WO2016003094A1 - Porous polyolefin-based separation membrane and preparation method therefor - Google Patents
Porous polyolefin-based separation membrane and preparation method therefor Download PDFInfo
- Publication number
- WO2016003094A1 WO2016003094A1 PCT/KR2015/006201 KR2015006201W WO2016003094A1 WO 2016003094 A1 WO2016003094 A1 WO 2016003094A1 KR 2015006201 W KR2015006201 W KR 2015006201W WO 2016003094 A1 WO2016003094 A1 WO 2016003094A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyolefin
- separator
- stretching
- mol
- molecular weight
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/403—Manufacturing processes of separators, membranes or diaphragms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/20—Manufacture of shaped structures of ion-exchange resins
- C08J5/22—Films, membranes or diaphragms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/001—Combinations of extrusion moulding with other shaping operations
- B29C48/0018—Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/02—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
- B29C55/10—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
- B29C55/12—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
- B29C55/14—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
- B29C55/143—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively firstly parallel to the direction of feed and then transversely thereto
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/403—Manufacturing processes of separators, membranes or diaphragms
- H01M50/406—Moulding; Embossing; Cutting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/417—Polyolefins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/446—Composite material consisting of a mixture of organic and inorganic materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/491—Porosity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/494—Tensile strength
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2207/00—Properties characterising the ingredient of the composition
- C08L2207/06—Properties of polyethylene
- C08L2207/062—HDPE
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2207/00—Properties characterising the ingredient of the composition
- C08L2207/06—Properties of polyethylene
- C08L2207/068—Ultra high molecular weight polyethylene
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a porous polyolefin-based separator and a method for producing the same.
- a separator for an electrochemical cell refers to an interlayer membrane which maintains ion conductivity while allowing the cathode and the cathode to be separated from each other in the cell, thereby allowing the battery to be charged and discharged.
- the present invention is to provide a separator having excellent air permeability and porosity while having a strong strength and a low strain rate of the shape or size of the pores of the separator.
- a composition comprising a polyolefin resin and a plasticizer is melt-kneaded and extruded to form a sheet, and the sheet is elongated at a temperature T 1 in the longitudinal direction by an E 1 times and at a temperature T 2 in the width direction.
- a method for producing a separator is provided.
- a polyolefin containing a polyolefin-based resin, the average point pressure (psi) / bubble point pressure (psi) in the wet and dry curve of the separator measured by capillary flow porosimeter is 1.8 to 2.4
- a system separator is provided.
- Separation membrane according to an embodiment of the present invention has a higher electrolyte hygroscopicity by the form of pores of the membrane.
- the separator according to an embodiment of the present invention also has a strong mechanical strength while having excellent air permeability and porosity by controlling the size distribution of the pores of the separator.
- FIG. 1 is a graph of capillary flow porometer (Pillary flow porometer) of PMI measured for the separator according to an embodiment of the present invention.
- the pressure at the starting point at which the curve is drawn in the wet graph is called bubble point pressure (psi), and the pressure at the point where the wet curve meets the virtual straight line where the slope of the straight line is 1/2 in the dry graph This is called the mean point pressure (psi).
- the bubble point pressure and the average point pressure reflect the maximum pore size and the average pore size of the separator, respectively.
- a melt-kneaded and extruded composition comprising a polyolefin-based resin and a plasticizer to form a sheet
- the sheet is stretched E 1 times at a temperature T 1 in the longitudinal direction
- a first stretching of E 2 times in the width direction at a temperature of T 2 extracting a plasticizer from the stretched sheet, and making the final stretch ratio in the width direction of the sheet from which the plasticizer is extracted to be 1.25 times to 1.5 times.
- First, forming the sheet includes melt-kneading and extruding a composition containing a polyolefin resin and a plasticizer to form a cooled solidified sheet.
- the polyolefin-based resin is a resin containing a polyolefin, for example, a group consisting of ultra high molecular weight polyethylene, high molecular weight polyethylene, high density polyethylene, low density polyethylene, linear low density polyethylene, polypropylene, high crystalline polypropylene and polyethylene-propylene copolymer It may include one or two or more selected from.
- the polyolefin resin may include other resin in addition to the polyolefin. Examples of other resins include polyimide, polyester, polyamide, polyetherimide, polyamideimide, polyacetal, and the like.
- the polyolefin resin composition may be prepared by blending the polyolefin resin and the other resin in an appropriate solvent.
- the viscosity average molecular weight (Mv) of the high density polyethylene may be 1 ⁇ 10 5 g / mol to 9 ⁇ 10 5 g / mol, for example, 3 ⁇ 10 5 g / mol to 6 ⁇ 10 5 g / mol have.
- the viscosity average molecular weight of the ultrahigh molecular weight polyethylene may be 9 ⁇ 10 5 g / mol or more, specifically 9 ⁇ 10 5 g / mol to 5 ⁇ 10 6 g / mol.
- the high density polyethylene may be used alone or the ultra high molecular weight polyethylene may be used alone, or both the high density polyethylene and the ultra high molecular weight polyethylene may be used.
- the ultrahigh molecular weight polyethylene may be used in an amount of 30% by weight or less based on the weight of the polyolefin resin, and for example, a viscosity average molecular weight of 1 ⁇ 10 5 g / mol to 9 ⁇ 10 5 g / Polyolefin resins containing 70% by weight or more of high density polyethylene, which is mol, and 30% by weight or less of ultra high molecular weight polyethylene having a viscosity average molecular weight of 9 ⁇ 10 5 g / mol or more can be used.
- the polyolefin resin is advantageous because it can produce a high strength separator. In addition, when it contains two or more types of said polyolefin resin, it is good to mix using 1 or more types chosen from the group which consists of a Henschel mixer, a Bambari mixer, and a French mixer.
- the plasticizer may be an organic compound that forms a single phase with the polyolefin-based resin at an extrusion temperature.
- plasticizers usable in the present invention include aliphatic or cyclic hydrocarbons such as nonane, decane, decalin, liquid paraffin (or paraffin oil), paraffin wax; Phthalic acid esters such as dibutyl phthalate and dioctyl phthalate; Fatty acids having 10 to 20 carbon atoms, such as palmitic acid, stearic acid, oleic acid, linoleic acid, and linolenic acid; C10-C20 fatty acid alcohols, such as a palmitic alcohol, a stearic acid alcohol, and an oleic acid alcohol, etc.
- liquid paraffin can be preferably used. Liquid paraffin is harmless to the human body, has a high boiling point and low volatile components, making it suitable for use as a plasticizer in the wet process.
- Melting and kneading the composition comprising the polyolefin-based resin and the plasticizer herein may use a method known to those skilled in the art, and may be melt-kneading the polyolefin-based resin and the plasticizer at a temperature of 150 ° C to 250 ° C.
- the melt-kneaded composition may be injected into a twin screw extruder to extrude at 150 ° C to 250 ° C. Thereafter, the extruded polyolefin resin is cooled using a casting roll of 20 ° C. to 80 ° C. or forcedly cooled by cold air injected from an air knife to crystallize the film to form a solidified sheet.
- the temperature of the cool air injected from the air knife may be -20 °C to 40 °C.
- the sheet in the longitudinal direction is carried out first stretch of E 2 times longer in the temperature T 2 to the E 1 times and then stretched widthwise at a temperature T 1.
- the stretching temperature conditions at the time of stretching are 100 ° C ⁇ T 1 ⁇ 115 ° C, 100 ° C ⁇ T 2 ⁇ 115 ° C, and T 2 ⁇ T 1 .
- the same stretching may cause a difference in the length of stretching for each part, and after stretching in the TD direction can be formed in the separation membrane of two or more different pore size.
- relatively small pores are advantageous in terms of heat shrinkage, strength, and pore strain, and relatively large pores are advantageous in terms of air permeability, electrolyte wettability, and battery capacity.
- the MD direction draw ratio (E 1 ) and the TD direction draw ratio (E 2 ) are 7.5 times and 8 times or more, respectively, and the draw surface ratio (E 1 ⁇ E 2 ) is 60 to 80, which is high. Due to the stretched surface magnification, it is possible to minimize the strain of the shape and size of the pores due to the external pressure of the separator to improve battery stability.
- the present invention can minimize the strain of the shape and size of the pores by the external pressure while ensuring the porosity required for the separation membrane by stretching under the conditions of the stretching temperature and the draw ratio as described above.
- the MD stretching temperature T 1 may be 2 ° C. or more lower than the TD stretching temperature T 2 . For example, it may be lower than 3 ° C, or higher than 5 ° C.
- MD direction draw ratio E 1 is 7.5 times, TD direction draw ratio E 2 is 8 times; MD direction draw ratio E 1 is 8 times, TD direction draw ratio E 2 is 8 times; MD direction draw ratio E 1 is 8 times, TD direction draw ratio E 2 is 8.5 times; Alternatively, the MD direction draw ratio E 1 may be 8.5 times, and the TD direction draw ratio E 2 may be 8.5 times.
- the draw ratios in the width direction and the longitudinal direction may be the same or different. Specifically, the ratio of E 1 / E 2 may be 0.85 to 1. If it is the range of the said extending
- the plasticizer may be extracted after the first stretching.
- the plasticizer extraction may be performed using an organic solvent, and in particular, the longitudinally stretched and the widthwise stretched separator may be immersed in an organic solvent in the plasticizer extracting apparatus to extract a plasticizer.
- the organic solvent used for the plasticizer extraction is not particularly limited, and any solvent may be used as long as it can extract the plasticizer.
- Non-limiting examples of the organic solvent may be methyl ethyl ketone, methylene chloride, hexane, etc., which has high extraction efficiency and easy drying, and methylene chloride is preferably used as the organic solvent when liquid paraffin is used as a plasticizer. .
- the second drawing may be performed such that the sheet from which the plasticizer has been extracted is stretched in the width direction such that the final draw ratio is 1.25 to 1.5 times.
- the stretching in the width direction is a heat setting step for removing the residual stress of the film to reduce the shrinkage of the final film, and can adjust the heat shrinkage rate, transmittance, etc. of the film according to the temperature and fixation ratio during the heat setting.
- the heat setting may be performed in the width direction of the drawing in a range of 1.25 times to 2 times of the 2-1 stretching, and relaxed to 70% to 100% of the stretched width direction so that the final drawing ratio is 1.25 times to 1.5 times. Can be.
- the heat setting in the arrangement has the effect of improving the air permeability by adjusting the deviation of the pores generated during the biaxial stretching.
- the heat setting may be performed at 100 to 150 ° C., for example, may be performed at 120 to 135 ° C. It is effective in removing residual stress of the film in the above range, and can improve physical properties.
- the present invention provides a polyolefin-based separator prepared by the method for producing a polyolefin-based separator according to the above examples.
- the polyolefin separator may have an average point pressure (psi) / bubble point pressure (psi) of about 1.8 to about 2.4 in a wet curve of the separator measured by a capillary flow porosimeter.
- the pore size is varied so that the porosity required for the membrane, eg, 40% or more It is possible to provide a separator having excellent air permeability and excellent electrolyte wettability and strength while achieving.
- the bubble point pressure refers to the pressure of the starting point at which the wet curve is drawn in the capillary flow pore meter. Specifically, when the membrane sample is soaked in the solution, the pore is filled with the solution, and the air is increased while the air is blown while increasing the pressure. The solution filled inside moves under pressure first, and the pressure at this time is called bubble point pressure. Referring to FIG. 1, the bubble point pressure refers to the pressure at the time when the flow velocity is maintained at 0 and starts to increase in the graph of the flow rate change with increasing pressure of the capillary flow pore meter.
- the average point pressure refers to the pressure at the point where the wet straight line meets the imaginary straight line and the wet curve in which the slope is 1/2 in the dry straight line in the capillary flow pore meter. Specifically, when the air is blown while increasing the pressure while the membrane sample is not wetted with the solution, a graph having a linear shape in which the flow rate increases in proportion to the pressure increase is obtained. Referring to FIG. 1, when a virtual straight line (half dry graph in FIG. 1) having a slope is 1/2 in the straight graph (dry graph in FIG. 1), the virtual straight line and the wet curve are The pressure at the point of meeting is called the average point pressure.
- the polyolefin-based separator according to an embodiment of the present invention may have a porosity of 40% to 50% and a permeability of 50 sec / 100 cc to 200 sec / 100 cc.
- air permeability refers to the time at which 100 cc of air passes through the separator.
- the air permeability may be 60 sec / 100cc to 150 sec / 100cc.
- the ratio of tensile strength (kg / cm 2 ) / elongation (%) in the longitudinal and width directions of the separator is 15 to 28 ⁇ (kg / cm 2 ) /% ⁇ , respectively.
- the polyolefin-based separator according to an embodiment of the present invention may have a tensile strength of 1700 kg / cm 2 or more in the longitudinal direction of the membrane, a tensile strength of 1800 kg / cm 2 or more in the width direction, elongation and Elongation in the width direction may be 100% or less, more specifically 98% or less.
- a separation membrane having improved stability against deformation of the pore size and shape may be provided.
- the polyolefin-based separator according to an embodiment of the present invention may have a water droplet contact angle of the separator 107 ° or less, for example, 95 ° to 107 °, specifically, 100 ° to 106 °. When the contact angle is in the above range, the electrolyte wettability is good, and thus battery performance may be improved.
- the separator according to the present embodiment may include a coating layer on one side or both sides of the separator manufactured according to the example of the present invention, the coating layer may include an organic binder, and may further include inorganic particles.
- the organic binder may include, for example, a polyvinylidene fluoride polymer having a weight average molecular weight of 1,000,000 g / mol or more, a polyvinylidene fluoride polymer having a weight average molecular weight of 800,000 g / mol or less, or a mixture thereof. have.
- PVdF polyvinylidene fluoride homopolymer
- PVdF-HFP polyvinylidene fluoride-hexapropylene copolymer
- the inorganic particles there may be mentioned Al 2 O 3, SiO 2, B 2 O 3, Ga 2 O 3, TiO 2, and SnO 2 and the like.
- the coating layer may be formed by a dip coating method.
- the separator having the coating layer may be left in an oven at 105 ° C. for 1 hour, and the heat shrinkage may be 3% or less in the MD and TD directions, respectively. More specifically, it may be 2% or less.
- the porous polyolefin-based separator according to embodiments of the present invention may have an average thickness of 7 ⁇ m to 20 ⁇ m and a variation in thickness may be less than 4% of the average thickness.
- the porous polyolefin-based separator according to the embodiments of the present invention may have an average puncture strength of 300 gf or more, and specifically 400 gf or more.
- the porous polyolefin-based separator or coating separator according to the embodiments of the present invention is cut to 50 ⁇ 50 mm in size of the separator prepared in a 120 °C oven after shrinking for 1 hour, after which the size of the contracted separator
- the shrinkage in the longitudinal direction may be 5% or less
- the shrinkage in the width direction may be 3% or less
- the shrinkage in the longitudinal direction is 4% or less
- the shrinkage in the width direction is 2% or less.
- the present invention also provides a battery chemical cell comprising the porous polyolefin-based separator, positive electrode, negative electrode and electrolyte disclosed in the present invention.
- the type of electrochemical cell is not particularly limited and may be a kind of electricity known in the art.
- the electrochemical cell of the present invention may preferably be a lithium secondary battery such as a lithium metal secondary battery, a lithium ion ion secondary battery, a lithium polymer secondary battery or a lithium ion polymer secondary battery.
- the method for producing the electrochemical cell of the present invention is not particularly limited, and a method commonly used in the art may be used.
- a non-limiting example of a method of manufacturing the electrochemical cell is as follows:
- the cell can be prepared by placing the separator or coated separator of the present invention between the positive and negative electrodes of the cell and then filling the electrolyte therewith. have.
- the electrode constituting the electrochemical cell of the present invention can be produced in a form in which the electrode active material is bound to the electrode current collector by a method commonly used in the technical field of the present invention.
- the cathode active material is not particularly limited, and a cathode active material commonly used in the technical field of the present invention may be used.
- the positive electrode includes a positive electrode active material capable of reversibly inserting and detaching lithium ions
- the positive electrode active material may be at least one selected from cobalt, manganese, nickel, and a composite metal oxide with lithium.
- the solid solution ratio between the metals may be various, and in addition to these metals, Mg, Al, Co, Ni, K, Na, Ca, Si, Ti, Sn, V, Ge, Ga, B, As, Zr, Mn, Cr, An element selected from the group consisting of Fe, Sr, V, and rare earth elements may be further included.
- the anode may be, for example, a composite metal oxide of a metal selected from the group consisting of lithium and Co, Ni, Mn, Al, Si, Ti, and Fe, and specifically, lithium cobalt oxide (LCO.)
- LiCoO 2 lithium nickel manganese cobalt oxide, NCM.
- Li [Ni (x) Co (y) Mn (z)] O 2 lithium manganese oxide
- Lithium manganese oxide, LMO for example LiMn 2 O 4, LiMnO 2
- LiFePO 4 lithium nickel oxide
- LiNO for example LiNiO 2
- the negative electrode includes a negative electrode active material capable of inserting and desorbing lithium ions, and the negative electrode active material includes crystalline or amorphous carbon, or a carbon-based negative electrode active material (thermally decomposed carbon, coke, graphite) and combustion of a carbon composite.
- Organic polymer compounds, carbon fibers, tin oxide compounds, lithium metal or alloys of lithium and other elements can be used.
- amorphous carbon includes hard carbon, coke, mesocarbon microbeads (MCMB) fired at 1,500 ° C or lower, and mesophase pitch-based carbon fibers (MPCF).
- the crystalline carbon includes a graphite material, and specific examples thereof include natural graphite, graphitized coke, graphitized MCMB, graphitized MPCF, and the like.
- the negative electrode may include, for example, crystalline or amorphous carbon.
- the positive electrode or the negative electrode may be prepared by dispersing a binder, a conductive material, and, if necessary, a thickener in a solvent in addition to an electrode active material to prepare an electrode slurry composition, and applying the slurry composition to an electrode current collector.
- the binder, the conductive material and the thickener may be used as commonly used in the art.
- the binder polyvinylidene-fluoride (PVdF), styrene-butadiene rubber (SBR), and the like, carbon black as a conductive material, and carbonate methyl cellulose as a thickener (Carbonate methyl cellulose, CMC) can be used.
- the electrode current collector used in the present invention is not particularly limited, and an electrode current collector commonly used in the technical field of the present invention may be used.
- Non-limiting examples of the positive electrode current collector material of the electrode current collector may be a foil made of aluminum, nickel or a combination thereof.
- Non-limiting examples of the negative electrode current collector material of the electrode current collector may be a foil produced by copper, gold, nickel, a copper alloy or a combination thereof.
- the positive electrode current collector and the negative electrode current collector may be in the form of a foil or a mesh.
- the electrolyte solution used in the present invention is not particularly limited and may be used an electrochemical cell electrolyte solution commonly used in the technical field of the present invention.
- the electrolyte solution may be one in which a salt having a structure such as A + B ⁇ is dissolved or dissociated in an organic solvent.
- a + include a cation consisting of an alkali metal cation such as Li + , Na + or K + , or a combination thereof.
- Non-limiting examples of the organic solvent include propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dimethylformamide (Dimethylformamide, DMF), Dipropyl carbonate (DPC), Dimethyl sulfoxide (DMSO), Acetonitrile, Dimethoxyethane, Diethoxyethane, Tetrahydrofuran ( Tetrahydrofuran), N-methyl-2-pyrrolidone (NMP), ethyl methyl carbonate (EMC), or gamma-butyrolactone (-Butyrolactone). These may be used alone or in combination of two or more thereof.
- PC propylene carbonate
- EC ethylene carbonate
- DEC diethyl carbonate
- DMC dimethyl carbonate
- DMF dimethylformamide
- DMF dimethylformamide
- DPC Dipropyl carbonate
- DMSO Dimethyl sulfoxide
- Acetonitrile Dimeth
- High-density polyethylene (HDPE; manufactured by Mitsui Chemical) having a viscosity average molecular weight of 600,000 g / mol was fed to a twin screw extruder, and then liquid paraffin (Far East Emulsification) was weighted to polyethylene 30 to liquid paraffin.
- the extruder was injected into the twin screw extruder in an amount of 70.
- the gel phase obtained through the T-die was manufactured as a sheet-type separator using a cooling roll.
- the membrane was stretched in the longitudinal direction (Machine Direction, MD) at 110 ° C and in the transverse direction (TD) at 113 ° C (stretch ratio: 8.0 (MD) x 8.0 (TD)).
- the stretched polyolefin-based separator was immersed in methylene chloride (Samsung Fine Chemical) to extract liquid paraffin, and then transferred to a drying roll to dry.
- methylene chloride Sudsung Fine Chemical
- the dried film was heat-set in the width direction of the secondary stretching (width direction draw ratio: 1.0 ⁇ 1.6 ⁇ 1.4, stretching temperature 128 ° C.) to prepare a porous polyolefin separator having a thickness of 12.5 ⁇ m.
- Example 1 the stretching was performed in the machine direction (Machine Direction, MD) at 103 ° C and transverse direction (TD) at 105 ° C (stretch ratio: 8.5 (MD) x 8.5 (TD)) In the same manner as in Example 1, a separator having a thickness of 12.3 ⁇ m was prepared.
- Example 1 the stretching was performed in the machine direction (Machine Direction, MD) at 120 ° C and in the transverse direction (TD) at 123 ° C (stretch ratio: 8 (MD) x 8 (TD)). Then, a membrane having a thickness of 12.2 ⁇ m was prepared in the same manner as in Example 1.
- Example 2 the same method as in Example 2, except that the stretching direction in the longitudinal direction (MD) and the stretching direction in the transverse direction (TD) were set to 7 (MD) x 7 (TD). 12.3 ⁇ m thick membrane was prepared.
- Table 1 shows the production conditions of the separators according to Examples 1 and 2 and Comparative Examples 1 and 2.
- Example 1 Example 2 Comparative Example 1 Comparative Example 2 Drawing method rotor rotor rotor rotor rotor Stretch ratio (MD x TD) 8 ⁇ 8 8.5 ⁇ 8.5 8 ⁇ 8 7 ⁇ 7 MD drawing temperature 110 °C 103 °C 120 °C 103 °C TD drawing temperature 113 °C 105 °C 123 °C 105 °C 2nd TD drawing temperature 128 °C 128 °C 128 °C 128 °C 2nd TD final draw ratio 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4
- Example 1 Example 2 Comparative Example 1 Comparative Example 2 Average point pressure (psi) 258.856 272.12 201.34 282.24 Bubble Point Pressure (psi) 121.675 113.31 121.54 113.35 Average Point Pressure / Bubble Point Pressure 2.13 2.40 1.66 2.49 Porosity (%) 44.5 43 53.1 38.5 Breathability (sec / 100cc) 122 115 95 223 Tensile Strength (kg / cm 2 ) (MD, TD) 2120, 2214 2250, 2305 1653,1622 1742,1783 Elongation (%) (MD, TD) 89, 92 86, 88 95, 110 93, 98 Tensile Strength / Elongation (MD, TD) 23.8, 24.1 26.2, 26.2 17.4, 14.7 18.7, 18.2 Droplet contact angle (°) 102 103 111 111 Shrinkage (%) (MD, TD) 2,0 2,0 8,3 2,0
- each of the separators prepared in Examples and Comparative Examples was sampled into a circle having a diameter of 26 mm.
- the membrane itself is mounted on a PMI capillary flow pore meter and thoroughly wetted with Galwick TM solution (surface tension of 15.9 dyne / cm). Wet up Calc. After setting the mode, draw the wet curve by measuring the flow rate of N 2 for each pressure. The pressure at which the first bubble is detected in the wet curve is recorded as the bubble point pressure (psi).
- each of the separators prepared in Examples and Comparative Examples was sampled in a circle having a diameter of 26 mm and the separator itself was mounted on the device, and then the device was dried.
- the mode was set, and the flow rate of N 2 for each pressure was measured and shown as a dry curve graph.
- a straight line extends from the origin to a point having linearity, draws an imaginary straight line that is half of the slope of the straight line, and the pressure at the point where the imaginary straight line and the wet curve meet the average point pressure ( psi).
- Porosity (%) (volume-mass / density of sample) / volume x 100
- Density of sample density of polyethylene
- Each of the separators prepared in the above Examples and Comparative Examples was prepared to cut 10 samples cut from 10 different points to a size of 1 inch (1 inch) in diameter, and then the air permeability measuring device (Asahi Seiko) G) was used to measure the time for passage of 100 cc of air in each sample. The time was measured five times each and then the average value was calculated.
- Each of the membranes prepared in Examples and Comparative Examples was made of 10 samples cut at 10 different points (MD) 10 mm ⁇ length (TD) 50 mm, and 20 mm portions were bitten in the UTM. After pulling up and down the strength was measured. The tensile strength of each sample was measured three times, and then the average value was calculated.
- Each of the separators prepared in Examples and Comparative Examples was prepared with 10 samples cut at 10 different points with a width of 50 mm and a length of 50 mm of TD. The samples were left in an oven at 105 ° C. for 1 hour, and then the average thermal shrinkage (%) was calculated by measuring the shrinkage in the MD and TD directions of each sample.
- Each of the separators prepared in Examples and Comparative Examples was cut to 20 mm long by 20 mm wide by 20 mm long by TD to prepare five samples.
- the sample was placed on a contact angle measuring device (DSA-100, Matek Trading Co., Ltd.), and water was dropped by dropper, and then contact angle was measured. The contact angles (°) of the five samples were averaged and calculated.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Cell Separators (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
The present invention relates to a method for preparing a polyolefin-based separation membrane and a polyolefin-based separation membrane prepared by the method, the method comprising: forming a sheet by melt blending a composition comprising a polyolefin-based resin and a plasticizer and extruding the same; carrying out a first drawing in which the sheet drawn by E1 times at a temperature of T1 in the longitudinal direction and drawing the same by E2 times at a temperature of T2 in the width direction; extracting the plasticizer from the drawn sheet; and carrying out a second drawing of the sheet, from which the plasticizer is extracted, to a final elongation of 1.25-1.5 times thereof in the width direction, wherein, in the first drawing, the temperature conditions are 100°C < T1 < 115°C, 100°C < T2 < 115°C and T2 ≥ T1, and the magnification condition is E1×E2 = 60-80.
Description
본 발명은 다공성 폴리올레핀계 분리막 및 이의 제조 방법에 관한 것이다.The present invention relates to a porous polyolefin-based separator and a method for producing the same.
전기 화학 전지용 분리막 (separator)은 전지 내에서 양극과 음극을 서로 격리시키면서 이온 전도도를 지속적으로 유지시켜 주어 전지의 충전과 방전이 가능하게 하는 중간막을 의미한다.A separator for an electrochemical cell refers to an interlayer membrane which maintains ion conductivity while allowing the cathode and the cathode to be separated from each other in the cell, thereby allowing the battery to be charged and discharged.
최근 전자 기기의 휴대성을 높이기 위한 전기 화학 전지의 경량화 및 소형화 추세와 더불어, 전기 자동차 등에의 사용을 위한 고출력 대용량 전지를 필요로 하는 경향이 있다. 이러한 전지 분리막의 경우 높은 통기성, 얇은 막 두께, 강한 기계적 강도가 요구되고 있다. 또한, 고출력 전지의 생산성 향상을 위하여 고열이나 높은 텐션에 의한 형태 안정성 등이 우수할 것이 요구된다. 따라서, 높은 통기성 및 기공도를 가지면서도 기계적 강도가 우수하고, 또한, 기공의 형태 및 크기 변형율이 작아 고출력 전지에 사용하기에 적합한 분리막을 개발할 필요가 있다.In recent years, along with the trend of lightening and miniaturization of electrochemical cells for increasing the portability of electronic devices, there is a tendency to require high output large capacity batteries for use in electric vehicles. In the case of such a battery separator, high air permeability, thin film thickness, and strong mechanical strength are required. In addition, in order to improve the productivity of the high output battery, it is required to be excellent in shape stability due to high heat or high tension. Therefore, there is a need to develop a separator suitable for use in high power batteries, while having high air permeability and porosity, excellent mechanical strength, and small pore shape and size strain.
본 발명은 통기도 및 기공도가 우수하면서도 강한 강도를 가지며 분리막의 기공의 형태 혹은 크기의 변형율이 적어 전지 안정성이 우수한 분리막을 제공하고자 한다.The present invention is to provide a separator having excellent air permeability and porosity while having a strong strength and a low strain rate of the shape or size of the pores of the separator.
본 발명의 일 예에 따르면, 폴리올레핀계 수지 및 가소제를 포함하는 조성물을 용융혼련하고 압출하여 시트를 형성하고, 상기 시트를 길이 방향으로 T1 온도에서 E1 배 연신 및 폭 방향으로 T2 온도에서 E2 배 연신하는 제1 연신을 수행하고, 상기 연신된 시트로부터 가소제를 추출하고, 상기 가소제가 추출된 시트를 폭방향으로 최종 연신 배율이 1.25배 내지 1.5배가 되도록 제2 연신하는 것을 포함하고, 상기 제1 연신 시 온도 조건이 100℃ < T1 < 115℃, 100℃ < T2 < 115℃, 및 T2 ≥ T1이고, 배율 조건이 E1×E2 = 60 ~ 80인, 폴리올레핀계 분리막의 제조 방법이 제공된다.According to one embodiment of the present invention, a composition comprising a polyolefin resin and a plasticizer is melt-kneaded and extruded to form a sheet, and the sheet is elongated at a temperature T 1 in the longitudinal direction by an E 1 times and at a temperature T 2 in the width direction. Performing a first stretching of E 2 times stretching, extracting a plasticizer from the stretched sheet, and second stretching of the sheet from which the plasticizer has been extracted so that the final stretching ratio is 1.25 to 1.5 times in the width direction; The polyolefin system wherein the temperature conditions at the time of the first stretching are 100 ° C. <T 1 <115 ° C., 100 ° C. <T 2 <115 ° C., and T 2 ≧ T 1 , and the magnification condition is E 1 × E 2 = 60-80. A method for producing a separator is provided.
본 발명의 다른 일 예에 따르면, 폴리올레핀계 수지를 함유하고, 모세관 유동 기공측정기로 측정한 분리막의 습윤 및 건조 곡선에서 평균 포인트 압력(psi)/버블 포인트 압력(psi)이 1.8 내지 2.4인, 폴리올레핀계 분리막이 제공된다.According to another embodiment of the present invention, a polyolefin containing a polyolefin-based resin, the average point pressure (psi) / bubble point pressure (psi) in the wet and dry curve of the separator measured by capillary flow porosimeter is 1.8 to 2.4 A system separator is provided.
본 발명의 일 예에 따른 분리막은 분리막의 기공의 형태에 의하여 보다 높은 전해액 흡습성을 가진다.Separation membrane according to an embodiment of the present invention has a higher electrolyte hygroscopicity by the form of pores of the membrane.
본 발명의 일 예에 따른 분리막은 또한 분리막의 기공의 크기 분포를 제어함으로써 통기도와 기공도가 우수하면서도 강한 기계적 강도를 가진다.The separator according to an embodiment of the present invention also has a strong mechanical strength while having excellent air permeability and porosity by controlling the size distribution of the pores of the separator.
도 1은 본 발명의 일 예에 따른 분리막에 대해 측정한 PMI사의 모세관 유동 기공측정기(Capillary flow porometer) 습윤 그래프이다. 상기 습윤 그래프에서 곡선이 그려지는 시작점의 압력을 버블 포인트(bubble point) 압력(psi)이라 하고, 건조 그래프에서 직선의 기울기가 1/2이 되는 가상의 직선과 상기 습윤 곡선이 만나는 점의 압력을 평균 포인트(mean point) 압력(psi)이라 한다. 상기 버블 포인트 압력 및 상기 평균 포인트 압력은 분리막의 최대 공경 크기와 평균 공경 크기를 각각 반영한다.1 is a graph of capillary flow porometer (Pillary flow porometer) of PMI measured for the separator according to an embodiment of the present invention. The pressure at the starting point at which the curve is drawn in the wet graph is called bubble point pressure (psi), and the pressure at the point where the wet curve meets the virtual straight line where the slope of the straight line is 1/2 in the dry graph This is called the mean point pressure (psi). The bubble point pressure and the average point pressure reflect the maximum pore size and the average pore size of the separator, respectively.
본 발명의 일 예에 따른 다공성 폴리올레핀계 분리막의 제조 방법은, 폴리올레핀계 수지 및 가소제를 포함하는 조성물을 용융혼련하고 압출하여 시트를 형성하고, 상기 시트를 길이 방향으로 T1 온도에서 E1 배 연신 및 폭 방향으로 T2 온도에서 E2배 연신하는 제1 연신을 수행하고, 상기 연신된 시트로부터 가소제를 추출하고, 상기 가소제가 추출된 시트를 폭방향으로 최종 연신 배율이 1.25배 내지 1.5배가 되도록 제2 연신하는 것을 포함하고, 상기 제1 연신 시 온도 조건이 100℃ < T1 < 115℃, 100℃ < T2 < 115℃, 및 T2 ≥ T1이고, 배율 조건이 E1×E2 = 60 ~ 80일 수 있다.In the method of manufacturing a porous polyolefin-based separator according to an embodiment of the present invention, a melt-kneaded and extruded composition comprising a polyolefin-based resin and a plasticizer to form a sheet, the sheet is stretched E 1 times at a temperature T 1 in the longitudinal direction And performing a first stretching of E 2 times in the width direction at a temperature of T 2 , extracting a plasticizer from the stretched sheet, and making the final stretch ratio in the width direction of the sheet from which the plasticizer is extracted to be 1.25 times to 1.5 times. The second stretching, wherein the temperature conditions at the first stretching are 100 ° C. <T 1 <115 ° C., 100 ° C. <T 2 <115 ° C., and T 2 ≧ T 1 , and the magnification condition is E 1 × E 2 = 60 to 80.
우선, 상기 시트를 형성하는 것은, 폴리올레핀계 수지 및 가소제를 포함하는 조성물을 용융혼련하고 압출하여 냉각 고형화된 시트를 형성하는 것을 포함한다.First, forming the sheet includes melt-kneading and extruding a composition containing a polyolefin resin and a plasticizer to form a cooled solidified sheet.
상기 폴리올레핀계 수지는 폴리올레핀을 포함하는 수지로, 예를 들어, 초고분자량 폴리에틸렌, 고분자량 폴리에틸렌, 고밀도 폴리에틸렌, 저밀도 폴리에틸렌, 선형저밀도 폴리에틸렌, 폴리프로필렌, 고결정성폴리프로필렌 및 폴리에틸렌-프로필렌 공중합체로 이루어진 군에서 선택된 1종 또는 2종 이상을 포함할 수 있다. 다른 예에서 폴리올레핀계 수지는 상기 폴리올레핀 외에 기타 다른 수지를 포함할 수 있다. 기타 다른 수지의 예로는 폴리이미드, 폴리에스테르, 폴리아미드, 폴리에테르이미드, 폴리아미드이미드, 폴리아세탈 등을 들 수 있다. 기타 다른 수지를 포함하는 경우, 폴리올레핀 수지와 기타 다른 수지를 적절한 용매 중 블렌딩하여 폴리올레핀계 수지 조성물을 제조할 수 있다. 상기 고밀도 폴리에틸렌의 점도평균분자량(Mv)은 1×105 g/mol 내지 9×105 g/mol일 수 있고, 예를 들어 3×105 g/mol 내지 6×105 g/mol일 수 있다. 상기 초고분자량 폴리에틸렌의 점도 평균 분자량은 9×105 g/mol 이상, 구체적으로 9×105 g/mol 내지 5×106 g/mol일 수 있다. 예를 들어, 상기 고밀도 폴리에틸렌을 단독으로 사용하거나 상기 초고분자량 폴리에틸렌을 단독으로 사용하거나, 상기 고밀도 폴리에틸렌과 상기 초고분자량 폴리에틸렌을 모두 사용할 수 있다. 보다 구체적으로는, 상기 폴리올레핀계 수지의 중량을 기준으로 상기 초고분자량 폴리에틸렌을 30중량% 이하로 사용할 수 있으며, 예를 들어, 점도평균분자량이 1×105 g/mol 내지 9×105 g/mol인 고밀도 폴리에틸렌을 70 중량% 이상 및 점도평균분자량이 9×105 g/mol 이상인 초고분자량 폴리에틸렌을 30 중량% 이하로 포함하는 폴리올레핀계 수지를 사용할 수 있다. 상기 폴리올레핀계 수지는 고강도 분리막을 제조할 수 있어 유리하다. 또한, 상기 폴리올레핀계 수지를 2종 이상 포함하는 경우, 헨셀 믹서, 밤바리 믹서 및 프렌터리 믹서로 이루어진 군에서 선택된 1종 이상을 이용하여 혼합하는 것이 좋다.The polyolefin-based resin is a resin containing a polyolefin, for example, a group consisting of ultra high molecular weight polyethylene, high molecular weight polyethylene, high density polyethylene, low density polyethylene, linear low density polyethylene, polypropylene, high crystalline polypropylene and polyethylene-propylene copolymer It may include one or two or more selected from. In another example, the polyolefin resin may include other resin in addition to the polyolefin. Examples of other resins include polyimide, polyester, polyamide, polyetherimide, polyamideimide, polyacetal, and the like. In the case of including other resins, the polyolefin resin composition may be prepared by blending the polyolefin resin and the other resin in an appropriate solvent. The viscosity average molecular weight (Mv) of the high density polyethylene may be 1 × 10 5 g / mol to 9 × 10 5 g / mol, for example, 3 × 10 5 g / mol to 6 × 10 5 g / mol have. The viscosity average molecular weight of the ultrahigh molecular weight polyethylene may be 9 × 10 5 g / mol or more, specifically 9 × 10 5 g / mol to 5 × 10 6 g / mol. For example, the high density polyethylene may be used alone or the ultra high molecular weight polyethylene may be used alone, or both the high density polyethylene and the ultra high molecular weight polyethylene may be used. More specifically, the ultrahigh molecular weight polyethylene may be used in an amount of 30% by weight or less based on the weight of the polyolefin resin, and for example, a viscosity average molecular weight of 1 × 10 5 g / mol to 9 × 10 5 g / Polyolefin resins containing 70% by weight or more of high density polyethylene, which is mol, and 30% by weight or less of ultra high molecular weight polyethylene having a viscosity average molecular weight of 9 × 10 5 g / mol or more can be used. The polyolefin resin is advantageous because it can produce a high strength separator. In addition, when it contains two or more types of said polyolefin resin, it is good to mix using 1 or more types chosen from the group which consists of a Henschel mixer, a Bambari mixer, and a French mixer.
상기 가소제는 압출 온도에서 상기 폴리올레핀계 수지와 단일상을 형성하는 유기 화합물일 수 있다. 본 발명에서 사용가능한 가소제의 예로는 노난, 데칸, 데칼린, 액체 파라핀(또는 파라핀 오일), 파라핀 왁스 등의 지방족 또는 시클릭 탄화수소; 디부틸 프탈레이트, 디옥틸 프탈레이트 등의 프탈산 에스테르; 팔미트산, 스테아린산, 올레산, 리놀레산, 리놀렌산 등의 탄소수 10 내지 20의 지방산류; 팔미트산 알코올, 스테아린산 알코올, 올레산 알코올 등의 탄소수 10 내지 20의 지방산 알코올류 등을 들 수 있다. 이들을 단독으로 사용하거나 2종 이상 혼합하여 사용할 수 있다. 상기 가소제 중 액체 파라핀을 바람직하게 사용할 수 있다. 액체 파라핀은 인체에 무해하며 비점이 높고 휘발성 성분이 적어 습식법에서 가소제로 사용되기에 적합하다.The plasticizer may be an organic compound that forms a single phase with the polyolefin-based resin at an extrusion temperature. Examples of plasticizers usable in the present invention include aliphatic or cyclic hydrocarbons such as nonane, decane, decalin, liquid paraffin (or paraffin oil), paraffin wax; Phthalic acid esters such as dibutyl phthalate and dioctyl phthalate; Fatty acids having 10 to 20 carbon atoms, such as palmitic acid, stearic acid, oleic acid, linoleic acid, and linolenic acid; C10-C20 fatty acid alcohols, such as a palmitic alcohol, a stearic acid alcohol, and an oleic acid alcohol, etc. are mentioned. These can be used individually or in mixture of 2 or more types. Among the plasticizers, liquid paraffin can be preferably used. Liquid paraffin is harmless to the human body, has a high boiling point and low volatile components, making it suitable for use as a plasticizer in the wet process.
본원에서 폴리올레핀계 수지 및 가소제를 포함하는 조성물을 용융혼련하는 것은 당업자에게 알려진 방법을 사용할 수 있으며, 150℃ 내지 250℃의 온도에서 폴리올레핀계 수지와 가소제를 용융혼련하는 것일 수 있다. 상기 용융혼련된 조성물을 이축 압출기에 주입하여 150 ℃ 내지 250 ℃ 에서 압출할 수 있다. 이후 압출된 폴리올레핀계 수지를 20 ℃ 내지 80 ℃의 casting roll을 이용하여 냉각하거나 에어나이프에서 분사되는 차가운 공기에 의해 강제적으로 냉각하여 막을 결정화시켜 고형화된 시트를 형성한다. 상기 에어나이프에서 분사되는 차가운 공기의 온도는 -20℃ 내지 40℃일 수 있다.Melting and kneading the composition comprising the polyolefin-based resin and the plasticizer herein may use a method known to those skilled in the art, and may be melt-kneading the polyolefin-based resin and the plasticizer at a temperature of 150 ° C to 250 ° C. The melt-kneaded composition may be injected into a twin screw extruder to extrude at 150 ° C to 250 ° C. Thereafter, the extruded polyolefin resin is cooled using a casting roll of 20 ° C. to 80 ° C. or forcedly cooled by cold air injected from an air knife to crystallize the film to form a solidified sheet. The temperature of the cool air injected from the air knife may be -20 ℃ to 40 ℃.
이어서, 상기 시트를 길이 방향으로 T1 온도에서 E1 배 연신 후 폭 방향으로 T2 온도에서 E2배 연신하는 제1 연신을 행한다. 상기 연신 시 연신 온도 조건은 100℃ < T1 < 115℃, 100℃ < T2 < 115℃, 및 T2 ≥ T1이다. MD 방향 연신 온도(T1) 및 TD 방향 연신 온도(T2)를 모두 115℃ 미만으로 하면 기공도를 높일 수 있고, MD 방향 연신 온도(T1)를 TD 방향 연신 온도(T2)보다 낮거나 같게 연신하면 부위별로 연신 길이에 편차가 생기게 할 수 있고, 이후 TD 방향 연신하면 크기가 상이한 2종 이상의 기공을 분리막에 형성시킬 수 있다. 크기가 상이한 2종 이상의 기공 중 상대적으로 크기가 작은 기공은 열수축율, 강도, 기공 변형율 면에서 유리하고, 상대적으로 크기가 큰 기공은 통기도, 전해액 젖음성 및 전지 용량 면에서 유리하다. 상기 연신 시 연신 배율 조건은 E1×E2 = 60 ~ 80일 수 있다. 나아가, E1 ≥ 7.5, 및 E2 ≥ 8일 수 있다. 연신 배율에 있어서, MD 방향 연신 배율(E1) 및 TD 방향 연신 배율(E2)을 각각 7.5배 및 8배 이상으로 하고, 연신 면배율(E1×E2)을 60 내지 80으로 하면 높은 연신 면배율로 인해 분리막의 외부 압력에 의한 기공의 모양 및 크기의 변형율을 최소화시켜 전지 안정성을 개선할 수 있다.Then, the sheet in the longitudinal direction is carried out first stretch of E 2 times longer in the temperature T 2 to the E 1 times and then stretched widthwise at a temperature T 1. The stretching temperature conditions at the time of stretching are 100 ° C <T 1 <115 ° C, 100 ° C <T 2 <115 ° C, and T 2 ≥ T 1 . When both the MD direction stretching temperature (T 1 ) and the TD direction stretching temperature (T 2 ) are less than 115 ° C., the porosity can be increased, and the MD direction stretching temperature (T 1 ) is lower than the TD direction stretching temperature (T 2 ). Or the same stretching may cause a difference in the length of stretching for each part, and after stretching in the TD direction can be formed in the separation membrane of two or more different pore size. Of the two or more kinds of pores of different sizes, relatively small pores are advantageous in terms of heat shrinkage, strength, and pore strain, and relatively large pores are advantageous in terms of air permeability, electrolyte wettability, and battery capacity. The stretching ratio condition during the stretching may be E 1 × E 2 = 60 ~ 80. Furthermore, E 1 ≧ 7.5, and E 2 ≧ 8. In the draw ratio, the MD direction draw ratio (E 1 ) and the TD direction draw ratio (E 2 ) are 7.5 times and 8 times or more, respectively, and the draw surface ratio (E 1 × E 2 ) is 60 to 80, which is high. Due to the stretched surface magnification, it is possible to minimize the strain of the shape and size of the pores due to the external pressure of the separator to improve battery stability.
본 발명은 상기와 같은 연신 온도 및 연신 배율의 조건에서 연신함으로써 분리막에 요구되는 기공도를 확보하면서도 외부 압력에 의한 기공의 모양 및 크기의 변형율을 최소화시킬 수 있다. 상기 MD 연신 온도(T1)는 TD 연신 온도(T2) 보다 2℃ 이상 낮을 수 있다. 예를 들어, 3℃ 이상, 또는 5℃ 이상 낮을 수 있다.The present invention can minimize the strain of the shape and size of the pores by the external pressure while ensuring the porosity required for the separation membrane by stretching under the conditions of the stretching temperature and the draw ratio as described above. The MD stretching temperature T 1 may be 2 ° C. or more lower than the TD stretching temperature T 2 . For example, it may be lower than 3 ° C, or higher than 5 ° C.
일 예에서, MD 방향 연신 배율(E1)이 7.5배이고, TD 방향 연신 배율(E2)이 8배; MD 방향 연신 배율(E1)이 8배이고, TD 방향 연신 배율(E2)이 8배; MD 방향 연신 배율(E1)이 8배이고, TD 방향 연신 배율(E2)이 8.5배; 또는 MD 방향 연신 배율(E1)이 8.5배이고, TD 방향 연신 배율(E2)이 8.5배일 수 있다. 상기 폭방향 및 길이방향의 연신 배율은 동일하거나 상이할 수 있다. 구체적으로 E1/ E2의 비는 0.85 내지 1일 수 있다. 상기 연신 비의 범위이면 MD 및 TD 방향 연신 온도를 상이하게 함으로써 생기는 부위별 연신 길이의 편차 효과를 더 강화시킬 수 있다.In one example, MD direction draw ratio E 1 is 7.5 times, TD direction draw ratio E 2 is 8 times; MD direction draw ratio E 1 is 8 times, TD direction draw ratio E 2 is 8 times; MD direction draw ratio E 1 is 8 times, TD direction draw ratio E 2 is 8.5 times; Alternatively, the MD direction draw ratio E 1 may be 8.5 times, and the TD direction draw ratio E 2 may be 8.5 times. The draw ratios in the width direction and the longitudinal direction may be the same or different. Specifically, the ratio of E 1 / E 2 may be 0.85 to 1. If it is the range of the said extending | stretching ratio, the dispersion | variation effect of the extending | stretching length for each site | part created by making MD and TD direction extending | stretching temperature different can be strengthened further.
상기 제1 연신 후 가소제를 추출할 수 있다. 상기 가소제 추출은 유기 용매를 이용해 수행될 수 있으며, 구체적으로 길이 방향 연신 및 폭 방향 연신된 분리막을 가소제 추출 장치 내의 유기 용매에 침지하여 가소제를 추출하는 방식으로 진행할 수 있다. 가소제 추출에 사용되는 유기 용매는 특별히 제한되지 아니하며 가소제를 추출해 낼 수 있는 용제라면 어느 것이라도 사용이 가능하다. 상기 유기 용매의 비제한적인 예로는 추출 효율이 높고 건조가 용이한 메틸에틸케톤, 메틸렌 클로라이드, 헥산 등을 사용할 수 있으며, 가소제로서 액체 파라핀을 사용한 경우에는 유기 용매로 메틸렌 클로라이드를 사용하는 것이 바람직하다.The plasticizer may be extracted after the first stretching. The plasticizer extraction may be performed using an organic solvent, and in particular, the longitudinally stretched and the widthwise stretched separator may be immersed in an organic solvent in the plasticizer extracting apparatus to extract a plasticizer. The organic solvent used for the plasticizer extraction is not particularly limited, and any solvent may be used as long as it can extract the plasticizer. Non-limiting examples of the organic solvent may be methyl ethyl ketone, methylene chloride, hexane, etc., which has high extraction efficiency and easy drying, and methylene chloride is preferably used as the organic solvent when liquid paraffin is used as a plasticizer. .
가소제를 추출하는 공정에서 사용하는 유기 용매는 휘발성이 높고 유독한 것이 대부분이므로, 필요하다면 유기 용매의 휘발을 억제하기 위해 물을 사용할 수 있다.Since the organic solvent used in the plasticizer extraction process is mostly volatile and toxic, water may be used to suppress volatilization of the organic solvent if necessary.
이어서, 상기 가소제가 추출된 시트를 폭방향으로 최종 연신 배율이 1.25배 내지 1.5배가 되도록 제2 연신하는 것을 포함할 수 있다. 상기 폭방향 연신은 필름의 잔류 응력을 제거하여 최종 필름의 수축률을 감소시키기 위한 열고정 단계로, 당해 열고정 수행 시의 온도와 고정 비율에 따라 필름의 열수축율, 투과도 등을 조절할 수 있다. 구체적으로, 상기 열고정하는 것은 폭 방향으로 연신 배율 1.25배 내지 2배로 제2-1 연신하고 상기 연신된 폭 방향 길이에 대해 70% 내지 100%로 이완시켜 최종 연신 배율이 1.25배 내지 1.5배가 되도록 할 수 있다. 상기 배열로 열고정하면 상기 2축 연신시 생성된 기공의 편차를 조정하여 통기도를 개선시키는 효과가 있다. 상기 열고정은 100 내지 150℃ 에서 수행될 수 있으며, 예를 들어 120 내지 135℃ 에서 수행될 수 있다. 상기 범위에서 필름의 잔류 응력 제거에 효과적이며, 물성을 향상시킬 수 있다.Subsequently, the second drawing may be performed such that the sheet from which the plasticizer has been extracted is stretched in the width direction such that the final draw ratio is 1.25 to 1.5 times. The stretching in the width direction is a heat setting step for removing the residual stress of the film to reduce the shrinkage of the final film, and can adjust the heat shrinkage rate, transmittance, etc. of the film according to the temperature and fixation ratio during the heat setting. Specifically, the heat setting may be performed in the width direction of the drawing in a range of 1.25 times to 2 times of the 2-1 stretching, and relaxed to 70% to 100% of the stretched width direction so that the final drawing ratio is 1.25 times to 1.5 times. Can be. The heat setting in the arrangement has the effect of improving the air permeability by adjusting the deviation of the pores generated during the biaxial stretching. The heat setting may be performed at 100 to 150 ° C., for example, may be performed at 120 to 135 ° C. It is effective in removing residual stress of the film in the above range, and can improve physical properties.
본 발명은 상기 예들에 따른 폴리올레핀계 분리막의 제조방법으로 제조된 폴리올레핀계 분리막을 제공한다.The present invention provides a polyolefin-based separator prepared by the method for producing a polyolefin-based separator according to the above examples.
상기 폴리올레핀계 분리막은, 모세관 유동 기공측정기로 측정한 분리막의 습윤 곡선에서 평균 포인트 압력(psi)/버블 포인트 압력(psi)이 1.8 내지 2.4일 수 있다.The polyolefin separator may have an average point pressure (psi) / bubble point pressure (psi) of about 1.8 to about 2.4 in a wet curve of the separator measured by a capillary flow porosimeter.
모세관 유동 기공측정기 습윤 및 건조 곡선에서 평균 포인트 압력(psi)/버블 포인트 압력(psi)의 비가 상기 범위이면 기공 크기가 다양하게 분포하여 분리막에 요구되는 기공도, 예를 들어, 40% 이상의 기공도를 달성하면서 통기도가 좋고 전해액 젖음성 및 강도가 우수한 분리막을 제공할 수 있다.If the ratio of the average point pressure (psi) / bubble point pressure (psi) in the capillary flow pore meter wetting and drying curves is within this range, the pore size is varied so that the porosity required for the membrane, eg, 40% or more It is possible to provide a separator having excellent air permeability and excellent electrolyte wettability and strength while achieving.
상기 버블 포인트 압력(psi)은 모세관 유동 기공측정기에서 습윤 곡선이 그려지는 시작점의 압력을 의미하며, 구체적으로 분리막 샘플을 용액에 적셔 포어 안을 용액으로 채우고, 압력을 증가시키면서 공기를 불어넣을 때 큰 포어 안에 채워진 용액이 먼저 압력에 밀려 이동하게 되며, 이 때의 압력을 버블 포인트 압력이라 한다. 도 1을 참조하면 상기 버블 포인트 압력은 모세관 유동 기공측정기의 압력 증가에 따른 유속 변화의 그래프에서 유속이 0을 유지하다가 최초 증가되기 시작하는 시점의 압력을 말한다.The bubble point pressure (psi) refers to the pressure of the starting point at which the wet curve is drawn in the capillary flow pore meter. Specifically, when the membrane sample is soaked in the solution, the pore is filled with the solution, and the air is increased while the air is blown while increasing the pressure. The solution filled inside moves under pressure first, and the pressure at this time is called bubble point pressure. Referring to FIG. 1, the bubble point pressure refers to the pressure at the time when the flow velocity is maintained at 0 and starts to increase in the graph of the flow rate change with increasing pressure of the capillary flow pore meter.
상기 평균 포인트 압력(psi)은 모세관 유동 기공측정기에서 건조 직선을 그리고, 상기 건조 직선에서 기울기가 1/2이 되는 가상의 직선과 상기 습윤 곡선이 만나는 지점의 압력을 말한다. 구체적으로, 분리막 샘플을 용액으로 적시지 않은 상태에서 압력을 증가시키면서 공기를 불어넣으면 압력 증가에 비례해 유속이 증가하는 직선 형태의 그래프가 얻어진다. 도 1을 참조하면 상기 직선 형태의 그래프[도 1에서 건조 그래프]에서 기울기가 1/2이 되는 가상의 직선[도 1에서 1/2 건조 그래프]을 그릴 때 이 가상의 직선과 상기 습윤 곡선이 만나는 지점의 압력을 평균 포인트 압력이라 한다.The average point pressure (psi) refers to the pressure at the point where the wet straight line meets the imaginary straight line and the wet curve in which the slope is 1/2 in the dry straight line in the capillary flow pore meter. Specifically, when the air is blown while increasing the pressure while the membrane sample is not wetted with the solution, a graph having a linear shape in which the flow rate increases in proportion to the pressure increase is obtained. Referring to FIG. 1, when a virtual straight line (half dry graph in FIG. 1) having a slope is 1/2 in the straight graph (dry graph in FIG. 1), the virtual straight line and the wet curve are The pressure at the point of meeting is called the average point pressure.
본 발명의 일 예에 따른 폴리올레핀계 분리막은 기공도는 40% 내지 50%이고, 통기도가 50 sec/ 100cc 내지 200 sec/ 100cc 일 수 있다. 본원에서 통기도는 100cc의 공기가 분리막을 통과하는 시간을 의미한다. 구체적으로 통기도는 60 sec/ 100cc 내지 150 sec/ 100cc일 수 있다.The polyolefin-based separator according to an embodiment of the present invention may have a porosity of 40% to 50% and a permeability of 50 sec / 100 cc to 200 sec / 100 cc. In the present specification, air permeability refers to the time at which 100 cc of air passes through the separator. Specifically, the air permeability may be 60 sec / 100cc to 150 sec / 100cc.
본 발명의 일 예에 따른 폴리올레핀계 분리막은 상기 분리막의 길이방향 및 폭방향의 인장강도(kg/cm2)/신율(%)의 비가 각각 15 내지 28 {(kg/cm2)/%}일 수 있다. 상기 인장강도/신율의 비의 범위이면 우수한 분리막이 기계적 강도를 가지면서도 기공 혹은 분리막이 변형률이 적어 외부 힘이나 충격에 의한 변형을 최소화시킬 수 있다. 또한, 본 발명의 일 예에 따른 폴리올레핀계 분리막은 상기 분리막의 길이방향의 인장강도가 1700 kg/cm2 이상이고, 폭방향의 인장강도가 1800 kg/cm2 이상일 수 있고, 길이방향의 신율 및 폭방향의 신율이 각각 100% 이하, 보다 구체적으로 98% 이하일 수 있다. 상기 신율의 범위이면 기공의 크기 및 형태의 변형에 대한 안정성이 개선된 분리막이 제공될 수 있다. 본 발명의 일 예에 따른 폴리올레핀계 분리막은 분리막의 물방울 접촉각이 107°이하, 예를 들어 95° 내지 107°, 구체적으로 100° 내지 106° 범위일 수 있다. 접촉각이 상기 범위이면 전해액 젖음성이 양호하고 이로 인해 전지 성능이 개선될 수 있다.In the polyolefin-based separator according to an embodiment of the present invention, the ratio of tensile strength (kg / cm 2 ) / elongation (%) in the longitudinal and width directions of the separator is 15 to 28 {(kg / cm 2 ) /%}, respectively. Can be. If the tensile strength / elongation ratio is in the range, the excellent separator has a mechanical strength while the pores or the membrane has a low strain, thereby minimizing deformation due to external force or impact. In addition, the polyolefin-based separator according to an embodiment of the present invention may have a tensile strength of 1700 kg / cm 2 or more in the longitudinal direction of the membrane, a tensile strength of 1800 kg / cm 2 or more in the width direction, elongation and Elongation in the width direction may be 100% or less, more specifically 98% or less. When the elongation is in the range, a separation membrane having improved stability against deformation of the pore size and shape may be provided. The polyolefin-based separator according to an embodiment of the present invention may have a water droplet contact angle of the separator 107 ° or less, for example, 95 ° to 107 °, specifically, 100 ° to 106 °. When the contact angle is in the above range, the electrolyte wettability is good, and thus battery performance may be improved.
이하, 본 발명의 다른 예에 따른 폴리올레핀계 분리막에 대해 설명한다. 본 실시예에 따른 분리막은 상기 본 발명의 일 예에 따라 제조된 분리막의 일면 혹은 양면에 코팅층을 포함할 수 있으며, 상기 코팅층은 유기 바인더를 포함할 수 있으며, 추가로 무기 입자를 더 포함할 수 있다. 상기 유기 바인더로는 예를 들어, 중량 평균 분자량이 1,000,000 g/mol 이상인 폴리비닐리덴 플루오라이드계폴리머, 중량 평균 분자량이 800,000 g/mol 이하인 폴리비닐리덴 플루오라이드계 폴리머혹은 이들의 혼합물을 포함할 수 있다. 예를 들어, 폴리비닐리덴 플루오라이드 호모폴리머(PVdF), 폴리비닐리덴 플루오라이드-헥사프로필렌 코폴리머(PVdF-HFP), 및 기타 폴리비닐리덴 플루오라이드 코폴리머로 이루어진 군에서 선택된 단독 또는 이들의 혼합물을 사용할 수 있다. 상기 무기 입자로는 Al2O3, SiO2, B2O3, Ga2O3, TiO2, 및 SnO2 등을 들 수 있다. 상기 코팅층은 딥 코팅법에 의해 형성될 수 있다. 상기 코팅층을 갖는 분리막은 105℃의 오븐에서 1 시간 동안 방치한 후 열수축율이 MD 및 TD 방향에서 각각 3% 이하일 수 있다. 보다 구체적으로 2% 이하일 수 있다.Hereinafter, a polyolefin separator according to another example of the present invention will be described. The separator according to the present embodiment may include a coating layer on one side or both sides of the separator manufactured according to the example of the present invention, the coating layer may include an organic binder, and may further include inorganic particles. have. The organic binder may include, for example, a polyvinylidene fluoride polymer having a weight average molecular weight of 1,000,000 g / mol or more, a polyvinylidene fluoride polymer having a weight average molecular weight of 800,000 g / mol or less, or a mixture thereof. have. For example, polyvinylidene fluoride homopolymer (PVdF), polyvinylidene fluoride-hexapropylene copolymer (PVdF-HFP), and other polyvinylidene fluoride copolymers alone or mixtures thereof Can be used. The inorganic particles there may be mentioned Al 2 O 3, SiO 2, B 2 O 3, Ga 2 O 3, TiO 2, and SnO 2 and the like. The coating layer may be formed by a dip coating method. The separator having the coating layer may be left in an oven at 105 ° C. for 1 hour, and the heat shrinkage may be 3% or less in the MD and TD directions, respectively. More specifically, it may be 2% or less.
본 발명의 실시예들에 따른 다공성 폴리올레핀계 분리막은 평균 두께가 7 μm 내지 20 μm이고 두께의 편차는 상기 평균 두께의 4% 미만일 수 있다. 본 발명의 실시예들에 따른 다공성 폴리올레핀계 분리막은 평균 찌름 강도가 300gf 이상일 수 있으며, 구체적으로 400gf 이상일 수 있다.The porous polyolefin-based separator according to embodiments of the present invention may have an average thickness of 7 μm to 20 μm and a variation in thickness may be less than 4% of the average thickness. The porous polyolefin-based separator according to the embodiments of the present invention may have an average puncture strength of 300 gf or more, and specifically 400 gf or more.
또한, 본 발명의 실시예들에 따른 다공성 폴리올레핀계 분리막 혹은 코팅 분리막은 제조된 분리막을 50×50 mm의 크기로 잘라 120℃ 오븐에 넣은 후 1시간을 수축시키고, 그 후 수축된 분리막의 크기를 측정하여 줄어든 크기를 반영하여 수축율을 측정시, 길이방향의 수축율이 5% 이하이고, 폭방향 수축율이 3%이하일 수 있으며, 보다 구체적으로 길이방향 수축율이 4% 이하이고 폭방향 수축율이 2% 이하일 수 있다.In addition, the porous polyolefin-based separator or coating separator according to the embodiments of the present invention is cut to 50 × 50 mm in size of the separator prepared in a 120 ℃ oven after shrinking for 1 hour, after which the size of the contracted separator When measuring the shrinkage by reflecting the reduced size, the shrinkage in the longitudinal direction may be 5% or less, the shrinkage in the width direction may be 3% or less, and more specifically, the shrinkage in the longitudinal direction is 4% or less and the shrinkage in the width direction is 2% or less. Can be.
본 발명은 또한 본 발명에 개시된 다공성 폴리올레핀계 분리막, 양극, 음극 및 전해질을 포함하는 전지 화학 전지를 제공한다. 전기 화학 전지의 종류는 특별히 제한되지 않으며, 본 발명의 기술 분야에서 알려진 종류의 전기일 수 있다. 본 발명의 전기 화학 전지는 바람직하게는 리튬 금속 이차 전지, 리튬 이온 이온 이차 전지, 리튬 폴리머 이차 전지 또는 리튬 이온 폴리머 이차 전지 등과 같은 리튬 이차 전지일 수 있다.The present invention also provides a battery chemical cell comprising the porous polyolefin-based separator, positive electrode, negative electrode and electrolyte disclosed in the present invention. The type of electrochemical cell is not particularly limited and may be a kind of electricity known in the art. The electrochemical cell of the present invention may preferably be a lithium secondary battery such as a lithium metal secondary battery, a lithium ion ion secondary battery, a lithium polymer secondary battery or a lithium ion polymer secondary battery.
본 발명의 전기 화학 전지를 제조하는 방법은 특별히 제한되지 아니하며, 본 발명의 기술 분야에서 통상적으로 사용하는 방법을 사용할 수 있다. 상기 전기 화학 전지를 제조하는 방법의 비제한적인 예는 다음과 같다: 본 발명의 상기 분리막 혹은 코팅 분리막을, 전지의 양극과 음극 사이에 위치시킨 후, 이에 전해액을 채우는 방식으로 전지를 제조할 수 있다. 본 발명의 전기 화학 전지를 구성하는 전극은, 본 발명의 기술 분야에서 통상적으로 사용하는 방법에 의해 전극 활물질을 전극 전류집전체에 결착된 형태로 제조할 수 있다. 본 발명에서 사용되는 상기 전극 활물질 중 양극 활물질은 특별히 제한되지 아니하며, 본 발명의 기술 분야에서 통상적으로 사용하는 양극 활물질을 사용할 수 있다. 구체적으로, 상기 양극은 리튬 이온을 가역적으로 삽입 및 탈리할 수 있는 양극 활물질을 포함하며, 이러한 양극 활물질로는 코발트, 망간, 니켈에서 선택되는 최소한 1종 및 리튬과의 복합 금속 산화물인 것일 수 있다. 금속 사이의 고용율은 다양하게 이루어질 수 있으며, 이들 금속 외에 Mg, Al, Co, Ni, K, Na, Ca, Si, Ti, Sn, V, Ge, Ga, B, As, Zr, Mn, Cr, Fe, Sr, V 및 희토류 원소로 이루어진 군에서 선택되는 원소가 더 포함될 수 있다. 상기 양극은 예를 들어, 리튬과 Co, Ni, Mn, Al, Si, Ti 및 Fe로 이루어진 군에서 선택되는 금속의 복합 금속 산화물일 수 있으며, 구체적으로 리튬 코발트 옥사이드 (lithium cobalt oxide, LCO. 예를 들어 LiCoO2), 리튬 니켈 코발트 망간 옥사이드 (lithium nickel manganese cobalt oxide, NCM. 예를 들어 Li[Ni(x)Co(y)Mn(z)]O2), 리튬 망간 옥사이드 (Lithium manganese oxide, LMO. 예를 들어 LiMn2O4, LiMnO2), 리튬 아이언 포스페이트 (Lithium Iron phosphate, LFP. 예를 들어 LiFePO4), 리튬 니켈 옥사이드 (LNO, 예를 들어 LiNiO2) 등을 사용할 수 있다. 상기 음극은 리튬 이온을 삽입 및 탈리할 수 있는 음극 활물질을 포함하며, 이러한 음극 활물질로는 결정질 또는 비정질의 탄소, 또는 탄소 복합체의 탄소계 음극 활물질 (열적으로 분해된 탄소, 코크, 흑연), 연소된 유기 중합체 화합물, 탄소 섬유, 산화 주석 화합물, 리튬 금속 또는 리튬과 다른 원소의 합금을 사용할 수 있다. 예를 들면 비결정질 탄소로는 하드 카본, 코크스, 1,500℃이하에서 소성한 메조카본 마이크로 비드 (mesocarbon microbead, MCMB), 메조페이스피치계 탄소섬유 (mesophase pitch-based carbon fiber, MPCF)등이 있다. 결정질 탄소로는 흑연계 재료가 있으며, 구체적으로는 천연 흑연, 흑연화 코크스, 흑연화 MCMB, 흑연화 MPCF 등이 있다. 상기 음극은 예를 들어, 결정질 또는 비정질의 탄소를 포함할 수 있다.The method for producing the electrochemical cell of the present invention is not particularly limited, and a method commonly used in the art may be used. A non-limiting example of a method of manufacturing the electrochemical cell is as follows: The cell can be prepared by placing the separator or coated separator of the present invention between the positive and negative electrodes of the cell and then filling the electrolyte therewith. have. The electrode constituting the electrochemical cell of the present invention can be produced in a form in which the electrode active material is bound to the electrode current collector by a method commonly used in the technical field of the present invention. Among the electrode active materials used in the present invention, the cathode active material is not particularly limited, and a cathode active material commonly used in the technical field of the present invention may be used. Specifically, the positive electrode includes a positive electrode active material capable of reversibly inserting and detaching lithium ions, and the positive electrode active material may be at least one selected from cobalt, manganese, nickel, and a composite metal oxide with lithium. . The solid solution ratio between the metals may be various, and in addition to these metals, Mg, Al, Co, Ni, K, Na, Ca, Si, Ti, Sn, V, Ge, Ga, B, As, Zr, Mn, Cr, An element selected from the group consisting of Fe, Sr, V, and rare earth elements may be further included. The anode may be, for example, a composite metal oxide of a metal selected from the group consisting of lithium and Co, Ni, Mn, Al, Si, Ti, and Fe, and specifically, lithium cobalt oxide (LCO.) For example LiCoO 2 ), lithium nickel manganese cobalt oxide, NCM. For example Li [Ni (x) Co (y) Mn (z)] O 2 ), lithium manganese oxide (Lithium manganese oxide, LMO, for example LiMn 2 O 4, LiMnO 2 ), lithium iron phosphate (LFP. For example LiFePO 4 ), lithium nickel oxide (LNO, for example LiNiO 2 ) and the like. The negative electrode includes a negative electrode active material capable of inserting and desorbing lithium ions, and the negative electrode active material includes crystalline or amorphous carbon, or a carbon-based negative electrode active material (thermally decomposed carbon, coke, graphite) and combustion of a carbon composite. Organic polymer compounds, carbon fibers, tin oxide compounds, lithium metal or alloys of lithium and other elements can be used. For example, amorphous carbon includes hard carbon, coke, mesocarbon microbeads (MCMB) fired at 1,500 ° C or lower, and mesophase pitch-based carbon fibers (MPCF). The crystalline carbon includes a graphite material, and specific examples thereof include natural graphite, graphitized coke, graphitized MCMB, graphitized MPCF, and the like. The negative electrode may include, for example, crystalline or amorphous carbon.
상기 양극 또는 음극은 전극 활물질 외에 결합제 및 도전재, 필요한 경우 증점제를 용매에 분산시켜 전극 슬러리 조성물을 제조하고, 이 슬러리 조성물을 전극 집전체에 도포하여 제조될 수 있다. 상기 결합제, 도전재 및 증점제는 본 발명의 기술분야에서 통상적으로 사용하는 것을 사용할 수 있다. 예를 들어, 결합제로서, 폴리비닐리덴-플루오라이드(Polyvinylidene-fluoride, PVdF), 스타이렌-부타디엔 고무(styrene-butadiene rubber, SBR) 등이 있고, 도전재로서, 카본 블랙, 증점제로서 카보네이트 메틸 셀룰로오스(Carbonate methyl cellulose, CMC)를 사용할 수 있다.The positive electrode or the negative electrode may be prepared by dispersing a binder, a conductive material, and, if necessary, a thickener in a solvent in addition to an electrode active material to prepare an electrode slurry composition, and applying the slurry composition to an electrode current collector. The binder, the conductive material and the thickener may be used as commonly used in the art. For example, as the binder, polyvinylidene-fluoride (PVdF), styrene-butadiene rubber (SBR), and the like, carbon black as a conductive material, and carbonate methyl cellulose as a thickener (Carbonate methyl cellulose, CMC) can be used.
본 발명에서 사용되는 상기 전극 전류 집전체는 특별히 제한되지 아니하며, 본 발명의 기술 분야에서 통상적으로 사용하는 전극 전류 집전체를 사용할 수 있다. 상기 전극 전류 집전체 중 양극 전류 집전체 소재의 비제한적인 예로는, 알루미늄, 니켈 또는 이들의 조합에 의하여 제조되는 호일 등을 들 수 있다. 상기 전극 전류 집전체 중 음극 전류 집전체 소재의 비제한적인 예로는, 구리, 금, 니켈, 구리 합금 또는 이들의 조합에 의하여 제조되는 호일 등을 들 수 있다.The electrode current collector used in the present invention is not particularly limited, and an electrode current collector commonly used in the technical field of the present invention may be used. Non-limiting examples of the positive electrode current collector material of the electrode current collector may be a foil made of aluminum, nickel or a combination thereof. Non-limiting examples of the negative electrode current collector material of the electrode current collector may be a foil produced by copper, gold, nickel, a copper alloy or a combination thereof.
또한, 상기 양극 집전체 및 음극 집전체의 형태로는 포일이나 메시 형태를 들 수 있다.The positive electrode current collector and the negative electrode current collector may be in the form of a foil or a mesh.
본 발명에서 사용되는 전해액은 특별히 제한되지 아니하며, 본 발명의 기술 분야에서 통상적으로 사용하는 전기 화학 전지용 전해액을 사용할 수 있다. 상기 전해액은 A+ B-와 같은 구조의 염이, 유기 용매에 용해 또는 해리된 것일 수 있다. 상기 A+의 비제한적인 예로는, Li+, Na+ 또는 K+와 같은 알칼리 금속 양이온, 또는 이들의 조합으로 이루어진 양이온을 들 수 있다. 상기 B-의 비제한적인 예로는, PF6
-, BF4
-, Cl-, Br-, I-, ClO4
-, AsF6
-, CH3CO2
-, CF3SO3
-, N (CF3SO2)2
- 또는 C (CF2SO2)3
-와 같은 음이온, 또는 이들의 조합으로 이루어진 음이온을 들 수 있다. 상기 유기 용매의 비제한적인 예로는, 프로필렌 카보네이트 (Propylene carbonate; PC), 에틸렌 카보네이트 (Ethylene carbonate, EC), 디에틸카보네이트 (Diethyl carbonate; DEC), 디메틸카보네이트 (Dimethyl carbonate, DMC), 디메틸포름아마이드 (Dimethylformamide, DMF), 디프로필카보네이트 (Dipropyl carbonate, DPC), 디메틸설폭사이드(Dimethyl sulfoxide, DMSO), 아세토니트릴 (Acetonitrile), 디메톡시에탄(dimethoxyethane), 디에톡시에탄(diethoxyethane), 테트라하이드로푸란 (Tetrahydrofuran), N-메틸-2-피롤리돈 (N-methyl-2-pyrrolidone, NMP), 에틸메틸카보네이트 (Ethyl methyl carbonate, EMC) 또는 감마-부티롤락톤 (-Butyrolactone) 등을 들 수 있다. 이들은 단독으로 사용되거나 2 종 이상을 혼합하여 사용될 수 있다.The electrolyte solution used in the present invention is not particularly limited and may be used an electrochemical cell electrolyte solution commonly used in the technical field of the present invention. The electrolyte solution may be one in which a salt having a structure such as A + B − is dissolved or dissociated in an organic solvent. Non-limiting examples of A + include a cation consisting of an alkali metal cation such as Li + , Na + or K + , or a combination thereof. The B - Non-limiting examples of the, PF 6 -, BF 4 - , Cl -, Br -, I -, ClO 4 -, AsF 6 -, CH 3 CO 2 -, CF 3 SO 3 -, N (CF 3 SO 2) 2 - or C (CF 2 SO 2) 3 - anions, such as, or may be an anion consisting of a combination thereof. Non-limiting examples of the organic solvent include propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dimethylformamide (Dimethylformamide, DMF), Dipropyl carbonate (DPC), Dimethyl sulfoxide (DMSO), Acetonitrile, Dimethoxyethane, Diethoxyethane, Tetrahydrofuran ( Tetrahydrofuran), N-methyl-2-pyrrolidone (NMP), ethyl methyl carbonate (EMC), or gamma-butyrolactone (-Butyrolactone). These may be used alone or in combination of two or more thereof.
이하, 실시예, 비교예 및 실험예를 기술함으로써 본 발명을 보다 상세히 설명한다. 다만, 하기의 실시예, 비교예 및 실험예는 본 발명의 일 예시에 불과하며 본 발명의 내용이 이에 한정되는 것으로 해석되어서는 아니된다.Hereinafter, the present invention will be described in more detail by describing Examples, Comparative Examples, and Experimental Examples. However, the following Examples, Comparative Examples and Experimental Examples are merely examples of the present invention and should not be construed as being limited thereto.
실시예Example
실시예 1: 다공성 폴리올레핀계 분리막의 제조Example 1 Preparation of Porous Polyolefin Membrane
점도 평균 분자량이 600,000 g/mol인 고밀도 폴리에틸렌 (High-density polyethylene, HDPE; Mitsui chemical 사 제품)을 이축 압출기에 공급한 다음, 유동 파라핀 (극동 유화)을 상기 폴리에틸렌과의 중량비가 폴리에틸렌 30 대 유동 파라핀 70이 되는 양으로 상기 이축 압출기에 주입하여 압출하였다.High-density polyethylene (HDPE; manufactured by Mitsui Chemical) having a viscosity average molecular weight of 600,000 g / mol was fed to a twin screw extruder, and then liquid paraffin (Far East Emulsification) was weighted to polyethylene 30 to liquid paraffin. The extruder was injected into the twin screw extruder in an amount of 70.
상기 압출 후 T-다이를 통해 얻어진 겔상을 냉각롤을 이용하여 시트 형태의 분리막으로 제작하였다. 상기 분리막에 대해 110℃에서 길이 방향 (Machine Direction, MD) 연신 및 113℃에서 폭 방향 (Transverse Direction, TD) 연신(연신배율: 8.0(MD)×8.0(TD))을 행하였다.After the extrusion, the gel phase obtained through the T-die was manufactured as a sheet-type separator using a cooling roll. The membrane was stretched in the longitudinal direction (Machine Direction, MD) at 110 ° C and in the transverse direction (TD) at 113 ° C (stretch ratio: 8.0 (MD) x 8.0 (TD)).
상기 연신된 폴리올레핀계 분리막을 메틸렌 클로라이드 (삼성 정밀 화학) 에 침지하여 유동 파라핀을 추출한 후 건조롤로 이동시켜 건조하였다.The stretched polyolefin-based separator was immersed in methylene chloride (Samsung Fine Chemical) to extract liquid paraffin, and then transferred to a drying roll to dry.
그 다음, 상기 건조된 필름을 폭 방향으로 2차 연신(폭 방향 연신비: 1.0 → 1.6 →1.4, 연신 온도 128℃)의 열고정을 실시하여 두께 12.5 μm의 다공성 폴리올레핀계 분리막을 제조하였다.Then, the dried film was heat-set in the width direction of the secondary stretching (width direction draw ratio: 1.0 → 1.6 → 1.4, stretching temperature 128 ° C.) to prepare a porous polyolefin separator having a thickness of 12.5 μm.
실시예 2: 다공성 폴리올레핀계 분리막의 제조Example 2: Preparation of Porous Polyolefin-Based Membranes
상기 실시예 1에 있어서, 103℃에서 길이 방향 (Machine Direction, MD) 연신 및 105℃에서 폭 방향 (Transverse Direction, TD) 연신(연신배율: 8.5(MD)×8.5(TD))한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 두께 12.3 μm의 분리막을 제조하였다.In Example 1, the stretching was performed in the machine direction (Machine Direction, MD) at 103 ° C and transverse direction (TD) at 105 ° C (stretch ratio: 8.5 (MD) x 8.5 (TD)) In the same manner as in Example 1, a separator having a thickness of 12.3 μm was prepared.
비교예 1: 다공성 폴리올레핀계 분리막의 제조Comparative Example 1: Preparation of porous polyolefin-based separator
상기 실시예 1에 있어서, 120℃에서 길이 방향 (Machine Direction, MD) 연신 및 123℃에서 폭 방향 (Transverse Direction, TD) 연신(연신배율: 8(MD)×8(TD))을 한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 두께 12.2 μm의 분리막을 제조하였다.In Example 1, the stretching was performed in the machine direction (Machine Direction, MD) at 120 ° C and in the transverse direction (TD) at 123 ° C (stretch ratio: 8 (MD) x 8 (TD)). Then, a membrane having a thickness of 12.2 μm was prepared in the same manner as in Example 1.
비교예 2: 다공성 폴리올레핀계 분리막의 제조Comparative Example 2: Preparation of Porous Polyolefin-Based Membrane
상기 실시예 2에 있어서, 길이 방향 (Machine Direction, MD) 연신 및 폭 방향 (Transverse Direction, TD) 연신배율을 7(MD)×7(TD)로 한 것을 제외하고는 상기 실시예 2와 동일한 방법으로 두께 12.3μm 분리막을 제조하였다.In Example 2, the same method as in Example 2, except that the stretching direction in the longitudinal direction (MD) and the stretching direction in the transverse direction (TD) were set to 7 (MD) x 7 (TD). 12.3 μm thick membrane was prepared.
상기 실시예 1 및 2 및 비교예 1 및 2에 따른 각 분리막의 제조 조건을 하기 표 1에 나타낸다.Table 1 shows the production conditions of the separators according to Examples 1 and 2 and Comparative Examples 1 and 2.
실시예 1Example 1 | 실시예 2Example 2 | 비교예1Comparative Example 1 | 비교예 2Comparative Example 2 | |
연신방법Drawing method | 축차rotor | 축차rotor | 축차rotor | 축차rotor |
연신배율(MD×TD)Stretch ratio (MD x TD) | 8 ×88 × 8 | 8.5 ×8.58.5 × 8.5 | 8 ×88 × 8 | 7 ×77 × 7 |
MD 연신온도MD drawing temperature | 110℃110 ℃ | 103℃103 ℃ | 120℃120 ℃ | 103℃103 ℃ |
TD 연신온도TD drawing temperature | 113℃113 ℃ | 105℃105 ℃ | 123℃123 ℃ | 105℃105 ℃ |
2차 TD 연신온도2nd TD drawing temperature | 128℃128 ℃ | 128℃128 ℃ | 128℃128 ℃ | 128℃128 ℃ |
2차 TD 최종연신배율2nd TD final draw ratio | 1.41.4 | 1.41.4 | 1.41.4 | 1.41.4 |
실험예Experimental Example
상기 실시예 1 및 2, 및 비교예 1 및 2 에서 제조된 분리막에 대해 아래에 개시된 측정 방법으로 기공도, 통기도, 인장 강도, 신율, 수축율, 버블 포인트 및 평균 포인트 압력, 및 물방울 접촉각을 측정하고 그 결과를 표 2에 나타내었다.The porosity, air permeability, tensile strength, elongation, shrinkage rate, bubble point and average point pressure, and droplet contact angle were measured by the measurement methods disclosed below for the separators prepared in Examples 1 and 2 and Comparative Examples 1 and 2, and The results are shown in Table 2.
실시예 1Example 1 | 실시예 2Example 2 | 비교예 1Comparative Example 1 | 비교예 2Comparative Example 2 | |
평균 포인트 압력(psi)Average point pressure (psi) | 258.856258.856 | 272.12272.12 | 201.34201.34 | 282.24282.24 |
버블 포인트 압력(psi)Bubble Point Pressure (psi) | 121.675121.675 | 113.31113.31 | 121.54121.54 | 113.35113.35 |
평균 포인트 압력/버블 포인트 압력Average Point Pressure / Bubble Point Pressure | 2.132.13 | 2.402.40 | 1.661.66 | 2.492.49 |
기공도(%)Porosity (%) | 44.544.5 | 4343 | 53.153.1 | 38.538.5 |
통기도(sec/100cc)Breathability (sec / 100cc) | 122122 | 115115 | 9595 | 223223 |
인장강도(kg/cm2)(MD,TD)Tensile Strength (kg / cm 2 ) (MD, TD) | 2120, 22142120, 2214 | 2250, 23052250, 2305 | 1653,16221653,1622 | 1742,17831742,1783 |
신율(%)(MD,TD)Elongation (%) (MD, TD) | 89, 9289, 92 | 86, 8886, 88 | 95, 11095, 110 | 93, 9893, 98 |
인장강도/신율(MD,TD)Tensile Strength / Elongation (MD, TD) | 23.8, 24.123.8, 24.1 | 26.2, 26.226.2, 26.2 | 17.4, 14.717.4, 14.7 | 18.7, 18.218.7, 18.2 |
물방울 접촉각(°)Droplet contact angle (°) | 102102 | 103103 | 111111 | 111111 |
수축률(%)(MD,TD)Shrinkage (%) (MD, TD) | 2,02,0 | 2,02,0 | 8,38,3 | 2,02,0 |
1. 모세관 유동 기공측정 그래프에서 버블 포인트 압력 및 평균 포인트 압력 측정
1.Measure bubble point pressure and average point pressure on capillary flow porosity graph
상기 실시예 및 비교예에서 제조된 분리막 각각을 직경 26mm의 원으로 샘플링하였다. PMI사의 모세관 유동 기공측정기에 분리막 자체를 장착후 GalwickTM 용액(표면장력 15.9 dyne/cm)으로 충분히 적셔준다. 상기 기기를 Wet up Calc. mode로 설정한 후 압력별 N2의 유량흐름을 측정하여 습윤 곡선을 그린다. 상기 습윤 곡선에서 첫번째 버블이 감지되는 압력을 버블 포인트 압력(psi)으로 기록한다. 또한, 상기 실시예 및 비교예들에서 제조된 분리막 각각을 직경 26mm의 원으로 샘플링하고 상기 기기에 분리막 자체를 장착후 상기 기기를 Dry up Calc. mode로 설정하고 압력별 N2의 유속을 측정하여 이를 건조 곡선 그래프로 나타내었다. 측정된 건조 곡선 그래프에서 원점부터 직선성을 지니는 포인트까지 직선을 연장하고, 상기 직선의 기울기의 반이 되는 가상의 직선을 그리고 이 가상의 직선과 상기 습윤 곡선이 만나는 지점의 압력을 평균 포인트 압력(psi)으로 기록한다.Each of the separators prepared in Examples and Comparative Examples was sampled into a circle having a diameter of 26 mm. The membrane itself is mounted on a PMI capillary flow pore meter and thoroughly wetted with Galwick TM solution (surface tension of 15.9 dyne / cm). Wet up Calc. After setting the mode, draw the wet curve by measuring the flow rate of N 2 for each pressure. The pressure at which the first bubble is detected in the wet curve is recorded as the bubble point pressure (psi). In addition, each of the separators prepared in Examples and Comparative Examples was sampled in a circle having a diameter of 26 mm and the separator itself was mounted on the device, and then the device was dried. The mode was set, and the flow rate of N 2 for each pressure was measured and shown as a dry curve graph. In the measured dry curve graph, a straight line extends from the origin to a point having linearity, draws an imaginary straight line that is half of the slope of the straight line, and the pressure at the point where the imaginary straight line and the wet curve meet the average point pressure ( psi).
2. 기공도2. Porosity
상기 실시예 1 및 2, 및 비교예 1 및 2에서 제조된 각 분리막의 10㎝×10㎝의 시료를 절취하여 그의 부피(㎤)와 질량(g)을 구하고, 상기 부피 및 질량과, 분리막의 밀도(g/㎤)으로부터 다음식을 이용하여 기공도를 계산하였다.Samples of 10 cm × 10 cm of each of the separators prepared in Examples 1 and 2 and Comparative Examples 1 and 2 were cut out to obtain their volume (cm 3) and mass (g), and the volume, mass and Porosity was calculated from the density (g / cm 3) using the following equation.
기공도(%)=(부피-질량/시료의 밀도)/부피×100Porosity (%) = (volume-mass / density of sample) / volume x 100
시료의 밀도= 폴리에틸렌의 밀도Density of sample = density of polyethylene
3. 통기도3. Aeration
상기 실시예 및 비교예들에서 제조된 분리막 각각을 지름이 1 인치 (inch) 인 원이 들어갈 수 있는 크기로 서로 다른 10 개의 지점에서 재단한 10 개의 시료를 제작한 다음, 통기도 측정 장치 (아사히 세이코 사)를 사용하여 상기 각 시료에서 공기 100cc가 통과하는 시간을 측정하였다. 상기 시간을 각각 다섯 차례씩 측정한 다음 평균값을 계산하였다.Each of the separators prepared in the above Examples and Comparative Examples was prepared to cut 10 samples cut from 10 different points to a size of 1 inch (1 inch) in diameter, and then the air permeability measuring device (Asahi Seiko) G) was used to measure the time for passage of 100 cc of air in each sample. The time was measured five times each and then the average value was calculated.
4. 인장강도4. Tensile Strength
상기 실시예 및 비교예들에서 제조된 분리막 각각을 가로(MD) 10 mm ×세로(TD) 50 mm로 서로 다른 10 개의 지점에서 재단한 10 개의 시료를 제작한 다음, UTM에 20mm부분이 물리게 한 후 위아래로 당겨 강도를 측정하였다. 상기 각 시료의 인장강도를 각각 세 차례씩 측정한 다음 평균값을 계산하였다.Each of the membranes prepared in Examples and Comparative Examples was made of 10 samples cut at 10 different points (MD) 10 mm × length (TD) 50 mm, and 20 mm portions were bitten in the UTM. After pulling up and down the strength was measured. The tensile strength of each sample was measured three times, and then the average value was calculated.
5. 신율5. Elongation
상기 실시예 및 비교예들에서 제조된 분리막 각각에 대해, 상기 4.의 인장강도 측정시 원래 길이와 파단점에서의 길이를 비교하여 ((파단점의 길이- 20) / 20mm) X 100 의 값을 백분율로 표시한다.For each of the separators prepared in Examples and Comparative Examples, the value of ((length of break point-20) / 20 mm) x 100 was compared with the original length and the length at the break point when measuring the tensile strength of 4. Is expressed as a percentage.
6. 수축율6. Shrinkage
상기 실시예 및 비교예들에서 제조된 분리막 각각을 가로(MD) 50 mm ×세로(TD) 50 mm로 서로 다른 10 개의 지점에서 재단한 10 개의 시료를 제작하였다. 상기 각 시료를 105℃의 오븐에서 1 시간 동안 방치한 다음, 각 시료의 MD 방향 및 TD 방향의 수축 정도를 측정하여 평균 열수축률(%)을 계산하였다.Each of the separators prepared in Examples and Comparative Examples was prepared with 10 samples cut at 10 different points with a width of 50 mm and a length of 50 mm of TD. The samples were left in an oven at 105 ° C. for 1 hour, and then the average thermal shrinkage (%) was calculated by measuring the shrinkage in the MD and TD directions of each sample.
7. 물방울 접촉각(전해액 젖음성 평가)7. Droplet contact angle (electrolyte wettability evaluation)
상기 실시예 및 비교예들에서 제조된 분리막 각각을 가로(MD) 20mm X 세로(TD) 20mm 로 재단하여 5개의 시료를 제작하였다. 상기 시료를 접촉각 측정기(DSA-100, ㈜마텍무역)에 올려놓고 물을 스포이드로 한방울 떨어뜨린 다음 접촉각을 측정하였다. 5개의 시료의 접촉각(°)은 평균을 내어 계산하였다.Each of the separators prepared in Examples and Comparative Examples was cut to 20 mm long by 20 mm wide by 20 mm long by TD to prepare five samples. The sample was placed on a contact angle measuring device (DSA-100, Matek Trading Co., Ltd.), and water was dropped by dropper, and then contact angle was measured. The contact angles (°) of the five samples were averaged and calculated.
Claims (16)
- 폴리올레핀계 수지 및 가소제를 포함하는 조성물을 용융혼련하고 압출하여 시트를 형성하고,Melt-kneading and extruding a composition comprising a polyolefin resin and a plasticizer to form a sheet,상기 시트를 길이 방향으로 T1온도에서 E1 배 연신 및 폭 방향으로 T2 온도에서 E2배 연신하는 제1 연신을 수행하고,The sheet in the longitudinal direction to perform a first stretch which E 2 times longer in the temperature T 2 in the direction E, and 1-fold stretched in the width T 1 and the temperature,상기 연신된 시트로부터 가소제를 추출하고,Extracting a plasticizer from the stretched sheet,상기 가소제가 추출된 시트를 폭방향으로 최종 연신 배율이 1.25배 내지 1.5배가 되도록 제2 연신하는 것을 포함하고,Second stretching the sheet from which the plasticizer has been extracted so that the final stretching ratio is 1.25 to 1.5 times in the width direction;상기 제1 연신 시 온도 조건이 100℃ < T1 < 115℃, 100℃ < T2 < 115℃, 및 T2 ≥ T1이고, 배율 조건이 E1×E2 = 60 ~ 80인, 폴리올레핀계 분리막의 제조 방법.The polyolefin system wherein the temperature conditions at the time of the first stretching are 100 ° C. <T 1 <115 ° C., 100 ° C. <T 2 <115 ° C., and T 2 ≧ T 1 , and the magnification condition is E 1 × E 2 = 60-80. Method for producing a separator.
- 제1항에 있어서, 상기 배율 조건에서 E1/E2의 비가 0.85 내지 1인, 폴리올레핀계 분리막의 제조 방법.The method of claim 1, wherein the ratio of E 1 / E 2 is 0.85 to 1 under the magnification condition.
- 제1항에 있어서, 상기 폴리올레핀계 수지가 점도평균분자량이 1×105 g/mol 내지 9×105 g/mol인 고밀도 폴리에틸렌 및 점도평균분자량이 9×105 g/mol 이상인 초고분자량 폴리에틸렌으로 이루어진 군에서 선택된 단독 또는 이들의 혼합물을 포함하는 제조 방법.According to claim 1, wherein the polyolefin resin is a high density polyethylene having a viscosity average molecular weight of 1 × 10 5 g / mol to 9 × 10 5 g / mol and an ultra high molecular weight polyethylene having a viscosity average molecular weight of 9 × 10 5 g / mol or more A manufacturing method comprising a single or a mixture thereof selected from the group consisting of.
- 제1항 내지 제3항 중 어느 하나의 항에 있어서, E1≥7.5이고, E2≥8인, 제조 방법.The manufacturing method according to any one of claims 1 to 3, wherein E 1 ≧ 7.5 and E 2 ≧ 8.
- 제1항 내지 제3항 중 어느 하나의 항에 있어서, 상기 제2 연신이, 폭 방향으로 1.25배 내지 2배 제2-1 연신하고 상기 제2-1 연신된 폭방향 길이에 대해 70% 내지 100%로 이완시키는 것을 포함하는, 제조 방법.The method according to any one of claims 1 to 3, wherein the second stretching is from 1.25 times to 2 times in the width direction of 2-1 to 2-1 stretching and from 70% to the length of the 2-1 stretching in the width direction. A method of manufacture comprising relaxing to 100%.
- 제1항 내지 제3항 중 어느 하나의 항에 있어서, 상기 제조된 폴리올레핀계 분리막의 일면 혹은 양면을 유기 고분자 및 무기입자를 함유하는 코팅 조성물로 코팅하는 것을 추가로 포함하는, 제조 방법.The method according to any one of claims 1 to 3, further comprising coating one or both surfaces of the prepared polyolefin-based separator with a coating composition containing an organic polymer and inorganic particles.
- 폴리올레핀계 수지를 함유하고,Containing polyolefin resin,모세관 유동 기공측정기(Capillary flow porometer)로 측정한 분리막의 습윤 및 건조 곡선에서 평균 포인트 압력(psi)/버블 포인트 압력(psi)의 비가 1.8 내지 2.4인, 폴리올레핀계 분리막.A polyolefin-based separator having a ratio of average point pressure (psi) / bubble point pressure (psi) in the wetting and drying curves of the separator measured by a capillary flow porometer.
- 제7항에 있어서, 상기 분리막의 길이방향 및 폭방향의 인장강도(kg/cm2)/신율(%)의 비가 각각 15 내지 28인, 폴리올레핀계 분리막.The polyolefin-based separator of claim 7, wherein a ratio of tensile strength (kg / cm 2 ) / elongation (%) in the longitudinal direction and the width direction of the separator is 15 to 28, respectively.
- 제7항에 있어서, 상기 분리막의 기공도가 40% 내지 50%인, 폴리올레핀계 분리막.The polyolefin-based separator of claim 7, wherein the separator has a porosity of 40% to 50%.
- 제7항에 있어서, 상기 분리막의 통기도가 50 sec/ 100cc 내지 200 sec/ 100cc 인, 폴리올레핀계 분리막.The polyolefin-based separator of claim 7, wherein the separator has a permeability of 50 sec / 100 cc to 200 sec / 100 cc.
- 제7항에 있어서, 상기 분리막의 물방울 접촉각이 107 °이하인, 폴리올레핀계 분리막.The polyolefin-based separator according to claim 7, wherein the droplet contact angle of the separator is 107 ° or less.
- 제7항 내지 제11항 중 어느 하나의 항에 있어서, 상기 폴리올레핀계 수지가 점도평균분자량이 1×105 g/mol 내지 9×105 g/mol인 고밀도 폴리에틸렌 및 점도평균분자량이 9×105 g/mol 초과인 초고분자량 폴리에틸렌으로 이루어진 군에서 선택된 단독 또는 이들의 혼합물을 포함하는 폴리올레핀계 분리막.The high-density polyethylene and the viscosity average molecular weight according to any one of claims 7 to 11, wherein the polyolefin resin has a viscosity average molecular weight of 1 × 10 5 g / mol to 9 × 10 5 g / mol. A polyolefin-based separator comprising a single or a mixture thereof selected from the group consisting of ultra high molecular weight polyethylene of more than 5 g / mol.
- 제7항 내지 제11항 중 어느 하나의 항에 있어서, 상기 폴리올레핀계 분리막이 길이 방향으로 T1 온도에서 E1 배 연신 및 폭 방향으로 T2 온도에서 E2배 연신된 것으로, 상기 연신 시 온도 조건이 100℃ < T1 < 115℃, 100℃ < T2 < 115℃, 및 T2 ≥ T1이고, 상기 연신 시 배율 조건이 E1×E2 = 60 ~ 80, E1 ≥ 7.5, 및 E2 ≥ 8인, 폴리올레핀계 분리막.The method according to any one of claims 7 to 11, wherein the polyolefin-based separator is stretched E 1 times at T 1 temperature in the longitudinal direction and E 2 times at T 2 temperature in the width direction. The conditions are 100 ° C. <T 1 <115 ° C., 100 ° C. <T 2 <115 ° C., and T 2 ≧ T 1 , and the magnification condition at the time of stretching is E 1 × E 2 = 60 to 80, E 1 ≥ 7.5, and Polyolefin-based membrane, E 2 ≥ 8.
- 제13항에 있어서, 상기 배율 조건에서 E1/E2의 비가 0.85 내지 1인, 폴리올레핀계 분리막.The polyolefin separator of claim 13, wherein the ratio of E 1 / E 2 is 0.85 to 1 under the magnification condition.
- 제7항 내지 제11항 중 어느 하나의 항에 따른 폴리올레핀계 분리막을 포함하는 전기 화학 전지.An electrochemical cell comprising the polyolefin separator according to any one of claims 7 to 11.
- 제15항에 있어서, 상기 전기 화학 전지는 리튬 이차 전지인 전기 화학 전지.The electrochemical cell of claim 15, wherein the electrochemical cell is a lithium secondary battery.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580035489.9A CN106489215A (en) | 2014-06-30 | 2015-06-18 | Porous polyolefin barrier film and its manufacture method |
JP2016575432A JP6818557B2 (en) | 2014-06-30 | 2015-06-18 | Porous polyolefin separation membrane and its manufacturing method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2014-0080545 | 2014-06-30 | ||
KR1020140080545A KR20160002447A (en) | 2014-06-30 | 2014-06-30 | Porous polyolefin separator and a method for preparing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016003094A1 true WO2016003094A1 (en) | 2016-01-07 |
Family
ID=55019574
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2015/006201 WO2016003094A1 (en) | 2014-06-30 | 2015-06-18 | Porous polyolefin-based separation membrane and preparation method therefor |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6818557B2 (en) |
KR (1) | KR20160002447A (en) |
CN (1) | CN106489215A (en) |
WO (1) | WO2016003094A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113991249B (en) | 2018-06-06 | 2024-03-08 | 宁德新能源科技有限公司 | Separator and electrochemical device |
CN111801811B (en) | 2018-06-22 | 2022-11-01 | 株式会社Lg新能源 | Separator for electrochemical device and electrochemical device comprising the same |
JP7265349B2 (en) * | 2018-12-07 | 2023-04-26 | 旭化成株式会社 | Method for manufacturing microporous membrane |
WO2020213741A1 (en) * | 2019-04-18 | 2020-10-22 | マクセルホールディングス株式会社 | Aqueous liquid-electrolyte cell and patch |
CN111081949B (en) * | 2019-12-31 | 2022-07-26 | 溧阳月泉电能源有限公司 | Cross-linked polyolefin diaphragm and preparation method thereof |
EP4258448A1 (en) * | 2022-02-23 | 2023-10-11 | LG Energy Solution, Ltd. | Separator substrate for electrochemical device, separator including substrate, and method for forming battery cell separator |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20100082830A (en) * | 2007-08-31 | 2010-07-20 | 토넨 케미칼 코퍼레이션 | Microporous polyolefin membrane, its production method, battery separator and battery |
JP2010270342A (en) * | 2010-09-09 | 2010-12-02 | Asahi Kasei E-Materials Corp | Polyolefin microporous film |
KR20120083465A (en) * | 2009-11-17 | 2012-07-25 | 아사히 가세이 이-매터리얼즈 가부시키가이샤 | Method for producing polyolefin microporous film |
US20130252067A1 (en) * | 2010-11-29 | 2013-09-26 | Ippei Noda | Method of producing polyolefin microporous membrane and separator for lithium ion battery |
KR20140071095A (en) * | 2012-12-03 | 2014-06-11 | 주식회사 엘지화학 | High permeable polyethylene separator, and preparation method thereof |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3400139B2 (en) * | 1994-09-30 | 2003-04-28 | 三井化学株式会社 | Laminated microporous film of olefin polymer, its production method and its use |
JP2005343958A (en) * | 2004-06-01 | 2005-12-15 | Tonen Chem Corp | Method for producing polyethylene fine porous film, fine porous film and use of the same |
JP2006045328A (en) * | 2004-08-04 | 2006-02-16 | Asahi Kasei Chemicals Corp | Method for producing polyolefin fine porous film |
JP4384630B2 (en) * | 2004-12-23 | 2009-12-16 | トーレ・サエハン・インコーポレーテッド | Polyethylene microporous membrane for secondary battery separator and method for producing the same |
KR100637629B1 (en) * | 2005-01-11 | 2006-10-23 | 도레이새한 주식회사 | Method of manufacturing polyethylene microporous film for rechargeable battery separator and polyethylene microporous film thereby |
WO2007069560A1 (en) | 2005-12-15 | 2007-06-21 | Asahi Kasei Chemicals Corporation | Polyolefin microporous membrane |
JP4931083B2 (en) * | 2007-01-30 | 2012-05-16 | 旭化成イーマテリアルズ株式会社 | Multilayer porous membrane and method for producing the same |
KR101174986B1 (en) * | 2007-10-12 | 2012-08-17 | 토레이 밧데리 세퍼레이터 필름 고도 가이샤 | Microporous membranes and methods for making and using such membranes |
US20090226814A1 (en) * | 2008-03-07 | 2009-09-10 | Kotaro Takita | Microporous membrane, battery separator and battery |
JP4733232B2 (en) * | 2008-03-31 | 2011-07-27 | 旭化成イーマテリアルズ株式会社 | Polyolefin microporous membrane and wound product |
JP2010108922A (en) * | 2008-09-30 | 2010-05-13 | Toray Ind Inc | Porous laminated film and electricity energy storage device |
JP5236429B2 (en) * | 2008-10-28 | 2013-07-17 | 旭化成イーマテリアルズ株式会社 | Polyolefin microporous membrane and separator for electricity storage device |
KR20110026609A (en) | 2009-09-08 | 2011-03-16 | 주식회사 효성 | A porous membrane for secondary battery and preparation method thereof |
KR101251437B1 (en) * | 2010-03-23 | 2013-04-05 | 데이진 가부시키가이샤 | Microporous polyolefin film, separator for non-aqueous secondary battery, non-aqueous secondary battery, and process for production of microporous polyolefin film |
JP5583998B2 (en) * | 2010-03-24 | 2014-09-03 | 帝人株式会社 | Polyolefin microporous membrane, non-aqueous secondary battery separator and non-aqueous secondary battery |
JP2011210436A (en) * | 2010-03-29 | 2011-10-20 | Teijin Ltd | Polyolefin microporous film, separator for nonaqueous secondary battery, and nonaqueous secondary battery |
JP2013166804A (en) * | 2010-06-04 | 2013-08-29 | Toray Battery Separator Film Co Ltd | Polyolefin microporous membrane, separator for battery and battery |
CN102290549B (en) * | 2011-05-18 | 2014-12-03 | 新乡市中科科技有限公司 | Polyolefine power battery diaphragm and preparation method thereof |
-
2014
- 2014-06-30 KR KR1020140080545A patent/KR20160002447A/en not_active Application Discontinuation
-
2015
- 2015-06-18 CN CN201580035489.9A patent/CN106489215A/en active Pending
- 2015-06-18 JP JP2016575432A patent/JP6818557B2/en active Active
- 2015-06-18 WO PCT/KR2015/006201 patent/WO2016003094A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20100082830A (en) * | 2007-08-31 | 2010-07-20 | 토넨 케미칼 코퍼레이션 | Microporous polyolefin membrane, its production method, battery separator and battery |
KR20120083465A (en) * | 2009-11-17 | 2012-07-25 | 아사히 가세이 이-매터리얼즈 가부시키가이샤 | Method for producing polyolefin microporous film |
JP2010270342A (en) * | 2010-09-09 | 2010-12-02 | Asahi Kasei E-Materials Corp | Polyolefin microporous film |
US20130252067A1 (en) * | 2010-11-29 | 2013-09-26 | Ippei Noda | Method of producing polyolefin microporous membrane and separator for lithium ion battery |
KR20140071095A (en) * | 2012-12-03 | 2014-06-11 | 주식회사 엘지화학 | High permeable polyethylene separator, and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
KR20160002447A (en) | 2016-01-08 |
JP6818557B2 (en) | 2021-01-20 |
JP2017523570A (en) | 2017-08-17 |
CN106489215A (en) | 2017-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102639836B1 (en) | Mixed solid-liquid electrolyte lithium storage battery | |
WO2016003094A1 (en) | Porous polyolefin-based separation membrane and preparation method therefor | |
US9825269B2 (en) | Porous polyolefin separator and method for manufacturing the same | |
US20110300430A1 (en) | Separator for battery, and non-aqueous lithium battery | |
WO2014051339A1 (en) | Method for preparing porous separation membrane comprising elastic material, porous separation membrane prepared by said method, and secondary battery comprising said separation membrane | |
WO2017188537A1 (en) | Separator comprising porous adhesive layer, and lithium secondary battery using same | |
WO2013081228A1 (en) | Porous separator for a secondary battery including cellulose nanofibers and method for manufacturing same | |
WO2014088151A1 (en) | Porous separation film for secondary battery including cellulose fiber and silica, and method for manufacturing same | |
CN111668428B (en) | Method for manufacturing polyolefin separator and electrochemical cell | |
KR102301334B1 (en) | Polyolefin microporous membrane | |
KR20150032342A (en) | Nonaqueous-secondary-battery separator and nonaqueous secondary battery | |
KR20140147720A (en) | Electric storage device and electric storage module | |
WO2014208926A1 (en) | Separator comprising coating layer, and battery using same separator | |
KR20110135306A (en) | Method for synthesizing electrode for secondary cell, electrode synthesized by the method, and secondary cell comprising the electrode | |
KR20170016904A (en) | Separator containing coating layer and battery using the separator | |
WO2015009055A1 (en) | Porous separator and manufacturing method therefor | |
JP2012128979A (en) | Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery | |
JP2011204587A (en) | Separator for nonaqueous secondary battery, nonaqueous secondary battery, and method of manufacturing separator for nonaqueous secondary battery | |
JP5583998B2 (en) | Polyolefin microporous membrane, non-aqueous secondary battery separator and non-aqueous secondary battery | |
JP2012129116A (en) | Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery | |
KR102331067B1 (en) | Separator for secondary battery, preparing method thereof, and secondary battery including the same | |
KR101674988B1 (en) | Method for manufacturing separator, the separator and battery using the separator | |
KR20150106802A (en) | Porous polyolefin separator and a method for preparing the same | |
KR102460963B1 (en) | Composite separator, lithium battery including the same, and method of preparing the composite separator | |
JP2011134563A (en) | Separator for nonaqueous secondary battery, and nonaqueous secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15815791 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016575432 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15815791 Country of ref document: EP Kind code of ref document: A1 |