JP2017523570A - Porous polyolefin separation membrane and method for producing the same - Google Patents

Porous polyolefin separation membrane and method for producing the same Download PDF

Info

Publication number
JP2017523570A
JP2017523570A JP2016575432A JP2016575432A JP2017523570A JP 2017523570 A JP2017523570 A JP 2017523570A JP 2016575432 A JP2016575432 A JP 2016575432A JP 2016575432 A JP2016575432 A JP 2016575432A JP 2017523570 A JP2017523570 A JP 2017523570A
Authority
JP
Japan
Prior art keywords
separation membrane
polyolefin
stretching
ratio
width direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016575432A
Other languages
Japanese (ja)
Other versions
JP6818557B2 (en
Inventor
ウック キム,キー
ウック キム,キー
ホ リ,サン
ホ リ,サン
ペ リ,ヨン
ペ リ,ヨン
ソン リ,ジョン
ソン リ,ジョン
ス ジャン,ユン
ス ジャン,ユン
ヒョン チョ,ジェ
ヒョン チョ,ジェ
ヒョン ホン,デ
ヒョン ホン,デ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Publication of JP2017523570A publication Critical patent/JP2017523570A/en
Application granted granted Critical
Publication of JP6818557B2 publication Critical patent/JP6818557B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • B29C55/143Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively firstly parallel to the direction of feed and then transversely thereto
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/062HDPE
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/068Ultra high molecular weight polyethylene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本発明は、ポリオレフィン系樹脂および可塑剤を含む組成物を溶融混練し押出してシートを形成し、前記固形化されたシートを長手方向にT1温度でE1倍延伸および幅方向にT2温度でE2倍延伸し、前記延伸されたシートから可塑剤を抽出し、前記可塑剤が抽出されたシートを幅方向に最終延伸倍率が1.25倍〜1.5倍となるように延伸することを含み、前記延伸時の温度条件が100℃<T1<115℃、100℃<T2<115℃、およびT2≧T1であり、前記延伸時の倍率条件がE1×E2=60〜80である、ポリオレフィン系分離膜の製造方法、および前記方法によって製造されたポリオレフィン系分離膜に関する。【選択図】図1In the present invention, a composition containing a polyolefin resin and a plasticizer is melt-kneaded and extruded to form a sheet. The solidified sheet is stretched E1 times at the T1 temperature in the longitudinal direction and E2 times at the T2 temperature in the width direction. Stretching, extracting a plasticizer from the stretched sheet, and stretching the sheet from which the plasticizer has been extracted in a width direction so that a final stretching ratio is 1.25 to 1.5 times, Polyolefin separation in which the temperature conditions at the time of stretching are 100 ° C. <T1 <115 ° C., 100 ° C. <T2 <115 ° C., and T2 ≧ T1, and the magnification condition at the time of stretching is E1 × E2 = 60-80 The present invention relates to a membrane production method and a polyolefin-based separation membrane produced by the method. [Selection] Figure 1

Description

本発明は、多孔性ポリオレフィン系分離膜およびその製造方法に関する。   The present invention relates to a porous polyolefin separation membrane and a method for producing the same.

電気化学電池用分離膜(separator)は、電池内で正極と負極を互いに隔離させながらイオン伝導度を持続的に維持させて、電池の充電と放電を可能にする中間膜を意味する。   The separator for an electrochemical cell refers to an intermediate membrane that allows the battery to be charged and discharged while maintaining ionic conductivity while isolating the positive electrode and the negative electrode from each other in the battery.

最近、電子機器の携帯性を高めるための電気化学電池の軽量化および小型化の傾向に加えて、電気自動車などへの使用のための高出力大容量電池を必要とする傾向がある。このような電池分離膜の場合、高い通気性、薄い膜厚、強い機械的強度が要求されている。また、高出力電池の生産性向上のために、高熱や高いテンションによる形態安定性などに優れていることが要求される。したがって、高い通気性および気孔度を有しながらも機械的強度に優れ、また、気孔の形態および大きさの変形率が小さくて高出力電池への使用に好適な分離膜を開発する必要がある。   Recently, in addition to the trend of reducing the weight and miniaturization of electrochemical cells for enhancing the portability of electronic devices, there is a tendency to require high-power, large-capacity batteries for use in electric vehicles and the like. In the case of such a battery separation membrane, high air permeability, thin film thickness, and strong mechanical strength are required. Moreover, in order to improve the productivity of high-power batteries, it is required to have excellent shape stability due to high heat and high tension. Therefore, it is necessary to develop a separation membrane that is excellent in mechanical strength while having high air permeability and porosity, and that has a small deformation rate of pore shape and size and is suitable for use in high-power batteries. .

本発明は、通気度および気孔度に優れていながらも強い強度を有し、分離膜の気孔の形態あるいは大きさの変形率が少なくて電池安定性に優れた分離膜を提供する。   The present invention provides a separation membrane that is excellent in air permeability and porosity but has strong strength, and has a low deformation rate of the shape or size of the pores of the separation membrane and is excellent in battery stability.

本発明の一例によれば、ポリオレフィン系樹脂および可塑剤を含む組成物を溶融混練し押出してシートを形成し、前記固形化されたシートを長手方向にT温度でE倍延伸および幅方向にT温度でE倍延伸し、前記延伸されたシートから可塑剤を抽出し、前記可塑剤が抽出されたシートを幅方向に最終延伸倍率が1.25倍〜1.5倍となるように延伸することを含み、前記延伸時の温度条件が100℃<T<115℃、100℃<T<115℃、およびT≧Tであり、前記延伸時の倍率条件がE×E=60〜80である、ポリオレフィン系分離膜の製造方法が提供される。 According to one example of the present invention, a composition comprising a polyolefin resin and a plasticizer melt-kneading extrusion to form a sheet, E 1 time stretching and transverse direction of the solidified sheet in the longitudinal direction by T 1 temperature E 2 times stretched at T 2 temperature, a plasticizer is extracted from the stretched sheet, and the final stretch ratio is 1.25 times to 1.5 times in the width direction of the sheet from which the plasticizer is extracted. Stretching, the temperature conditions at the time of stretching are 100 ° C. <T 1 <115 ° C., 100 ° C. <T 2 <115 ° C., and T 2 ≧ T 1 , and the magnification condition at the time of stretching is E 1 × a E 2 = 60-80, a manufacturing method of a polyolefin-based separator is provided.

本発明の他の例によれば、ポリオレフィン系樹脂を含有し、毛細管流動気孔測定器で測定した分離膜の湿潤および乾燥曲線で平均ポイント圧力(psi)/バブルポイント圧力(psi)が1.8〜2.4である、ポリオレフィン系分離膜が提供される。   According to another example of the present invention, the average point pressure (psi) / bubble point pressure (psi) is 1.8 on the wetting and drying curves of a separation membrane containing a polyolefin resin and measured with a capillary flow pore meter. A polyolefin-based separation membrane of ~ 2.4 is provided.

本発明の一例による分離膜は、分離膜の気孔の形態によってより高い電解液吸湿性を有する。   The separation membrane according to an example of the present invention has higher electrolyte hygroscopicity depending on the pore shape of the separation membrane.

本発明の一例による分離膜はまた、分離膜の気孔の大きさ分布を制御することによって、通気度と気孔度に優れていながらも強い機械的強度を有する。   The separation membrane according to an example of the present invention also has a strong mechanical strength while controlling the pore size distribution of the separation membrane while being excellent in air permeability and porosity.

図1は、本発明の一例による分離膜に対して測定したPMI社の毛細管流動気孔測定器(Capillary flow porometer)の湿潤グラフである。前記湿潤グラフで曲線の描かれる始点の圧力をバブルポイント(bubble point)圧力(psi)といい、乾燥グラフで直線の傾きが1/2となる仮想の直線と前記湿潤曲線との交わる点の圧力を平均ポイント(mean point)圧力(psi)という。前記バブルポイント圧力および前記平均ポイント圧力は、分離膜の最大孔径の大きさと平均孔径の大きさをそれぞれ反映する。FIG. 1 is a wet graph of a PMI capillary flow pore meter measured on a separation membrane according to an example of the present invention. The pressure at the starting point at which a curve is drawn in the wet graph is referred to as a bubble point pressure (psi), and the pressure at the point where the wet curve intersects an imaginary straight line whose slope of the straight line is halved in the dry graph. Is referred to as the mean point pressure (psi). The bubble point pressure and the average point pressure reflect the maximum pore size and the average pore size of the separation membrane, respectively.

本発明の一例による多孔性ポリオレフィン系分離膜の製造方法は、ポリオレフィン系樹脂および可塑剤を含む組成物を溶融混練し押出してシートを形成し、前記固形化されたシートを長手方向にT温度でE倍延伸および幅方向にT温度でE倍延伸し、前記延伸されたシートから可塑剤を抽出し、前記可塑剤が抽出されたシートを幅方向に最終延伸倍率が1.25倍〜1.5倍となるように延伸することを含み、前記延伸時の温度条件が100℃<T<115℃、100℃<T<115℃、およびT≧Tであり、前記延伸時の倍率条件がE×E=60〜80であるとよい。 Method for producing a porous polyolefin-based separator according to an example of the present invention, a composition comprising a polyolefin resin and a plasticizer melt-kneading extrusion to form a sheet, T 1 temperature the solidified sheet in the longitudinal direction E 1 times stretching and E 2 times stretching at T 2 temperature in the width direction, a plasticizer is extracted from the stretched sheet, and the final stretch ratio is 1.25 in the width direction of the sheet from which the plasticizer has been extracted. Stretching to be 1.5 to 1.5 times, and the temperature conditions during the stretching are 100 ° C. <T 1 <115 ° C., 100 ° C. <T 2 <115 ° C., and T 2 ≧ T 1 The magnification condition at the time of the stretching may be E 1 × E 2 = 60-80.

まず、前記固形化されたシートを形成することは、具体的には、ポリオレフィン系樹脂および可塑剤を含む組成物を溶融混練し押出して冷却固形化されたシートを形成することを含む。   First, forming the solidified sheet specifically includes melt-kneading and extruding a composition containing a polyolefin resin and a plasticizer to form a cooled and solidified sheet.

前記ポリオレフィン系樹脂は、ポリオレフィンを含む樹脂で、例えば、超高分子量ポリエチレン、高分子量ポリエチレン、高密度ポリエチレン、低密度ポリエチレン、線状低密度ポリエチレン、ポリプロピレン、高結晶性ポリプロピレン、およびポリエチレン−プロピレン共重合体からなる群より選択された1種または2種以上を含んでもよい。他の例において、ポリオレフィン系樹脂は、前記ポリオレフィンのほか、その他の樹脂を含んでもよい。その他の樹脂の例としては、ポリイミド、ポリエステル、ポリアミド、ポリエーテルイミド、ポリアミドイミド、ポリアセタールなどが挙げられる。その他の樹脂を含む場合、ポリオレフィン樹脂とその他の樹脂とを適切な溶媒中にブレンディングしてポリオレフィン系樹脂組成物を製造することができる。前記高密度ポリエチレンの粘度平均分子量(Mv)は、1×10〜9×10g/molであってもよく、例えば3×10〜6×10g/molであるとよい。前記超高分子量ポリエチレンの粘度平均分子量は、9×10g/mol以上、具体的には9×10〜5×10g/molであるとよい。例えば、前記高密度ポリエチレンを単独で使用するか、前記超高分子量ポリエチレンを単独で使用するか、前記高密度ポリエチレンと前記超高分子量ポリエチレンを全て使用してもよい。より具体的には、前記ポリオレフィン系樹脂の重量を基準として、前記超高分子量ポリエチレンを30重量%以下で使用し、例えば、粘度平均分子量が1×10〜9×10g/molの高密度ポリエチレンを70重量%以上、および粘度平均分子量が9×10g/mol以上の超高分子量ポリエチレンを30重量%以下で含むポリオレフィン系樹脂を使用してもよい。前記ポリオレフィン系樹脂は、高強度分離膜を製造可能で有利である。また、前記ポリオレフィン系樹脂を2種以上含む場合、ヘンシェルミキサー、バンバリーミキサー、およびプラネタリーミキサーからなる群より選択された1種以上を用いて混合してもよい。 The polyolefin resin is a resin containing polyolefin, for example, ultrahigh molecular weight polyethylene, high molecular weight polyethylene, high density polyethylene, low density polyethylene, linear low density polyethylene, polypropylene, high crystalline polypropylene, and polyethylene-propylene copolymer. You may include 1 type, or 2 or more types selected from the group which consists of coalescence. In another example, the polyolefin-based resin may include other resins in addition to the polyolefin. Examples of other resins include polyimide, polyester, polyamide, polyetherimide, polyamideimide, polyacetal and the like. When other resins are included, a polyolefin resin composition can be produced by blending a polyolefin resin and another resin in an appropriate solvent. The viscosity-average molecular weight (Mv) of the high-density polyethylene may be 1 × 10 5 to 9 × 10 5 g / mol, for example, 3 × 10 5 to 6 × 10 5 g / mol. The viscosity average molecular weight of the ultrahigh molecular weight polyethylene is preferably 9 × 10 5 g / mol or more, specifically 9 × 10 5 to 5 × 10 6 g / mol. For example, the high density polyethylene may be used alone, the ultra high molecular weight polyethylene may be used alone, or the high density polyethylene and the ultra high molecular weight polyethylene may all be used. More specifically, the ultra high molecular weight polyethylene is used at 30 wt% or less based on the weight of the polyolefin-based resin, for example, a high viscosity average molecular weight of 1 × 10 5 to 9 × 10 5 g / mol. A polyolefin-based resin containing 70% by weight or more of density polyethylene and 30% by weight or less of ultrahigh molecular weight polyethylene having a viscosity average molecular weight of 9 × 10 5 g / mol or more may be used. The polyolefin resin is advantageous because it can produce a high-strength separation membrane. Moreover, when 2 or more types of the said polyolefin-type resin are included, you may mix using 1 or more types selected from the group which consists of a Henschel mixer, a Banbury mixer, and a planetary mixer.

前記可塑剤は、押出温度で前記ポリオレフィン系樹脂と単相を形成する有機化合物であってもよい。本発明で使用可能な可塑剤の例としては、ノナン、デカン、デカリン、液体パラフィン(またはパラフィンオイル)、パラフィンワックスなどの脂肪族または環状炭化水素;ジブチルフタレート、ジオクチルフタレートなどのフタル酸エステル;パルミチン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸などの炭素数10〜20の脂肪酸類;パルミチン酸アルコール、ステアリン酸アルコール、オレイン酸アルコールなどの炭素数10〜20の脂肪酸アルコール類などが挙げられる。これらを単独で使用するか、2種以上を混合して使用してもよい。前記可塑剤のうち、液体パラフィンを好ましく使用することができる。液体パラフィンは、人体に無害で沸点が高く揮発性成分が少なくて、湿式法で可塑剤としての使用に好適である。   The plasticizer may be an organic compound that forms a single phase with the polyolefin resin at an extrusion temperature. Examples of plasticizers that can be used in the present invention include aliphatic or cyclic hydrocarbons such as nonane, decane, decalin, liquid paraffin (or paraffin oil), paraffin wax; phthalates such as dibutyl phthalate and dioctyl phthalate; C10-20 fatty acids such as acid, stearic acid, oleic acid, linoleic acid, and linolenic acid; C10-20 fatty acid alcohols such as palmitic acid alcohol, stearic alcohol, and oleic alcohol. . These may be used alone or in combination of two or more. Among the plasticizers, liquid paraffin can be preferably used. Liquid paraffin is harmless to the human body, has a high boiling point and a small amount of volatile components, and is suitable for use as a plasticizer in a wet process.

本願において、ポリオレフィン系樹脂および可塑剤を含む組成物を溶融混練することは当業者に知られた方法を使用することができ、150℃〜250℃の温度でポリオレフィン系樹脂と可塑剤とを溶融混練するものであってもよい。前記溶融混練された組成物を二軸押出機に注入して、150〜250℃で押出すことができる。以降、押出されたポリオレフィン系樹脂を、20〜80℃のキャスティング・ロール(casting roll)を用いて冷却するか、エアナイフから噴射される冷たい空気によって強制的に冷却して、膜を結晶化させて固形化されたシートを形成する。前記エアナイフから噴射される冷たい空気の温度は、−20℃〜40℃であってもよい。   In the present application, a method known to those skilled in the art can be used to melt and knead a composition containing a polyolefin resin and a plasticizer, and the polyolefin resin and the plasticizer are melted at a temperature of 150 ° C. to 250 ° C. It may be kneaded. The melt-kneaded composition can be poured into a twin screw extruder and extruded at 150 to 250 ° C. Thereafter, the extruded polyolefin resin is cooled using a casting roll of 20 to 80 ° C. or forcedly cooled by cold air jetted from an air knife to crystallize the film. A solidified sheet is formed. The temperature of the cold air ejected from the air knife may be -20 ° C to 40 ° C.

次に、前記固形化されたシートを長手方向にT温度でE倍延伸後、幅方向にT温度でE倍延伸する2軸延伸を行う。前記延伸時の延伸温度条件は、100℃<T<115℃、100℃<T<115℃、およびT≧Tである。MD方向延伸温度(T)およびTD方向延伸温度(T)を全て115℃未満にすれば、気孔度を高めることができ、MD方向延伸温度(T)をTD方向延伸温度(T)より低いか同一にして延伸すれば、部位ごとの延伸長さにばらつきを生じさせることができ、以降、TD方向延伸すれば、大きさの異なる2種以上の気孔を分離膜に形成させることができる。大きさの異なる2種以上の気孔のうち、相対的に大きさの小さい気孔は熱収縮率、強度、気孔変形率の面で有利であり、相対的に大きさの大きい気孔は通気度、電解液の濡れ性および電池容量の面で有利である。前記延伸時の延伸倍率条件は、E×E=60〜80であるとよい。さらに、E≧7.5、およびE≧8であるとよい。延伸倍率において、MD方向延伸倍率(E)およびTD方向延伸倍率(E)をそれぞれ7.5倍および8倍以上とし、延伸面倍率(E×E)を60〜80とすれば、高い延伸面倍率によって分離膜の外部圧力による気孔の形状および大きさの変形率を最小化させて電池の安定性を改善することができる。 Then, after E 1 times stretched by T 1 temperature the solidified sheet in the longitudinal direction, it performs biaxial stretching of stretching twice E at T 2 temperature in the width direction. The stretching temperature conditions at the time of stretching are 100 ° C. <T 1 <115 ° C., 100 ° C. <T 2 <115 ° C., and T 2 ≧ T 1 . If the MD direction stretching temperature (T 1 ) and the TD direction stretching temperature (T 2 ) are all lower than 115 ° C., the porosity can be increased, and the MD direction stretching temperature (T 1 ) is changed to the TD direction stretching temperature (T 2). ) If stretched lower or the same, it is possible to cause variation in the stretch length of each part, and if stretched in the TD direction thereafter, two or more kinds of pores having different sizes can be formed in the separation membrane. Can do. Among two or more types of pores having different sizes, pores having a relatively small size are advantageous in terms of heat shrinkage rate, strength, and pore deformation rate, and pores having a relatively large size are air permeability, electrolysis This is advantageous in terms of liquid wettability and battery capacity. The draw ratio condition at the time of the drawing is preferably E 1 × E 2 = 60-80. Furthermore, it is good that E 1 ≧ 7.5 and E 2 ≧ 8. In the draw ratio, if the MD direction draw ratio (E 1 ) and the TD direction draw ratio (E 2 ) are 7.5 times and 8 times or more, respectively, and the draw surface ratio (E 1 × E 2 ) is 60 to 80, The stability of the battery can be improved by minimizing the deformation rate of the shape and size of the pores due to the external pressure of the separation membrane due to the high stretched surface magnification.

本発明は、このような延伸温度および延伸倍率の条件で延伸することによって、分離膜に要求される気孔度を確保しながらも、外部圧力による気孔の形状および大きさの変形率を最小化させることができる。前記MD延伸温度(T)は、TD延伸温度(T)より2℃以上低くてもよい。例えば、3℃以上、または5℃以上低くてもよい。 The present invention minimizes the deformation rate of the shape and size of the pores due to external pressure while securing the porosity required for the separation membrane by stretching under the conditions of such stretching temperature and stretching ratio. be able to. The MD stretching temperature (T 1 ) may be 2 ° C. or more lower than the TD stretching temperature (T 2 ). For example, it may be 3 ° C. or higher, or 5 ° C. or higher.

一例においては、MD方向延伸倍率(E)が7.5倍、かつTD方向延伸倍率(E)が8倍;MD方向延伸倍率(E)が8倍、かつTD方向延伸倍率(E)が8倍;MD方向延伸倍率(E)が8倍、かつTD方向延伸倍率(E)が8.5倍;またはMD方向延伸倍率(E)が8.5倍、かつTD方向延伸倍率(E)が8.5倍であるとよい。前記幅方向および長手方向の延伸倍率は、同一であるか異なっていてもよい。具体的には、E/Eの比は、0.85〜1であるとよい。前記延伸比の範囲であれば、MDおよびTD方向の延伸温度を異ならせることで生じる部位ごとの延伸長さのばらつき効果をさらに強化させることができる。 In one example, the MD direction stretch ratio (E 1 ) is 7.5 times, and the TD direction stretch ratio (E 2 ) is 8 times; the MD direction stretch ratio (E 1 ) is 8 times, and the TD direction stretch ratio (E 2 ) is 8 times; MD direction stretch ratio (E 1 ) is 8 times and TD direction stretch ratio (E 2 ) is 8.5 times; or MD direction stretch ratio (E 1 ) is 8.5 times and TD The directional stretch ratio (E 2 ) is preferably 8.5 times. The draw ratios in the width direction and the longitudinal direction may be the same or different. Specifically, the ratio of E 1 / E 2 may When it is 0.85. If it is the range of the said extending | stretching ratio, the dispersion | variation effect of the extending | stretching length for every site | part produced by varying the extending | stretching temperature of MD and TD direction can further be strengthened.

前記2軸延伸後、可塑剤を抽出することができる。前記可塑剤の抽出は、有機溶媒を用いて行われ、具体的には、長手方向延伸および幅方向延伸された分離膜を可塑剤抽出装置内の有機溶媒に浸漬して可塑剤を抽出する方式で進行させることができる。可塑剤の抽出に使用される有機溶媒は特に制限されず、可塑剤を抽出可能な溶剤であればいずれも使用が可能である。前記有機溶媒の非制限的な例としては、抽出効率が高く乾燥が容易なメチルエチルケトン、メチレンクロライド、ヘキサンなどを使用することができ、可塑剤として液体パラフィンを用いた場合には、有機溶媒としてメチレンクロライドを使用することが好ましい。   After the biaxial stretching, the plasticizer can be extracted. The extraction of the plasticizer is performed using an organic solvent. Specifically, the plasticizer is extracted by immersing the separation membrane stretched in the longitudinal direction and the width direction in the organic solvent in the plasticizer extraction apparatus. You can proceed with. The organic solvent used for the extraction of the plasticizer is not particularly limited, and any solvent that can extract the plasticizer can be used. As a non-limiting example of the organic solvent, methyl ethyl ketone, methylene chloride, hexane, etc. that have high extraction efficiency and can be easily dried can be used. When liquid paraffin is used as the plasticizer, methylene as the organic solvent. Preference is given to using chloride.

可塑剤を抽出する工程で使用する有機溶媒は、揮発性が高く有毒なものが大部分であるので、必要であれば、有機溶媒の揮発を抑制するために水を使用してもよい。   Since most organic solvents used in the step of extracting the plasticizer are highly volatile and toxic, if necessary, water may be used to suppress the volatilization of the organic solvent.

本発明の他の実施形態に係る製造方法は、前記可塑剤が抽出されたシートを幅方向に最終延伸倍率が1.25倍〜1.5倍となるように延伸することを含んでもよい。前記幅方向延伸は、フィルムの残留応力を除去して最終フィルムの収縮率を減少させるための熱固定段階で、当該熱固定実行時の温度と固定比率に応じてフィルムの熱収縮率、透過度などを調整してもよい。具体的には、前記熱固定は、幅方向に延伸倍率1.25倍〜2倍に延伸し、延伸された幅方向の長さに対して70%〜100%に弛緩させて最終延伸倍率が1.25倍〜1.5倍となるようにするとよい。前記配列で熱固定すると、前記2軸延伸時に生成された気孔のばらつきを調整して通気度を改善させる効果がある。前記熱固定は、100〜150℃で行われ、例えば120〜130℃で行われる。前記範囲でフィルムの残留応力の除去に効果的であり、物性を向上させることができる。   The manufacturing method according to another embodiment of the present invention may include stretching the sheet from which the plasticizer is extracted so that the final stretching ratio is 1.25 to 1.5 times in the width direction. The stretching in the width direction is a heat setting step for removing the residual stress of the film and reducing the shrinkage rate of the final film, and the heat shrinkage rate and permeability of the film according to the temperature and fixing ratio at the time of the heat setting. Etc. may be adjusted. Specifically, the heat setting is performed by stretching the stretching direction in the width direction to a stretching ratio of 1.25 to 2 times, and relaxing to 70% to 100% with respect to the stretched width direction length, so that the final stretching ratio is It is good to make it 1.25 times-1.5 times. Heat setting in the arrangement has the effect of improving the air permeability by adjusting the variation in pores generated during the biaxial stretching. The heat setting is performed at 100 to 150 ° C, for example, 120 to 130 ° C. Within the above range, it is effective for removing the residual stress of the film, and the physical properties can be improved.

本発明は、上記の例によるポリオレフィン系分離膜の製造方法で製造されたポリオレフィン系分離膜を提供する。   The present invention provides a polyolefin separation membrane manufactured by the method of manufacturing a polyolefin separation membrane according to the above example.

前記ポリオレフィン系分離膜は、毛細管流動気孔測定器で測定した分離膜の湿潤曲線で平均ポイント圧力(psi)/バブルポイント圧力(psi)が1.8〜2.4であるとよい。   The polyolefin-based separation membrane may have an average point pressure (psi) / bubble point pressure (psi) of 1.8 to 2.4 in a wetting curve of the separation membrane measured with a capillary flow pore meter.

毛細管流動気孔測定器の湿潤および乾燥曲線で平均ポイント圧力(psi)/バブルポイント圧力(psi)の比が前記範囲であれば、気孔の大きさが多様に分布して分離膜に要求される気孔度、例えば、40%以上の気孔度を達成しながら通気度が良く、電解液の濡れ性および強度に優れた分離膜を提供することができる。   If the ratio of the average point pressure (psi) / bubble point pressure (psi) is within the above range in the wet and dry curves of the capillary flow pore meter, the pores required for the separation membrane are distributed in various sizes. For example, it is possible to provide a separation membrane having good air permeability while achieving a porosity of 40% or more, and having excellent wettability and strength of the electrolytic solution.

前記バブルポイント圧力(psi)は、毛細管流動気孔測定器で湿潤曲線の描かれる始点の圧力を意味し、具体的には、分離膜サンプルを溶液に浸して孔中を溶液で満たし、圧力を増加させながら空気を吹き込む時、大きい孔中に満たされた溶液が先に圧力に押されて移動し、この時の圧力をバブルポイント圧力という。図1を参照すれば、前記バブルポイント圧力は、毛細管流動気孔測定器の圧力増加に応じた流速変化のグラフで流速が0を維持後、最初に増加し始める時点の圧力をいう。   The bubble point pressure (psi) means the pressure at the starting point where a wetting curve is drawn by a capillary flow pore meter. Specifically, the separation membrane sample is immersed in the solution to fill the pores with the solution, and the pressure is increased. When air is blown in, the solution filled in the large hole is first pushed by the pressure and moves, and the pressure at this time is called bubble point pressure. Referring to FIG. 1, the bubble point pressure refers to a pressure at which a flow rate changes according to an increase in pressure in a capillary flow pore measuring device, and then starts to increase after the flow rate maintains zero.

前記平均ポイント圧力(psi)は、毛細管流動気孔測定器で乾燥直線を描き、前記乾燥直線で傾きが1/2となる仮想の直線と前記湿潤曲線との交わる地点の圧力をいう。具体的には、分離膜サンプルを溶液で浸していない状態で、圧力を増加させながら空気を吹き込むと、圧力増加に比例して流速が増加する直線形態のグラフが得られる。図1を参照すれば、前記直線形態のグラフ[図1中の乾燥グラフ]で傾きが1/2となる仮想の直線[図1中の1/2乾燥グラフ]を描く時、この仮想の直線と前記湿潤曲線との交わる地点の圧力を平均ポイント圧力という。   The average point pressure (psi) is a pressure at a point where an imaginary straight line having a slope of ½ on the drying straight line intersects the wetting curve with a capillary flow pore measuring device. Specifically, when air is blown while increasing the pressure in a state where the separation membrane sample is not immersed in the solution, a linear graph in which the flow rate increases in proportion to the increase in pressure is obtained. Referring to FIG. 1, when drawing a virtual straight line [1/2 drying graph in FIG. 1] having an inclination of 1/2 in the straight line graph [dry graph in FIG. 1], this virtual straight line is drawn. The pressure at the point where the wetting curve intersects with the wetting curve is called the average point pressure.

本発明の一例によるポリオレフィン系分離膜は、気孔度は40〜50%であり、通気度が50〜200sec/100ccであるとよい。本願において、通気度は、100ccの空気が分離膜を通過する時間を意味する。具体的には、通気度は、60〜150sec/100ccであるとよい。   The polyolefin-based separation membrane according to an example of the present invention may have a porosity of 40 to 50% and an air permeability of 50 to 200 sec / 100 cc. In the present application, the air permeability means the time for 100 cc of air to pass through the separation membrane. Specifically, the air permeability is preferably 60 to 150 sec / 100 cc.

本発明の一例によるポリオレフィン系分離膜は、前記分離膜の長手方向および幅方向の引張強度(kg/cm)/伸び率(%)の比がそれぞれ15〜28{(kg/cm)/%}であるとよい。前記引張強度/伸び率の比の範囲であれば、優れた分離膜が機械的強度を有しながらも、気孔あるいは分離膜は、変形率が少なく、外部の力や衝撃による変形を最小化させることができる。また、本発明の一例によるポリオレフィン系分離膜は、前記分離膜の長手方向の引張強度が1700kg/cm以上、かつ幅方向の引張強度が1800kg/cm以上であり、長手方向の伸び率および幅方向の伸び率がそれぞれ100%以下、より具体的には98%以下であるとよい。前記伸び率の範囲であれば、気孔の大きさおよび形態の変形に対する安定性が改善された分離膜が提供される。本発明の一例によるポリオレフィン系分離膜は、分離膜の水滴接触角が107°以下、例えば95°〜107°、具体的には100°〜106°の範囲であるとよい。接触角が前記範囲であれば、電解液の濡れ性が良好であり、これによって電池性能が改善できる。 The polyolefin-based separation membrane according to an example of the present invention has a ratio of tensile strength (kg / cm 2 ) / elongation rate (%) in the longitudinal direction and width direction of the separation membrane of 15 to 28 {(kg / cm 2 ) / %}. If the ratio of the tensile strength / elongation ratio is within the range, the pores or the separation membrane have a low deformation rate while minimizing the deformation due to external force or impact while the excellent separation membrane has mechanical strength. be able to. The polyolefin-based separation membrane according to an example of the present invention has a tensile strength in the longitudinal direction of the separation membrane of 1700 kg / cm 2 or more and a tensile strength in the width direction of 1800 kg / cm 2 or more. The elongation in the width direction is preferably 100% or less, more specifically 98% or less. Within the range of the elongation rate, a separation membrane having improved stability against pore size and shape deformation is provided. In the polyolefin-based separation membrane according to an example of the present invention, the water droplet contact angle of the separation membrane may be 107 ° or less, for example, 95 ° to 107 °, specifically 100 ° to 106 °. When the contact angle is within the above range, the wettability of the electrolytic solution is good, and thereby the battery performance can be improved.

本発明の一例によるポリオレフィン系分離膜は、前記分離膜の一面あるいは両面にコーティング層を含み、前記コーティング層は、有機バインダーを含んでもよく、追加的に無機粒子をさらに含んでもよい。前記有機バインダーとしては、例えば、重量平均分子量が1,000,000g/mol以上のポリビニリデンフルオライドホモポリマー、重量平均分子量が800,000g/mol以下のポリビニリデンフルオライド−ヘキサフルオロプロピレンコポリマー、あるいはこれらの混合物を含んでもよい。前記無機粒子としては、Al、SiO、B、Ga、TiO、およびSnOなどが挙げられる。前記コーティング層はディップコーティング法によって形成される。前記コーティング層を有する分離膜は、105℃のオーブンで1時間放置した後、熱収縮率がMDおよびTD方向でそれぞれ3%以下であるとよい。より具体的には2%以下であるとよい。 The polyolefin-based separation membrane according to an example of the present invention may include a coating layer on one or both sides of the separation membrane, and the coating layer may include an organic binder or may further include inorganic particles. Examples of the organic binder include a polyvinylidene fluoride homopolymer having a weight average molecular weight of 1,000,000 g / mol or more, a polyvinylidene fluoride-hexafluoropropylene copolymer having a weight average molecular weight of 800,000 g / mol or less, or Mixtures of these may also be included. Examples of the inorganic particles include Al 2 O 3 , SiO 2 , B 2 O 3 , Ga 2 O 3 , TiO 2 , and SnO 2 . The coating layer is formed by a dip coating method. The separation membrane having the coating layer may have a thermal shrinkage of 3% or less in the MD and TD directions after being left in an oven at 105 ° C. for 1 hour. More specifically, it may be 2% or less.

本発明に係る多孔性ポリオレフィン系分離膜は、平均厚さが7μm〜20μmであり、厚さのばらつきは前記平均厚さの4%未満であるとよい。本発明に係る多孔性ポリオレフィン系分離膜は、平均突刺強度が300gf以上であるとよいし、具体的には400gf以上であるとよい。   The porous polyolefin separation membrane according to the present invention has an average thickness of 7 μm to 20 μm, and the variation in thickness is preferably less than 4% of the average thickness. The porous polyolefin separation membrane according to the present invention may have an average puncture strength of 300 gf or more, and specifically 400 gf or more.

また、本発明に係る多孔性ポリオレフィン系分離膜あるいはコーティング分離膜は、製造された分離膜を50×50mmの大きさに切断して120℃のオーブンに入れた後、1時間収縮させ、その後、収縮させた分離膜の大きさを測定し、減少した大きさを反映して収縮率を測定する時、長手方向収縮率が5%以下、かつ幅方向収縮率が3%以下であってもよく、より具体的には、長手方向収縮率が4%以下、かつ幅方向収縮率が2%以下であるとよい。   In addition, the porous polyolefin-based separation membrane or the coating separation membrane according to the present invention was prepared by cutting the produced separation membrane into a size of 50 × 50 mm and placing it in an oven at 120 ° C., and then shrinking for 1 hour, When measuring the size of the contracted separation membrane and measuring the shrinkage rate reflecting the reduced size, the longitudinal direction shrinkage rate may be 5% or less and the width direction shrinkage rate may be 3% or less. More specifically, it is preferable that the longitudinal direction shrinkage rate is 4% or less and the width direction shrinkage rate is 2% or less.

本発明はまた、本発明に開示された多孔性ポリオレフィン系分離膜、正極、負極、および電解質を含む電池化学電池を提供する。電気化学電池の種類は特に制限されず、本発明の技術分野で知られた種類の電気であるとよい。本発明の電気化学電池は、好ましくは、リチウム金属二次電池、リチウムイオン二次電池、リチウムポリマー二次電池、またはリチウムイオンポリマー二次電池などのようなリチウム二次電池であるとよい。   The present invention also provides a battery chemical battery comprising the porous polyolefin-based separation membrane disclosed in the present invention, a positive electrode, a negative electrode, and an electrolyte. The type of the electrochemical cell is not particularly limited, and may be a type of electricity known in the technical field of the present invention. The electrochemical battery of the present invention is preferably a lithium secondary battery such as a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery, or a lithium ion polymer secondary battery.

本発明の電気化学電池を製造する方法は特に制限されず、本発明の技術分野で通常使用する方法を使用してもよい。前記電気化学電池を製造する方法の非制限的な例は次の通りである:本発明の前記分離膜あるいはコーティング分離膜を、電池の正極と負極との間に位置させた後、これに電解液を満たす方式で電池を製造することができる。本発明の電気化学電池を構成する電極は、本発明の技術分野で通常使用する方法によって電極活物質を電極電流集電体に結着した形態で製造することができる。本発明で使用される前記電極活物質のうち、正極活物質は特に制限されず、本発明の技術分野で通常使用する正極活物質を使用することができる。具体的には、前記正極は、リチウムイオンを可逆的に挿入および脱離可能な正極活物質を含み、このような正極活物質としては、コバルト、マンガン、ニッケルから選択される少なくとも1種、およびリチウムとの複合金属酸化物であるとよい。金属間の固溶率は多様であり、これらの金属のほか、Mg、Al、Co、Ni、K、Na、Ca、Si、Ti、Sn、V、Ge、Ga、B、As、Zr、Mn、Cr、Fe、Sr、V、および希土類元素からなる群より選択される元素がさらに含まれる。前記正極は、例えば、リチウムと、Co、Ni、Mn、Al、Si、Ti、およびFeからなる群より選択される金属との複合金属酸化物であるとよく、具体的には、リチウムコバルトオキシド(lithium cobalt oxide、LCO。例えば、LiCoO)、リチウムニッケルコバルトマンガンオキシド(lithium nickel manganese cobalt oxide、NCM。例えば、Li[Ni(x)Co(y)Mn(z)]O)、リチウムマンガンオキシド(Lithium manganese oxide、LMO。例えば、LiMn、LiMnO)、リチウム鉄ホスフェート(Lithium Iron phosphate、LFP。例えば、LiFePO)、リチウムニッケルオキシド(LNO、例えば、LiNiO)などを使用することができる。前記負極は、リチウムイオンを挿入および脱離可能な負極活物質を含み、このような負極活物質としては、結晶質または非晶質の炭素、または炭素複合体の炭素系負極活物質(熱的に分解された炭素、コークス、黒鉛)、燃焼された有機重合体化合物、炭素繊維、酸化スズ化合物、リチウム金属、またはリチウムと他の元素との合金を使用することができる。例えば、非結晶質炭素としては、ハードカーボン、コークス、1,500℃以下で焼成したメソカーボンマイクロビーズ(mesocarbon microbead、MCMB)、メソフェーズピッチ系炭素繊維(mesophase pitch−based carbon fiber、MPCF)などがある。結晶質炭素としては、黒鉛系材料があり、具体的には、天然黒鉛、黒鉛化コークス、黒鉛化MCMB、黒鉛化MPCFなどがある。前記負極は、例えば、結晶質または非晶質の炭素を含んでもよい。 The method for producing the electrochemical cell of the present invention is not particularly limited, and a method usually used in the technical field of the present invention may be used. A non-limiting example of a method for manufacturing the electrochemical cell is as follows: the separation membrane or the coating separation membrane of the present invention is positioned between the positive electrode and the negative electrode of the battery and then electrolyzed thereto. The battery can be manufactured in a manner that fills the liquid. The electrode constituting the electrochemical cell of the present invention can be manufactured in a form in which an electrode active material is bound to an electrode current collector by a method usually used in the technical field of the present invention. Among the electrode active materials used in the present invention, the positive electrode active material is not particularly limited, and a positive electrode active material usually used in the technical field of the present invention can be used. Specifically, the positive electrode includes a positive electrode active material capable of reversibly inserting and desorbing lithium ions, and as such a positive electrode active material, at least one selected from cobalt, manganese, nickel, and It may be a composite metal oxide with lithium. The solid solution ratio between metals varies, and besides these metals, Mg, Al, Co, Ni, K, Na, Ca, Si, Ti, Sn, V, Ge, Ga, B, As, Zr, Mn And an element selected from the group consisting of Cr, Fe, Sr, V, and rare earth elements. The positive electrode may be, for example, a composite metal oxide of lithium and a metal selected from the group consisting of Co, Ni, Mn, Al, Si, Ti, and Fe, specifically, lithium cobalt oxide. (Lithium cobalt oxide, LCO. For example, LiCoO 2 ), lithium nickel cobalt manganese oxide (NCM. For example, Li [Ni (x) Co (y) Mn (z)] O 2 ), lithium manganese Oxide (Lithium manganese oxide, LMO. For example, LiMn 2 O 4 , LiMnO 2 ), Lithium iron phosphate (LFP. For example, LiFePO 4 ), Lithium nickel Oxides (LNO, such as LiNiO 2 ) and the like can be used. The negative electrode includes a negative electrode active material into which lithium ions can be inserted and desorbed. Examples of the negative electrode active material include crystalline or amorphous carbon, or a carbon composite carbon negative electrode active material (thermal Carbon, coke, graphite), burned organic polymer compounds, carbon fibers, tin oxide compounds, lithium metal, or alloys of lithium with other elements can be used. For example, amorphous carbon includes hard carbon, coke, mesocarbon microbead (MCMB) calcined at 1,500 ° C. or less, mesophase pitch-based carbon fiber (MPCF), and the like. is there. Examples of crystalline carbon include graphite-based materials, and specific examples include natural graphite, graphitized coke, graphitized MCMB, and graphitized MPCF. The negative electrode may include, for example, crystalline or amorphous carbon.

前記正極または負極は、電極活物質のほか、結合剤および導電剤、必要な場合、増粘剤を溶媒に分散させて電極スラリー組成物を製造し、このスラリー組成物を電極集電体に塗布して製造される。前記結合剤、導電剤および増粘剤は、本発明の技術分野で通常使用するものを使用してもよい。例えば、結合剤として、ポリビニリデン−フルオライド(Polyvinylidene−fluoride、PVdF)、スチレン−ブタジエンゴム(styrene−butadiene rubber、SBR)などがあり、導電剤として、カーボンブラック、増粘剤として、カーボネートメチルセルロース(Carbonate methyl cellulose、CMC)を使用してもよい。   The positive electrode or negative electrode is prepared by dispersing an electrode active material, a binder and a conductive agent, and, if necessary, a thickener in a solvent to produce an electrode slurry composition, and applying the slurry composition to the electrode current collector Manufactured. As the binder, conductive agent, and thickener, those usually used in the technical field of the present invention may be used. Examples of the binder include polyvinylidene-fluoride (PVdF) and styrene-butadiene rubber (SBR), carbon black as a conductive agent, and carbonate methylcellulose (Carbonate) as a thickener. methyl cellulose (CMC) may be used.

本発明で使用される前記電極電流集電体は特に制限されず、本発明の技術分野で通常使用する電極電流集電体を使用してもよい。前記電極電流集電体のうち、正極電流集電体素材の非制限的な例としては、アルミニウム、ニッケル、またはこれらの組み合わせによって製造される箔などが挙げられる。前記電極電流集電体のうち、負極電流集電体素材の非制限的な例としては、銅、金、ニッケル、銅合金、またはこれらの組み合わせによって製造される箔などが挙げられる。   The electrode current collector used in the present invention is not particularly limited, and an electrode current collector normally used in the technical field of the present invention may be used. Non-limiting examples of the positive electrode current collector material among the electrode current collectors include foils manufactured from aluminum, nickel, or a combination thereof. Among the electrode current collectors, non-limiting examples of negative electrode current collector materials include copper, gold, nickel, copper alloys, or foils manufactured by combinations thereof.

また、前記正極集電体および負極集電体の形態としては、箔やメッシュ形態が挙げられる。   Moreover, foil and a mesh form are mentioned as a form of the said positive electrode collector and a negative electrode collector.

本発明で使用される電解液は特に制限されず、本発明の技術分野で通常使用する電気化学電池用電解液を使用してもよい。前記電解液は、Aのような構造の塩が、有機溶媒に溶解または解離したものであってもよい。前記Aの非制限的な例としては、Li、Na、またはKのようなアルカリ金属陽イオン、またはこれらの組み合わせからなる陽イオンが挙げられる。前記Bの非制限的な例としては、PF 、BF 、Cl、Br、I、ClO 、AsF 、CHCO 、CFSO 、N(CFSO 、またはC(CFSO のような陰イオン、またはこれらの組み合わせからなる陰イオンが挙げられる。前記有機溶媒の非制限的な例としては、プロピレンカーボネート(Propylene carbonate;PC)、エチレンカーボネート(Ethylene carbonate、EC)、ジエチルカーボネート(Diethyl carbonate;DEC)、ジメチルカーボネート(Dimethyl carbonate、DMC)、ジメチルホルムアミド(Dimethylformamide、DMF)、ジプロピルカーボネート(Dipropyl carbonate、DPC)、ジメチルスルホキシド(Dimethyl sulfoxide、DMSO)、アセトニトリル(Acetonitrile)、ジメトキシエタン(dimethoxyethane)、ジエトキシエタン(diethoxyethane)、テトラヒドロフラン(Tetrahydrofuran)、N−メチル−2−ピロリドン(N−methyl−2−pyrrolidone、NMP)、エチルメチルカーボネート(Ethyl methyl carbonate、EMC)、またはガンマ−ブチロラクトン(Butyrolactone)などが挙げられる。これらは、単独で使用されるか、2種以上を混合して使用される。 The electrolytic solution used in the present invention is not particularly limited, and an electrolytic solution for electrochemical cells that is usually used in the technical field of the present invention may be used. The electrolytic solution may be one in which a salt having a structure such as A + B is dissolved or dissociated in an organic solvent. Non-limiting examples of A + include cations composed of alkali metal cations such as Li + , Na + , or K + , or combinations thereof. Non-limiting examples of the B include PF 6 , BF 4 , Cl , Br , I , ClO 4 , AsF 6 , CH 3 CO 2 , CF 3 SO 3 , N Examples include an anion such as (CF 3 SO 2 ) 2 , C (CF 2 SO 2 ) 3 , or a combination thereof. Non-limiting examples of the organic solvent include propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dimethylformamide. (Dimethylformamide, DMF), Dipropyl carbonate (Dipropyl carbonate, DPC), Dimethyl sulfoxide (Dimethyl sulfoxide, DMSO), Acetonitrile, Dimethoxyethane, diethoxyx, Rahidorofuran (Tetrahydrofuran), N- methyl-2-pyrrolidone (N-methyl-2-pyrrolidone, NMP), ethylmethyl carbonate (Ethyl methyl carbonate, EMC), or gamma - like butyrolactone (Butyrolactone). These may be used alone or in combination of two or more.

以下、実施例、比較例および実験例を記述することによって本発明をより詳細に説明する。ただし、下記の実施例、比較例および実験例は本発明の一例示に過ぎず、本発明の内容がこれに限定されると解釈されない。   Hereinafter, the present invention will be described in more detail by describing examples, comparative examples, and experimental examples. However, the following examples, comparative examples, and experimental examples are merely examples of the present invention, and the contents of the present invention are not construed as being limited thereto.

実施例1:多孔性ポリオレフィン系分離膜の製造
粘度平均分子量が600,000g/molの高密度ポリエチレン(High−density polyethylene、HDPE;三井化学社製品)を二軸押出機に供給した後、流動パラフィン(極東油化)を前記ポリエチレンとの重量比がポリエチレン30対流動パラフィン70となる量で前記二軸押出機に注入して押出した。
Example 1 Production of Porous Polyolefin Separation Membrane After supplying high-density polyethylene (High-density polyethylene, HDPE; Mitsui Chemicals Co., Ltd.) having a viscosity average molecular weight of 600,000 g / mol to a twin screw extruder, liquid paraffin was used. (Far East Oily) was injected into the twin-screw extruder in an amount such that the weight ratio of the polyethylene to the polyethylene 30 to the liquid paraffin 70 was extruded.

前記押出後、T−ダイを通して得られたゲル相から冷却ロールを用いてシート状の分離膜を作製した。前記分離膜に対して、110℃で長手方向(Machine Direction、MD)延伸および113℃で幅方向(Transverse Direction、TD)延伸(延伸倍率:8.0(MD)×8.0(TD))を行った。   After the extrusion, a sheet-like separation membrane was produced from the gel phase obtained through the T-die using a cooling roll. The longitudinal direction (Machine Direction, MD) stretching at 110 ° C. and the width direction (Transverse Direction, TD) stretching at 113 ° C. (stretching ratio: 8.0 (MD) × 8.0 (TD)) with respect to the separation membrane. Went.

前記延伸されたポリオレフィン系分離膜をメチレンクロライド(三星精密化学)に浸漬して流動パラフィンを抽出した後、乾燥ロールに移動させて乾燥した。   The stretched polyolefin-based separation membrane was immersed in methylene chloride (Samsung Fine Chemical) to extract liquid paraffin, and then moved to a drying roll and dried.

その後、前記乾燥したフィルムを幅方向に2次延伸(幅方向延伸比:1.0→1.6→1.4、延伸温度128℃)の熱固定を実施して、厚さ12.5μmの多孔性ポリオレフィン系分離膜を製造した。   After that, the dried film was heat-set by secondary stretching in the width direction (width direction stretching ratio: 1.0 → 1.6 → 1.4, stretching temperature 128 ° C.) to obtain a thickness of 12.5 μm. A porous polyolefin separation membrane was produced.

実施例2:多孔性ポリオレフィン系分離膜の製造
前記実施例1において、103℃で長手方向(Machine Direction、MD)延伸および105℃で幅方向(Transverse Direction、TD)延伸(延伸倍率:8.5(MD)×8.5(TD))したことを除いては、前記実施例1と同様の方法で厚さ12.3μmの分離膜を製造した。
Example 2 Production of Porous Polyolefin Separation Membrane In Example 1, the longitudinal direction (Machine Direction, MD) stretching at 103 ° C. and the transverse direction (Transverse Direction, TD) stretching at 105 ° C. (stretching ratio: 8.5). A separation membrane having a thickness of 12.3 μm was manufactured in the same manner as in Example 1 except that (MD) × 8.5 (TD).

比較例1:多孔性ポリオレフィン系分離膜の製造
前記実施例1において、120℃で長手方向(Machine Direction、MD)延伸および123℃で幅方向(Transverse Direction、TD)延伸(延伸倍率:8(MD)×8(TD))したことを除いては、前記実施例1と同様の方法で厚さ12.2μmの分離膜を製造した。
Comparative Example 1 Production of Porous Polyolefin Separation Membrane In Example 1, the longitudinal direction (Machine Direction, MD) stretching at 120 ° C. and the width direction (Transverse Direction, TD) stretching at 123 ° C. (stretching ratio: 8 (MD ) × 8 (TD)) A separation membrane having a thickness of 12.2 μm was manufactured in the same manner as in Example 1.

比較例2:多孔性ポリオレフィン系分離膜の製造
前記実施例2において、長手方向(Machine Direction、MD)延伸および幅方向(Transverse Direction、TD)延伸倍率を7(MD)×7(TD)としたことを除いては、前記実施例2と同様の方法で厚さ12.3μmの分離膜を製造した。
Comparative Example 2: Production of Porous Polyolefin Separation Membrane In Example 2, the longitudinal direction (Machine Direction, MD) stretching and the width direction (Transverse Direction, TD) stretching ratio was 7 (MD) × 7 (TD). Except for this, a separation membrane having a thickness of 12.3 μm was manufactured in the same manner as in Example 2.

前記実施例1および2、並びに比較例1および2による各分離膜の製造条件を下記表1に示す。   The production conditions of the separation membranes according to Examples 1 and 2 and Comparative Examples 1 and 2 are shown in Table 1 below.

Figure 2017523570
Figure 2017523570

実験例
前記実施例1および2、並びに比較例1および2で製造された分離膜に対して、以下に開示された測定方法により、気孔度、通気度、引張強度、伸び率、収縮率、バブルポイントおよび平均ポイント圧力、および水滴接触角を測定し、その結果を表2に示した。
Experimental Example For the separation membranes produced in Examples 1 and 2 and Comparative Examples 1 and 2, the porosity, the air permeability, the tensile strength, the elongation rate, the shrinkage rate, the bubble were measured by the measurement methods disclosed below. The point and average point pressure, and the water droplet contact angle were measured and the results are shown in Table 2.

Figure 2017523570
Figure 2017523570

1.毛細管流動気孔測定グラフにおけるバブルポイント圧力および平均ポイント圧力の測定
前記実施例および比較例で製造された分離膜それぞれを、直径26mmの円でサンプリングした。PMI社の毛細管流動気孔測定器に分離膜自体を装着後、GalwickTM溶液(表面張力15.9dyne/cm)に十分に浸す。前記機器をWet up Calc.modeに設定した後、圧力別のNの流量の流れを測定して湿潤曲線を描く。前記湿潤曲線で最初のバブルが感知される圧力をバブルポイント圧力(psi)として記録する。また、前記実施例および比較例で製造された分離膜それぞれを、直径26mmの円でサンプリングし、前記機器に分離膜自体を装着後、前記機器をDry up Calc.modeに設定し、圧力別Nの流速を測定してこれを乾燥曲線グラフに示した。測定された乾燥曲線グラフで原点から直線性を有するポイントまで直線を延長し、前記直線の傾きの半分となる仮想の直線を描き、この仮想の直線と前記湿潤曲線との交わる地点の圧力を平均ポイント圧力(psi)として記録する。
1. Measurement of Bubble Point Pressure and Average Point Pressure in Capillary Flow Pore Measurement Graph Each of the separation membranes produced in the above Examples and Comparative Examples was sampled with a circle having a diameter of 26 mm. After attaching the separation membrane itself to a capillary flow pore measuring instrument of PMI, fully immerse it in Galwick solution (surface tension 15.9 dyne / cm). The device is connected to Wet up Calc. After setting to mode, the flow of N 2 flow rate by pressure is measured and a wetting curve is drawn. The pressure at which the first bubble is sensed in the wetting curve is recorded as the bubble point pressure (psi). In addition, each of the separation membranes manufactured in the examples and comparative examples was sampled with a circle having a diameter of 26 mm, and after attaching the separation membrane itself to the device, the device was connected to Dry up Calc. Set to mode, the flow rate of N 2 by pressure was measured, and this was shown in the drying curve graph. In the measured drying curve graph, a straight line is extended from the origin to a point having linearity, a virtual straight line that is half the slope of the straight line is drawn, and the pressure at the intersection of the virtual straight line and the wet curve is averaged. Record as point pressure (psi).

2.気孔度
前記実施例1および2、並びに比較例1および2で製造された各分離膜の10cm×10cmの試料を切取って、その体積(cm)と質量(g)を求め、前記体積および質量と、分離膜の密度(g/cm)から、次の式を用いて気孔度を計算した。
2. Porosity A 10 cm × 10 cm sample of each separation membrane produced in Examples 1 and 2 and Comparative Examples 1 and 2 was cut to determine its volume (cm 3 ) and mass (g). From the mass and the density of the separation membrane (g / cm 3 ), the porosity was calculated using the following formula.

気孔度(%)=(体積−質量/試料の密度)/体積×100 Porosity (%) = (Volume−Mass / Sample density) / Volume × 100

試料の密度=ポリエチレンの密度 Sample density = density of polyethylene

3.通気度
前記実施例および比較例で製造された分離膜それぞれを、直径1インチ(inch)の円が入る大きさに互いに異なる10個の地点で裁断した10個の試料を作製した後、通気度測定装置(旭精工社)を用いて、前記各試料で空気100ccの通過する時間を測定した。前記時間をそれぞれ5回ずつ測定した後、平均値を計算した。
3. Air Permeability After preparing 10 samples, each of the separation membranes manufactured in the above Examples and Comparative Examples was cut at 10 points different from each other in the size of a 1 inch diameter circle, the air permeability Using a measuring device (Asahi Seiko Co., Ltd.), the time required for 100 cc of air to pass through each sample was measured. After measuring the said time 5 times each, the average value was calculated.

4.引張強度
前記実施例および比較例で製造された分離膜それぞれを、横(MD)10mm×縦(TD)50mmに互いに異なる10個の地点で裁断した10個の試料を作製した後、UTMに20mm部分を噛ませた後、上下に引いて強度を測定した。前記各試料の引張強度をそれぞれ3回ずつ測定した後、平均値を計算した。
4). Tensile strength After preparing 10 samples each of the separation membranes manufactured in the above examples and comparative examples cut at 10 points different from each other in the width (MD) 10 mm × length (TD) 50 mm, the UTM was 20 mm. After biting the part, the strength was measured by pulling up and down. After measuring the tensile strength of each sample three times, the average value was calculated.

5.伸び率
前記実施例および比較例で製造された分離膜それぞれに対して、前記4.の引張強度の測定時、元の長さと破断点での長さとを比較して((破断点の長さ−20)/20mm)X100の値を百分率で表示する。
5. Elongation rate For each of the separation membranes produced in the above examples and comparative examples, 4. When measuring the tensile strength, the original length and the length at the breaking point are compared ((length of breaking point−20) / 20 mm), and the value of X100 is displayed as a percentage.

6.収縮率
前記実施例および比較例で製造された分離膜それぞれを、横(MD)50mm×縦(TD)50mmに互いに異なる10個の地点で裁断した10個の試料を作製した。前記各試料を105℃のオーブンで1時間放置した後、各試料のMD方向およびTD方向の収縮程度を測定して、平均熱収縮率を計算した。
6). Shrinkage rate Ten samples were prepared by cutting each of the separation membranes manufactured in the examples and comparative examples at 10 points different from each other in the width (MD) 50 mm × length (TD) 50 mm. Each sample was allowed to stand in an oven at 105 ° C. for 1 hour, and then the degree of shrinkage in the MD direction and TD direction of each sample was measured to calculate an average heat shrinkage rate.

7.水滴接触角(電解液の濡れ性評価)
前記実施例および比較例で製造された分離膜それぞれを、横(MD)20mm×縦(TD)20mmに裁断して5個の試料を作製した。前記試料を接触角測定器(DSA−100、(株)マークテック貿易)に載せて水をスポイトで1滴落とした後、接触角を測定した。5個の試料の接触角は平均を出して計算した。
7). Water drop contact angle (wetability evaluation of electrolyte)
Each of the separation membranes manufactured in the examples and comparative examples was cut into a width (MD) 20 mm × a length (TD) 20 mm to prepare five samples. The sample was placed on a contact angle measuring device (DSA-100, Marktec Trade Co., Ltd.), and after dropping one drop of water with a dropper, the contact angle was measured. The contact angles of 5 samples were calculated by averaging.

Claims (16)

ポリオレフィン系樹脂および可塑剤を含む組成物を溶融混練し押出してシートを形成し、
前記固形化されたシートを長手方向にT温度でE倍延伸および幅方向にT温度でE倍延伸し、
前記延伸されたシートから可塑剤を抽出し、
前記可塑剤が抽出されたシートを幅方向に最終延伸倍率が1.25倍〜1.5倍となるように延伸することを含み、
前記延伸時の温度条件が100℃<T<115℃、100℃<T<115℃、およびT≧Tであり、
前記延伸時の倍率条件がE×E=60〜80である、ポリオレフィン系分離膜の製造方法。
A composition containing a polyolefin resin and a plasticizer is melt-kneaded and extruded to form a sheet,
Wherein the solidified sheet was stretched twice E at T 2 temperature E 1-time stretching and transverse directions by T 1 temperature in the longitudinal direction,
Extracting a plasticizer from the stretched sheet,
Stretching the sheet from which the plasticizer has been extracted in the width direction so that the final stretching ratio is 1.25 to 1.5 times,
The temperature conditions during the stretching are 100 ° C. <T 1 <115 ° C., 100 ° C. <T 2 <115 ° C., and T 2 ≧ T 1 .
The stretching at a magnification condition is E 1 × E 2 = 60~80, producing a polyolefin-based separator.
前記倍率条件でE/Eの比が0.85〜1である、請求項1に記載のポリオレフィン系分離膜の製造方法。 It is the ratio of E 1 / E 2 is 0.85 at the magnification conditions, producing a polyolefin-based separator according to claim 1. 前記ポリオレフィン系樹脂が、粘度平均分子量が1×10〜9×10g/molの高密度ポリエチレン、および粘度平均分子量が9×10g/mol以上の超高分子量ポリエチレンからなる群より選択された単独またはこれらの混合物を含む、請求項1に記載の製造方法。 The polyolefin resin is selected from the group consisting of high density polyethylene having a viscosity average molecular weight of 1 × 10 5 to 9 × 10 5 g / mol and ultrahigh molecular weight polyethylene having a viscosity average molecular weight of 9 × 10 5 g / mol or more. The manufacturing method of Claim 1 containing these carried out individually or in mixture of these. ≧7.5であり、E≧8である、請求項1乃至3のいずれか1項に記載の製造方法。 The manufacturing method according to claim 1, wherein E 1 ≧ 7.5 and E 2 ≧ 8. 前記幅方向に最終延伸倍率が1.25倍〜1.5倍となるように延伸することが、幅方向に1.25倍〜2倍延伸し、前記延伸された幅方向の長さに対して70%〜100%に弛緩させることを含む、請求項1乃至3のいずれか1項に記載の製造方法。   Stretching in the width direction so that the final stretching ratio is 1.25 to 1.5 times, stretching in the width direction is 1.25 to 2 times, and the length in the width direction is The manufacturing method according to any one of claims 1 to 3, comprising relaxing to 70% to 100%. 前記製造されたポリオレフィン系分離膜の一面あるいは両面を、有機高分子および無機粒子を含有するコーティング組成物でコーティングすることを追加的に含む、請求項1乃至3のいずれか1項に記載の製造方法。   The production according to any one of claims 1 to 3, further comprising coating one or both surfaces of the produced polyolefin-based separation membrane with a coating composition containing an organic polymer and inorganic particles. Method. ポリオレフィン系樹脂を含有し、
毛細管流動気孔測定器(Capillary flow porometer)で測定した分離膜の湿潤および乾燥曲線で平均ポイント圧力(psi)/バブルポイント圧力(psi)の比が1.8〜2.4である、ポリオレフィン系分離膜。
Contains polyolefin resin,
Polyolefin-based separations having a mean point pressure (psi) / bubble point pressure (psi) ratio of 1.8-2.4 on the wetting and drying curves of the separation membrane measured with a capillary flow porometer film.
前記分離膜の長手方向および幅方向の引張強度(kg/cm)/伸び率(%)の比がそれぞれ15〜28である、請求項7に記載のポリオレフィン系分離膜。 The polyolefin-type separation membrane of Claim 7 whose ratio of the tensile strength (kg / cm < 2 >) / elongation rate (%) of the longitudinal direction and the width direction of the said separation membrane is 15-28, respectively. 前記分離膜の気孔度が40〜50%である、請求項7に記載のポリオレフィン系分離膜。   The polyolefin-based separation membrane according to claim 7, wherein the porosity of the separation membrane is 40 to 50%. 前記分離膜の通気度が50〜200sec/100ccである、請求項7に記載のポリオレフィン系分離膜。   The polyolefin-type separation membrane of Claim 7 whose air permeability of the said separation membrane is 50-200sec / 100cc. 前記分離膜の水滴接触角が107°以下である、請求項7に記載のポリオレフィン系分離膜。   The polyolefin-type separation membrane of Claim 7 whose water droplet contact angle of the said separation membrane is 107 degrees or less. 前記ポリオレフィン系樹脂が、粘度平均分子量が1×10〜9×10g/molの高密度ポリエチレン、および粘度平均分子量が9×10g/mol 超過の超高分子量ポリエチレンからなる群より選択された単独またはこれらの混合物を含む、請求項7乃至11のいずれか1項に記載のポリオレフィン系分離膜。 The polyolefin resin is selected from the group consisting of high-density polyethylene having a viscosity average molecular weight of 1 × 10 5 to 9 × 10 5 g / mol and ultrahigh molecular weight polyethylene having a viscosity average molecular weight exceeding 9 × 10 5 g / mol. The polyolefin-type separation membrane of any one of Claims 7 thru | or 11 containing these made alone or a mixture thereof. 前記ポリオレフィン系分離膜が、長手方向にT温度でE倍延伸および幅方向にT温度でE倍延伸されたもので、前記延伸時の温度条件が100℃<T<115℃、100℃<T<115℃、およびT≧Tであり、前記延伸時の倍率条件がE×E=60〜80、E≧7.5、およびE≧8である、請求項7乃至11のいずれか1項に記載のポリオレフィン系分離膜。 The polyolefin-based separator is longitudinally one that is E 2-fold stretched at T 2 temperature E 1-time stretching and transverse directions by T 1 temperature, the temperature conditions during the stretching 100 ℃ <T 1 <115 ℃ 100 ° C. <T 2 <115 ° C. and T 2 ≧ T 1 , and the magnification conditions during the stretching are E 1 × E 2 = 60 to 80, E 1 ≧ 7.5, and E 2 ≧ 8 The polyolefin-type separation membrane of any one of Claims 7 thru | or 11. 前記倍率条件でE/Eの比が0.85〜1である、請求項13に記載のポリオレフィン系分離膜。 Wherein the ratio of E 1 / E 2 at a magnification condition are 0.85, polyolefin separation membrane according to claim 13. 請求項7乃至11のいずれか1項に記載のポリオレフィン系分離膜を含む電気化学電池。   The electrochemical cell containing the polyolefin-type separation membrane of any one of Claims 7 thru | or 11. 前記電気化学電池は、リチウム二次電池である、請求項15に記載の電気化学電池。   The electrochemical cell according to claim 15, wherein the electrochemical cell is a lithium secondary battery.
JP2016575432A 2014-06-30 2015-06-18 Porous polyolefin separation membrane and its manufacturing method Active JP6818557B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2014-0080545 2014-06-30
KR1020140080545A KR20160002447A (en) 2014-06-30 2014-06-30 Porous polyolefin separator and a method for preparing the same
PCT/KR2015/006201 WO2016003094A1 (en) 2014-06-30 2015-06-18 Porous polyolefin-based separation membrane and preparation method therefor

Publications (2)

Publication Number Publication Date
JP2017523570A true JP2017523570A (en) 2017-08-17
JP6818557B2 JP6818557B2 (en) 2021-01-20

Family

ID=55019574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016575432A Active JP6818557B2 (en) 2014-06-30 2015-06-18 Porous polyolefin separation membrane and its manufacturing method

Country Status (4)

Country Link
JP (1) JP6818557B2 (en)
KR (1) KR20160002447A (en)
CN (1) CN106489215A (en)
WO (1) WO2016003094A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020092068A (en) * 2018-12-07 2020-06-11 旭化成株式会社 Method for producing microporous film
WO2020213741A1 (en) * 2019-04-18 2020-10-22 マクセルホールディングス株式会社 Aqueous liquid-electrolyte cell and patch

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113991249B (en) 2018-06-06 2024-03-08 宁德新能源科技有限公司 Separator and electrochemical device
CN111081949B (en) * 2019-12-31 2022-07-26 溧阳月泉电能源有限公司 Cross-linked polyolefin diaphragm and preparation method thereof
EP4258448A1 (en) * 2022-02-23 2023-10-11 LG Energy Solution, Ltd. Separator substrate for electrochemical device, separator including substrate, and method for forming battery cell separator

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0899382A (en) * 1994-09-30 1996-04-16 Mitsui Petrochem Ind Ltd Laminated microporous film of olefinic polymer and production and use thereof
KR20050079897A (en) * 2005-01-11 2005-08-11 도레이새한 주식회사 Polyethylene microporous film for rechargeable battery separator
JP2005343958A (en) * 2004-06-01 2005-12-15 Tonen Chem Corp Method for producing polyethylene fine porous film, fine porous film and use of the same
JP2006045328A (en) * 2004-08-04 2006-02-16 Asahi Kasei Chemicals Corp Method for producing polyolefin fine porous film
JP2006179485A (en) * 2004-12-23 2006-07-06 Toray Saehan Inc Polyethylene fine porous membrane for secondary battery separator, and its manufacturing method
JP2009026733A (en) * 2007-01-30 2009-02-05 Asahi Kasei Chemicals Corp Multilayer porous membrane and its manufacturing method
JP2010108922A (en) * 2008-09-30 2010-05-13 Toray Ind Inc Porous laminated film and electricity energy storage device
JP2010106071A (en) * 2008-10-28 2010-05-13 Asahi Kasei E-Materials Corp Polyolefin microporous film and separator for storage device
JP2010538097A (en) * 2007-08-31 2010-12-09 東燃化学株式会社 Polyolefin microporous membrane, method for producing the same, battery separator and battery
CN101983219A (en) * 2008-03-31 2011-03-02 旭化成电子材料株式会社 Polyolefin microporous membrane and products of winding
WO2011118660A1 (en) * 2010-03-23 2011-09-29 帝人株式会社 Microporous polyolefin film, separator for non-aqueous secondary battery, non-aqueous secondary battery, and process for production of microporous polyolefin film
JP2011201949A (en) * 2010-03-24 2011-10-13 Teijin Ltd Polyolefin microporous film, separator for nonaqueous secondary battery and nonaqueous secondary battery
JP2011210436A (en) * 2010-03-29 2011-10-20 Teijin Ltd Polyolefin microporous film, separator for nonaqueous secondary battery, and nonaqueous secondary battery
CN102290549A (en) * 2011-05-18 2011-12-21 新乡市中科科技有限公司 Polyolefine power battery diaphragm and preparation method thereof
JP2013166804A (en) * 2010-06-04 2013-08-29 Toray Battery Separator Film Co Ltd Polyolefin microporous membrane, separator for battery and battery
KR20140071095A (en) * 2012-12-03 2014-06-11 주식회사 엘지화학 High permeable polyethylene separator, and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100977345B1 (en) 2005-12-15 2010-08-20 아사히 가세이 케미칼즈 가부시키가이샤 Polyolefin microporous membrane
JP5061243B2 (en) * 2007-10-12 2012-10-31 東レバッテリーセパレータフィルム株式会社 Microporous membrane and its manufacture and use
US20090226814A1 (en) * 2008-03-07 2009-09-10 Kotaro Takita Microporous membrane, battery separator and battery
KR20110026609A (en) 2009-09-08 2011-03-16 주식회사 효성 A porous membrane for secondary battery and preparation method thereof
US20130043613A1 (en) * 2009-11-17 2013-02-21 Shinya Kawasoe Method for Producing Polyolefin Microporous Membrane
JP5431275B2 (en) * 2010-09-09 2014-03-05 旭化成イーマテリアルズ株式会社 Polyolefin microporous membrane
US8802272B2 (en) * 2010-11-29 2014-08-12 Takemoto Yushi Kabushiki Kaisha Method of producing polyolefin microporous membrane and separator for lithium ion battery

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0899382A (en) * 1994-09-30 1996-04-16 Mitsui Petrochem Ind Ltd Laminated microporous film of olefinic polymer and production and use thereof
JP2005343958A (en) * 2004-06-01 2005-12-15 Tonen Chem Corp Method for producing polyethylene fine porous film, fine porous film and use of the same
JP2006045328A (en) * 2004-08-04 2006-02-16 Asahi Kasei Chemicals Corp Method for producing polyolefin fine porous film
JP2006179485A (en) * 2004-12-23 2006-07-06 Toray Saehan Inc Polyethylene fine porous membrane for secondary battery separator, and its manufacturing method
KR20050079897A (en) * 2005-01-11 2005-08-11 도레이새한 주식회사 Polyethylene microporous film for rechargeable battery separator
JP2009026733A (en) * 2007-01-30 2009-02-05 Asahi Kasei Chemicals Corp Multilayer porous membrane and its manufacturing method
JP2010538097A (en) * 2007-08-31 2010-12-09 東燃化学株式会社 Polyolefin microporous membrane, method for producing the same, battery separator and battery
CN101983219A (en) * 2008-03-31 2011-03-02 旭化成电子材料株式会社 Polyolefin microporous membrane and products of winding
JP2010108922A (en) * 2008-09-30 2010-05-13 Toray Ind Inc Porous laminated film and electricity energy storage device
JP2010106071A (en) * 2008-10-28 2010-05-13 Asahi Kasei E-Materials Corp Polyolefin microporous film and separator for storage device
WO2011118660A1 (en) * 2010-03-23 2011-09-29 帝人株式会社 Microporous polyolefin film, separator for non-aqueous secondary battery, non-aqueous secondary battery, and process for production of microporous polyolefin film
JP2011201949A (en) * 2010-03-24 2011-10-13 Teijin Ltd Polyolefin microporous film, separator for nonaqueous secondary battery and nonaqueous secondary battery
JP2011210436A (en) * 2010-03-29 2011-10-20 Teijin Ltd Polyolefin microporous film, separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2013166804A (en) * 2010-06-04 2013-08-29 Toray Battery Separator Film Co Ltd Polyolefin microporous membrane, separator for battery and battery
CN102290549A (en) * 2011-05-18 2011-12-21 新乡市中科科技有限公司 Polyolefine power battery diaphragm and preparation method thereof
KR20140071095A (en) * 2012-12-03 2014-06-11 주식회사 엘지화학 High permeable polyethylene separator, and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020092068A (en) * 2018-12-07 2020-06-11 旭化成株式会社 Method for producing microporous film
JP7265349B2 (en) 2018-12-07 2023-04-26 旭化成株式会社 Method for manufacturing microporous membrane
WO2020213741A1 (en) * 2019-04-18 2020-10-22 マクセルホールディングス株式会社 Aqueous liquid-electrolyte cell and patch

Also Published As

Publication number Publication date
CN106489215A (en) 2017-03-08
KR20160002447A (en) 2016-01-08
JP6818557B2 (en) 2021-01-20
WO2016003094A1 (en) 2016-01-07

Similar Documents

Publication Publication Date Title
US10109860B2 (en) Lithium-sulphur battery
JP6818557B2 (en) Porous polyolefin separation membrane and its manufacturing method
JP6334568B2 (en) Separation membrane manufacturing method, separation membrane and battery using the same
Xiong et al. Expanded polytetrafluoroethylene reinforced polyvinylidenefluoride–hexafluoropropylene separator with high thermal stability for lithium-ion batteries
KR101164650B1 (en) Porous separators for secondary battery comprising cellulose nanofibrils and preparation method thereof
US9825269B2 (en) Porous polyolefin separator and method for manufacturing the same
JP6413351B2 (en) Electricity storage element
KR101198672B1 (en) Method for synthesizing electrode for secondary cell, electrode synthesized by the method, and secondary cell comprising the electrode
KR20140071095A (en) High permeable polyethylene separator, and preparation method thereof
JP2017183229A (en) Separator for power storage device
KR101627738B1 (en) Porous polymeric separator and a method for preparing the same
JP2020084084A (en) Polyolefin microporous film
CN113839005A (en) Gel composite positive electrode for solid-state battery and preparation method thereof
KR20150072868A (en) Porous polyolefin separator and a method for preparing the same
JP2015517174A (en) Separator for electrochemical cells containing polymer particles
KR20200030436A (en) Porous silicon structure, anode active material for rechargeable battery including the same, and method of fabricating the same
KR102460963B1 (en) Composite separator, lithium battery including the same, and method of preparing the composite separator
JP2018174077A (en) Battery separator and lithium ion secondary battery
JP4586359B2 (en) Non-aqueous electrolyte secondary battery
JP2012136704A (en) Microporous membrane made of polyethylene and battery using the same
JP5017841B2 (en) Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery using the same
JP2016025007A (en) Manufacturing method of electrode for lithium ion secondary battery
KR20150037393A (en) Separator for electrochemical device and electrochemical device containing the same
KR102634587B1 (en) A separator for an electrochemical device and a method of manufacturing the separator
JP5316671B2 (en) Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201228

R150 Certificate of patent or registration of utility model

Ref document number: 6818557

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250