膜は、ポリオレフィン樹脂多孔膜の少なくとも片面に、無機フィラーと樹脂バインダとを含む多孔層を備える。
The best mode for carrying out the present invention (hereinafter abbreviated as “embodiment”) will be described in detail below. In addition, this invention is not limited to the following embodiment, It can implement by changing variously within the range of the summary.
The multilayer porous membrane of the present embodiment includes a porous layer containing an inorganic filler and a resin binder on at least one surface of the polyolefin resin porous membrane.

[ポリオレフィン樹脂多孔膜]
本実施の形態のポリオレフィン樹脂多孔膜は、ポリオレフィン樹脂を主成分として含むポリオレフィン樹脂組成物にて形成される。ポリオレフィン樹脂を主成分として含むことは、電池用セパレータとして用いた場合のシャットダウン性能を良好に実現する観点から好適である。
なお、本実施の形態において「主成分」とは、特定の成分が全成分中に占める割合が、好ましくは50質量%以上、より好ましくは55質量%以上、更に好ましくは60質量%以上、特に好ましくは80質量%以上、最も好ましくは90質量%以上であることを意味し、100質量%であっても良いことを意味する。
[Polyolefin resin porous membrane]
The polyolefin resin porous membrane of the present embodiment is formed of a polyolefin resin composition containing a polyolefin resin as a main component. The inclusion of a polyolefin resin as a main component is suitable from the viewpoint of satisfactorily realizing shutdown performance when used as a battery separator.
In the present embodiment, the “main component” means that the proportion of a specific component in all the components is preferably 50% by mass or more, more preferably 55% by mass or more, and still more preferably 60% by mass or more. It means preferably 80% by mass or more, most preferably 90% by mass or more, and may mean 100% by mass.

前記ポリオレフィン樹脂としては、通常の押出、射出、インフレーション、及びブロー成形等に使用されるポリオレフィン樹脂を用いることができる。当該ポリオレフィン樹脂としてより具体的には、例えば、エチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキセン、及び1−オクテン等をモノマーとして用いて得られるホモ重合体、共重合体、又は多段重合体等が挙げられる。これらは1種を単独で、又は2種以上を併用することができる。
また、前記ポリオレフィン樹脂としては、例えば、低密度ポリエチレン、線状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、超高分子量ポリエチレン、アイソタクティックポリプロピレン、アタクティックポリプロピレン、エチレン−プロピレンランダム共重合体、ポリブテン、エチレンプロピレンラバー、等が挙げられる。
なお、前記ポリオレフィン樹脂としては、多層多孔膜の電池用セパレータとしての低い融点と高い強度とを両立する観点から、高密度ポリエチレンを主成分として含むことが好ましい。
As said polyolefin resin, the polyolefin resin used for normal extrusion, injection, inflation, blow molding, etc. can be used. More specifically, as the polyolefin resin, for example, a homopolymer or copolymer obtained by using ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, 1-octene and the like as monomers. Examples thereof include a coalescence or a multistage polymer. These can be used alone or in combination of two or more.
Examples of the polyolefin resin include low density polyethylene, linear low density polyethylene, medium density polyethylene, high density polyethylene, ultrahigh molecular weight polyethylene, isotactic polypropylene, atactic polypropylene, ethylene-propylene random copolymer, Examples include polybutene and ethylene propylene rubber.
In addition, as said polyolefin resin, it is preferable to contain a high density polyethylene as a main component from a viewpoint of making low melting | fusing point and high intensity | strength as a battery separator of a multilayer porous membrane compatible.

前記ポリオレフィン樹脂の粘度平均分子量としては、好ましくは3万以上1200万以下、より好ましくは5万以上200万未満、更に好ましくは10万以上100万未満である。粘度平均分子量を3万以上とすることは、溶融成形の際のメルトテンションを大きく設定して良好な成形性を実現する観点、及び、十分な絡み合いを付与して高強度を実現する観点から好ましい。一方、粘度平均分子量を1200万以下とすることは、均一な溶融混練を実現し、シートの良好な成形性、特に良好な厚み安定性を実現する観点から好適である。なお、粘度平均分子量を100万未満とすることは、電池用セパレータとして使用した場合、温度上昇時に孔を閉塞しやすく良好なシャットダウン機能を実現する観点から好ましい。
ここで、前記ポリオレフィン樹脂の粘度平均分子量を調整する方法としては、単独で特定の粘度平均分子量を有する重合体を用いる方法の他、粘度平均分子量の異なる複数の重合体を混合して用いる方法が挙げられる。例えば、粘度平均分子量が100万未満に調整する場合、粘度平均分子量が100万未満のポリオレフィンを使用する代わりに、例えば粘度平均分子量が200万のポリエチレンと、例えば粘度平均分子量が27万のポリエチレンとを混合して用いることができる。
なお、本実施の形態における「粘度平均分子量」とは、後述する実施例の測定法に準じて測定される値である。
The polyolefin resin has a viscosity average molecular weight of preferably 30,000 to 12 million, more preferably 50,000 to less than 2 million, and still more preferably 100,000 to less than 1 million. A viscosity average molecular weight of 30,000 or more is preferable from the viewpoint of realizing a good moldability by setting a large melt tension during melt molding and from the viewpoint of realizing a high strength by imparting sufficient entanglement. . On the other hand, setting the viscosity average molecular weight to 12 million or less is preferable from the viewpoint of realizing uniform melt-kneading and realizing good moldability of the sheet, particularly good thickness stability. When the viscosity average molecular weight is less than 1 million, when used as a battery separator, it is preferable from the viewpoint of realizing a good shutdown function because the holes are likely to close when the temperature rises.
Here, as a method for adjusting the viscosity average molecular weight of the polyolefin resin, there is a method using a plurality of polymers having different viscosity average molecular weights in addition to a method using a polymer having a specific viscosity average molecular weight alone. Can be mentioned. For example, when adjusting the viscosity average molecular weight to less than 1 million, instead of using a polyolefin having a viscosity average molecular weight of less than 1 million, for example, polyethylene having a viscosity average molecular weight of 2 million, for example, polyethylene having a viscosity average molecular weight of 270,000 Can be mixed and used.
In addition, the “viscosity average molecular weight” in the present embodiment is a value measured according to the measurement method of Examples described later.

前記ポリオレフィン樹脂組成物は、無機充填材を含有してもよい。このような無機充填材としては、200℃以上の融点をもち、電気絶縁性が高く、かつリチウムイオン二次電池の使用範囲で電気化学的に安定な無機充填材が好ましく用いられる。
このような無機充填材としてより具体的には、例えば、アルミナ、シリカ、チタニア、ジルコニア、マグネシア、セリア、イットリア、酸化亜鉛、酸化鉄などの酸化物系セラミックス;
窒化ケイ素、窒化チタン、窒化ホウ素等の窒化物系セラミックス;
シリコンカーバイド、炭酸カルシウム、硫酸アルミニウム、チタン酸カリウム、タルク、カオリンクレー、カオリナイト、ハロイサイト、パイロフィライト、モンモリロナイト、セリサイト、マイカ、アメサイト、ベントナイト、アスベスト、ゼオライト、ケイ酸カルシウム、ケイ酸マグネシウム、ケイ藻土、ケイ砂等のセラミックス、ガラス繊維等のセラミックス;
などが挙げられる。
これらは1種を単独で、又は2種以上を併用して用いることができる。
The polyolefin resin composition may contain an inorganic filler. As such an inorganic filler, an inorganic filler having a melting point of 200 ° C. or higher, high electrical insulation, and electrochemically stable in the usage range of the lithium ion secondary battery is preferably used.
More specifically, examples of such inorganic fillers include oxide ceramics such as alumina, silica, titania, zirconia, magnesia, ceria, yttria, zinc oxide, and iron oxide;
Nitride ceramics such as silicon nitride, titanium nitride, boron nitride;
Silicon carbide, calcium carbonate, aluminum sulfate, potassium titanate, talc, kaolin clay, kaolinite, halloysite, pyrophyllite, montmorillonite, sericite, mica, amicite, bentonite, asbestos, zeolite, calcium silicate, magnesium silicate , Ceramics such as diatomaceous earth and quartz sand, ceramics such as glass fiber;
Etc.
These can be used alone or in combination of two or more.

前記ポリオレフィン樹脂に上述した無機充填材を配合する場合、その配合比としては、後述する可塑剤を加えた状態で均一な溶融製膜が可能であり、シート状の多孔膜前駆体を形成でき、かつ生産性を損なわない程度であることが好ましい。
前記無機充填材が、前記ポリオレフィン樹脂と当該無機充填材との総量中に占める割合(質量分率)としては、好ましくは0%以上、より好ましくは1%以上、更に好ましくは3%以上、特に好ましくは5%以上であり、上限として好ましくは90%以下、より好ましくは80%以下、更に好ましくは70%以下、特に好ましくは60%以下である。無機充填材を添加することは、電解液との親和性を向上させ、電解液の含浸性を向上させる観点から好ましい。一方、無機充填材の質量分率を90%以下とすることは、生産性を損なわず、均一かつシート状の多孔膜前駆体(後述)を溶融製膜にて形成し得る観点から好ましい。
When the inorganic filler described above is blended with the polyolefin resin, the blending ratio thereof can be uniformly melted in a state where a plasticizer described later is added, and can form a sheet-like porous membrane precursor, And it is preferable that it is a grade which does not impair productivity.
The proportion of the inorganic filler in the total amount of the polyolefin resin and the inorganic filler (mass fraction) is preferably 0% or more, more preferably 1% or more, still more preferably 3% or more, particularly The upper limit is preferably 5% or more, and the upper limit is preferably 90% or less, more preferably 80% or less, still more preferably 70% or less, and particularly preferably 60% or less. The addition of the inorganic filler is preferable from the viewpoint of improving the affinity with the electrolytic solution and improving the impregnation property of the electrolytic solution. On the other hand, it is preferable that the mass fraction of the inorganic filler is 90% or less from the viewpoint that a uniform and sheet-like porous film precursor (described later) can be formed by melt film formation without impairing productivity.

なお、前記ポリオレフィン樹脂組成物には必要に応じ、フェノール系やリン系やイオウ系等の酸化防止剤、ステアリン酸カルシウムやステアリン酸亜鉛等の金属石鹸類、紫外線吸収剤、光安定剤、帯電防止剤、防曇剤、着色顔料等の添加剤を混合して使用できる。   If necessary, the polyolefin resin composition may be an antioxidant such as phenol, phosphorus or sulfur, a metal soap such as calcium stearate or zinc stearate, an ultraviolet absorber, a light stabilizer, or an antistatic agent. Further, additives such as an antifogging agent and a coloring pigment can be mixed and used.

前記ポリオレフィン樹脂多孔膜の製造方法としては、特に制限することなく一般的な製造方法を採用することができる。製造方法としてより具体的には、例えば、
(I)ポリオレフィン樹脂と可塑剤とを溶融混練してシート状に成形後、可塑剤を抽出することで多孔化させる方法、
(II)ポリオレフィン樹脂を溶融混練して高ドロー比で押出した後、熱処理と延伸によってポリオレフィン結晶界面を剥離させることで多孔化させる方法、
(III)ポリオレフィン樹脂と無機充填材とを溶融混練してシート状に成形後、延伸によってポリオレフィン樹脂と無機充填材との界面を剥離させることで多孔化させる方法、
(IV)ポリオレフィン樹脂を溶解後、ポリオレフィン樹脂に対する貧溶媒に浸漬させポリオレフィン樹脂を凝固させると同時に溶剤を除去することで多孔化させる方法、
などが挙げられる。
As a manufacturing method of the said polyolefin resin porous membrane, a general manufacturing method is employable, without restrict | limiting in particular. More specifically, as a manufacturing method, for example,
(I) A method in which a polyolefin resin and a plasticizer are melt-kneaded and formed into a sheet shape, and then made porous by extracting the plasticizer,
(II) A method for making a polyolefin resin porous by exfoliating the polyolefin crystal interface by heat treatment and stretching after melt kneading and extruding the polyolefin resin at a high draw ratio,
(III) A method in which a polyolefin resin and an inorganic filler are melt-kneaded and formed into a sheet shape, and then made porous by peeling the interface between the polyolefin resin and the inorganic filler by stretching,
(IV) After dissolving the polyolefin resin, it is immersed in a poor solvent for the polyolefin resin to solidify the polyolefin resin and at the same time remove the solvent to make it porous.
Etc.

以下、前記(I)の方法について更に説明する。
前記(I)の方法において用いられる可塑剤としては、ポリオレフィン樹脂と混合した際にポリオレフィン樹脂の融点以上において均一溶液を形成しうる不揮発性溶媒であることが好ましい。このような可塑剤としては、例えば、流動パラフィンやパラフィンワックス等の炭化水素類、フタル酸ジオクチルやフタル酸ジブチル等のエステル類、オレイルアルコールやステアリルアルコール等の高級アルコール類、等が挙げられる。特に、ポリオレフィン樹脂がポリエチレンを主成分として含有する場合に流動パラフィンを用いることは、流動パラフィンがポリエチレンとの良好な相溶性を有するため、延伸時にポリオレフィン樹脂との間で界面剥離を生じ難く、均一な延伸を実施する観点から好適である。
Hereinafter, the method (I) will be further described.
The plasticizer used in the method (I) is preferably a non-volatile solvent capable of forming a uniform solution at a temperature equal to or higher than the melting point of the polyolefin resin when mixed with the polyolefin resin. Examples of such plasticizers include hydrocarbons such as liquid paraffin and paraffin wax, esters such as dioctyl phthalate and dibutyl phthalate, higher alcohols such as oleyl alcohol and stearyl alcohol, and the like. In particular, the use of liquid paraffin when the polyolefin resin contains polyethylene as a main component is that liquid paraffin has good compatibility with polyethylene, so that it is difficult to cause interfacial delamination with the polyolefin resin during stretching. From the viewpoint of performing proper stretching.

前記ポリオレフィン樹脂に対する前記可塑剤の配合比としては、均一な溶融混練が可能であり、シート状の微多孔膜前駆体を形成でき、かつ生産性を損なわない程度とするのが好ましい。
前記可塑剤が、前記ポリオレフィン樹脂と当該可塑剤、及び必要に応じて配合される無機充填材との総量中に占める割合(質量分率)としては、好ましくは30%以上、より好ましくは40%以上であり、上限として好ましくは80%以下、より好ましくは70%以下である。可塑剤の質量分率を80%以下とすることは、溶融成形時のメルトテンションを維持し、成形性を確保する観点から好ましい。一方、30%以上とすることは、均質な薄膜を得る観点から好ましい。即ち、30%以上とすることによって可塑化効果が十分となり、結晶状に折り畳まれたラメラ晶が効率よく引き伸ばされ、高倍率の延伸でもポリオレフィン鎖の切断が起こらず均一かつ微細な孔構造が実現し得、その結果、高い膜強度が実現し得る。更に、30%以上とすることは、押出し成形時の押し出し負荷が低減される傾向となり、高い生産性を実現する観点からも好ましい。
The blending ratio of the plasticizer to the polyolefin resin is preferably such that uniform melt kneading is possible, a sheet-like microporous membrane precursor can be formed, and productivity is not impaired.
The proportion (mass fraction) of the plasticizer in the total amount of the polyolefin resin, the plasticizer, and the inorganic filler blended as necessary is preferably 30% or more, more preferably 40%. The upper limit is preferably 80% or less, more preferably 70% or less. Setting the mass fraction of the plasticizer to 80% or less is preferable from the viewpoint of maintaining melt tension during melt molding and ensuring moldability. On the other hand, setting it to 30% or more is preferable from the viewpoint of obtaining a homogeneous thin film. In other words, by setting it to 30% or more, the plasticizing effect is sufficient, the lamellar crystals folded in a crystalline form are efficiently stretched, and a uniform and fine pore structure is realized without breaking the polyolefin chain even at high magnification. As a result, high film strength can be realized. Furthermore, setting it to 30% or more tends to reduce the extrusion load at the time of extrusion molding, and is preferable from the viewpoint of realizing high productivity.

前記ポリオレフィン樹脂と前記可塑剤とを含む溶融混練物、あるいは前記ポリオレフィン樹脂と前記無機充填材と前記可塑剤とを含む溶融混練物を得る方法としては、ポリオレフィン樹脂単独、あるいはポリオレフィン樹脂と他の配合物とを樹脂混練装置(押出機、ニーダー、ラボプラストミル、混練ロール、バンバリーミキサー等)に投入し、樹脂を加熱溶融させながら任意の比率で可塑剤を導入して混練し、均一溶液を得る方法が好ましい。
中でも、予めポリオレフィン樹脂と可塑剤、あるいはポリオレフィン樹脂と無機充填材と可塑剤とをヘンシェルミキサー等を用い所定の割合で事前混練する工程を経て、該混練物を押出機(例えば、二軸押出機)に投入し、加熱溶融させながら所定可塑剤添加量の残り分を(例えば、サイドフィードする等の方法によって)任意の比率で導入し、更に混練する方法が好ましい。このような方法を採用することで、より分散性が良好なシートを得ることができ、高倍率の延伸が破膜することなく実施され得る。
As a method of obtaining a melt-kneaded product containing the polyolefin resin and the plasticizer, or a melt-kneaded product containing the polyolefin resin, the inorganic filler, and the plasticizer, the polyolefin resin alone or the polyolefin resin and other blends The product is put into a resin kneading apparatus (extruder, kneader, lab plast mill, kneading roll, Banbury mixer, etc.), and a plasticizer is introduced and kneaded at an arbitrary ratio while the resin is heated and melted to obtain a uniform solution. The method is preferred.
Among them, a polyolefin resin and a plasticizer or a polyolefin resin, an inorganic filler, and a plasticizer are preliminarily kneaded at a predetermined ratio using a Henschel mixer or the like, and the kneaded product is extruded into an extruder (for example, a twin screw extruder). The remaining amount of the predetermined plasticizer addition amount is introduced at an arbitrary ratio (for example, by side-feeding or the like) while being heated and melted, and further kneaded. By adopting such a method, a sheet with better dispersibility can be obtained, and stretching at a high magnification can be carried out without film breakage.

前記(I)の方法において、上記溶融混練物はシート状に成形される。溶融混練物を押出して冷却固化させシート状成形体を製造する方法としては、ポリオレフィン樹脂と可塑剤、あるいはポリオレフィン樹脂と無機充填材と可塑剤の均一溶融物を、Tダイ等を介してシート状に押出し、熱伝導体に接触させて樹脂の結晶化温度より充分に低い温度まで冷却する方法を採用し得る。冷却固化に用いられる熱伝導体としては、金属、水、空気、あるいは可塑剤自身等が使用できるが、特に金属製のロールに接触させて冷却する方法が最も熱伝導の効率が高く好ましい。また、金属製のロールに接触させる際に、ロール間で挟み込むと、更に熱伝導の効率が高まり、またシートが配向して膜強度が増し、シートの表面平滑性も向上するためより好ましい。
Tダイよりシート状に押出す際のダイリップ間隔としては、好ましくは400μm以上であり、より好ましくは500μm以上であり、上限として好ましくは3000μm以下、好ましくは2500μm以下である。ダイリップ間隔を400μm以上とすることは、メヤニ等を低減し、スジや欠点など膜品位への影響を低減し、その後の延伸工程に於いて膜破断などを防止する観点から好ましい。一方、3000μm以下とすることは、冷却速度が速く冷却ムラを防ぐ観点、及び厚みの安定性を維持する観点から好ましい。
In the method (I), the melt-kneaded product is formed into a sheet. As a method for producing a sheet-like molded product by extruding the melt-kneaded material and cooling and solidifying, a polyolefin resin and a plasticizer, or a uniform melt of a polyolefin resin, an inorganic filler, and a plasticizer is formed into a sheet shape via a T-die or the like. It is possible to employ a method of extruding to a thermal conductor and cooling to a temperature sufficiently lower than the crystallization temperature of the resin. As the heat conductor used for cooling and solidification, metal, water, air, plasticizer itself, or the like can be used. In particular, a method of cooling by contacting with a metal roll has the highest heat conduction efficiency and is preferable. Further, it is more preferable that the metal roll is sandwiched between the rolls because the heat conduction efficiency is further increased, the sheet is oriented and the film strength is increased, and the surface smoothness of the sheet is also improved.
The die lip interval when extruding from a T-die into a sheet is preferably 400 μm or more, more preferably 500 μm or more, and the upper limit is preferably 3000 μm or less, preferably 2500 μm or less. It is preferable to set the die lip interval to 400 μm or more from the viewpoint of reducing spears and the like, reducing the influence on the film quality such as streaks and defects, and preventing film breakage in the subsequent stretching step. On the other hand, the thickness of 3000 μm or less is preferable from the viewpoint of fast cooling rate and prevention of uneven cooling and maintaining the thickness stability.

前記(I)の方法において形成されたシート状成形体(多孔膜前駆体)には必要に応じ、延伸処理を施しても良い。このような延伸処理としては、一軸延伸または二軸延伸のいずれも好適に用いることが出来る。中でも、得られる膜強度等の観点から二軸延伸が好ましい。二軸方向に高倍率延伸した場合、面方向に分子配向するため裂けにくく安定な構造となり高い突刺強度が得られる傾向となる。また、延伸方法は同時二軸延伸、逐次二軸延、多段延伸、多数回延伸等のいずれの方法を単独もしくは併用することも構わないが、延伸方法が同時二軸延伸であることが突刺強度の増加や均一延伸、シャットダウン性の観点から最も好ましい。ここでいう同時二軸延伸とはMD方向の延伸とTD方向の延伸が同時に施される手法であり、各方向の変形率(延伸倍率)は異なっても良い。逐次二軸延伸とは、MD方向、またはTD方向の延伸が独立して施される手法であり、MD方向、またはTD方向に延伸がなされている際は、他方向が非拘束状態、または定長に固定されている状態にある。延伸倍率は、面倍率で20倍以上100倍以下の範囲が好ましく、25倍以上50倍以下の範囲がさらに好ましい。各軸方向の延伸倍率はMD方向に4倍以上10倍以下、TD方向に4倍以上10倍以下の範囲が好ましく、MD方向に5倍以上8倍以下、TD方向に5倍以上8倍以下の範囲がさらに好ましい。総面倍率を20倍以上とすることは、膜に十分な強度を付与する観点から好適である。一方、100倍以下とすることは、膜破断を防ぎ、高い生産性を確保する観点から好適である。
なお、本実施の形態においてMD方向とは、樹脂の押し出し方向(機械方向、流れ方向)を意味する。一方、TD方向とは、シート状に押し出されたシートの幅方向(機械方向と垂直方向)を意味する。
The sheet-like molded body (porous membrane precursor) formed by the method (I) may be subjected to stretching treatment as necessary. As such a stretching treatment, either uniaxial stretching or biaxial stretching can be suitably used. Among these, biaxial stretching is preferable from the viewpoint of the obtained film strength and the like. When stretched at a high magnification in the biaxial direction, the molecules are oriented in the plane direction, so that the structure is difficult to tear and a stable structure tends to be obtained. Further, the stretching method may be any one of simultaneous biaxial stretching, sequential biaxial stretching, multi-stage stretching, multi-stretching and the like, but the stretching method is simultaneous biaxial stretching. Most preferable from the viewpoints of an increase in thickness, uniform stretching, and shutdown properties. Here, the simultaneous biaxial stretching is a method in which stretching in the MD direction and stretching in the TD direction are simultaneously performed, and the deformation rate (stretching ratio) in each direction may be different. Sequential biaxial stretching is a technique in which stretching in the MD direction or TD direction is performed independently. When stretching is performed in the MD direction or TD direction, the other direction is unconstrained or fixed. It is in a state of being fixed to the length. The draw ratio is preferably in the range of 20 times to 100 times, more preferably in the range of 25 times to 50 times in terms of surface magnification. The stretching ratio in each axial direction is preferably 4 to 10 times in the MD direction, preferably 4 to 10 times in the TD direction, 5 to 8 times in the MD direction, and 5 to 8 times in the TD direction. The range of is more preferable. Setting the total surface magnification to 20 times or more is preferable from the viewpoint of imparting sufficient strength to the film. On the other hand, setting it to 100 times or less is preferable from the viewpoint of preventing film breakage and ensuring high productivity.
In the present embodiment, the MD direction means the resin extrusion direction (machine direction, flow direction). On the other hand, the TD direction means a width direction (a direction perpendicular to the machine direction) of the sheet extruded into a sheet shape.

前記延伸処理においては、圧延工程を併用しても構わない。圧延工程は、例えば、ダブルベルトプレス機等を使用したプレス法を用いて実施される。このような圧延工程を採用することは、特に表層部分の配向を増すことが可能となるため好適である。圧延面倍率は、好ましくは1倍より大きく3倍以下であり、より好ましくは1倍より大きく2倍以下である。1倍より大きいことは、面配向を増加させ、膜強度を増加させる観点から好適である。一方、3倍以下とすることは、表層部分と中心内部との配向差を小さく維持し、延伸工程で表層部と内部で均一な多孔構造を発現する観点、並びに工業生産上の観点から好ましい。   In the said extending | stretching process, you may use a rolling process together. A rolling process is implemented using the press method which uses a double belt press etc., for example. Employing such a rolling step is particularly preferable because the orientation of the surface layer portion can be increased. The rolling surface magnification is preferably greater than 1 and 3 or less, more preferably greater than 1 and 2 or less. A ratio larger than 1 is preferable from the viewpoint of increasing the plane orientation and increasing the film strength. On the other hand, it is preferable to make it 3 times or less from the viewpoint of maintaining a small orientation difference between the surface layer portion and the center inside, and expressing a uniform porous structure in the surface layer portion and inside in the stretching step, and from the viewpoint of industrial production.

前記(I)の方法においては、形成されたシート状成形体(多孔膜前駆体)から可塑剤が抽出されて、ポリオレフィン樹脂多孔膜が形成される。
可塑剤を抽出する方法としてはバッチ式、連続式のいずれでもよいが、抽出溶剤に多孔膜前駆体を浸漬することにより可塑剤を抽出し、充分に乾燥させ、可塑剤を多孔膜から実質的に除去することが好ましい。多孔膜の収縮を抑えるために、浸漬、乾燥の一連の工程中に多孔膜の端部を拘束することが好ましい。また、抽出後の多孔膜中の可塑剤残存量は1質量%未満にすることが好ましい。
In the method (I), a plasticizer is extracted from the formed sheet-like molded body (porous membrane precursor) to form a polyolefin resin porous membrane.
The method for extracting the plasticizer may be either a batch type or a continuous type, but the plasticizer is extracted by immersing the porous membrane precursor in an extraction solvent and sufficiently dried, so that the plasticizer is substantially removed from the porous membrane. It is preferable to remove it. In order to suppress the shrinkage of the porous film, it is preferable to constrain the end of the porous film during a series of steps of immersion and drying. Moreover, it is preferable that the plasticizer residual amount in the porous membrane after extraction is less than 1% by mass.

抽出溶剤としては、ポリオレフィン樹脂に対して貧溶媒であり、かつ可塑剤に対して良溶媒であることが好ましい。また、抽出溶剤としては、その沸点がポリオレフィン樹脂多孔膜の融点より低いことが望ましい。
このような抽出溶剤としては、例えば、n−ヘキサンやシクロヘキサン等の炭化水素類、塩化メチレンや1,1,1−トリクロロエタン等のハロゲン化炭化水素類、ハイドロフルオロエーテルやハイドロフルオロカーボン等の非塩素系ハロゲン化溶剤、エタノールやイソプロパノール等のアルコール類、ジエチルエーテルやテトラヒドロフラン等のエーテル類、アセトンやメチルエチルケトン等のケトン類が挙げられる。
ここで、これら抽出溶剤としては、その蒸留等により回収された抽出溶剤を使用することも可能である。
なお、可塑剤と共に無機充填材を溶融混練した場合には、必要に応じて無機充填材を抽出してもよい。この場合の抽出溶剤は、ポリオレフィン樹脂に対して貧溶媒であり、かつ無機充填材に対して良溶媒であり、沸点がポリオレフィン多孔膜の融点より低いことが望ましい。
The extraction solvent is preferably a poor solvent for the polyolefin resin and a good solvent for the plasticizer. The extraction solvent preferably has a boiling point lower than the melting point of the polyolefin resin porous membrane.
Examples of such extraction solvents include hydrocarbons such as n-hexane and cyclohexane, halogenated hydrocarbons such as methylene chloride and 1,1,1-trichloroethane, and non-chlorine-based solvents such as hydrofluoroether and hydrofluorocarbon. Examples thereof include halogenated solvents, alcohols such as ethanol and isopropanol, ethers such as diethyl ether and tetrahydrofuran, and ketones such as acetone and methyl ethyl ketone.
Here, as these extraction solvents, it is also possible to use extraction solvents recovered by distillation or the like.
When the inorganic filler is melt-kneaded together with the plasticizer, the inorganic filler may be extracted as necessary. The extraction solvent in this case is preferably a poor solvent for the polyolefin resin and a good solvent for the inorganic filler, and has a boiling point lower than the melting point of the polyolefin porous membrane.

上述した(I)〜(IV)の製造方法は必要に応じ、熱固定、熱緩和等の熱処理工程を有しても良い。このような熱処理工程は、延伸工程に引き続いて、または後に実施されることが、ポリオレフィン樹脂多孔膜の熱収縮を抑制する観点から好ましい。
このような熱処理工程としてより具体的には、例えば、テンター熱固定機にて熱固定する方法等が挙げられる。
The manufacturing methods (I) to (IV) described above may have a heat treatment step such as heat fixation or heat relaxation, if necessary. Such a heat treatment step is preferably performed subsequent to or after the stretching step from the viewpoint of suppressing thermal shrinkage of the polyolefin resin porous membrane.
More specific examples of such a heat treatment step include a method of heat setting with a tenter heat fixing machine.

前記ポリオレフィン樹脂多孔膜の、熱収縮応力の最大値としては、好ましくは10g以下、より好ましくは9g以下、更に好ましくは8g以下、また更に好ましくは7g以下、特に好ましくは6g以下、最も好ましくは5g以下であり、下限として好ましくは0g以上である。熱収縮応力の最大値を当該範囲に設定することは、得られる多層多孔膜の耐熱性と透過性とを両立する観点から好ましい。
なお、本実施の形態において「熱収縮応力の最大値」とは、一定の高温条件下、後述する実施例の測定方法「最大熱収縮応力(g)」で測定された、MD熱収縮応力値とTD熱収縮応力値とを比較した場合の、大きい方の数値を意味する。一般的な製法で作製されたポリオレフィン多孔膜の場合、MD熱収縮応力がTD熱収縮応力より大きいので、MD熱収縮応力の最大値が10g以下のポリオレフィン樹脂多孔膜を採用することで、MD方向、TD方向ともに高温での熱収縮率の小さい多層多孔膜を得ることができる。そのような多層多孔膜は、高温でMD方向、TD方向いずれの寸法安定性も要求される用途に特に好適に用いることができる。なお、そのような用途としては、例えばスタック型非水電解液電池用のセパレータ用途、などが挙げられる。
The maximum value of heat shrinkage stress of the polyolefin resin porous membrane is preferably 10 g or less, more preferably 9 g or less, still more preferably 8 g or less, still more preferably 7 g or less, particularly preferably 6 g or less, and most preferably 5 g. The lower limit is preferably 0 g or more. Setting the maximum value of the heat shrinkage stress within the above range is preferable from the viewpoint of achieving both heat resistance and permeability of the obtained multilayer porous membrane.
In the present embodiment, the “maximum value of heat shrinkage stress” means the MD heat shrinkage stress value measured by a measurement method “maximum heat shrinkage stress (g)” of an example described later under a constant high temperature condition. And the TD heat shrinkage stress value, the larger numerical value is meant. In the case of a polyolefin porous film produced by a general manufacturing method, the MD heat shrinkage stress is larger than the TD heat shrinkage stress. By adopting a polyolefin resin porous film having a maximum value of MD heat shrinkage stress of 10 g or less, the MD direction A multilayer porous membrane having a low thermal shrinkage at high temperatures in both the TD direction can be obtained. Such a multilayer porous membrane can be particularly suitably used for applications requiring dimensional stability in both the MD direction and the TD direction at high temperatures. In addition, as such a use, the separator use for stack type nonaqueous electrolyte batteries etc. are mentioned, for example.

前記ポリオレフィン樹脂多孔膜の熱収縮応力の最大値を10g以下にするための方法としては、例えば、使用するポリオレフィン樹脂の粘度平均分子量を下げる方法、可塑剤を使用する場合は可塑剤の量を増やしてポリオレフィン樹脂比率を下げる方法、無機充填材をポリオレフィン樹脂に添加する方法、溶融押出時の樹脂温度を上げる方法、溶融押出時の吐出量を下げる方法、Tダイ等のダイリップ間隔を広げる方法、延伸工程での延伸倍率を下げる方法、延伸工程での延伸温度を上げる方法、熱処理工程での処理温度を上げる方法、熱固定工程での緩和倍率を上げる方法、熱固定工程での緩和温度を上げる方法などが挙げられる。これらは1種を単独で、又は2種以上を併用することができる。
そのような方法の中でも特に、粘度平均分子量10万以上の高密度ポリエチレンを質量分率で50%以上含むポリオレフィン樹脂を用い(高温時のメルトテンションを確保)、120℃以上で熱固定して配向緩和する方法が、ポリオレフィン樹脂多孔膜の膜強度を維持しつつ、熱収縮応力の最大値を10g以下に調整する観点から好ましい。
Examples of the method for reducing the maximum value of the heat shrinkage stress of the polyolefin resin porous membrane to 10 g or less include a method of lowering the viscosity average molecular weight of the polyolefin resin used, and an increase in the amount of plasticizer when using a plasticizer. To reduce the polyolefin resin ratio, to add an inorganic filler to the polyolefin resin, to increase the resin temperature during melt extrusion, to decrease the discharge rate during melt extrusion, to widen the die lip interval such as T-die, Method of lowering the stretching ratio in the process, Method of raising the stretching temperature in the stretching process, Method of raising the processing temperature in the heat treatment process, Method of raising the relaxation ratio in the heat setting process, Method of raising the relaxation temperature in the heat setting process Etc. These can be used alone or in combination of two or more.
Among such methods, in particular, a polyolefin resin containing 50% or more of high-density polyethylene having a viscosity average molecular weight of 100,000 or more by mass fraction is secured (to ensure melt tension at high temperature) and oriented by heat fixing at 120 ° C. or more. The relaxing method is preferable from the viewpoint of adjusting the maximum value of the heat shrinkage stress to 10 g or less while maintaining the film strength of the polyolefin resin porous film.

また、上述した(I)〜(IV)の製造方法は必要に応じ、表面処理工程を有しても良い。このような表面処理工程を実施することは、多層多孔膜の優れた耐熱性と透過性とを同時に達成する観点や、後述する多孔層を形成する無機フィラー含有樹脂溶液をより均一に塗布する観点、更には、当該多孔層とポリオレフィン樹脂多孔膜との接着性を向上させる観点から好ましい。
ここで、このような表面処理工程としては、例えば、コロナ放電処理法、プラズマ処理法、機械的粗面化法、溶剤処理法、酸処理法、紫外線酸化法、界面活性剤等による親水化処理法、電離性放射線等による架橋処理法、などが挙げられる。
Moreover, the manufacturing method of (I)-(IV) mentioned above may have a surface treatment process as needed. Implementing such a surface treatment step is a viewpoint of simultaneously achieving excellent heat resistance and permeability of the multilayer porous membrane, and a viewpoint of more uniformly applying an inorganic filler-containing resin solution that forms a porous layer described later. Furthermore, it is preferable from the viewpoint of improving the adhesiveness between the porous layer and the polyolefin resin porous membrane.
Here, as such a surface treatment process, for example, a corona discharge treatment method, a plasma treatment method, a mechanical surface roughening method, a solvent treatment method, an acid treatment method, an ultraviolet oxidation method, a hydrophilic treatment by a surfactant or the like. And a crosslinking treatment method using ionizing radiation and the like.

前記ポリオレフィン樹脂多孔膜の、表面の濡れ指数(測定法:JIS K−6768)としては、耐熱性と透過性とを両立させる観点から、好ましくは40mN/m以上、より好ましくは45mN/m以上、更に好ましくは55mN/m以上、特に好ましくは70mN/m以上であり、上限として好ましくは476mN/m以下である。
なお、ポリオレフィン樹脂多孔膜の、表面の濡れ指数を上記範囲に調整する方法としては、上記表面処理工程の条件を適宜選定すれば良い。
The polyolefin resin porous membrane has a surface wetting index (measurement method: JIS K-6768), preferably 40 mN / m or more, more preferably 45 mN / m or more, from the viewpoint of achieving both heat resistance and permeability. More preferably, it is 55 mN / m or more, particularly preferably 70 mN / m or more, and the upper limit is preferably 476 mN / m or less.
In addition, what is necessary is just to select suitably the conditions of the said surface treatment process as a method of adjusting the surface wetting index of the polyolefin resin porous membrane to the said range.

前記ポリオレフィン樹脂多孔膜の気孔率としては、好ましくは30%以上、より好ましくは40%以上であり、上限として好ましくは85%以下、より好ましくは70%以下、更に好ましくは55%以下である。なお、本実施の形態における気孔率は、100mm×100mm角の試料をポリオレフィン樹脂多孔膜から切り取り、その体積(mm)と質量(mg)を求め、それらと膜密度(g/cm)より、次式を用いて計算される値である。
気孔率=(体積−質量/膜密度)/体積×100
また、前記ポリオレフィン樹脂多孔膜の透気度としては、好ましくは10秒/100cc以上、より好ましくは150秒/100cc以上であり、上限として好ましくは650秒/100cc以下、好ましくは400秒/100cc以下である。
なお、上記気孔率や透気度は、ポリオレフィン樹脂多孔膜の製造条件を適宜選定することで調整可能である。
The porosity of the polyolefin resin porous membrane is preferably 30% or more, more preferably 40% or more, and the upper limit is preferably 85% or less, more preferably 70% or less, and still more preferably 55% or less. It is to be noted that the porosity in the present embodiment, cut a sample of 100 mm × 100 mm square of a polyolefin resin porous membrane, determined and the volume (mm 3) mass (mg), than those with the membrane density (g / cm 3) The value is calculated using the following formula.
Porosity = (volume−mass / film density) / volume × 100
The air permeability of the polyolefin resin porous membrane is preferably 10 seconds / 100 cc or more, more preferably 150 seconds / 100 cc or more, and the upper limit is preferably 650 seconds / 100 cc or less, preferably 400 seconds / 100 cc or less. It is.
In addition, the said porosity and air permeability can be adjusted by selecting suitably the manufacturing conditions of a polyolefin resin porous membrane.

[多孔層、多層多孔膜]
本実施の形態の多孔層は、例えば、無機フィラーと樹脂バインダとを含む無機フィラー含有樹脂溶液(分散液)を用いて形成される。
前記無機フィラーとしては、200℃以上の融点をもち、電気絶縁性が高く、かつリチウムイオン二次電池の使用範囲で電気化学的に安定であるものが好ましい。このような無機フィラーとしては、例えば、アルミナ、シリカ、チタニア、ジルコニア、マグネシア、セリア、イットリア、酸化亜鉛、酸化鉄などの酸化物系セラミックス、窒化ケイ素、窒化チタン、窒化ホウ素等の窒化物系セラミックス、シリコンカーバイド、炭酸カルシウム、硫酸アルミニウム、水酸化アルミニウム、チタン酸カリウム、タルク、カオリンクレー、カオリナイト、ハロイサイト、パイロフィライト、モンモリロナイト、セリサイト、マイカ、アメサイト、ベントナイト、アスベスト、ゼオライト、ケイ酸カルシウム、ケイ酸マグネシウム、ケイ藻土、ケイ砂等のセラミックス、ガラス繊維などが挙げられる。これらは1種を単独で、又は2種以上を併用することができる。中でも、電気化学的安定性の観点から、アルミナ、チタニアがより好ましい。
[Porous layer, multilayer porous film]
The porous layer of the present embodiment is formed using, for example, an inorganic filler-containing resin solution (dispersion) containing an inorganic filler and a resin binder.
The inorganic filler is preferably one having a melting point of 200 ° C. or higher, high electrical insulation, and electrochemically stable in the usage range of the lithium ion secondary battery. Examples of the inorganic filler include oxide ceramics such as alumina, silica, titania, zirconia, magnesia, ceria, yttria, zinc oxide, and iron oxide, and nitride ceramics such as silicon nitride, titanium nitride, and boron nitride. , Silicon carbide, calcium carbonate, aluminum sulfate, aluminum hydroxide, potassium titanate, talc, kaolin clay, kaolinite, halloysite, pyrophyllite, montmorillonite, sericite, mica, amicite, bentonite, asbestos, zeolite, silicic acid Examples thereof include ceramics such as calcium, magnesium silicate, diatomaceous earth, and silica sand, and glass fibers. These can be used alone or in combination of two or more. Among these, alumina and titania are more preferable from the viewpoint of electrochemical stability.

前記無機フィラーの平均粒径としては、好ましくは0.1μm以上、より好ましくは0.2μm以上、更に好ましくは0.3μm以上であり、上限として好ましくは3.0μm以下、より好ましくは1.0μm以下である。平均粒径を0.1μm以上とすることは、多層多孔膜の熱収縮率を低減して破膜し難くする観点、及び、高いショート温度を実現する観点から好ましい。一方、平均粒径を3.0μm以下とすることは、多層多孔膜の熱収縮率を低減して破膜し難くする観点から好ましい。また、平均粒径を1.5μm以下とすることは、層厚の小さい多孔層を良好に形成する観点、及び無機フィラーの多孔層中における分散性の観点から好ましい。
なお、本実施の形態において「無機フィラーの平均粒径」とは、後述する実施例の測定法において、SEMを用いる方法に準じて測定される値である。
The average particle size of the inorganic filler is preferably 0.1 μm or more, more preferably 0.2 μm or more, still more preferably 0.3 μm or more, and the upper limit is preferably 3.0 μm or less, more preferably 1.0 μm. It is as follows. Setting the average particle size to 0.1 μm or more is preferable from the viewpoint of reducing the thermal shrinkage rate of the multilayer porous film and making it difficult to break the film, and from the viewpoint of realizing a high short-circuit temperature. On the other hand, setting the average particle size to 3.0 μm or less is preferable from the viewpoint of reducing the thermal contraction rate of the multilayer porous membrane and making it difficult to break the membrane. Moreover, it is preferable that an average particle diameter shall be 1.5 micrometers or less from a viewpoint of forming a porous layer with small layer thickness favorably, and the viewpoint of the dispersibility in the porous layer of an inorganic filler.
In the present embodiment, the “average particle diameter of the inorganic filler” is a value measured according to a method using SEM in the measurement methods of the examples described later.

前記無機フィラーが、前記多孔層中に占める割合(質量分率)としては、耐熱性の点から、好ましくは50%以上、より好ましくは55%以上、更に好ましくは60%以上、特に好ましくは65%以上であり、上限として好ましくは100%未満、好ましくは99.99%以下、更に好ましくは99.9%以下、特に好ましくは99%以下である。   The proportion (mass fraction) of the inorganic filler in the porous layer is preferably 50% or more, more preferably 55% or more, still more preferably 60% or more, and particularly preferably 65 from the viewpoint of heat resistance. The upper limit is preferably less than 100%, preferably 99.99% or less, more preferably 99.9% or less, and particularly preferably 99% or less.

一方、前記樹脂バインダとしては、無機フィラーを結着でき、リチウムイオン二次電池の電解液に対して不溶であり、かつリチウムイオン二次電池の使用範囲で電気化学的に安定であることが好ましい。
このような樹脂バインダとしては、例えば、ポリエチレンやポリプロピレンなどのポリオレフィン、ポリフッ化ビニリデンやポリテトラフルオロエチレンなどの含フッ素樹脂、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体やエチレン−テトラフルオロエチレン共重合体などの含フッ素ゴム、スチレン−ブタジエン共重合体およびその水素化物、アクリロニトリル−ブタジエン共重合体およびその水素化物、アクリロニトリル−ブタジエン−スチレン共重合体およびその水素化物、メタクリル酸エステル−アクリル酸エステル共重合体、スチレン−アクリル酸エステル共重合体、アクリロニトリル−アクリル酸エステル共重合体、エチレンプロピレンラバー、ポリビニルアルコール、ポリ酢酸ビニルなどのゴム類、ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルイミド、ポリアミドイミド、ポリアミド、ポリエステルなどの融点および/またはガラス転移温度が180℃以上の樹脂が挙げられる。これらは1種を単独で、又は2種以上を併用することも可能である。
なお、樹脂バインダに使用するポリオレフィンの粘度平均分子量としては、成形加工性の観点から、好ましくは1000以上、より好ましくは2000以上、さらに好ましくは5000以上であり、上限として好ましくは1200万未満、好ましくは200万未満、さらに好ましくは100万未満である。
On the other hand, as the resin binder, it is preferable that an inorganic filler can be bound, it is insoluble in the electrolyte solution of the lithium ion secondary battery, and it is electrochemically stable in the usage range of the lithium ion secondary battery. .
Examples of such resin binders include polyolefins such as polyethylene and polypropylene, fluorine-containing resins such as polyvinylidene fluoride and polytetrafluoroethylene, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymers, and ethylene-tetrafluoro. Fluorine-containing rubber such as ethylene copolymer, styrene-butadiene copolymer and its hydride, acrylonitrile-butadiene copolymer and its hydride, acrylonitrile-butadiene-styrene copolymer and its hydride, methacrylate ester-acrylic Acid ester copolymer, styrene-acrylic acid ester copolymer, acrylonitrile-acrylic acid ester copolymer, ethylene propylene rubber, polyvinyl alcohol, polyvinyl acetate, etc. Arm, poly (phenylene ether), polysulfone, polyether sulfone, polyphenylene sulfide, polyetherimide, polyamideimide, polyamide, melting point and / or glass transition temperature of such polyesters are 180 ° C. or more resins. These can be used alone or in combination of two or more.
The viscosity average molecular weight of the polyolefin used for the resin binder is preferably 1000 or more, more preferably 2000 or more, and further preferably 5000 or more from the viewpoint of moldability, and the upper limit is preferably less than 12 million, preferably Is less than 2 million, more preferably less than 1 million.

樹脂バインダとしてポリビニルアルコールを使用する場合、そのケン化度は85%以上100%以下が好ましい。ケン化度を85%以上とすることは、ショート温度を大幅に向上させ得ると共に、ショート温度のばらつきを抑制し得、良好な安全性能を実現する観点から好ましい。ケン化度としては、より好ましくは90%以上、更に好ましくは95%以上、特に好ましくは99%以上である。
なお、本実施の形態において「ケン化度」とは、後述する実施例の測定法に準じて測定される値である。
When polyvinyl alcohol is used as the resin binder, the saponification degree is preferably 85% or more and 100% or less. Setting the saponification degree to 85% or more is preferable from the viewpoint of improving the short-circuit temperature and suppressing variations in the short-circuit temperature and realizing good safety performance. The saponification degree is more preferably 90% or more, still more preferably 95% or more, and particularly preferably 99% or more.
In the present embodiment, the “degree of saponification” is a value measured according to the measurement method of Examples described later.

前記ポリビニルアルコールの平均重合度(測定法:JIS K−6726)としては、好ましくは200以上、より好ましくは300以上、更に好ましくは500以上であり、上限として好ましくは5000以下、より好ましくは4000以下、更に好ましくは3500以下である。平均重合度を200以上とすることは、少量で無機フィラーを強固に結着できる傾向となり、多孔層の力学的強度を維持しながら多層多孔膜の透気度上昇を抑える観点から好ましい。一方、平均重合度を5000以下とすることは、無機フィラーとの分散液を調製する場合にゲル化等を防止する観点から好ましい。
なお、前記ポリビニルアルコールとしては市販品を用いることができ、その平均重合度としても、市販品のカタログ値を用いることができる。
The average degree of polymerization of the polyvinyl alcohol (measurement method: JIS K-6726) is preferably 200 or more, more preferably 300 or more, still more preferably 500 or more, and the upper limit is preferably 5000 or less, more preferably 4000 or less. More preferably, it is 3500 or less. Setting the average degree of polymerization to 200 or more tends to enable the inorganic filler to be firmly bound in a small amount, and is preferable from the viewpoint of suppressing an increase in air permeability of the multilayer porous membrane while maintaining the mechanical strength of the porous layer. On the other hand, an average polymerization degree of 5000 or less is preferable from the viewpoint of preventing gelation and the like when preparing a dispersion with an inorganic filler.
In addition, a commercial item can be used as said polyvinyl alcohol, and the catalog value of a commercial item can be used also as the average degree of polymerization.

前記樹脂バインダが、前記無機フィラーと前記樹脂バインダとの総量に占める割合としては、両者の結着性の点から、体積分率で好ましくは0.5%以上、より好ましくは0.7%以上、更に好ましくは1.0%以上であり、特に好ましくは2%以上であり、最も好ましくは2.5%以上であり、上限として好ましくは8%以下である。当該比率を0.5%以上とすることは、無機フィラーを十分に結着させ、剥離、欠落等が生じにくくする観点(良好な取り扱い性を十分に確保する観点)から好適である。一方、当該比率を8%以下とすることは、セパレータの良好なイオン透過性を実現する観点から好適である。   The proportion of the resin binder in the total amount of the inorganic filler and the resin binder is preferably 0.5% or more, more preferably 0.7% or more in terms of volume fraction from the viewpoint of the binding property of the two. More preferably, it is 1.0% or more, particularly preferably 2% or more, most preferably 2.5% or more, and preferably 8% or less as the upper limit. Setting the ratio to 0.5% or more is preferable from the viewpoint of sufficiently binding the inorganic filler and making it difficult to cause peeling, missing, and the like (to ensure sufficient handling properties). On the other hand, setting the ratio to 8% or less is preferable from the viewpoint of realizing good ion permeability of the separator.

前記多孔層の層厚としては、耐熱性向上の観点から、好ましくは0.5μm以上、より好ましくは2μm以上、更に好ましくは3μm以上、特に好ましくは4μm以上である。上限としては、透過性や電池の高容量化の観点から、好ましくは100μm以下、より好ましくは50μm以下、更に好ましくは30μm以下、特に好ましくは20μm以下、最も好ましくは10μm以下である。   The layer thickness of the porous layer is preferably 0.5 μm or more, more preferably 2 μm or more, still more preferably 3 μm or more, and particularly preferably 4 μm or more from the viewpoint of improving heat resistance. The upper limit is preferably 100 μm or less, more preferably 50 μm or less, still more preferably 30 μm or less, particularly preferably 20 μm or less, and most preferably 10 μm or less, from the viewpoint of permeability and increase in battery capacity.

本実施の形態の多層多孔膜は、前記無機フィラーと前記樹脂バインダとを溶媒に溶解または分散させた無機フィラー含有樹脂溶液(分散液)を、前記ポリオレフィン樹脂多孔膜の少なくとも片面に塗布することによってポリオレフィン樹脂多孔膜表面に多孔層を形成して製造することができる。
ここで、無機フィラーと樹脂バインダとを含有する分散液を、多孔膜であるセパレータ表面に塗布することにより無機フィラー層をセパレータ表面に形成する場合、このような方法は生産性に優れる反面、無機フィラーおよび無機フィラーを結着するための樹脂バインダがセパレータの細孔に入り込み、多くの細孔を閉塞してセパレータの透過性が低下する場合があった。
しかし、本実施の形態においては、分散液の組成や基材となるセパレータの熱収縮応力の最大値、或いはセパレータ表面の濡れ指数を特定範囲に設定することにより、意外なことに目詰まりが低減され、良好なセパレータの透過性を実現し得ることが見出されたものである。
The multilayer porous membrane of the present embodiment is obtained by applying an inorganic filler-containing resin solution (dispersion) in which the inorganic filler and the resin binder are dissolved or dispersed in a solvent to at least one surface of the polyolefin resin porous membrane. It can be produced by forming a porous layer on the surface of the polyolefin resin porous membrane.
Here, when an inorganic filler layer is formed on the separator surface by applying a dispersion containing an inorganic filler and a resin binder to the separator surface, which is a porous film, such a method is excellent in productivity but inorganic. In some cases, the resin binder for binding the filler and the inorganic filler enters into the pores of the separator and closes many of the pores, thereby reducing the permeability of the separator.
However, in this embodiment, clogging is unexpectedly reduced by setting the dispersion composition, the maximum value of the heat shrinkage stress of the separator as the base material, or the wetting index of the separator surface within a specific range. It has been found that good separator permeability can be realized.

前記溶媒としては、無機フィラーと樹脂バインダとが均一かつ安定に溶解または分散可能な溶媒を用いることが好ましい。このような溶媒としては、例えば、N−メチルピロリドンやN,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、水、エタノール、トルエン、熱キシレン、ヘキサンなどを挙げることができる。また、無機フィラー含有樹脂溶液を安定化させるため、あるいはポリオレフィン樹脂多孔膜への塗工性を向上させるために、前記分散液には界面活性剤等の分散剤、増粘剤、湿潤剤、消泡剤、酸やアルカリを含めたPH調製剤、等の各種添加剤を加えてもよい。これらの添加剤は、溶媒除去や可塑剤抽出の際に除去できるものが好ましいが、リチウムイオン二次電池の使用範囲において電気化学的に安定で、電池反応を阻害せず、かつ200℃程度まで安定ならば、電池内(多層多孔膜内)に残存してもよい。   As the solvent, it is preferable to use a solvent in which the inorganic filler and the resin binder can be dissolved or dispersed uniformly and stably. Examples of such a solvent include N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, water, ethanol, toluene, hot xylene, and hexane. In addition, in order to stabilize the inorganic filler-containing resin solution or to improve the coating property to the polyolefin resin porous membrane, the dispersion liquid may include a dispersant such as a surfactant, a thickener, a wetting agent, a disinfectant. Various additives such as foaming agents, pH adjusting agents including acids and alkalis, and the like may be added. These additives are preferably those that can be removed upon solvent removal or plasticizer extraction, but are electrochemically stable in the range of use of the lithium ion secondary battery, do not inhibit the battery reaction, and are up to about 200 ° C. If stable, it may remain in the battery (in the multilayer porous membrane).

無機フィラーと樹脂バインダとを溶媒に溶解または分散させる方法としては、例えば、ボールミル、ビーズミル、遊星ボールミル、振動ボールミル、サンドミル、コロイドミル、アトライター、ロールミル、高速インペラー分散、ディスパーザー、ホモジナイザー、高速衝撃ミル、超音波分散、撹拌羽根等による機械撹拌法、等が挙げられる。   Examples of the method for dissolving or dispersing the inorganic filler and the resin binder in the solvent include, for example, a ball mill, a bead mill, a planetary ball mill, a vibrating ball mill, a sand mill, a colloid mill, an attritor, a roll mill, a high-speed impeller dispersion, a disperser, a homogenizer, and a high-speed impact. Examples thereof include a mechanical stirring method using a mill, ultrasonic dispersion, a stirring blade, and the like.

前記分散液をポリオレフィン樹脂多孔膜の表面に塗布する方法としては、必要とする層厚や塗布面積を実現できる方法であれば特に限定されない。このような塗布方法としては、例えば、グラビアコーター法、小径グラビアコーター法、リバースロールコーター法、トランスファロールコーター法、キスコーター法、ディップコーター法、ナイフコーター法、エアドクタコーター法、ブレードコーター法、ロッドコーター法、スクイズコーター法、キャストコーター法、ダイコーター法、スクリーン印刷法、スプレー塗布法、等が挙げられる。また、また、前記分散液は、その用途に照らし、ポリオレフィン樹脂多孔膜の片面だけに塗布されてもよいし、両面に塗布されてもよい。   The method for applying the dispersion to the surface of the polyolefin resin porous membrane is not particularly limited as long as it can realize the required layer thickness and application area. Examples of such coating methods include gravure coater method, small diameter gravure coater method, reverse roll coater method, transfer roll coater method, kiss coater method, dip coater method, knife coater method, air doctor coater method, blade coater method, rod Examples include a coater method, a squeeze coater method, a cast coater method, a die coater method, a screen printing method, and a spray coating method. Moreover, the said dispersion liquid may be apply | coated only to the single side | surface of a polyolefin resin porous film in light of the use, and may be applied to both surfaces.

前記溶媒としては、ポリオレフィン樹脂多孔膜に塗布した分散液から除去され得る溶媒であることが好ましい。溶媒を除去する方法としては、ポリオレフィン樹脂多孔膜に悪影響を及ぼさない方法であれば特に限定することなく採用することが出来る。溶媒を除去する方法としては、例えば、ポリオレフィン樹脂多孔膜を固定しながらその融点以下の温度にて乾燥する方法、低温で減圧乾燥する方法、樹脂バインダに対する貧溶媒に浸漬して樹脂バインダを凝固させると同時に溶媒を抽出する方法などが挙げられる。   The solvent is preferably a solvent that can be removed from the dispersion applied to the polyolefin resin porous membrane. The method for removing the solvent is not particularly limited as long as it does not adversely affect the polyolefin resin porous membrane. As a method for removing the solvent, for example, a method in which the polyolefin resin porous membrane is fixed and dried at a temperature not higher than its melting point, a method in which the polyolefin resin is dried at a low temperature under reduced pressure, and a resin binder is solidified by being immersed in a poor solvent for the resin binder. At the same time, a method of extracting the solvent can be mentioned.

なお、本実施の形態の多層多孔膜は、上述した製造方法とは異なる方法を用いて製造することも可能である。例えば、一方の押出機にポリオレフィン樹脂多孔膜の原料(例えば、ポリオレフィン樹脂と可塑剤)を投入し、他方の押出機に多孔層の原料(例えば、無機フィラーと樹脂バインダと、必要に応じて可塑剤)を投入し、一つのダイで一体化させて(共押出)シート状に成形した後に、可塑剤を抽出する方法を採用することも可能である。   In addition, the multilayer porous membrane of this Embodiment can also be manufactured using the method different from the manufacturing method mentioned above. For example, a raw material for a polyolefin resin porous membrane (for example, a polyolefin resin and a plasticizer) is introduced into one extruder, and a raw material for a porous layer (for example, an inorganic filler and a resin binder, and plastic as necessary) is supplied to the other extruder. It is also possible to adopt a method in which a plasticizer is extracted after a plasticizer is added, integrated with one die (coextrusion), and formed into a sheet shape.

前記多層多孔膜において、前記多孔層の層厚が、多層多孔膜の厚み(総層厚)に占める割合としては、好ましくは15%以上、より好ましくは16%以上であり、上限として好ましくは50%以下、より好ましくは47%以下である。当該割合を15%以上とすることは、ショート温度を高め、良好な耐熱性を実現する観点から好適である、一方、50%以下とすることは、セパレータの透過性低下を抑制する観点から好適である。   In the multilayer porous membrane, the ratio of the layer thickness of the porous layer to the thickness (total layer thickness) of the multilayer porous membrane is preferably 15% or more, more preferably 16% or more, and preferably 50% as the upper limit. % Or less, more preferably 47% or less. Setting the ratio to 15% or more is preferable from the viewpoint of increasing the short-circuit temperature and realizing good heat resistance, while setting it to 50% or less is preferable from the viewpoint of suppressing a decrease in separator permeability. It is.

前記ポリオレフィン樹脂多孔膜の透気度と、(多孔層を積層した後の)多層多孔膜の透気度とを対比した場合の透気度増加率としては、好ましくは0%以上、上限として好ましくは100%以下、より好ましくは70%以下、更に好ましくは50%以下である。本実施の形態において透気度増加率は、多層多孔膜のイオン透過性(電池の充放電特性)を評価する指標の一つとして用いられる。
なお、基材であるポリオレフィン樹脂多孔膜の透気度が100秒/100cc未満の場合には、透気度増加率が0%以上500%以下であっても、多層多孔膜をセパレータとして好ましく用いることが可能である。
The rate of increase in air permeability when the air permeability of the polyolefin resin porous membrane is compared with the air permeability of the multilayer porous membrane (after laminating the porous layer) is preferably 0% or more, preferably as the upper limit. Is 100% or less, more preferably 70% or less, and still more preferably 50% or less. In the present embodiment, the air permeability increase rate is used as one of indexes for evaluating the ion permeability (battery charge / discharge characteristics) of the multilayer porous membrane.
When the air permeability of the polyolefin resin porous membrane as the substrate is less than 100 seconds / 100 cc, the multilayer porous membrane is preferably used as a separator even if the air permeability increase rate is 0% or more and 500% or less. It is possible.

多層多孔膜の透気度としては、好ましくは10秒/100cc以上、より好ましくは20秒/100cc以上、更に好ましくは30秒/100cc以上、特に好ましくは50秒/100cc以上である。一方、上限として好ましくは650秒/100cc以下、より好ましくは500秒/100cc以下、更に好ましくは450秒/100cc以下、特に好ましくは400秒/100cc以下である。透気度を10秒/100cc以上に設定することは、電池用セパレータとして使用した際の自己放電を抑制する観点から好適である。一方、650秒/100cc以下に設定することは、良好な充放電特性を得る観点から好適である。   The air permeability of the multilayer porous membrane is preferably 10 seconds / 100 cc or more, more preferably 20 seconds / 100 cc or more, still more preferably 30 seconds / 100 cc or more, and particularly preferably 50 seconds / 100 cc or more. On the other hand, the upper limit is preferably 650 seconds / 100 cc or less, more preferably 500 seconds / 100 cc or less, further preferably 450 seconds / 100 cc or less, and particularly preferably 400 seconds / 100 cc or less. Setting the air permeability to 10 seconds / 100 cc or more is preferable from the viewpoint of suppressing self-discharge when used as a battery separator. On the other hand, setting to 650 seconds / 100 cc or less is suitable from the viewpoint of obtaining good charge / discharge characteristics.

多層多孔膜の膜厚(総層厚)としては、好ましくは2μm以上、より好ましくは5μm以上、更に好ましくは7μm以上、上限として好ましくは200μm以下、より好ましくは100μm以下、更に好ましくは50μm以下である。膜厚を2μm以上とすることは、機械強度を十分に確保する観点から好適である。一方、200μm以下とすることは、セパレータの占有体積を低減し得、電池を高容量化する観点から好適である。   The thickness (total layer thickness) of the multilayer porous membrane is preferably 2 μm or more, more preferably 5 μm or more, still more preferably 7 μm or more, and the upper limit is preferably 200 μm or less, more preferably 100 μm or less, and even more preferably 50 μm or less. is there. Setting the film thickness to 2 μm or more is preferable from the viewpoint of ensuring sufficient mechanical strength. On the other hand, setting it to 200 μm or less is preferable from the viewpoint of increasing the capacity of the battery by reducing the occupied volume of the separator.

多層多孔膜の150℃での熱収縮率としては、0%以上15%以下であることが好ましく、0%以上10%以下であることがより好ましく、0%以上5%以下であることが特に好ましい。熱収縮率を15%以下とすることは、電池の異常発熱時においてもセパレータの破膜を良好に防止し、正負極間の接触を抑制する観点(より良好な安全性能を実現する観点)から好ましい。なお、熱収縮率についてはMD方向、TD方向ともに上記範囲に設定することが好ましい。   The heat shrinkage rate at 150 ° C. of the multilayer porous membrane is preferably 0% or more and 15% or less, more preferably 0% or more and 10% or less, and particularly preferably 0% or more and 5% or less. preferable. Setting the heat shrinkage rate to 15% or less from the viewpoint of preventing the separator from breaking even during abnormal battery heat generation and suppressing contact between the positive and negative electrodes (from the viewpoint of realizing better safety performance). preferable. The heat shrinkage rate is preferably set in the above range in both the MD direction and the TD direction.

多層多孔膜のシャットダウン温度(電池が異常発熱を起こした際、セパレータの微多孔が熱溶融等により閉塞する温度)としては、好ましくは120℃以上であり、上限として好ましくは160℃以下、好ましくは150℃以下である。シャットダウン温度を160℃以下とすることは、電池が発熱した場合などにおいても、電流遮断を速やかに促進し、より良好な安全性能が得る観点から好ましい。一方、120℃以上とすることは、例えば100℃前後の高温下での使用可能性の観点や、種々の熱処理を施し得る観点から好ましい。   The shutdown temperature of the multilayer porous membrane (the temperature at which the micropores of the separator are blocked by heat melting or the like when the battery has abnormal heat generation) is preferably 120 ° C. or higher, and preferably 160 ° C. or lower as the upper limit, preferably It is 150 degrees C or less. Setting the shutdown temperature to 160 ° C. or lower is preferable from the viewpoint of promptly promoting current interruption even when the battery generates heat and obtaining better safety performance. On the other hand, it is preferable to set it as 120 degreeC or more from the viewpoint of the usability in the high temperature of about 100 degreeC, for example, and the viewpoint which can perform various heat processing.

多層多孔膜のショート温度としては、好ましくは180℃以上、より好ましくは200℃以上であり、上限として好ましくは1000℃以下である。ショート温度を180℃以上とすることは、電池異常発熱においても放熱するまで正負極間の接触を抑制し、より良好な安全性能を実現する観点から好ましい。
なお、これら多層多孔膜の透気度、膜厚、熱収縮率、シャットダウン温度、ショート温度はいずれも、後述する実施例の測定法に準じて測定することができる。
The short-circuit temperature of the multilayer porous membrane is preferably 180 ° C. or higher, more preferably 200 ° C. or higher, and the upper limit is preferably 1000 ° C. or lower. Setting the short-circuit temperature to 180 ° C. or higher is preferable from the viewpoint of suppressing contact between the positive and negative electrodes until the heat is dissipated even in abnormal battery heat generation, and realizing better safety performance.
Note that the air permeability, film thickness, thermal contraction rate, shutdown temperature, and short circuit temperature of these multilayer porous membranes can all be measured according to the measurement methods of the examples described later.

本実施の形態の多層多孔膜は、耐熱性やイオン透過性に優れるため、リチウムイオン二次電池などの非水電解液二次電池や電気二重層キャパシタといった蓄電池に用いられるセパレータとして、特に有用である。そして、本実施の形態の多層多孔膜をセパレータとして用いることで、高い安全性と実用性とを備えた非水電解液電池を得ることができる。   The multilayer porous membrane of the present embodiment is particularly useful as a separator used in a storage battery such as a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery or an electric double layer capacitor because it has excellent heat resistance and ion permeability. is there. And the nonaqueous electrolyte battery provided with high safety | security and practicality can be obtained by using the multilayer porous film of this Embodiment as a separator.

次に、実施例及び比較例を挙げて本実施の形態をより具体的に説明するが、本実施の形態はその要旨を超えない限り、以下の実施例に限定されるものではない。なお、実施例中の物性は以下の方法により測定した。   Next, the present embodiment will be described more specifically with reference to examples and comparative examples. However, the present embodiment is not limited to the following examples unless it exceeds the gist. In addition, the physical property in an Example was measured with the following method.

(1)粘度平均分子量(Mv)
ASTM−D4020に基づき、デカリン溶媒における135℃での極限粘度[η](dl/g)を求める。ポリエチレンのMvは次式により算出した。
[η]=6.77×10−4Mv0.67
ポリプロピレンについては、次式によりMvを算出した。
[η]=1.10×10−4Mv0.80
(1) Viscosity average molecular weight (Mv)
Based on ASTM-D4020, the intrinsic viscosity [η] (dl / g) at 135 ° C. in a decalin solvent is determined. Mv of polyethylene was calculated by the following formula.
[Η] = 6.77 × 10 −4 Mv 0.67
For polypropylene, Mv was calculated by the following formula.
[Η] = 1.10 × 10 −4 Mv 0.80

(2)膜厚(μm)
ダイヤルゲージ(尾崎製作所製PEACOCK No.25(商標))にて測定した。MD10mm×TD10mmのサンプルを多孔膜から切り出し、格子状に9箇所(3点×3点)の膜厚を測定した。得られた平均値を膜厚(μm)とした。
(2) Film thickness (μm)
It measured with the dial gauge (PEACOCK No.25 (trademark) by Ozaki Seisakusho). A sample of MD 10 mm × TD 10 mm was cut out from the porous film, and the film thickness was measured at nine locations (3 points × 3 points) in a lattice shape. The average value obtained was defined as the film thickness (μm).

(3)透気度(秒/100cc)
JIS P−8117準拠のガーレー式透気度計(東洋精機製G−B2(商標))を用いた。内筒重量は567gで、直径28.6mm、645mmの面積を空気100mlが通過する時間を測定した。多孔層を形成させたことによる透気度増加率を、以下の式にて算出する。
透気度増加率(%)={(多孔多層膜の透気度−ポリオレフィン樹脂多孔膜の透気度)
/ポリオレフィン樹脂多孔膜の透気度}×100
(3) Air permeability (sec / 100cc)
A Gurley type air permeability meter (G-B2 (trademark) manufactured by Toyo Seiki Co.) conforming to JIS P-8117 was used. The inner cylinder weight was 567 g, and the time required for 100 ml of air to pass through an area of 28.6 mm in diameter and 645 mm 2 was measured. The air permeability increase rate due to the formation of the porous layer is calculated by the following formula.
Air permeability increase rate (%) = {(Air permeability of porous multilayer film−Air permeability of polyolefin resin porous film)
/ Air permeability of polyolefin resin porous membrane} × 100

(4)無機フィラーの平均粒径(μm)
走査型電子顕微鏡(SEM)にて拡大した、10μm×10μmの視野を直接、あるいはネガより写真に焼き付けた後、画像解析装置に読み込み、これから計算される各粒子の円換算径(面積を同じくする円の直径)の数平均値を、無機フィラーの平均粒径(μm)とした。ただし、写真から画像解析装置に入力する際に染色境界が不明瞭な場合には、写真のトレースを行い、この図を用いて画像解析装置に入力を行った。本実施の形態において特に断りの無い場合、「無機フィラーの平均粒径」は、走査型電子顕微鏡(SEM)を用いて測定される。
なお、無機フィラーの平均粒径は、レーザー式粒度分布測定装置を用いて測定することも可能である。この場合、無機フィラーを蒸留水に加え、ヘキサメタリン酸ナトリウム水溶液を少量添加してから超音波ホモジナイザーで1分間分散させた後、レーザー式粒度分布測定装置(日機装(株)製マイクロトラックMT3300EX)を用いて粒径分布を測定し、累積頻度が50%となる粒径を無機フィラーの平均粒径とすることができる。なお、本実施の形態において無機フィラーの平均粒径をレーザー式粒度分布測定装置を用いて測定した場合には、その旨が明記されている。
(4) Average particle size of inorganic filler (μm)
A 10 μm × 10 μm field of view magnified by a scanning electron microscope (SEM) directly or after printing on a photo from a negative, it is read into an image analyzer and the diameter of each particle calculated from this (the same area) The number average value of the diameters of the circles was defined as the average particle size (μm) of the inorganic filler. However, if the staining boundary is unclear when inputting from the photograph to the image analysis apparatus, the photograph was traced and input to the image analysis apparatus using this figure. If there is no notice in this Embodiment, "the average particle diameter of an inorganic filler" is measured using a scanning electron microscope (SEM).
The average particle size of the inorganic filler can also be measured using a laser type particle size distribution measuring device. In this case, an inorganic filler is added to distilled water, a small amount of a sodium hexametaphosphate aqueous solution is added, and the mixture is dispersed with an ultrasonic homogenizer for 1 minute, and then a laser particle size distribution analyzer (Microtrack MT3300EX manufactured by Nikkiso Co., Ltd.) is used. By measuring the particle size distribution, the particle size at which the cumulative frequency is 50% can be set as the average particle size of the inorganic filler. In the present embodiment, when the average particle size of the inorganic filler is measured using a laser particle size distribution measuring device, this is clearly stated.

(5)無機フィラーのかさ密度(g/cm
JIS R−9301−2−3に準拠する方法で、重装かさ密度を測定した。
(5) Bulk density of inorganic filler (g / cm 3 )
The heavy bulk density was measured by a method based on JIS R-9301-2-3.

(6)樹脂バインダの体積分率(%)
以下の式にて樹脂バインダの体積分率(%)を算出した。
Vb={(Wb/Db)/(Wb/Db+Wf/Df)}×100
Vb:樹脂バインダの体積分率(%)
Wb:樹脂バインダの重量(g)
Wf:無機フィラーの重量(g)
Db:樹脂バインダの密度(g/cm
Df:無機フィラーのかさ密度(g/cm
(6) Volume fraction of resin binder (%)
The volume fraction (%) of the resin binder was calculated by the following formula.
Vb = {(Wb / Db) / (Wb / Db + Wf / Df)} × 100
Vb: Volume fraction of resin binder (%)
Wb: Weight of resin binder (g)
Wf: Weight of inorganic filler (g)
Db: Resin binder density (g / cm 3 )
Df: Bulk density of inorganic filler (g / cm 3 )

(7)PVAのケン化度(%)
JIS K−0070に準拠して測定した。
(7) Saponification degree of PVA (%)
The measurement was performed according to JIS K-0070.

(8)MD最大熱収縮応力(g)、TD最大熱収縮応力(g)
島津製作所製TMA50(商標)を用いて測定した。MD(TD)方向の値を測定する場合は、TD(MD)方向に幅3mmに切り出したサンプルを、チャック間距離が10mmとなるようにチャックに固定し、専用プローブにセットする。初期荷重を1.0gとし、30℃から200℃まで10℃/minの昇温速度で加熱し、その時発生する荷重(g)を測定し、その最大値をMD(TD)最大熱収縮応力(g)とした。
(8) MD maximum heat shrinkage stress (g), TD maximum heat shrinkage stress (g)
It measured using Shimadzu Corporation TMA50 (trademark). When measuring the value in the MD (TD) direction, a sample cut to a width of 3 mm in the TD (MD) direction is fixed to the chuck so that the distance between the chucks is 10 mm, and set on a dedicated probe. The initial load is 1.0 g, the sample is heated from 30 ° C. to 200 ° C. at a heating rate of 10 ° C./min, the load (g) generated at that time is measured, and the maximum value is the MD (TD) maximum heat shrinkage stress ( g).

(9)150℃熱収縮率
セパレータをMD方向に100mm、TD方向に100mmに切り取り、所定温度(150℃)のオーブン中に1時間静置する。このとき、温風が直接サンプルにあたらないよう、サンプルを2枚の紙にはさむ。サンプルをオーブンから取り出し冷却した後、長さ(mm)を測定し、以下の式にてMDおよびTDの熱収縮率を算出した。
MD熱収縮率(%)={(100−加熱後のMDの長さ)/100}×100
TD熱収縮率(%)={(100−加熱後のTDの長さ)/100}×100
(9) 150 ° C. heat shrinkage The separator is cut to 100 mm in the MD direction and 100 mm in the TD direction, and left in an oven at a predetermined temperature (150 ° C.) for 1 hour. At this time, the sample is sandwiched between two sheets of paper so that the hot air does not directly hit the sample. After taking out the sample from the oven and cooling, the length (mm) was measured, and the thermal shrinkage rate of MD and TD was calculated by the following formula.
MD thermal shrinkage rate (%) = {(100−length of MD after heating) / 100} × 100
TD heat shrinkage rate (%) = {(100−length of TD after heating) / 100} × 100

(10)濡れ指数(mN/m)
JIS K−6768に準拠する方法で測定した。
(10) Wetting index (mN / m)
It measured by the method based on JISK-6768.

(11)シャットダウン温度、ショート温度
a.正極の作製
正極活物質としてリチウムコバルト複合酸化物(LiCoO)を92.2質量%、導電材としてリン片状グラファイトとアセチレンブラックをそれぞれ2.3質量%、バインダーとしてポリフッ化ビニリデン(PVDF)3.2質量%をN−メチルピロリドン(NMP)中に分散させてスラリーを調製する。このスラリーを正極集電体となる厚さ20μmのアルミニウム箔の片面にダイコーターで塗布し、130℃で3分間乾燥後、ロールプレス機で圧縮成形する。この時、正極の活物質塗布量は250g/m、活物質かさ密度は3.00g/cmになるようにする。
b.負極の作製
負極活物質として人造グラファイト96.6質量%、バインダーとしてカルボキシメチルセルロースのアンモニウム塩1.4質量%とスチレン−ブタジエン共重合体ラテックス1.7質量%を精製水中に分散させてスラリーを調製する。このスラリーを負極集電体となる厚さ12μmの銅箔の片面にダイコーターで塗布し、120℃で3分間乾燥後、ロールプレス機で圧縮成形する。この時、負極の活物質塗布量は106g/m、活物質かさ密度は1.35g/cmになるようにする。
c.非水電解液
プロピレンカーボネート:エチレンカーボネート:γ−ブチルラクトン=1:1:2(体積比)の混合溶媒に、溶質としてLiBFを濃度1.0mol/Lとなるように溶解させて調製する。
d.評価
熱電対を繋いだセラミックスプレート上に、65mm×20mmに切り出し非水電解液に1分以上浸漬した負極を載せ、この上に中央部に直径16mmの穴をあけた50mm×50mmに切り出した厚さ9μmのアラミドフィルムを載せ、この上に40mm×40mmに切り出し非水電解液に1時間以上浸漬した試料の多孔膜をアラミドフィルムの穴部を覆うように載せ、この上に65mm×20mmに切り出し非水電解液に1分以上浸漬した正極を負極に接触しないように載せ、その上にカプトンフィルム、更に厚さ約4mmのシリコンゴムを載せる。
これをホットプレート上にセットした後、油圧プレス機にて4.1MPaの圧力をかけた状態で、15℃/minの速度で昇温し、この際の正負極間のインピーダンス変化を交流1V、1kHzの条件下で200℃まで測定した。この測定において、インピーダンスが1000Ωに達した時点の温度をシャットダウン温度とし、孔閉塞状態に達した後、再びインピーダンスが1000Ωを下回った時点の温度をショート温度とした。
(11) Shutdown temperature, short-circuit temperature a. Production of positive electrode 92.2% by mass of lithium cobalt composite oxide (LiCoO 2 ) as a positive electrode active material, 2.3% by mass of flake graphite and acetylene black as a conductive material, and polyvinylidene fluoride (PVDF) 3 as a binder A slurry is prepared by dispersing 2% by mass in N-methylpyrrolidone (NMP). This slurry is applied to one side of a 20 μm thick aluminum foil serving as a positive electrode current collector with a die coater, dried at 130 ° C. for 3 minutes, and then compression molded with a roll press. At this time, the active material coating amount of the positive electrode is 250 g / m 2 , and the bulk density of the active material is 3.00 g / cm 3 .
b. Preparation of negative electrode A slurry was prepared by dispersing 96.6% by mass of artificial graphite as a negative electrode active material, 1.4% by mass of ammonium salt of carboxymethyl cellulose and 1.7% by mass of styrene-butadiene copolymer latex as a binder in purified water. To do. This slurry is applied to one side of a 12 μm-thick copper foil serving as a negative electrode current collector with a die coater, dried at 120 ° C. for 3 minutes, and then compression molded with a roll press. At this time, the active material coating amount of the negative electrode is set to 106 g / m 2 , and the active material bulk density is set to 1.35 g / cm 3 .
c. Nonaqueous electrolyte solution Prepared by dissolving LiBF 4 as a solute in a mixed solvent of propylene carbonate: ethylene carbonate: γ-butyllactone = 1: 1: 2 (volume ratio) to a concentration of 1.0 mol / L.
d. Evaluation On a ceramic plate connected with a thermocouple, a negative electrode cut into 65 mm × 20 mm and immersed in a non-aqueous electrolyte for 1 minute or more is placed, and a thickness cut into 50 mm × 50 mm with a hole having a diameter of 16 mm is formed on the negative electrode. Place a 9 μm thick aramid film, cut it into 40 mm × 40 mm, place a porous film of the sample soaked in non-aqueous electrolyte for 1 hour or more so as to cover the hole of the aramid film, and cut it into 65 mm × 20 mm A positive electrode immersed in a non-aqueous electrolyte for 1 minute or longer is placed so as not to contact the negative electrode, and a Kapton film and a silicon rubber having a thickness of about 4 mm are placed thereon.
After this was set on a hot plate, the temperature was raised at a rate of 15 ° C./min with a pressure of 4.1 MPa applied by a hydraulic press machine, and the impedance change between the positive and negative electrodes at this time was AC 1V, Measurement was performed up to 200 ° C. under the condition of 1 kHz. In this measurement, the temperature at which the impedance reached 1000Ω was taken as the shutdown temperature, and the temperature at which the impedance again fell below 1000Ω after reaching the hole closed state was taken as the short-circuit temperature.

(12)電池評価
a.正極の作製
(11)のaで作製した正極を面積2.00cmの円形に打ち抜いた。
b.負極の作製
(11)のbで作製した負極を面積2.05cmの円形に打ち抜いた。
c.非水電解液
エチレンカーボネート:エチルメチルカーボネート=1:2(体積比)の混合溶媒に、溶質としてLiPFを濃度1.0ml/Lとなるように溶解させて調製した。
d.電池組立と評価
正極と負極の活物質面が対向するように、下から負極、セパレータ、正極の順に重ね、蓋付きステンレス金属製容器に収納する。容器と蓋とは絶縁されており、容器は負極の銅箔と、蓋は正極のアルミ箔と接している。この容器内に前記した非水電解液を注入して密閉する。
上記のようにして組み立てた簡易電池を25℃雰囲気下、電流値3mA(約0.5C)で電池電圧4.2Vまで充電し、さらに4.2Vを保持するようにして電流値を3mAから絞り始めるという方法で、合計約6時間、電池作成後の最初の充電を行い、そして 電流値3mAで電池電圧3.0Vまで放電した。
次に、25℃雰囲気下、電流値6mA(約1.0C)で電池電圧4.2Vまで充電し、さらに4.2Vを保持するようにして電流値を6mAから絞り始めるという方法で、合計約3時間充電を行い、そして電流値6mAで電池電圧3.0Vまで放電して、その時の放電容量を1C放電容量(mAh)とした。
次に、25℃雰囲気下、電流値6mA(約1.0C)で電池電圧4.2Vまで充電し、さらに4.2Vを保持するようにして電流値を6mAから絞り始めるという方法で、合計約3時間充電を行い、そして電流値12mA(約2.0C)で電池電圧3.0Vまで放電して、その時の放電容量を2C放電容量(mAh)とした。
1C放電容量に対する2C放電容量の割合を算出し、この値をレート特性とした。
レート特性(%)=2C放電容量/1C放電容量 ×100
さらに、60℃雰囲気下、電流値6mA(約1.0C)で電池電圧4.2Vまで充電し、さらに4.2Vを保持するようにして電流値を6mAから絞り始めるという方法で、合計約3時間充電を行い、そして電流値6mAで電池電圧3.0Vまで放電するというサイクルを繰り返した。
このサイクルにおける1サイクル目の放電容量に対する所定サイクル後の放電容量の割合を容量維持率(%)として求め、サイクル特性を判断した。
(12) Battery evaluation a. Production of Positive Electrode The positive electrode produced in (11) a was punched into a circle having an area of 2.00 cm 2 .
b. Production of Negative Electrode The negative electrode produced in (11) b was punched into a circle having an area of 2.05 cm 2 .
c. Nonaqueous electrolyte solution Prepared by dissolving LiPF 6 as a solute in a mixed solvent of ethylene carbonate: ethyl methyl carbonate = 1: 2 (volume ratio) to a concentration of 1.0 ml / L.
d. Battery assembly and evaluation The negative electrode, the separator, and the positive electrode are stacked in this order from the bottom so that the active material surfaces of the positive electrode and the negative electrode face each other, and stored in a stainless steel container with a lid. The container and the lid are insulated, the container is in contact with the negative electrode copper foil, and the lid is in contact with the positive electrode aluminum foil. The non-aqueous electrolyte described above is injected into this container and sealed.
The simple battery assembled as described above is charged to a battery voltage of 4.2 V at a current value of 3 mA (about 0.5 C) in a 25 ° C. atmosphere, and the current value is reduced from 3 mA so as to maintain 4.2 V. In the method of starting, the first charge after battery preparation was performed for a total of about 6 hours, and then discharged to a battery voltage of 3.0 V at a current value of 3 mA.
Next, in a 25 ° C. atmosphere, the battery is charged to a battery voltage of 4.2 V at a current value of 6 mA (about 1.0 C), and the current value starts to be reduced from 6 mA so as to hold 4.2 V. The battery was charged for 3 hours and discharged at a current value of 6 mA to a battery voltage of 3.0 V. The discharge capacity at that time was set to 1 C discharge capacity (mAh).
Next, in a 25 ° C. atmosphere, the battery is charged to a battery voltage of 4.2 V at a current value of 6 mA (about 1.0 C), and the current value starts to be reduced from 6 mA so as to hold 4.2 V. The battery was charged for 3 hours, and discharged at a current value of 12 mA (about 2.0 C) to a battery voltage of 3.0 V. The discharge capacity at that time was 2 C discharge capacity (mAh).
The ratio of the 2C discharge capacity to the 1C discharge capacity was calculated, and this value was used as the rate characteristic.
Rate characteristics (%) = 2C discharge capacity / 1C discharge capacity × 100
Furthermore, in a 60 ° C. atmosphere, the battery is charged to a battery voltage of 4.2 V at a current value of 6 mA (about 1.0 C), and further, the current value starts to be reduced from 6 mA so as to maintain 4.2 V. The cycle of charging for a time and discharging to a battery voltage of 3.0 V at a current value of 6 mA was repeated.
The ratio of the discharge capacity after a predetermined cycle to the discharge capacity at the first cycle in this cycle was determined as the capacity retention rate (%), and the cycle characteristics were judged.

[実施例1]
粘度平均分子量(Mv)20万のポリエチレン47.5質量部とMv40万のポリプロピレン2.5質量部、可塑剤として流動パラフィン(LP)を30質量部、酸化防止剤としてペンタエリスリチル−テトラキス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]を0.5質量部添加したものをヘンシェルミキサーにて予備混合した。得られた混合物をフィーダーにより二軸同方向スクリュー式押出機フィード口へ供給した。また溶融混練し押し出される全混合物(100質量部)中に占める流動パラフィン量比が50質量部となるように、流動パラフィンを二軸押出機シリンダーへサイドフィードした。溶融混練条件は、設定温度200℃、スクリュー回転数200rpm、吐出量15kg/hで行った。続いて、溶融混練物をTダイを経て表面温度25℃に制御された冷却ロール間に押出し、厚さ1050μmのシート状のポリオレフィン組成物を得た。次に連続して同時二軸テンター延伸機へ導き、MD方向に7倍、TD方向に6.4倍に同時二軸延伸を行った。この時同時二軸テンターの設定温度は118℃であった。次にメチルエチルケトン槽に導き可塑剤を除去した後、メチルエチルケトンを乾燥除去した。さらにTDテンター熱固定機に導き、熱固定を行った。熱固定条件は、最大延伸倍率1.5倍、最終延伸倍率1.3倍、最大延伸時設定温度123℃、最終延伸時設定温度128℃であった。その結果、MD最大熱収縮応力3.8g、TD最大熱収縮応力2.9g、膜厚16μm、気孔率45%、透気度235秒/100ccのポリオレフィン樹脂多孔膜を得た。
[Example 1]
47.5 parts by mass of polyethylene having a viscosity average molecular weight (Mv) of 200,000, 2.5 parts by mass of polypropylene having an Mv of 400,000, 30 parts by mass of liquid paraffin (LP) as a plasticizer, and pentaerythrityl-tetrakis- [ What added 0.5 part by mass of 3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] was premixed with a Henschel mixer. The obtained mixture was supplied to the feed port of the twin-screw co-directional screw extruder by a feeder. Further, the liquid paraffin was side-fed to the twin-screw extruder cylinder so that the liquid paraffin amount ratio in the total mixture (100 parts by mass) melt-kneaded and extruded was 50 parts by mass. The melt-kneading conditions were a set temperature of 200 ° C., a screw rotation speed of 200 rpm, and a discharge rate of 15 kg / h. Subsequently, the melt-kneaded product was extruded through a T-die between cooling rolls controlled at a surface temperature of 25 ° C. to obtain a sheet-like polyolefin composition having a thickness of 1050 μm. Next, it was continuously led to a simultaneous biaxial tenter stretching machine, and simultaneous biaxial stretching was performed 7 times in the MD direction and 6.4 times in the TD direction. At this time, the set temperature of the simultaneous biaxial tenter was 118 ° C. Next, the plasticizer was removed by being led to a methyl ethyl ketone bath, and then methyl ethyl ketone was removed by drying. Furthermore, it was led to a TD tenter heat fixing machine and heat fixed. The heat setting conditions were a maximum draw ratio of 1.5 times, a final draw ratio of 1.3 times, a maximum drawing temperature of 123 ° C., and a final drawing temperature of 128 ° C. As a result, a polyolefin resin porous film having an MD maximum heat shrinkage stress of 3.8 g, a TD maximum heat shrinkage stress of 2.9 g, a film thickness of 16 μm, a porosity of 45%, and an air permeability of 235 seconds / 100 cc was obtained.

アルミナ粒子(平均粒径0.7μm))95質量部、ポリビニルアルコール(平均重合度1700、ケン化度99%以上)5質量部を150質量部の水にそれぞれ均一に分散させた水溶液を、上記ポリオレフィン樹脂多孔膜の表面にグラビアコーターを用いて塗布した後、60℃にて乾燥して水を除去し、多孔膜上に厚さ4μmの多孔層(バインダの体積分率3.4%)が形成した、総膜厚20μmの多層多孔膜を得た。
得られた多層多孔膜は、透気度255秒/100ccで、多孔層を形成させたことによる透気度増加率は9%と低く、優れた透過性を維持していた。また、150℃でのMD熱収縮率3%、TD熱収縮率3%と小さく、シャットダウン温度は146℃に観測され、ショートは200℃以上になっても観察されず、非常に高い耐熱性を示した。
この多層多孔膜をセパレータとして用いて電池評価を実施したところ、レート特性は90%以上と高く、100サイクル後の容量維持率は90%以上でサイクル特性も良好であった。
An aqueous solution in which 95 parts by mass of alumina particles (average particle size 0.7 μm) and 5 parts by mass of polyvinyl alcohol (average polymerization degree 1700, saponification degree 99% or more) are uniformly dispersed in 150 parts by mass of water, After coating with a gravure coater on the surface of the polyolefin resin porous membrane, it was dried at 60 ° C. to remove water, and a porous layer (binder volume fraction 3.4%) having a thickness of 4 μm was formed on the porous membrane. The formed multilayer porous film having a total film thickness of 20 μm was obtained.
The resulting multilayer porous membrane had an air permeability of 255 sec / 100 cc, and the rate of increase in air permeability due to the formation of the porous layer was as low as 9%, maintaining excellent permeability. In addition, MD heat shrinkage rate at 150 ° C is 3%, TD heat shrinkage rate is 3%, shutdown temperature is observed at 146 ° C, short circuit is not observed even at 200 ° C or higher, and has very high heat resistance. Indicated.
When the battery was evaluated using this multilayer porous membrane as a separator, the rate characteristics were as high as 90% or more, the capacity retention after 100 cycles was 90% or more, and the cycle characteristics were also good.

[実施例2]
実施例1で基材に用いたポリオレフィン樹脂多孔膜の表面に、コロナ放電処理(放電量50W)を実施した後、当該処理面側(表面の濡れ指数73mN/m以上)に、アルミナ粒子(平均粒径0.7μm)95質量部、SBラテックス(固形分濃度50%、最低成膜温度0℃以下)10質量部、ポリカルボン酸アンモニウム水溶液(サンノプコ製SNディスパーサント5468)1質量部、ポリオキシアルキレン系界面活性剤(サンノプコ製SNウェット980)1質量部を150質量部の水にそれぞれ均一に分散させた水溶液を、グラビアコーターを用いて塗布した後、60℃にて乾燥して水を除去し、多孔膜上に厚さ7μmの多孔層(バインダの体積分率7.8%)が形成した、総膜厚23μmの多層多孔膜を得た。
得られた多層多孔膜は、透気度280秒/100ccで、多孔層を形成させたことによる透気度増加率は19%と低く、優れた透過性を維持していた。また、150℃でのMD熱収縮率2%、TD熱収縮率2%と小さく、シャットダウン温度は145℃に観測され、ショートは200℃以上になっても観察されず、非常に高い耐熱性を示した。
この多層多孔膜をセパレータとして用いて電池評価を実施したところ、レート特性は90%以上と高く、100サイクル後の容量維持率は90%以上でサイクル特性も良好であった。
[Example 2]
After the corona discharge treatment (discharge amount 50 W) was performed on the surface of the polyolefin resin porous film used as the base material in Example 1, alumina particles (average) were formed on the treated surface side (surface wetting index of 73 mN / m or more). Particle size 0.7 μm) 95 parts by mass, SB latex (solid content concentration 50%, minimum film formation temperature 0 ° C. or less) 10 parts by mass, ammonium polycarboxylate aqueous solution (San Disco SN Dispersant 5468) 1 part by mass, polyoxy An aqueous solution in which 1 part by weight of an alkylene surfactant (San Nopco SN wet 980) was uniformly dispersed in 150 parts by weight of water was applied using a gravure coater and then dried at 60 ° C. to remove the water. Thus, a multilayer porous film having a total film thickness of 23 μm, in which a porous layer having a thickness of 7 μm (a binder volume fraction of 7.8%) was formed on the porous film, was obtained.
The obtained multilayer porous membrane had an air permeability of 280 sec / 100 cc, and the rate of increase in air permeability due to the formation of the porous layer was as low as 19%, maintaining excellent permeability. In addition, MD thermal shrinkage rate at 150 ° C is 2%, TD heat shrinkage rate is 2%, shutdown temperature is observed at 145 ° C, short circuit is not observed even at 200 ° C or higher, and very high heat resistance. Indicated.
When the battery was evaluated using this multilayer porous membrane as a separator, the rate characteristics were as high as 90% or more, the capacity retention after 100 cycles was 90% or more, and the cycle characteristics were also good.

[実施例3]
粘度平均分子量(Mv)70万のポリエチレン16.5質量部とMv30万のポリエチレン16.1質量部とMv40万のポロプロピレン2.5質量部、可塑剤として流動パラフィン(LP)を40質量部、酸化防止剤としてペンタエリスリチル−テトラキス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]を0.3質量部添加したものをヘンシェルミキサーにて予備混合した。得られた混合物をフィーダーにより二軸同方向スクリュー式押出機フィード口へ供給した。また溶融混練し押し出される全混合物(100質量部)中に占める流動パラフィン量比が65質量部となるように、流動パラフィンを二軸押出機シリンダーへサイドフィードした。溶融混練条件は、設定温度200℃、スクリュー回転数240rpm、吐出量12kg/hで行った。続いて、溶融混練物をTダイを経て表面温度25℃に制御された冷却ロール間に押出し、厚さ2400μmのシート状のポリオレフィン組成物を得た。次に連続して同時二軸テンター延伸機へ導き、MD方向に7倍、TD方向に7.0倍に同時二軸延伸を行った。この時同時二軸テンターの設定温度は125℃であった。次にメチルエチルケトン槽に導き可塑剤を除去した後、メチルエチルケトンを乾燥除去した。さらにTDテンター熱固定機に導き、熱固定を行った。熱固定温度は133℃、TD緩和率0.80とした。その結果、MD最大熱収縮応力4.8g、TD最大熱収縮応力3.7g、膜厚20μm、気孔率40%、透気度280秒/100ccのポリオレフィン樹脂多孔膜を得た。
[Example 3]
16.5 parts by weight of polyethylene with a viscosity average molecular weight (Mv) of 700,000, 16.1 parts by weight of polyethylene with a Mv of 300,000 and 2.5 parts by weight of polypropylene having a Mv of 400,000, 40 parts by weight of liquid paraffin (LP) as a plasticizer, What added 0.3 mass part of pentaerythrityl-tetrakis- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] as an antioxidant was premixed with a Henschel mixer. The obtained mixture was supplied to the feed port of the twin-screw co-directional screw extruder by a feeder. Further, the liquid paraffin was side-fed to the twin screw extruder cylinder so that the liquid paraffin content ratio in the total mixture (100 parts by mass) melt-kneaded and extruded was 65 parts by mass. The melt-kneading conditions were set at a preset temperature of 200 ° C., a screw rotation speed of 240 rpm, and a discharge rate of 12 kg / h. Subsequently, the melt-kneaded product was extruded through a T-die between cooling rolls controlled at a surface temperature of 25 ° C. to obtain a sheet-like polyolefin composition having a thickness of 2400 μm. Next, it was continuously led to a simultaneous biaxial tenter stretching machine, and simultaneous biaxial stretching was performed 7 times in the MD direction and 7.0 times in the TD direction. At this time, the set temperature of the simultaneous biaxial tenter was 125 ° C. Next, the plasticizer was removed by being led to a methyl ethyl ketone bath, and then methyl ethyl ketone was removed by drying. Furthermore, it was led to a TD tenter heat fixing machine and heat fixed. The heat setting temperature was 133 ° C. and the TD relaxation rate was 0.80. As a result, a polyolefin resin porous film having an MD maximum heat shrinkage stress of 4.8 g, a TD maximum heat shrinkage stress of 3.7 g, a film thickness of 20 μm, a porosity of 40%, and an air permeability of 280 seconds / 100 cc was obtained.

上記ポリオレフィン樹脂多孔膜の表面に、コロナ放電処理(放電量50W)を実施した後、当該処理面側(表面の濡れ指数73mN/m以上)に、チタニア粒子(平均粒径0.4μm)95質量部、SBラテックス(固形分濃度50%、最低成膜温度0℃以下)10質量部、ポリカルボン酸アンモニウム水溶液(サンノプコ製SNディスパーサント5468)1質量部、ポリオキシアルキレン系界面活性剤(サンノプコ製SNウェット980)1質量部を150質量部の水にそれぞれ均一に分散させた水溶液を、バーコーターを用いて塗布した後、60℃にて乾燥して水を除去し、多孔膜上に厚さ6μmの多孔層(バインダの体積分率6.2%)が形成した、総膜厚26μmの多層多孔膜を得た。
得られた多層多孔膜は、透気度315秒/100ccで、多孔層を形成させたことによる透気度増加率は13%と低く、優れた透過性を維持していた。また、150℃でのMD熱収縮率8%、TD熱収縮率5%と小さく、シャットダウン温度は147℃に観測され、ショートは200℃以上になっても観察されず、非常に高い耐熱性を示した。
この多層多孔膜をセパレータとして用いて電池評価を実施したところ、レート特性は90%以上と高く、100サイクル後の容量維持率は90%以上でサイクル特性も良好であった。
After the surface of the polyolefin resin porous membrane is subjected to corona discharge treatment (discharge amount 50 W), titania particles (average particle size 0.4 μm) 95 mass on the treated surface side (surface wetting index of 73 mN / m or more) Part, SB latex (solid content concentration 50%, minimum film formation temperature 0 ° C. or less) 10 parts by mass, ammonium polycarboxylate aqueous solution (San Nopco SN Dispersant 5468), 1 part by mass, polyoxyalkylene surfactant (San Nopco) SN wet 980) After applying an aqueous solution in which 1 part by mass of water was uniformly dispersed in 150 parts by mass of water using a bar coater, the water was removed by drying at 60 ° C. A multilayer porous film having a total film thickness of 26 μm formed by a 6 μm porous layer (binder volume fraction 6.2%) was obtained.
The resulting multilayer porous membrane had an air permeability of 315 sec / 100 cc, and the rate of increase in air permeability due to the formation of the porous layer was as low as 13%, maintaining excellent permeability. Also, MD thermal shrinkage at 150 ° C is 8%, TD heat shrinkage is 5%, shutdown temperature is observed at 147 ° C, short circuit is not observed even at 200 ° C or higher, and very high heat resistance. Indicated.
When the battery was evaluated using this multilayer porous membrane as a separator, the rate characteristics were as high as 90% or more, the capacity retention after 100 cycles was 90% or more, and the cycle characteristics were also good.

[実施例4]
粘度平均分子量(Mv)70万のポリエチレン16.6質量部とMv25万のポリエチレン16.6質量部とMv40万のポロプロピレン1.8質量部、可塑剤として流動パラフィン(LP)を40質量部、酸化防止剤としてペンタエリスリチル−テトラキス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]を0.3質量部添加したものをヘンシェルミキサーにて予備混合した。得られた混合物をフィーダーにより二軸同方向スクリュー式押出機フィード口へ供給した。また溶融混練し押し出される全混合物(100質量部)中に占める流動パラフィン量比が65質量部となるように、流動パラフィンを二軸押出機シリンダーへサイドフィードした。溶融混練条件は、設定温度200℃、スクリュー回転数240rpm、吐出量12kg/hで行った。続いて、溶融混練物をTダイを経て表面温度25℃に制御された冷却ロール間に押出し、厚さ1300μmのシート状のポリオレフィン組成物を得た。次に連続して同時二軸テンター延伸機へ導き、MD方向に7倍、TD方向に6.4倍に同時二軸延伸を行った。この時同時二軸テンターの設定温度は118℃であった。次にメチルエチルケトン槽に導き可塑剤を除去した後、メチルエチルケトンを乾燥除去した。さらにTDテンター熱固定機に導き、熱固定を行った。熱固定温度は122℃、TD緩和率0.80とした。その結果、MD最大熱収縮応力6.7g、TD最大熱収縮応力2.8g、膜厚17μm、気孔率49%、透気度165秒/100ccのポリオレフィン樹脂多孔膜を得た。
[Example 4]
16.6 parts by mass of polyethylene having a viscosity average molecular weight (Mv) of 700,000, 16.6 parts by mass of polyethylene having an Mv of 250,000, 1.8 parts by mass of polypropylene having an Mv of 400,000, 40 parts by mass of liquid paraffin (LP) as a plasticizer, What added 0.3 mass part of pentaerythrityl-tetrakis- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] as an antioxidant was premixed with a Henschel mixer. The obtained mixture was supplied to the feed port of the twin-screw co-directional screw extruder by a feeder. Further, the liquid paraffin was side-fed to the twin screw extruder cylinder so that the liquid paraffin content ratio in the total mixture (100 parts by mass) melt-kneaded and extruded was 65 parts by mass. The melt-kneading conditions were set at a preset temperature of 200 ° C., a screw rotation speed of 240 rpm, and a discharge rate of 12 kg / h. Subsequently, the melt-kneaded product was extruded through a T-die between cooling rolls controlled at a surface temperature of 25 ° C. to obtain a sheet-like polyolefin composition having a thickness of 1300 μm. Next, it was continuously led to a simultaneous biaxial tenter stretching machine, and simultaneous biaxial stretching was performed 7 times in the MD direction and 6.4 times in the TD direction. At this time, the set temperature of the simultaneous biaxial tenter was 118 ° C. Next, the plasticizer was removed by being led to a methyl ethyl ketone bath, and then methyl ethyl ketone was removed by drying. Furthermore, it was led to a TD tenter heat fixing machine and heat fixed. The heat setting temperature was 122 ° C. and the TD relaxation rate was 0.80. As a result, a polyolefin resin porous film having an MD maximum heat shrinkage stress of 6.7 g, a TD maximum heat shrinkage stress of 2.8 g, a film thickness of 17 μm, a porosity of 49%, and an air permeability of 165 seconds / 100 cc was obtained.

上記ポリオレフィン樹脂多孔膜の表面に、コロナ放電処理(放電量50W)を実施した後、当該処理面側(表面の濡れ指数73mN/m以上)に、チタニア粒子(平均粒径0.4μm)95質量部、ポリビニルアルコール(平均重合度1700、ケン化度99%以上)5質量部を150質量部の水にそれぞれ均一に分散させた水溶液を、グラビアコーターを用いて塗布した後、60℃にて乾燥して水を除去し、多孔膜上に厚さ7μmの多孔層(バインダの体積分率4.6%)が形成した、総膜厚24μmの多層多孔膜を得た。
得られた多層多孔膜は、透気度200秒/100ccで、多孔層を形成させたことによる透気度増加率は21%と低く、優れた透過性を維持していた。また、150℃でのMD熱収縮率5%、TD熱収縮率4%と小さく、シャットダウン温度は144℃に観測され、ショートは200℃以上になっても観察されず、非常に高い耐熱性を示した。
この多層多孔膜をセパレータとして用いて電池評価を実施したところ、レート特性は90%以上と高く、100サイクル後の容量維持率は90%以上でサイクル特性も良好であった。
After the surface of the polyolefin resin porous membrane is subjected to corona discharge treatment (discharge amount 50 W), titania particles (average particle size 0.4 μm) 95 mass on the treated surface side (surface wetting index of 73 mN / m or more) After applying an aqueous solution in which 5 parts by mass of polyvinyl alcohol (average polymerization degree 1700, saponification degree 99% or more) is uniformly dispersed in 150 parts by mass of water using a gravure coater, drying is performed at 60 ° C. Then, water was removed to obtain a multilayer porous film having a total film thickness of 24 μm in which a porous layer having a thickness of 7 μm (a binder volume fraction of 4.6%) was formed on the porous film.
The obtained multilayer porous membrane had an air permeability of 200 seconds / 100 cc, and the rate of increase in air permeability due to the formation of the porous layer was as low as 21%, maintaining excellent permeability. In addition, MD heat shrinkage at 150 ° C is 5%, TD heat shrinkage is 4%, shutdown temperature is observed at 144 ° C, short circuit is not observed even at 200 ° C or higher, and very high heat resistance. Indicated.
When the battery was evaluated using this multilayer porous membrane as a separator, the rate characteristics were as high as 90% or more, the capacity retention after 100 cycles was 90% or more, and the cycle characteristics were also good.

[実施例5]
粘度平均分子量(Mv)200万の超高分子量ポリエチレン12質量部とMv28万の高密度ポリエチレン12質量部とMv15万の直鎖状低密度ポリエチレン16質量部とシリカ(平均粒径8.3μm)17.6質量部と、可塑剤としてフタル酸ジオクチル(DOP)を42.4質量部を混合造粒した後、Tダイを装着した二軸押出機にて混練・押出し、厚さ90μmのシート状に成形した。該成形物から塩化メチレンにてDOPを、水酸化ナトリウムにてシリカを抽出除去し微多孔膜とした。該微多孔膜を118℃に加熱のもと、縦方向に5.3倍延伸した後、横方向に1.8倍延伸した。その結果、MD最大熱収縮応力8.7g、TD最大熱収縮応力0.9g、膜厚11μm、気孔率48%、透気度55秒/100ccのポリオレフィン樹脂多孔膜を得た。
[Example 5]
12 parts by mass of ultrahigh molecular weight polyethylene having a viscosity average molecular weight (Mv) of 2 million, 12 parts by mass of high-density polyethylene of Mv 280,000, 16 parts by mass of linear low-density polyethylene of Mv 150,000 and silica (average particle size 8.3 μm) 17 After mixing and granulating 6 parts by mass and 42.4 parts by mass of dioctyl phthalate (DOP) as a plasticizer, the mixture is kneaded and extruded by a twin-screw extruder equipped with a T-die to form a sheet having a thickness of 90 μm. Molded. From the molded product, DOP was extracted with methylene chloride and silica was extracted with sodium hydroxide to obtain a microporous membrane. The microporous membrane was heated to 118 ° C., stretched 5.3 times in the longitudinal direction, and then stretched 1.8 times in the transverse direction. As a result, a polyolefin resin porous film having an MD maximum heat shrinkage stress of 8.7 g, a TD maximum heat shrinkage stress of 0.9 g, a film thickness of 11 μm, a porosity of 48%, and an air permeability of 55 seconds / 100 cc was obtained.

上記ポリオレフィン樹脂多孔膜の表面に、チタニア粒子(平均粒径0.4μm)95質量部、ポリビニルアルコール(平均重合度1700、ケン化度99%以上)5質量部を150質量部の水にそれぞれ均一に分散させた水溶液を、バーコーターを用いて塗布した後、60℃にて乾燥して水を除去し、多孔膜上に厚さ8μmの多孔層(バインダの体積分率4.6%)が形成した、総膜厚19μmの多層多孔膜を得た。
得られた多層多孔膜は、透気度240秒/100ccで、好ましい透気度に増加していた。また、150℃でのMD熱収縮率4%、TD熱収縮率3%と小さく、シャットダウン温度は150℃に観測され、ショートは200℃以上になっても観察されず、非常に高い耐熱性を示した。
この多層多孔膜をセパレータとして用いて電池評価を実施したところ、レート特性は90%以上と高く、100サイクル後の容量維持率は90%以上でサイクル特性も良好であった。
On the surface of the polyolefin resin porous membrane, 95 parts by mass of titania particles (average particle size 0.4 μm) and 5 parts by mass of polyvinyl alcohol (average polymerization degree 1700, saponification degree 99% or more) are uniformly distributed in 150 parts by mass of water. After the aqueous solution dispersed in is coated using a bar coater, it is dried at 60 ° C. to remove water, and a porous layer (binder volume fraction 4.6%) having a thickness of 8 μm is formed on the porous film. The formed multilayer porous film having a total film thickness of 19 μm was obtained.
The obtained multilayer porous membrane had an air permeability of 240 seconds / 100 cc and increased to a preferable air permeability. In addition, MD thermal shrinkage at 150 ° C is 4% and TD thermal shrinkage is as small as 3%, shutdown temperature is observed at 150 ° C, short circuit is not observed even at 200 ° C or higher, and has very high heat resistance. Indicated.
When the battery was evaluated using this multilayer porous membrane as a separator, the rate characteristics were as high as 90% or more, the capacity retention after 100 cycles was 90% or more, and the cycle characteristics were also good.

[実施例6]
粘度平均分子量(Mv)70万のポリエチレン16.6質量部とMv25万のポリエチレン16.6質量部とMv40万のポロプロピレン1.8質量部、可塑剤として流動パラフィン(LP)を40質量部、酸化防止剤としてペンタエリスリチル−テトラキス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]を0.3質量部添加したものをヘンシェルミキサーにて予備混合した。得られた混合物をフィーダーにより二軸同方向スクリュー式押出機フィード口へ供給した。また溶融混練し押し出される全混合物(100質量部)中に占める流動パラフィン量比が65質量部となるように、流動パラフィンを二軸押出機シリンダーへサイドフィードした。溶融混練条件は、設定温度200℃、スクリュー回転数240rpm、吐出量12kg/hで行った。続いて、溶融混練物をTダイを経て表面温度25℃に制御された冷却ロール間に押出し、厚さ1000μmのシート状のポリオレフィン組成物を得た。次に連続して同時二軸テンター延伸機へ導き、MD方向に7倍、TD方向に6.4倍に同時二軸延伸を行った。この時同時二軸テンターの設定温度は118℃であった。次にメチルエチルケトン槽に導き可塑剤を除去した後、メチルエチルケトンを乾燥除去した。さらにTDテンター熱固定機に導き、熱固定を行った。熱固定温度は130℃、TD緩和率0.80とした。その結果、MD最大熱収縮応力3.6g、TD最大熱収縮応力3.3g、膜厚12μm、気孔率36%、透気度230秒/100ccのポリオレフィン樹脂多孔膜を得た。
上記ポリオレフィン樹脂多孔膜の表面に、コロナ放電処理(放電量50W)を実施した後、当該処理面側(表面の濡れ指数73mN/m以上)に、アルミナ粒子(平均粒径2.0μm)95質量部、ポリビニルアルコール(平均重合度1700、ケン化度99%以上)5質量部を150質量部の水にそれぞれ均一に分散させた水溶液を、グラビアコーターを用いて塗布した後、60℃にて乾燥して水を除去し、多孔膜上に厚さ8μmの多孔層(バインダの体積分率4.6%)が形成した、総膜厚20μmの多層多孔膜を得た。
得られた多層多孔膜は、透気度330秒/100ccで、多孔層を形成させたことによる透気度増加率は43%と低く、優れた透過性を維持していた。また、150℃でのMD熱収縮率2%、TD熱収縮率2%と小さく、シャットダウン温度は147℃に観測され、ショートは200℃以上になっても観察されず、非常に高い耐熱性を示した。
この多層多孔膜をセパレータとして用いて電池評価を実施したところ、レート特性は90%以上と高く、100サイクル後の容量維持率は90%以上でサイクル特性も良好であった。
[Example 6]
16.6 parts by mass of polyethylene having a viscosity average molecular weight (Mv) of 700,000, 16.6 parts by mass of polyethylene having an Mv of 250,000, 1.8 parts by mass of polypropylene having an Mv of 400,000, 40 parts by mass of liquid paraffin (LP) as a plasticizer, What added 0.3 mass part of pentaerythrityl-tetrakis- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] as an antioxidant was premixed with a Henschel mixer. The obtained mixture was supplied to the feed port of the twin-screw co-directional screw extruder by a feeder. Further, the liquid paraffin was side-fed to the twin screw extruder cylinder so that the liquid paraffin content ratio in the total mixture (100 parts by mass) melt-kneaded and extruded was 65 parts by mass. The melt-kneading conditions were set at a preset temperature of 200 ° C., a screw rotation speed of 240 rpm, and a discharge rate of 12 kg / h. Subsequently, the melt-kneaded product was extruded through a T-die between cooling rolls controlled at a surface temperature of 25 ° C. to obtain a sheet-like polyolefin composition having a thickness of 1000 μm. Next, it was continuously led to a simultaneous biaxial tenter stretching machine, and simultaneous biaxial stretching was performed 7 times in the MD direction and 6.4 times in the TD direction. At this time, the set temperature of the simultaneous biaxial tenter was 118 ° C. Next, the plasticizer was removed by being led to a methyl ethyl ketone bath, and then methyl ethyl ketone was removed by drying. Furthermore, it was led to a TD tenter heat fixing machine and heat fixed. The heat setting temperature was 130 ° C. and the TD relaxation rate was 0.80. As a result, a polyolefin resin porous film having an MD maximum heat shrinkage stress of 3.6 g, a TD maximum heat shrinkage stress of 3.3 g, a film thickness of 12 μm, a porosity of 36%, and an air permeability of 230 seconds / 100 cc was obtained.
After the surface of the polyolefin resin porous membrane is subjected to corona discharge treatment (discharge amount 50 W), alumina particles (average particle size 2.0 μm) 95 mass on the treated surface side (surface wetting index of 73 mN / m or more) After applying an aqueous solution in which 5 parts by mass of polyvinyl alcohol (average polymerization degree 1700, saponification degree 99% or more) is uniformly dispersed in 150 parts by mass of water using a gravure coater, drying is performed at 60 ° C. Then, water was removed to obtain a multilayer porous film having a total film thickness of 20 μm in which a porous layer having a thickness of 8 μm (a binder volume fraction of 4.6%) was formed on the porous film.
The resulting multilayer porous membrane had an air permeability of 330 seconds / 100 cc, and the rate of increase in air permeability due to the formation of the porous layer was as low as 43%, maintaining excellent permeability. In addition, MD thermal shrinkage rate at 150 ° C is 2%, TD heat shrinkage rate is 2%, shutdown temperature is observed at 147 ° C, short circuit is not observed even at 200 ° C or higher, and very high heat resistance. Indicated.
When the battery was evaluated using this multilayer porous membrane as a separator, the rate characteristics were as high as 90% or more, the capacity retention after 100 cycles was 90% or more, and the cycle characteristics were also good.

[実施例7]
Mv70万のホモポリマーのポリエチレン47質量部とMv25万のホモポリマーのポリエチレン46質量部とMv40万のホモポリマーのポリプロピレン7質量部とを、タンブラーブレンダーを用いてドライブレンドした。得られた純ポリマー混合物99質量%に、酸化防止剤としてペンタエリスリチル−テトラキス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]を1質量%添加し、再度タンブラーブレンダーを用いてドライブレンドすることにより、ポリマー等混合物を得た。得られたポリマー等混合物は窒素で置換を行った後に、二軸押出機へ窒素雰囲気下でフィーダーにより供給した。また、可塑剤として流動パラフィン(37.78℃における動粘度7.59×10−5/s)を押出機シリンダーにプランジャーポンプにより注入した。溶融混練し、押し出される全混合物中に占める流動パラフィン量比が65質量%となるように、フィーダーおよびポンプを調整した。溶融混練条件は、設定温度200℃、スクリュー回転数240rpm、吐出量12kg/hで行った。
続いて、溶融混練物を、Tダイを経て表面温度25℃に制御された冷却ロール上に押出しキャストすることにより、厚さ2000μmのシート状のポリオレフィン組成物を得た。
次に同時二軸テンター延伸機へ導き、MD方向に7倍、TD方向に7倍に同時二軸延伸を行った。この時、同時二軸テンターの設定温度は125℃であった。次にメチルエチルケトン槽に導き、流動パラフィンを抽出除去した後、メチルエチルケトンを乾燥除去した。
さらにTDテンター熱固定機に導き、熱固定を行った。熱固定温度は133℃、TD緩和率0.80とした。その結果、MD最大熱収縮応力3.2g、TD最大熱収縮応力3.1g、膜厚16μm、気孔率40%、透気度165秒/100ccのポリオレフィン樹脂多孔膜を得た。
上記ポリオレフィン樹脂多孔膜の表面に、コロナ放電処理(放電量50W)を実施した後、当該処理面側(表面の濡れ指数73mN/m以上)に、アルミナ粒子(平均粒径0.51μm(レーザー式粒度分布測定装置によって測定した平均粒径0.61μm))98.2質量部、ポリビニルアルコール(平均重合度1700、ケン化度99%以上)1.8質量部を150質量部の水にそれぞれ均一に分散させた水溶液を、グラビアコーターを用いて塗布した後、60℃にて乾燥して水を除去し、多孔膜上に厚さ5μmの多孔層(バインダの体積分率1.7%)が形成した、総膜厚21μmの多層多孔膜を得た。
得られた多層多孔膜は、透気度180秒/100ccで、多孔層を形成させたことによる透気度増加率は9%と低く、優れた透過性を維持していた。また、150℃でのMD熱収縮率3%、TD熱収縮率2%と小さく、シャットダウン温度は145℃に観測され、ショートは200℃以上になっても観察されず、非常に高い耐熱性を示した。
この多層多孔膜をセパレータとして用いて電池評価を実施したところ、レート特性は90%以上と高く、100サイクル後の容量維持率は90%以上でサイクル特性も良好であった。
[Example 7]
47 parts by mass of polyethylene having an Mv of 700,000, 46 parts by mass of polyethylene having an Mv of 250,000, and 7 parts by mass of polypropylene having an Mv of 400,000 were dry blended using a tumbler blender. 1% by mass of pentaerythrityl-tetrakis- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] as an antioxidant is added to 99% by mass of the obtained pure polymer mixture, and again A mixture such as a polymer was obtained by dry blending using a tumbler blender. The obtained mixture of polymers and the like was substituted with nitrogen and then fed to the twin-screw extruder with a feeder under a nitrogen atmosphere. Further, liquid paraffin (kinematic viscosity at 37.78 ° C .: 7.59 × 10 −5 m 2 / s) was injected as a plasticizer into the extruder cylinder by a plunger pump. The feeder and pump were adjusted so that the liquid paraffin content ratio in the total mixture melt-kneaded and extruded was 65% by mass. The melt-kneading conditions were set at a preset temperature of 200 ° C., a screw rotation speed of 240 rpm, and a discharge rate of 12 kg / h.
Subsequently, the melt-kneaded material was extruded and cast on a cooling roll controlled at a surface temperature of 25 ° C. through a T-die to obtain a sheet-like polyolefin composition having a thickness of 2000 μm.
Next, it led to the simultaneous biaxial tenter stretching machine, and simultaneous biaxial stretching was performed 7 times in the MD direction and 7 times in the TD direction. At this time, the setting temperature of the simultaneous biaxial tenter was 125 ° C. Next, the solution was introduced into a methyl ethyl ketone tank, and liquid paraffin was extracted and removed, and then methyl ethyl ketone was removed by drying.
Furthermore, it was led to a TD tenter heat fixing machine and heat fixed. The heat setting temperature was 133 ° C. and the TD relaxation rate was 0.80. As a result, a polyolefin resin porous film having an MD maximum heat shrinkage stress of 3.2 g, a TD maximum heat shrinkage stress of 3.1 g, a film thickness of 16 μm, a porosity of 40%, and an air permeability of 165 seconds / 100 cc was obtained.
After the surface of the polyolefin resin porous membrane is subjected to corona discharge treatment (discharge amount: 50 W), alumina particles (average particle size of 0.51 μm (laser type) are formed on the treated surface side (surface wetting index of 73 mN / m or more). Average particle diameter measured by a particle size distribution measuring apparatus 0.61 μm)) 98.2 parts by mass, polyvinyl alcohol (average polymerization degree 1700, saponification degree 99% or more) 1.8 parts by mass uniformly in 150 parts by mass of water After the aqueous solution dispersed in is applied using a gravure coater, it is dried at 60 ° C. to remove water, and a porous layer having a thickness of 5 μm (a binder volume fraction of 1.7%) is formed on the porous film. The formed multilayer porous film having a total film thickness of 21 μm was obtained.
The resulting multilayer porous membrane had an air permeability of 180 seconds / 100 cc, and the rate of increase in air permeability due to the formation of the porous layer was as low as 9%, maintaining excellent permeability. In addition, MD heat shrinkage rate at 150 ° C is 3%, TD heat shrinkage rate is 2%, shutdown temperature is observed at 145 ° C, short circuit is not observed even at 200 ° C or higher, and has very high heat resistance. Indicated.
When the battery was evaluated using this multilayer porous membrane as a separator, the rate characteristics were as high as 90% or more, the capacity retention after 100 cycles was 90% or more, and the cycle characteristics were also good.

[実施例8]
粘度平均分子量(Mv)70万のポリエチレン16.6質量部とMv25万のポリエチレン16.6質量部とMv40万のポリプロピレン1.8質量部、可塑剤として流動パラフィン(LP)を40質量部、酸化防止剤としてペンタエリスリチル−テトラキス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]を0.3質量部添加したものをヘンシェルミキサーにて予備混合した。得られた混合物をフィーダーにより二軸同方向スクリュー式押出機フィード口へ供給した。また溶融混練し押し出される全混合物(100質量部)中に占める流動パラフィン量比が65質量部となるように、流動パラフィンを二軸押出機シリンダーへサイドフィードした。溶融混練条件は、設定温度200℃、スクリュー回転数240rpm、吐出量12kg/hで行った。続いて、溶融混練物をTダイを経て表面温度25℃に制御された冷却ロール間に押出し、厚さ1300μmのシート状のポリオレフィン組成物を得た。次に連続して同時二軸テンター延伸機へ導き、MD方向に7倍、TD方向に6.4倍に同時二軸延伸を行った。この時同時二軸テンターの設定温度は120℃であった。次にメチルエチルケトン槽に導き可塑剤を除去した後、メチルエチルケトンを乾燥除去した。さらにTDテンター熱固定機に導き、熱固定を行った。熱固定温度は125℃、TD緩和率0.80とした。その結果、MD最大熱収縮応力6.0g、TD最大熱収縮応力2.1g、膜厚16μm、気孔率46%、透気度190秒/100ccのポリオレフィン樹脂多孔膜を得た。
上記ポリオレフィン樹脂多孔膜の表面に、コロナ放電処理(放電量50W)を実施した後、当該処理面側(表面の濡れ指数73mN/m以上)に、アルミナ粒子(平均粒径0.51μm(レーザー式粒度分布測定装置によって測定した平均粒径0.61μm))98.2質量部、ポリビニルアルコール(平均重合度1700、ケン化度99%以上)1.8質量部を150質量部の水にそれぞれ均一に分散させた水溶液を、グラビアコーターを用いて塗布した後、60℃にて乾燥して水を除去し、多孔膜上に厚さ6μmの多孔層(バインダの体積分率1.7%)が形成した、総膜厚22μmの多層多孔膜を得た。
得られた多層多孔膜は、透気度210秒/100ccで、多孔層を形成させたことによる透気度増加率は11%と低く、優れた透過性を維持していた。また、150℃でのMD熱収縮率5%、TD熱収縮率3%と小さく、シャットダウン温度は145℃に観測され、ショートは200℃以上になっても観察されず、非常に高い耐熱性を示した。
この多層多孔膜をセパレータとして用いて電池評価を実施したところ、レート特性は90%以上と高く、100サイクル後の容量維持率は90%以上でサイクル特性も良好であった。
[Example 8]
16.6 parts by weight of polyethylene with a viscosity average molecular weight (Mv) of 700,000, 16.6 parts by weight of polyethylene with a Mv of 250,000, 1.8 parts by weight of polypropylene with a Mv of 400,000, 40 parts by weight of liquid paraffin (LP) as a plasticizer, oxidized What added 0.3 mass part of pentaerythrityl-tetrakis- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] as an inhibitor was premixed with a Henschel mixer. The obtained mixture was supplied to the feed port of the twin-screw co-directional screw extruder by a feeder. Further, the liquid paraffin was side-fed to the twin screw extruder cylinder so that the liquid paraffin content ratio in the total mixture (100 parts by mass) melt-kneaded and extruded was 65 parts by mass. The melt-kneading conditions were set at a preset temperature of 200 ° C., a screw rotation speed of 240 rpm, and a discharge rate of 12 kg / h. Subsequently, the melt-kneaded product was extruded through a T-die between cooling rolls controlled at a surface temperature of 25 ° C. to obtain a sheet-like polyolefin composition having a thickness of 1300 μm. Next, it was continuously led to a simultaneous biaxial tenter stretching machine, and simultaneous biaxial stretching was performed 7 times in the MD direction and 6.4 times in the TD direction. At this time, the set temperature of the simultaneous biaxial tenter was 120 ° C. Next, the plasticizer was removed by being led to a methyl ethyl ketone bath, and then methyl ethyl ketone was removed by drying. Furthermore, it was led to a TD tenter heat fixing machine and heat fixed. The heat setting temperature was 125 ° C. and the TD relaxation rate was 0.80. As a result, a polyolefin resin porous film having an MD maximum heat shrinkage stress of 6.0 g, a TD maximum heat shrinkage stress of 2.1 g, a film thickness of 16 μm, a porosity of 46%, and an air permeability of 190 seconds / 100 cc was obtained.
After the surface of the polyolefin resin porous membrane is subjected to corona discharge treatment (discharge amount: 50 W), alumina particles (average particle size of 0.51 μm (laser type) are formed on the treated surface side (surface wetting index of 73 mN / m or more). Average particle diameter measured by a particle size distribution measuring apparatus 0.61 μm)) 98.2 parts by mass, polyvinyl alcohol (average polymerization degree 1700, saponification degree 99% or more) 1.8 parts by mass uniformly in 150 parts by mass of water After the aqueous solution dispersed in is coated using a gravure coater, it is dried at 60 ° C. to remove water, and a 6 μm thick porous layer (a binder volume fraction of 1.7%) is formed on the porous film. The formed multilayer porous film having a total film thickness of 22 μm was obtained.
The resulting multilayer porous membrane had an air permeability of 210 seconds / 100 cc, and the rate of increase in air permeability due to the formation of the porous layer was as low as 11%, maintaining excellent permeability. In addition, MD heat shrinkage at 150 ° C is 5%, TD heat shrinkage is 3%, shutdown temperature is observed at 145 ° C, short circuit is not observed even at 200 ° C or higher, and very high heat resistance. Indicated.
When the battery was evaluated using this multilayer porous membrane as a separator, the rate characteristics were as high as 90% or more, the capacity retention after 100 cycles was 90% or more, and the cycle characteristics were also good.

[実施例9]
実施例3において、熱固定時のTD緩和率0.90とした以外は、実施例3と同様にした結果、MD最大熱収縮応力4.9g、TD最大熱収縮応力3.7g、膜厚25μm、気孔率43%、透気度290秒/100ccのポリオレフィン樹脂多孔膜を得た。
上記ポリオレフィン樹脂多孔膜の表面に、コロナ放電処理(放電量50W)を実施した後、当該処理面側(表面の濡れ指数73mN/m以上)に、アルミナ粒子(平均粒径0.85μm(レーザー式粒度分布測定装置によって測定した平均粒径1.2μm))98.4質量部、ポリビニルアルコール(平均重合度1700、ケン化度99%以上)1.6質量部を150質量部の水にそれぞれ均一に分散させた水溶液を、グラビアコーターを用いて塗布した後、60℃にて乾燥して水を除去し、多孔膜上に厚さ6μmの多孔層(バインダの体積分率1.6%)が形成した、総膜厚31μmの多層多孔膜を得た。
得られた多層多孔膜は、透気度310秒/100ccで、多孔層を形成させたことによる透気度増加率は7%と低く、優れた透過性を維持していた。また、150℃でのMD熱収縮率2%、TD熱収縮率2%と小さく、シャットダウン温度は147℃に観測され、ショートは200℃以上になっても観察されず、非常に高い耐熱性を示した。
この多層多孔膜をセパレータとして用いて電池評価を実施したところ、レート特性は90%以上と高く、100サイクル後の容量維持率は90%以上でサイクル特性も良好であった。
[Example 9]
Example 3 was the same as Example 3 except that the TD relaxation rate during heat setting was 0.90. As a result, the maximum MD thermal contraction stress was 4.9 g, the maximum TD thermal contraction stress was 3.7 g, and the film thickness was 25 μm. A polyolefin resin porous membrane having a porosity of 43% and an air permeability of 290 sec / 100 cc was obtained.
After the surface of the polyolefin resin porous membrane is subjected to corona discharge treatment (discharge amount: 50 W), alumina particles (average particle size of 0.85 μm (laser type) are formed on the treated surface side (surface wetting index of 73 mN / m or more). Average particle diameter measured by particle size distribution measuring apparatus 1.2 μm)) 98.4 parts by mass, polyvinyl alcohol (average polymerization degree 1700, saponification degree 99% or more) 1.6 parts by mass uniformly in 150 parts by mass of water After the aqueous solution dispersed in is applied using a gravure coater, it is dried at 60 ° C. to remove water, and a 6 μm thick porous layer (binder volume fraction 1.6%) is formed on the porous film. The formed multilayer porous film having a total film thickness of 31 μm was obtained.
The resulting multilayer porous membrane had an air permeability of 310 seconds / 100 cc, and the rate of increase in air permeability due to the formation of the porous layer was as low as 7%, maintaining excellent permeability. In addition, MD thermal shrinkage rate at 150 ° C is 2%, TD heat shrinkage rate is 2%, shutdown temperature is observed at 147 ° C, short circuit is not observed even at 200 ° C or higher, and very high heat resistance. Indicated.
When the battery was evaluated using this multilayer porous membrane as a separator, the rate characteristics were as high as 90% or more, the capacity retention after 100 cycles was 90% or more, and the cycle characteristics were also good.

[比較例1]
粘度平均分子量(Mv)100万のポリエチレン19.2質量部と粘度平均分子量(Mv)25万のポリエチレン12.8質量部とシリカ(平均粒径8.3μm)20質量部とフタル酸ジオクチル(DOP)48質量部を混合造粒した後、Tダイを装着した二軸押出機にて混練・押出し、厚さ90μmのシート状に成形した。該成形物から塩化メチレンにてDOPを、水酸化ナトリウムにて微粉シリカを抽出除去し微多孔膜とした。該微多孔膜を110℃に加熱のもと、縦方向に4.5倍延伸した後、130℃に加熱のもと、横方向に2.0倍延伸した。その結果、MD最大熱収縮応力12.9g、TD最大熱収縮応力1.2g、膜厚18μm、気孔率48%、透気度125秒/100ccのポリオレフィン樹脂多孔膜を得た。
[Comparative Example 1]
19.2 parts by weight of polyethylene with a viscosity average molecular weight (Mv) of 1 million, 12.8 parts by weight of polyethylene with a viscosity average molecular weight (Mv) of 250,000, 20 parts by weight of silica (average particle size 8.3 μm), and dioctyl phthalate (DOP) ) 48 parts by mass were mixed and granulated, and then kneaded and extruded by a twin-screw extruder equipped with a T-die to form a sheet having a thickness of 90 μm. From the molded product, DOP was extracted with methylene chloride and finely divided silica was extracted with sodium hydroxide to obtain a microporous membrane. The microporous membrane was stretched 4.5 times in the longitudinal direction under heating to 110 ° C., and then stretched 2.0 times in the lateral direction under heating to 130 ° C. As a result, a polyolefin resin porous film having an MD maximum heat shrinkage stress of 12.9 g, a TD maximum heat shrinkage stress of 1.2 g, a film thickness of 18 μm, a porosity of 48%, and an air permeability of 125 seconds / 100 cc was obtained.

上記ポリオレフィン樹脂多孔膜の表面に、チタニア粒子(平均粒径0.4μm)95質量部、ポリビニルアルコール(平均重合度1700、ケン化度99%以上)5質量部を150質量部の水にそれぞれ均一に分散させた水溶液を、バーコーターを用いて塗布した後、60℃にて乾燥して水を除去し、多孔膜上に厚さ13μmの多孔層が形成した、総膜厚31μmの多層多孔膜を得た。
得られた多層多孔膜は、透気度180秒/100ccで、多孔層を形成させたことによる透気度増加率は44%と低く、優れた透過性を維持していた。また、150℃でのTD熱収縮率は3%と小さかったが、MD熱収縮率は32%と大きく、ショート温度も156℃と低かった。
On the surface of the polyolefin resin porous membrane, 95 parts by mass of titania particles (average particle size 0.4 μm) and 5 parts by mass of polyvinyl alcohol (average polymerization degree 1700, saponification degree 99% or more) are uniformly distributed in 150 parts by mass of water. After coating the aqueous solution dispersed in the film using a bar coater, the film was dried at 60 ° C. to remove water, and a porous layer having a thickness of 13 μm was formed on the porous film. Got.
The obtained multilayer porous membrane had an air permeability of 180 seconds / 100 cc, and the rate of increase in air permeability due to the formation of the porous layer was as low as 44%, maintaining excellent permeability. Further, the TD heat shrinkage at 150 ° C. was as small as 3%, but the MD heat shrinkage was as large as 32%, and the short-circuit temperature was as low as 156 ° C.

[比較例2]
粘度平均分子量(Mv)100万のポリエチレン19.2質量部と粘度平均分子量(Mv)25万のポリエチレン12.8質量部とシリカ(平均粒径8.3μm)20質量部とフタル酸ジオクチル(DOP)48質量部を混合造粒した後、Tダイを装着した二軸押出機にて混練・押出し、厚さ90μmのシート状に成形した。該成形物から塩化メチレンにてDOPを、水酸化ナトリウムにて微粉シリカを抽出除去し微多孔膜とした。該微多孔膜を110℃に加熱のもと、縦方向に6.0倍延伸した後、130℃に加熱のもと、横方向に2.0倍延伸した。その結果、MD最大熱収縮応力23.5g、TD最大熱収縮応力1.8g、膜厚16μm、気孔率48%、透気度110秒/100ccのポリオレフィン樹脂多孔膜を得た。
[Comparative Example 2]
19.2 parts by weight of polyethylene with a viscosity average molecular weight (Mv) of 1 million, 12.8 parts by weight of polyethylene with a viscosity average molecular weight (Mv) of 250,000, 20 parts by weight of silica (average particle size 8.3 μm), and dioctyl phthalate (DOP) ) 48 parts by mass were mixed and granulated, and then kneaded and extruded by a twin-screw extruder equipped with a T-die to form a sheet having a thickness of 90 μm. From the molded product, DOP was extracted with methylene chloride and finely divided silica was extracted with sodium hydroxide to obtain a microporous membrane. The microporous membrane was stretched 6.0 times in the longitudinal direction under heating to 110 ° C., and then stretched 2.0 times in the transverse direction under heating to 130 ° C. As a result, a polyolefin resin porous film having an MD maximum heat shrinkage stress of 23.5 g, a TD maximum heat shrinkage stress of 1.8 g, a film thickness of 16 μm, a porosity of 48%, and an air permeability of 110 seconds / 100 cc was obtained.

上記ポリオレフィン樹脂多孔膜の表面に、チタニア粒子(平均粒径0.4μm)95質量部、ポリビニルアルコール(平均重合度1700、ケン化度99%以上)5質量部を150質量部の水にそれぞれ均一に分散させた水溶液を、グラビアコーターを用いて塗布した後、60℃にて乾燥して水を除去し、多孔膜上に厚さ16μmの多孔層が形成した、総膜厚32μmの多層多孔膜を得た。
得られた多層多孔膜は、透気度780秒/100ccで、多孔層を形成させたことによる透気度増加率は約600%と非常に高く、透過性が悪化した。なお、耐熱性については、150℃でのMD熱収縮率5%、TD熱収縮率3%と小さく、シャットダウン温度は145℃に観測され、ショートは200℃以上になっても観察されず、非常に良好であった。
On the surface of the polyolefin resin porous membrane, 95 parts by mass of titania particles (average particle size 0.4 μm) and 5 parts by mass of polyvinyl alcohol (average polymerization degree 1700, saponification degree 99% or more) are uniformly distributed in 150 parts by mass of water. After applying the aqueous solution dispersed in the film using a gravure coater, the film was dried at 60 ° C. to remove water, and a porous layer having a thickness of 16 μm was formed on the porous film. Got.
The obtained multilayer porous membrane had an air permeability of 780 seconds / 100 cc, and the rate of increase in air permeability due to the formation of the porous layer was as extremely high as about 600%, and the permeability deteriorated. Regarding heat resistance, MD thermal shrinkage at 150 ° C is 5%, TD heat shrinkage is 3%, shutdown temperature is observed at 145 ° C, and short circuit is not observed even at 200 ° C or higher. It was very good.

[比較例3]
実施例1で基材に用いたポリオレフィン樹脂多孔膜の表面に、多孔層を形成させずに同様の評価を行ったところ、150℃でのMD熱収縮率69%、TD熱収縮率67%と非常に大きかった。またシャットダウン温度は147℃に観測されたが、ショート温度が149℃と低かった。なお、この多層多孔膜をセパレータとして用いて電池評価を実施したところ、レート特性は90%以上と高く、100サイクル後の容量維持率は90%以上でサイクル特性も良好であった。
[Comparative Example 3]
When the same evaluation was performed without forming a porous layer on the surface of the polyolefin resin porous film used as the substrate in Example 1, the MD heat shrinkage rate at 150 ° C. was 69%, and the TD heat shrinkage rate was 67%. It was very big. The shutdown temperature was observed at 147 ° C, but the short-circuit temperature was as low as 149 ° C. When the battery was evaluated using this multilayer porous membrane as a separator, the rate characteristics were as high as 90% or more, the capacity retention after 100 cycles was 90% or more, and the cycle characteristics were also good.

[比較例4]
実施例3で基材に用いたポリオレフィン樹脂多孔膜の表面に、多孔層を形成させずに同様の評価を行ったところ、150℃でのMD熱収縮率68%、TD熱収縮率64%と非常に大きかった。またシャットダウン温度は146℃に観測されたが、ショート温度が153℃と低かった。なお、この多層多孔膜をセパレータとして用いて電池評価を実施したところ、レート特性は90%以上と高く、100サイクル後の容量維持率は90%以上でサイクル特性も良好であった。
[Comparative Example 4]
When the same evaluation was performed without forming a porous layer on the surface of the polyolefin resin porous film used as the base material in Example 3, the MD heat shrinkage rate at 150 ° C. was 68% and the TD heat shrinkage rate was 64%. It was very big. The shutdown temperature was observed at 146 ° C, but the short-circuit temperature was as low as 153 ° C. When the battery was evaluated using this multilayer porous membrane as a separator, the rate characteristics were as high as 90% or more, the capacity retention after 100 cycles was 90% or more, and the cycle characteristics were also good.

[比較例5]
実施例4で基材に用いたポリオレフィン樹脂多孔膜の表面に、多孔層を形成させずに同様の評価を行ったところ、150℃でのMD熱収縮率74%、TD熱収縮率54%と非常に大きかった。またシャットダウン温度は148℃に観測されたが、ショート温度が152℃と低かった。なお、この多層多孔膜をセパレータとして用いて電池評価を実施したところ、レート特性は90%以上と高く、100サイクル後の容量維持率は90%以上でサイクル特性も良好であった。
[Comparative Example 5]
When the same evaluation was performed without forming a porous layer on the surface of the polyolefin resin porous film used as the base material in Example 4, the MD heat shrinkage rate at 150 ° C. was 74% and the TD heat shrinkage rate was 54%. It was very big. The shutdown temperature was observed at 148 ° C, but the short-circuit temperature was as low as 152 ° C. When the battery was evaluated using this multilayer porous membrane as a separator, the rate characteristics were as high as 90% or more, the capacity retention after 100 cycles was 90% or more, and the cycle characteristics were also good.

[比較例6]
実施例5で基材に用いたポリオレフィン樹脂多孔膜の表面に、多孔層を形成させずに同様の評価を行ったところ、150℃でのMD熱収縮率80%以上、TD熱収縮率20%と非常に大きかった。またシャットダウン温度は144℃に観測されたが、ショート温度が153℃と低かった。なお、この多層多孔膜をセパレータとして用いて電池評価を実施したところ、レート特性は90%以上と高く、100サイクル後の容量維持率は90%以上でサイクル特性も良好であった
[Comparative Example 6]
When the same evaluation was performed without forming a porous layer on the surface of the polyolefin resin porous film used as the base material in Example 5, the MD heat shrinkage rate at 150 ° C. was 80% or more, and the TD heat shrinkage rate was 20%. And it was very big. The shutdown temperature was observed at 144 ° C., but the short-circuit temperature was as low as 153 ° C. When this multilayer porous membrane was used as a separator for battery evaluation, the rate characteristics were as high as 90% or higher, the capacity retention rate after 100 cycles was 90% or higher, and the cycle characteristics were also good.

[比較例7]
実施例6で基材に用いたポリオレフィン樹脂多孔膜の表面に、多孔層を形成させずに同様の評価を行ったところ、150℃でのMD熱収縮率57%、TD熱収縮率59%と非常に大きかった。またシャットダウン温度は147℃に観測されたが、ショート温度が153℃と低かった。なお、この多層多孔膜をセパレータとして用いて電池評価を実施したところ、レート特性は90%以上と高く、100サイクル後の容量維持率は90%以上でサイクル特性も良好であった。
[Comparative Example 7]
When the same evaluation was performed without forming a porous layer on the surface of the polyolefin resin porous film used as the base material in Example 6, the MD heat shrinkage rate at 150 ° C. was 57% and the TD heat shrinkage rate was 59%. It was very big. The shutdown temperature was observed at 147 ° C, but the short-circuit temperature was as low as 153 ° C. When the battery was evaluated using this multilayer porous membrane as a separator, the rate characteristics were as high as 90% or more, the capacity retention after 100 cycles was 90% or more, and the cycle characteristics were also good.

[比較例8]
実施例7で基材に用いたポリオレフィン樹脂多孔膜の表面に、多孔層を形成させずに同様の評価を行ったところ、150℃でのMD熱収縮率60%、TD熱収縮率50%と非常に大きかった。またシャットダウン温度は145℃に観測されたが、ショート温度が155℃と低かった。なお、この多層多孔膜をセパレータとして用いて電池評価を実施したところ、レート特性は90%以上と高く、100サイクル後の容量維持率は90%以上でサイクル特性も良好であった。
[Comparative Example 8]
When the same evaluation was performed without forming a porous layer on the surface of the polyolefin resin porous film used as the base material in Example 7, the MD heat shrinkage rate at 150 ° C. was 60%, and the TD heat shrinkage rate was 50%. It was very big. The shutdown temperature was observed at 145 ° C, but the short-circuit temperature was as low as 155 ° C. When the battery was evaluated using this multilayer porous membrane as a separator, the rate characteristics were as high as 90% or more, the capacity retention after 100 cycles was 90% or more, and the cycle characteristics were also good.

[比較例9]
実施例8で基材に用いたポリオレフィン樹脂多孔膜の表面に、多孔層を形成させずに同様の評価を行ったところ、150℃でのMD熱収縮率68%、TD熱収縮率51%と非常に大きかった。またシャットダウン温度は152℃に観測されたが、ショート温度が155℃と低かった。なお、この多層多孔膜をセパレータとして用いて電池評価を実施したところ、レート特性は90%以上と高く、100サイクル後の容量維持率は90%以上でサイクル特性も良好であった。
[Comparative Example 9]
When the same evaluation was performed without forming a porous layer on the surface of the polyolefin resin porous film used as the base material in Example 8, the MD heat shrinkage rate at 150 ° C. was 68% and the TD heat shrinkage rate was 51%. It was very big. The shutdown temperature was observed at 152 ° C, but the short-circuit temperature was as low as 155 ° C. When the battery was evaluated using this multilayer porous membrane as a separator, the rate characteristics were as high as 90% or more, the capacity retention after 100 cycles was 90% or more, and the cycle characteristics were also good.

[比較例10]
実施例9で基材に用いたポリオレフィン樹脂多孔膜の表面に、多孔層を形成させずに同様の評価を行ったところ、150℃でのMD熱収縮率69%、TD熱収縮率62%と非常に大きかった。またシャットダウン温度は152℃に観測されたが、ショート温度が154℃と低かった。なお、この多層多孔膜をセパレータとして用いて電池評価を実施したところ、レート特性は90%以上と高く、100サイクル後の容量維持率は90%以上でサイクル特性も良好であった。
[Comparative Example 10]
When the same evaluation was performed without forming a porous layer on the surface of the polyolefin resin porous film used as the base material in Example 9, the MD heat shrinkage rate at 150 ° C. was 69% and the TD heat shrinkage rate was 62%. It was very big. The shutdown temperature was observed at 152 ° C, but the short-circuit temperature was as low as 154 ° C. When the battery was evaluated using this multilayer porous membrane as a separator, the rate characteristics were as high as 90% or more, the capacity retention after 100 cycles was 90% or more, and the cycle characteristics were also good.

[比較例11]
比較例1で基材に用いたポリオレフィン樹脂多孔膜の表面に、多孔層を形成させずに同様の評価を行ったところ、150℃でのMD熱収縮率80%以上、TD熱収縮率23%と非常に大きかった。またシャットダウン温度は152℃に観測されたが、ショート温度が153℃と低かった。なお、この多層多孔膜をセパレータとして用いて電池評価を実施したところ、レート特性は90%以上と高く、100サイクル後の容量維持率は90%以上でサイクル特性も良好であった
[Comparative Example 11]
When the same evaluation was performed without forming a porous layer on the surface of the polyolefin resin porous film used as the substrate in Comparative Example 1, the MD heat shrinkage rate at 150 ° C. was 80% or more, and the TD heat shrinkage rate was 23%. And it was very big. The shutdown temperature was observed at 152 ° C, but the short-circuit temperature was as low as 153 ° C. When this multilayer porous membrane was used as a separator for battery evaluation, the rate characteristics were as high as 90% or higher, the capacity retention rate after 100 cycles was 90% or higher, and the cycle characteristics were also good.

[比較例12]
比較例2で基材に用いたポリオレフィン樹脂多孔膜の表面に、多孔層を形成させずに同様の評価を行ったところ、150℃でのMD熱収縮率80%以上、TD熱収縮率24%と非常に大きかった。またシャットダウン温度は145℃に観測されたが、ショート温度が147℃と低かった。なお、この多層多孔膜をセパレータとして用いて電池評価を実施したところ、レート特性は90%以上と高く、100サイクル後の容量維持率は90%以上でサイクル特性も良好であった
以上の実施例、比較例における物性を表1にまとめて示した。
[Comparative Example 12]
When the same evaluation was performed without forming a porous layer on the surface of the polyolefin resin porous film used as the substrate in Comparative Example 2, the MD heat shrinkage rate at 150 ° C. was 80% or more, and the TD heat shrinkage rate was 24%. And it was very big. The shutdown temperature was observed at 145 ° C, but the short-circuit temperature was as low as 147 ° C. In addition, when the battery was evaluated using this multilayer porous membrane as a separator, the rate characteristics were as high as 90% or more, the capacity retention rate after 100 cycles was 90% or more, and the cycle characteristics were also good. Table 1 summarizes the physical properties in the comparative examples.

Claims (4)

ポリオレフィン樹脂多孔膜の少なくとも片面に、無機フィラーと樹脂バインダとを含む多孔層を備え、
前記ポリオレフィン樹脂多孔膜の、熱収縮応力の最大値が10g以下であることを特徴とする多層多孔膜。
Provided with a porous layer containing an inorganic filler and a resin binder on at least one side of the polyolefin resin porous membrane,
The multilayer porous membrane, wherein the polyolefin resin porous membrane has a maximum heat shrinkage stress of 10 g or less.
請求項1に記載の多層多孔膜を用いた非水電解液電池用セパレータ。   A separator for a non-aqueous electrolyte battery using the multilayer porous membrane according to claim 1. 請求項2に記載の非水電解液電池用セパレータを用いた非水電解液電池。   A nonaqueous electrolyte battery using the separator for a nonaqueous electrolyte battery according to claim 2. 熱収縮応力の最大値が10g以下のポリオレフィン樹脂多孔膜の少なくとも片面に、無機フィラーと樹脂バインダとを含有する分散液を塗布することで、ポリオレフィン樹脂多孔膜の少なくとも片面に、無機フィラーと樹脂バインダとを含む多孔層を形成することを特徴とする多層多孔膜の製造方法。   By applying a dispersion liquid containing an inorganic filler and a resin binder to at least one surface of a polyolefin resin porous membrane having a maximum heat shrinkage stress of 10 g or less, the inorganic filler and the resin binder are applied to at least one surface of the polyolefin resin porous membrane. A method for producing a multilayer porous membrane comprising forming a porous layer comprising:
JP2008013069A 2007-01-30 2008-01-23 Multilayer porous membrane and method for producing the same Active JP4931083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008013069A JP4931083B2 (en) 2007-01-30 2008-01-23 Multilayer porous membrane and method for producing the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2007019352 2007-01-30
JP2007019352 2007-01-30
JP2007161102 2007-06-19
JP2007161102 2007-06-19
JP2008013069A JP4931083B2 (en) 2007-01-30 2008-01-23 Multilayer porous membrane and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011276168A Division JP2012109249A (en) 2007-01-30 2011-12-16 Multilayer porous membrane and method for producing the same

Publications (3)

Publication Number Publication Date
JP2009026733A true JP2009026733A (en) 2009-02-05
JP2009026733A5 JP2009026733A5 (en) 2011-07-21
JP4931083B2 JP4931083B2 (en) 2012-05-16

Family

ID=40398339

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2008013069A Active JP4931083B2 (en) 2007-01-30 2008-01-23 Multilayer porous membrane and method for producing the same
JP2011276168A Pending JP2012109249A (en) 2007-01-30 2011-12-16 Multilayer porous membrane and method for producing the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2011276168A Pending JP2012109249A (en) 2007-01-30 2011-12-16 Multilayer porous membrane and method for producing the same

Country Status (1)

Country Link
JP (2) JP4931083B2 (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009283273A (en) * 2008-05-22 2009-12-03 Hitachi Maxell Ltd Separator for electrochemical cell, and battery
JP2010240936A (en) * 2009-04-03 2010-10-28 Asahi Kasei E-Materials Corp Multilayered porous film
JP2011005670A (en) * 2009-06-23 2011-01-13 Asahi Kasei E-Materials Corp Multilayered porous film
JP2011071009A (en) * 2009-09-28 2011-04-07 Toyota Motor Corp Separator for lithium ion secondary battery, and method for manufacturing the same
WO2011062285A1 (en) 2009-11-20 2011-05-26 三菱樹脂株式会社 Laminated porous film, separator for battery, and battery
WO2011078098A1 (en) * 2009-12-24 2011-06-30 住友化学株式会社 Laminated film, and nonaqueous electrolyte secondary battery
JP2011204587A (en) * 2010-03-26 2011-10-13 Teijin Ltd Separator for nonaqueous secondary battery, nonaqueous secondary battery, and method of manufacturing separator for nonaqueous secondary battery
WO2011132533A1 (en) * 2010-04-19 2011-10-27 三菱樹脂株式会社 Laminated porous film, separator for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2012005152A1 (en) * 2010-07-09 2012-01-12 日立マクセル株式会社 Separator for non-aqueous battery, and non-aqueous battery
JP2012020437A (en) * 2010-07-13 2012-02-02 Mitsubishi Plastics Inc Laminated porous film, separator for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2012043501A1 (en) * 2010-09-27 2012-04-05 住友化学株式会社 Slurry and method for producing separator using the slurry
JP2012104291A (en) * 2010-11-08 2012-05-31 Sony Corp Shrinkage-resistant microporous film and battery separator
JP2012529742A (en) * 2009-06-17 2012-11-22 エスケー イノベーション シーオー., エルティーディー. Polyethylene-based composite microporous membrane with highly heat-resistant organic / inorganic coating layer
WO2013054930A1 (en) * 2011-10-14 2013-04-18 東レ株式会社 Porous polyolefin film and electrical storage device
JPWO2011108539A1 (en) * 2010-03-02 2013-06-27 三菱樹脂株式会社 Polypropylene resin porous film, battery separator and battery
CN103329306A (en) * 2011-11-01 2013-09-25 株式会社Lg化学 Separator and electrochemical device having same
WO2013147071A1 (en) * 2012-03-28 2013-10-03 旭化成イーマテリアルズ株式会社 Porous film and multilayer porous film
JP2013203894A (en) * 2012-03-28 2013-10-07 Asahi Kasei E-Materials Corp Polyolefin microporous membrane
WO2014115723A1 (en) 2013-01-22 2014-07-31 旭化成株式会社 Lithium ion capacitor
WO2015050076A1 (en) 2013-10-03 2015-04-09 東レバッテリーセパレータフィルム株式会社 Polyolefin porous film, separator for batteries which is manufactured using said porous film, and methods respectively for manufacturing said porous film and said separator
WO2016051713A1 (en) * 2014-09-30 2016-04-07 日本ゼオン株式会社 Composition for porous membrane for lithium ion secondary batteries, porous membrane for lithium ion secondary batteries, and lithium ion secondary battery
KR20170084013A (en) 2014-11-18 2017-07-19 도레이 배터리 세퍼레이터 필름 주식회사 Microporous polyolefin film, separator for battery, and production processes therefor
KR20170093789A (en) 2014-12-11 2017-08-16 도레이 카부시키가이샤 Microporous polyolefin film, separator for battery, and production processes therefor
JP2017523570A (en) * 2014-06-30 2017-08-17 三星エスディアイ株式会社Samsung SDI Co., Ltd. Porous polyolefin separation membrane and method for producing the same
JP2017226120A (en) * 2016-06-21 2017-12-28 住友化学株式会社 Laminate
JP2017226119A (en) * 2016-06-21 2017-12-28 住友化学株式会社 Laminate
WO2018037869A1 (en) * 2016-08-22 2018-03-01 株式会社Gsユアサ Non-aqueous electrolyte power storage element and method for manufacturing same
KR20180033195A (en) 2015-07-29 2018-04-02 도레이 카부시키가이샤 Battery separator and manufacturing method thereof
KR20180090725A (en) 2015-10-09 2018-08-13 도레이 카부시키가이샤 Laminated polyolefin microporous membrane, a battery separator, and a method for producing the same
KR20180130096A (en) 2016-03-29 2018-12-06 도레이 카부시키가이샤 Polyolefin microporous membrane, battery separator and method of manufacturing them
KR20180136432A (en) 2016-04-27 2018-12-24 도레이 카부시키가이샤 Polyolefin microporous membrane, battery separator, and method for manufacturing the same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014028326A (en) * 2012-07-31 2014-02-13 Daicel Corp Laminate having porus layer and method of manufacturing the same
JP5944808B2 (en) * 2012-10-05 2016-07-05 日本バイリーン株式会社 Affinity perforated sheet
KR101611229B1 (en) * 2013-01-31 2016-04-11 제일모직 주식회사 Method for manufacturing separator, the separator, and battery using the separator
WO2014132791A1 (en) 2013-02-27 2014-09-04 東レバッテリーセパレータフィルム株式会社 Porous polyolefin film, battery separator obtained using same, and processes for producing these
JP6094805B2 (en) * 2013-04-10 2017-03-15 トヨタ自動車株式会社 Secondary battery
JP6323449B2 (en) 2013-04-22 2018-05-16 東レ株式会社 Laminated porous membrane, method for producing the same, and battery separator
CN105917494B (en) 2014-01-10 2018-12-07 东丽株式会社 Battery separator and its manufacturing method
HUE047609T2 (en) 2014-03-26 2020-05-28 Toray Industries Multi-layer polyolefin porous membrane, and a battery separator using same
US10343382B2 (en) 2014-05-09 2019-07-09 Toray Industries, Inc. Multi-layer polyolefin porous membrane, battery separator obtained using the same, and method for producing the same
WO2015190265A1 (en) 2014-06-11 2015-12-17 東レバッテリーセパレータフィルム株式会社 Battery separator and production method therefor
KR102454819B1 (en) 2014-06-30 2022-10-17 데이진 가부시키가이샤 Separator for nonaqueous secondary batteries, and nonaqueous secondary battery
JP2018163872A (en) * 2017-03-03 2018-10-18 帝人株式会社 Separator for nonaqueous secondary battery, and nonaqueous secondary battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0420511A (en) * 1989-12-23 1992-01-24 Basf Ag Purification of isobutene polymer
JPH10172531A (en) * 1996-12-16 1998-06-26 Nitto Denko Corp Porous film and battery separator
JP2003217554A (en) * 2002-01-24 2003-07-31 Asahi Kasei Corp Polyolefin micro porous membrane for battery separator
JP2004227972A (en) * 2003-01-24 2004-08-12 Sumitomo Chem Co Ltd Separator for non-aqueous electrolytic solution secondary battery
JP2005129437A (en) * 2003-10-27 2005-05-19 Canon Inc Electrode structure for nonaqueous electrolyte secondary battery and its manufacturing method, as well as nonaqueous electrolyte secondary battery equipped with electrode structure and its manufacturing method
WO2006068428A1 (en) * 2004-12-22 2006-06-29 Lg Chem, Ltd. Organic/inorganic composite microporous membrane and electrochemical device prepared thereby
JP2006321841A (en) * 2005-05-17 2006-11-30 Asahi Kasei Chemicals Corp Microporous polyethylene film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001250529A (en) * 2000-03-03 2001-09-14 Nippon Sheet Glass Co Ltd Alkaline secondary battery
JP2002093400A (en) * 2000-07-14 2002-03-29 Toyobo Co Ltd Separator for alkaline battery and alkaline battery
JP4698078B2 (en) * 2000-07-26 2011-06-08 旭化成イーマテリアルズ株式会社 Polyolefin microporous membrane and method for producing the same
JP2002184466A (en) * 2000-12-12 2002-06-28 Mitsubishi Chemicals Corp Battery for portable equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0420511A (en) * 1989-12-23 1992-01-24 Basf Ag Purification of isobutene polymer
JPH10172531A (en) * 1996-12-16 1998-06-26 Nitto Denko Corp Porous film and battery separator
JP2003217554A (en) * 2002-01-24 2003-07-31 Asahi Kasei Corp Polyolefin micro porous membrane for battery separator
JP2004227972A (en) * 2003-01-24 2004-08-12 Sumitomo Chem Co Ltd Separator for non-aqueous electrolytic solution secondary battery
JP2005129437A (en) * 2003-10-27 2005-05-19 Canon Inc Electrode structure for nonaqueous electrolyte secondary battery and its manufacturing method, as well as nonaqueous electrolyte secondary battery equipped with electrode structure and its manufacturing method
WO2006068428A1 (en) * 2004-12-22 2006-06-29 Lg Chem, Ltd. Organic/inorganic composite microporous membrane and electrochemical device prepared thereby
JP2006321841A (en) * 2005-05-17 2006-11-30 Asahi Kasei Chemicals Corp Microporous polyethylene film

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009283273A (en) * 2008-05-22 2009-12-03 Hitachi Maxell Ltd Separator for electrochemical cell, and battery
JP2010240936A (en) * 2009-04-03 2010-10-28 Asahi Kasei E-Materials Corp Multilayered porous film
JP2012529742A (en) * 2009-06-17 2012-11-22 エスケー イノベーション シーオー., エルティーディー. Polyethylene-based composite microporous membrane with highly heat-resistant organic / inorganic coating layer
JP2011005670A (en) * 2009-06-23 2011-01-13 Asahi Kasei E-Materials Corp Multilayered porous film
JP2011071009A (en) * 2009-09-28 2011-04-07 Toyota Motor Corp Separator for lithium ion secondary battery, and method for manufacturing the same
WO2011062285A1 (en) 2009-11-20 2011-05-26 三菱樹脂株式会社 Laminated porous film, separator for battery, and battery
WO2011078098A1 (en) * 2009-12-24 2011-06-30 住友化学株式会社 Laminated film, and nonaqueous electrolyte secondary battery
JP2011131470A (en) * 2009-12-24 2011-07-07 Sumitomo Chemical Co Ltd Laminated film and nonaqueous electrolyte secondary battery
JPWO2011108539A1 (en) * 2010-03-02 2013-06-27 三菱樹脂株式会社 Polypropylene resin porous film, battery separator and battery
JP5778657B2 (en) * 2010-03-02 2015-09-16 三菱樹脂株式会社 Polypropylene resin porous film, battery separator and battery
JP2011204587A (en) * 2010-03-26 2011-10-13 Teijin Ltd Separator for nonaqueous secondary battery, nonaqueous secondary battery, and method of manufacturing separator for nonaqueous secondary battery
WO2011132533A1 (en) * 2010-04-19 2011-10-27 三菱樹脂株式会社 Laminated porous film, separator for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JPWO2011132533A1 (en) * 2010-04-19 2013-07-18 三菱樹脂株式会社 Multilayer porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP5676577B2 (en) * 2010-04-19 2015-02-25 三菱樹脂株式会社 Multilayer porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2012005152A1 (en) * 2010-07-09 2012-01-12 日立マクセル株式会社 Separator for non-aqueous battery, and non-aqueous battery
JPWO2012005152A1 (en) * 2010-07-09 2013-09-02 日立マクセル株式会社 Nonaqueous battery separator and nonaqueous battery
JP2012020437A (en) * 2010-07-13 2012-02-02 Mitsubishi Plastics Inc Laminated porous film, separator for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2012043501A1 (en) * 2010-09-27 2012-04-05 住友化学株式会社 Slurry and method for producing separator using the slurry
JP2012104291A (en) * 2010-11-08 2012-05-31 Sony Corp Shrinkage-resistant microporous film and battery separator
WO2013054930A1 (en) * 2011-10-14 2013-04-18 東レ株式会社 Porous polyolefin film and electrical storage device
JP5267754B1 (en) * 2011-10-14 2013-08-21 東レ株式会社 Porous polyolefin film and electricity storage device
JP2013544430A (en) * 2011-11-01 2013-12-12 エルジー・ケム・リミテッド Separator and electrochemical device including the same
CN103329306A (en) * 2011-11-01 2013-09-25 株式会社Lg化学 Separator and electrochemical device having same
US9786890B2 (en) 2011-11-01 2017-10-10 Lg Chem, Ltd. Separator and electrochemical device having the same
WO2013147071A1 (en) * 2012-03-28 2013-10-03 旭化成イーマテリアルズ株式会社 Porous film and multilayer porous film
JP2013203894A (en) * 2012-03-28 2013-10-07 Asahi Kasei E-Materials Corp Polyolefin microporous membrane
US9911960B2 (en) 2012-03-28 2018-03-06 Asahi Kasei E-Materials Corporation Porous membrane and multilayer porous membrane
US9911959B2 (en) 2012-03-28 2018-03-06 Asahi Kasei E-Materials Corporation Porous membrane and multilayer porous membrane
US9627672B2 (en) 2012-03-28 2017-04-18 Asahi Kasei E-Materials Corporation Separator for nonaqueous electrolyte batteries containing a porous membrane
WO2014115723A1 (en) 2013-01-22 2014-07-31 旭化成株式会社 Lithium ion capacitor
US10242807B2 (en) 2013-01-22 2019-03-26 Asahi Kasei Kabushiki Kaisha Lithium ion capacitor
KR20150080596A (en) 2013-01-22 2015-07-09 아사히 가세이 가부시키가이샤 Lithium ion capacitor
WO2015050076A1 (en) 2013-10-03 2015-04-09 東レバッテリーセパレータフィルム株式会社 Polyolefin porous film, separator for batteries which is manufactured using said porous film, and methods respectively for manufacturing said porous film and said separator
JP2017523570A (en) * 2014-06-30 2017-08-17 三星エスディアイ株式会社Samsung SDI Co., Ltd. Porous polyolefin separation membrane and method for producing the same
WO2016051713A1 (en) * 2014-09-30 2016-04-07 日本ゼオン株式会社 Composition for porous membrane for lithium ion secondary batteries, porous membrane for lithium ion secondary batteries, and lithium ion secondary battery
JPWO2016051713A1 (en) * 2014-09-30 2017-07-13 日本ゼオン株式会社 Composition for porous membrane of lithium ion secondary battery, porous membrane for lithium ion secondary battery and lithium ion secondary battery
KR20170084013A (en) 2014-11-18 2017-07-19 도레이 배터리 세퍼레이터 필름 주식회사 Microporous polyolefin film, separator for battery, and production processes therefor
KR20170093789A (en) 2014-12-11 2017-08-16 도레이 카부시키가이샤 Microporous polyolefin film, separator for battery, and production processes therefor
US10784482B2 (en) 2014-12-11 2020-09-22 Toray Industries, Inc. Microporous polyolefin film, separator for battery, and production processes therefor
KR20180033195A (en) 2015-07-29 2018-04-02 도레이 카부시키가이샤 Battery separator and manufacturing method thereof
US10283749B2 (en) 2015-10-09 2019-05-07 Toray Industries, Inc. Laminated polyolefin microporous membrane, battery separator, and production method thereof
KR20180090725A (en) 2015-10-09 2018-08-13 도레이 카부시키가이샤 Laminated polyolefin microporous membrane, a battery separator, and a method for producing the same
KR20180130096A (en) 2016-03-29 2018-12-06 도레이 카부시키가이샤 Polyolefin microporous membrane, battery separator and method of manufacturing them
KR20180136432A (en) 2016-04-27 2018-12-24 도레이 카부시키가이샤 Polyolefin microporous membrane, battery separator, and method for manufacturing the same
US10790492B2 (en) 2016-04-27 2020-09-29 Toray Industries, Inc. Microporous polyolefin membrane, separator for battery, and production processes therefor
JP2017226119A (en) * 2016-06-21 2017-12-28 住友化学株式会社 Laminate
JP2017226120A (en) * 2016-06-21 2017-12-28 住友化学株式会社 Laminate
WO2018037869A1 (en) * 2016-08-22 2018-03-01 株式会社Gsユアサ Non-aqueous electrolyte power storage element and method for manufacturing same
JPWO2018037869A1 (en) * 2016-08-22 2019-06-20 株式会社Gsユアサ Non-aqueous electrolyte storage element and method of manufacturing the same
JP7015454B2 (en) 2016-08-22 2022-02-03 株式会社Gsユアサ Non-aqueous electrolyte power storage element and its manufacturing method

Also Published As

Publication number Publication date
JP4931083B2 (en) 2012-05-16
JP2012109249A (en) 2012-06-07

Similar Documents

Publication Publication Date Title
JP4931083B2 (en) Multilayer porous membrane and method for producing the same
JP5448345B2 (en) Multilayer porous membrane and method for producing the same
KR101227325B1 (en) Multilayer porous membrane and method for producing the same
JP4789274B2 (en) Multilayer porous membrane
JP6309661B2 (en) Porous membrane and multilayer porous membrane
JP5196780B2 (en) Multilayer porous membrane and method for producing the same
JP4836297B2 (en) Multilayer porous membrane
JP2008186721A (en) Porous membrane having high thermal resistance and high permeability, and its manufacturing method
JP5511214B2 (en) Multilayer porous membrane
JP5196969B2 (en) Multilayer porous membrane
JP2009143060A (en) Multi-layer porous film
JP5645342B2 (en) Porous membrane having both high heat resistance and high permeability and its production method
JP6378998B2 (en) Method for manufacturing separator for power storage device
JP2013144442A (en) Porous film including both high heat resistance and high transmittance, and method for manufacturing the same
JP2017080977A (en) Multilayer microporous membrane and separator for electricity storage device
JP2014078515A (en) Porous membrane having high thermal resistance and high permeability, and manufacturing method of the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110606

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110606

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110606

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111216

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120209

R150 Certificate of patent or registration of utility model

Ref document number: 4931083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350