JP4870044B2 - 誘導電動機起動制御装置及び誘導電動機起動制御方法 - Google Patents

誘導電動機起動制御装置及び誘導電動機起動制御方法 Download PDF

Info

Publication number
JP4870044B2
JP4870044B2 JP2007198164A JP2007198164A JP4870044B2 JP 4870044 B2 JP4870044 B2 JP 4870044B2 JP 2007198164 A JP2007198164 A JP 2007198164A JP 2007198164 A JP2007198164 A JP 2007198164A JP 4870044 B2 JP4870044 B2 JP 4870044B2
Authority
JP
Japan
Prior art keywords
induction motor
switch
voltage
semiconductor switch
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007198164A
Other languages
English (en)
Other versions
JP2009033942A (ja
Inventor
和彦 福谷
忠法 池田
良昭 中村
皓太 井上
隆一 嶋田
忠幸 北原
高範 磯部
一浩 臼木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007198164A priority Critical patent/JP4870044B2/ja
Publication of JP2009033942A publication Critical patent/JP2009033942A/ja
Application granted granted Critical
Publication of JP4870044B2 publication Critical patent/JP4870044B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Motor And Converter Starters (AREA)

Description

本発明は、誘導電動機起動制御装置及び誘導電動機起動制御方法に関し、特に、誘導電動機の起動電流を低減するのに好適な技術である。
誘導電動機は、固定子の作る回転磁界により、回転子の電気伝導体に誘導電流が発生し滑りに対応した回転トルクを発生させる電動機である。
この誘導電動機を交流電源で通電して直入れ起動すると、固定子のコイルに定格電圧が印可されるが、回転子が回転していないため、誘導電動機の固定子のコイルに流れる起動電流は、一次・二次の全漏れリアクタンスで定まり、その値は一般に小さいことから定格電流の5〜8倍の電流が誘導電動機の固定子のコイルに流れる。このような大電流が流れることは、電動機巻線の絶縁性等の面から誘導電動機の寿命とって悪い影響を及ぼす。
そこで、誘導電動機に大電流が流れることを防ぐ起動方法として、従来からインバータ起動、リアクトル起動、Y−Δ起動等種々の方式が採用されている。
特開2004−260991号公報 特開2005−57980号公報
しかし、従来の誘導電動機の起動方式としてのインバータ起動によれば、装置が複雑になり製造コストが高いため、数百kW以上と電動機容量が大きく高い制御性能を必要とする誘導電動機に主として採用されており、数〜数十kWの比較的小容量で定速運転を行う電動機の場合には、リアクトル起動方式やY−Δ起動方式が主な起動方法として採用されている。
一方、Y−Δ起動によっても、YからΔへの切替え時に大きな突入電流が流れるため誘導電動機の寿命に悪影響を及ぼし、リアクトル起動によっても、起動時の力率が非常に低いため起動効率が悪く、起動時の問題を抱えている。また、両起動方式は、小容量の誘導電動機に使用するには製造コスト的にも問題がある。
本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、誘導電動機の起動電流を低減して、従来よりも寿命への悪影響を抑えつつ、効率的に起動することが可能な誘導電動機の制御を簡便かつ低コストで行うことにある。
上記課題を解決するために、本発明のある観点によれば、交流電源と誘導電動機との間に直列に接続され、誘導電動機のコイルに印可する負荷電圧を調整する磁気エネルギー回生双方向電流スイッチと、誘導電動機の起動時に、磁気エネルギー回生双方向電流スイッチを制御して、誘導電動機の回転数の増加が負荷電圧の増加に追従するように、負荷電圧を0から誘導電動機の定格電圧まで増加させるスイッチ制御部と、を備えることを特徴とする、誘導電動機起動制御装置が提供される。
かかる構成によれば、スイッチ制御部により、磁気エネルギー回生双方向電流スイッチを制御することができる。そして、制御された磁気エネルギー回生双方向電流スイッチにより、誘導電動機の起動時に、誘導電動機の回転数の増加が追従するように、0から誘導電動機の定格電圧まで増加する負荷電圧を、誘導電動機に印可することができる。換言すれば、制御された磁気エネルギー回生双方向電流スイッチにより、起動時に誘導電動機に印可する交流の負荷電圧の振幅値を、誘導電動機の回転数の増加が追従するように0から誘導電動機の定格電圧まで増やすことができる。よって、誘導電動機の回転数が増加する前に、誘導電動機に大きな負荷電圧が印可されることを防ぐことができる。
また、磁気エネルギー回生双方向電流スイッチは、第1経路に第1逆導通型半導体スイッチと第4逆導通型半導体スイッチとがスイッチオフ時の導通方向を相互に逆向きにして直列に配置され、第2経路に第2逆導通型半導体スイッチと第3逆導通型半導体スイッチとがスイッチオフ時の導通方向を相互に逆向きにして直列に配置されたブリッジ回路と、第1逆導通型半導体スイッチと第4逆導通型半導体スイッチとの間の第1経路と、第2逆導通型半導体スイッチと第3逆導通型半導体スイッチとの間の第2経路との間に接続されたコンデンサと、を含み、スイッチ制御部は、交流電源電圧の半周期毎のスイッチ切替タイミングで、第1逆導通型半導体スイッチ及び第3逆導通型半導体スイッチと、第2逆導通型半導体スイッチ及び第4逆導通型半導体スイッチと、を交互にオン/オフして、コンデンサに充電及び放電させ、かつ、スイッチ切替タイミングを変更することにより、コンデンサの充電量及び放電量を変化させ、負荷電圧を0から誘導電動機の定格電圧まで増加させてもよい。
かかる構成によれば、スイッチ制御装置により、交流電源電圧の半周期毎のスイッチ切替タイミングで、第1逆導通型半導体スイッチ及び第3逆導通型半導体スイッチと、第2逆導通型半導体スイッチ及び第4逆導通型半導体スイッチと、を交互にオン/オフする。このようなスイッチングにより、磁気エネルギー回生双方向電流スイッチのコンデンサは、充電及び放電される。そして、この放電が十分にされない場合、コンデンサは、回路に対して抵抗として働く。よって、磁気エネルギー回生双方向電流スイッチは、供給された定格電圧よりも低い低電圧を、起動直後の誘導電動機に印可することができる。
また、誘導電動機の起動時に、誘導機電動機の回転数の増加が追従可能な速さで0から誘導電動機の定格電圧まで増加する指令電圧を生成する指令電圧生成部と、誘導電動機に印可された負荷電圧を検出する負荷電圧検出部と、負荷電圧が指令電圧に追従するように、磁気エネルギー回生双方向電流スイッチのスイッチ切替タイミングと交流電源電圧のゼロクロスポイントとの時間差を表すゲート位相角を変更するゲート位相角変更部と、を更に備え、スイッチ制御部は、ゲート位相角変更部により変更されたゲート位相角に基づくスイッチ切替タイミングで、磁気エネルギー回生双方向電流スイッチを制御してもよい。
かかる構成によれば、指令電圧生成部により、誘導電動機の回転数の増加が追従可能な速さで0から定格電圧まで増加する指令電圧を生成する。一方、負荷電圧検出部により、誘導電動機に印可された負荷電圧を検出する。そして、ゲート位相角変更部により、負荷電圧が指令電圧に追従するように、ゲート位相角を変更し、このゲート位相角だけ交流電源電圧のゼロクロスポイントからずれたスイッチ切替タイミングで、スイッチ制御部は、磁気エネルギー回生双方向電流スイッチの制御を行う。従って、磁気エネルギー回生双方向電流スイッチは、指令電圧に追従して変化する負荷電圧を誘導電動機に印可することができる。この際、指令電圧は、誘導電動機の回転数の増加が追従可能な速さで増加するため、誘導電動機の回転数が増加する前に、大きな電圧を印可することを防ぐことができる。
また、ゲート位相角変更部は、誘導電動機の起動時に、90°以上270°以下の角度にゲート位相角を変更してもよい。
かかる構成によれば、スイッチ制御部により、このゲート位相角変更部が変更した90°以上270°以下のゲート位相角に基づいて磁気エネルギー回生双方向電流スイッチを制御するので、誘導電動機に印可する負荷電圧を交流電源の定格電圧以下にすることができる。
また、ゲート位相角変更部は、誘導電動機の起動時に、負荷電圧が指令電圧に追従するように、ゲート位相角を180°から130°へと減少させてもよい。
かかる構成によれば、ゲート位相角変更部により、ゲート位相角を180°から130°へと減少させることができる。これに伴い、磁気エネルギー回生双方向電流スイッチから出力される負荷電圧を、誘導電動機の定格電圧まで増加させることができる。
また、上記課題を解決するために、本発明の別の観点によれば、誘導電動機に印可する負荷電圧を調整する磁気エネルギー回生双方向電流スイッチを用いて誘導電動機の起動を制御する誘導電動機起動制御方法であって、
誘導電動機の起動時に、磁気エネルギー回生双方向電流スイッチを制御して、誘導電動機の回転数の増加が負荷電圧の増加に追従するように、誘導電動機に印可する負荷電圧を0から誘導電動機の定格電圧まで増加させることを特徴とする、誘導電動機起動制御方法が提供される。
かかる構成によれば、誘導電動機の回転数が増加する前に、誘導電動機に大きな負荷電圧が印可されることを防ぐことができる。
また、磁気エネルギー回生双方向電流スイッチは、第1経路に第1逆導通型半導体スイッチと第4逆導通型半導体スイッチとがスイッチオフ時の導通方向を相互に逆向きにして直列に配置され、第2経路に第2逆導通型半導体スイッチと第3逆導通型半導体スイッチとがスイッチオフ時の導通方向を相互に逆向きにして直列に配置されたブリッジ回路と、第1逆導通型半導体スイッチと第4逆導通型半導体スイッチとの間の第1経路と、第2逆導通型半導体スイッチと第3逆導通型半導体スイッチとの間の第2経路との間に接続されたコンデンサと、を含み、交流電源電圧の半周期毎のスイッチ切替タイミングで、第1逆導通型半導体スイッチ及び第3逆導通型半導体スイッチと、第2逆導通型半導体スイッチ及び第4逆導通型半導体スイッチと、を交互にオン/オフして、コンデンサに充電及び放電させ、かつ、スイッチ切替タイミングを変更することにより、コンデンサの充電量及び放電量を変化させて、負荷電圧を0から誘導電動機の定格電圧まで増加させてもよい。
また、誘導機電動機の回転数の増加が追従可能な速さで0から誘導電動機の定格電圧まで増加する指令電圧を生成し、誘導電動機に印可する負荷電圧が指令電圧に追従するように、磁気エネルギー回生双方向電流スイッチのスイッチ切替タイミングと交流電源電圧のゼロクロスポイントとの時間差を表すゲート位相角を変更し、変更したゲート位相角に基づくスイッチ切替タイミングで、磁気エネルギー回生双方向電流スイッチを制御してもよい。
また、誘導電動機の起動時に、ゲート位相角を90°以上270°以下の角度に変更してもよい。
また、誘導電動機の起動時に、負荷電圧が指令電圧に追従するように、ゲート位相角を180°から130°へと減少させてもよい。
以上説明したように本発明によれば、誘導電動機の起動電流を低減して、従来よりも寿命への悪影響を抑えつつ、効率的に起動することが可能な誘導電動機の制御を簡便かつ低コストで行うことができる。
以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
<従来のモータ>
本願の実施形態に係る誘導電動機起動制御装置について説明する前に、図6を参照して、従来の誘導電動機の起動方法、特に直入れ起動について説明する。図6は、従来の直入れ起動時にモータに流れる起動電流を示すグラフである。
図6には、誘導電動機(以下「モータ」ともいう。)として定格電圧400V、出力電力5.5kWの籠型誘導電動機を使用し、このモータを直入れ起動した場合にモータに流れる起動電流の時間変化を示す。
図6に示すように、起動直後に400Vの電圧をモータに印可することにより、最大で83.4Aの起動電流がモータに流れることが判る。この起動電流は、電動機巻線の耐絶縁性の面から、モータの寿命を短くする一要因となり、かつ、エネルギー効率の観点からも好ましくない。
尚、このようにモータの起動時に大電流が流れることは、モータの回転子が回転を開始する前から定格電圧を印可することによる。つまり、モータの回転子の回転速度が通常運転時の回転速度よりも低い状態においては、モータの固定子のコイルに流れる起動電流は、一次・二次の全漏れリアクタンスで定まり、その値は一般的に小さいことから定格電流の5〜8倍の電流が誘導電動機の固定子に流れることとなる。
そこで、本発明の発明者は、かかる誘導電動機の起動時における問題点ついて熟考し、モータの制御について鋭意研究を行った結果、本発明に想到した。以下、本発明の一実施形態に係るモータ制御装置について説明する。
<本発明の一実施形態に係るモータ制御装置100の構成>
まず、図1及び図2を参照して、本発明の一実施形態に係るモータ制御装置の構成について説明する。図1は、本発明の一実施形態に係るモータ制御装置の構成の概要を説明するための説明図であり、図2は、本実施形態に係るモータ制御装置の回路構成の一例を説明するための説明図である。
図1に示すように、本実施形態に係るモータ制御装置100は、誘導電動機起動制御装置の一例であって、交流電源20とモータ10との間に配置される。そして、モータ制御装置100は、交流電源20から交流電源電圧を印可され、モータ10に交流の負荷電圧を印可する。この交流電源20からの交流電源電圧の定格電圧(振幅値)をVaとし、モータ10に印可する交流の負荷電圧の振幅値をVloadとする。以下では、説明の便宜上、交流の負荷電圧及びこの負荷電圧の振幅値を総称して「負荷電圧Vload」といい、電圧の大きさ等について説明をする際に、「負荷電圧Vload」は、交流の負荷電圧の振幅値を示すものとする。
換言すれば、このモータ制御装置100は、交流電源からの定格電圧Vaを変圧等して負荷電圧Vloadをモータ10に印可する。また、このモータ制御装置100は、特にモータ10の起動時にモータ10に印可する負荷電圧Vloadを調節する。尚、モータ10は、交流電源20とモータ制御装置100との間に配置されたスイッチ30がONされることにより、起動される。
このモータ制御装置100は、図1に示すように、MERS110と、スイッチ制御部120と、位相検出部130と、ゲート位相角変更部140と、指令電圧生成部150と、負荷電圧検出部160と、を有する。
負荷電圧検出部160は、モータ10に印可される電圧である負荷電圧Vloadを検出し、検出した負荷電圧Vloadを、ゲート位相角変更部140に出力する。尚、負荷電圧検出部160が検出する電圧は、Vloadの実効値でもよい。
例えば、交流電源20が三相電源であり、モータ10が三相誘導電動機であった場合における負荷電圧検出部160の回路構成例を図2に示す。図2に示すように、負荷電圧検出部160は、例えば、三相−二相変換回路161と、実効値回路162と、ローパスフィルタ163と、を有する。
三相−二相変換回路161は、入力された三相交流電圧であるVloadを二相に変換する。そして、実効値回路162は、二相に変換されたVloadの相間電圧の実効電圧を算出する。更に、ローパスフィルタ163は、実効電圧が有する低周波のノイズを除去したVrmsをゲート位相角変更部140に出力する。
指令電圧生成部150は、例えばランプジェネレータ等で構成され、スイッチ30とMERS110との間の経路から電圧等をタッピングし、モータ10が起動されたこと、つまり定格電圧Vaが印可されたことを検出して動作を開始する。そして、動作を開始した指令電圧生成部150は、モータ10の起動時に、所定の時間をかけてモータ10の定格電圧までランプ状に上昇する指令電圧Voを生成してゲート位相角変更部140に出力する。この指令電圧Voは、起動時のモータ10の負荷電圧Vloadの増加量を調節するために使用される電圧である。
ゲート位相角変更部140は、負荷電圧検出部160が検出した負荷電圧Vloadと指令電圧生成部150が生成した指令電圧Voとに基づいて、MERS110の制御において時間的な基準として使用されるゲート位相角αを変更する。そして、ゲート位相角変更部140は、変更したゲート位相角αをスイッチ制御部120に出力する。このゲート位相角αは、電源電圧Vaの周期に対して、MERS110のスイッチングをいつ行うかという時間的な基準を表す。
このゲート位相角変更部140の回路構成例について図2を参照して説明する。図2に示すように、ゲート位相角変更部140は、例えば、差分回路141と、ゲイン回路142と、リミッタ143と、ゲート位相角決定回路144と、を有する。
差分回路141は、負荷電圧検出部160が検出した負荷電圧Vload(例えばVrms)と、指令電圧生成部150が生成した指令電圧Voとの差電圧ΔVを算出する。ゲイン回路142は、差分回路141が算出した差電圧ΔVをK倍に増幅し、ゲート位相角αの変更量Δαを出力する。つまり、ゲイン回路142では、Δα=K×ΔVの計算が行われる。
リミッタ143は、ゲイン回路142から出力されたゲート位相角αの変更量Δαが、下限値未満である場合は出力せず、上限値超過である場合は当該上限値を出力し、下限値以上で上限値未満である場合は変更量Δαを出力する。この下限値は、回路構成上のオフセット値であり、上限値は、ゲート位相角αの変更量Δαの最大値である。この下限値及び上限値は、回路構成及び実測値等を基に予め設定される。
ゲート位相角決定回路144は、ゲート位相角αを、既に設定されている値から、リミッタ143から出力されたゲート位相角αの変更量Δα又はその上限値だけ変更して決定する。そして、ゲート位相角決定回路144は、変更して新たに決定したゲート位相角αをスイッチ制御部に出力する。
位相検出部130は、交流電源20とMERS110との間と、MERS110とモータ10との間とから電圧をタッピングして、定格電圧Vaを有する電源電圧の位相と負荷電圧Vloadの位相とを検出する。そして、位相検出部130は、これらの位相に関する情報をスイッチ制御部120に供給する。
スイッチ制御部120は、位相検出部130が検出した電源電圧の位相及び負荷電圧Vloadの位相と、ゲート位相角変更部140が出力したゲート位相角αとに基づいてMERS110を制御する。スイッチ制御部120による制御については後述する。
このスイッチ制御部120の回路構成例について図2を参照して説明する。図2に示すように、スイッチ制御部120は、スイッチ切替タイミング決定回路121と、ゲート信号生成回路122と、を有する。
スイッチ切替タイミング決定回路121は、MERS110のスイッチのON/OFFを切り替えるスイッチ切替タイミングを、位相検出部130が検出した電源電圧の位相のゼロクロスポイントから、ゲート位相角変更部140が変更したゲート位相角αだけずらして決定する。そして、スイッチ切替タイミング決定回路121は、この決定したスイッチ切替タイミングをゲート信号生成回路122に出力する。
ゲート信号生成回路122は、MERS110のスイッチのON/OFFを行うためのゲート信号を生成して、MERS110の各スイッチに出力する。この際、ゲート信号生成回路122は、スイッチ切替タイミング決定回路121が決定したスイッチ切替タイミングで、MERS110のスイッチのONとOFFとを切り替える。
MERS110は、特許文献1に開示されている磁気エネルギー回生双方向電流スイッチ(MERS:Magnetic Energy Recovery Switch)の一例であって、交流電源20とモータ10との間に配置される。MERS110は、スイッチ制御部120によって制御され、交流電源20から供給される定格電圧Vaを有する電源電圧を変圧して、負荷電圧Vloadをモータ10に印加するための回路であり、この負荷電圧Vloadを調整することができる。尚、このような磁気エネルギー回生双方向電流スイッチによる誘導電動機の制御については、特許文献2にも開示されている。
(MERS110の構成)
このMERS110の構成について、図1を参照して説明する。
図1に示すように、MERS110は、ブリッジ回路と、コンデンサCと、を含む。
ブリッジ回路は、2つの経路に2つづつ配置された4つの逆導通型半導体スイッチ111〜114によって構成され、コンデンサCは、ブリッジ回路の2つの経路の間に配置される。
より詳細には、ブリッジ回路は、交流電源20と接続される交流端子a(以下、端子aという)から、端子bを介して、モータ10と接続される交流端子d(以下、端子dという)までの経路である第1経路と、端子aから端子cを介して端子dまでの経路である第2経路とを含み、第1経路には、端子dと端子bとの間に逆導通型半導体スイッチ111が配置され、端子bと端子aとの間に逆導通型半導体スイッチ114が配置される。そして、第2経路には、端子dと端子cとの間に逆導通型半導体スイッチ112が配置され、端子cと端子aとの間に逆導通型半導体スイッチ113が配置される。そして、コンデンサCは、端子bと端子cとの間に配置される。
各逆導通型半導体スイッチ111〜114は、スイッチOFFで一方向(以下「順方向」という。)に導通し、スイッチONで他方向(以下「逆方向」という。)にも導通するスイッチであり、例えば、半導体スイッチとダイオードとの並列接続によって構成される。より詳細には、逆導通型半導体スイッチ111〜114のそれぞれは、1つのダイオードD1〜D4と、当該ダイオードD1〜D4に並列に接続された1つの半導体スイッチS1〜S4とを含む。
しかし、逆導通型半導体スイッチは、かかる例に限定されず、上記の導通制御が可能であれば如何なるスイッチであってもよく、例えば、パワーMOS FET、逆導通型GTOサイリスタ等であってもよく、IGBT等の半導体スイッチとダイオードとの並列接続であってもよい。
また、各逆導通型半導体スイッチ111〜114は、順方向が以下のようになるように配置される。つまり、逆導通型半導体スイッチ111及び逆導通型半導体スイッチ113を第1ペアとし、逆導通型半導体スイッチ112及び逆導通型半導体スイッチ114を第2ペアとすると、第1ペアの逆導通型半導体スイッチ111及び逆導通型半導体スイッチ113は、順方向が同じ方向になるように配置され、第2ペアの逆導通型半導体スイッチ112及び逆導通型半導体スイッチ114は、順方向が同じ方向になるように配置され、第1ペアと第2ペアとは、順方向が相互に逆向きになるように配置される。
すなわち、並列に配置される逆導通型半導体スイッチ同士は、各順方向が逆向きになり、かつ、直列に配置される逆導通型半導体スイッチ同士も、各順方向が逆向きになるように配置される。還元すれば、対角線上に配置された逆導通型半導体スイッチは、各順方向が同方向になるように配置される。
各逆導通型半導体スイッチ111〜114のスイッチON/OFF、つまり、半導体スイッチS1〜S4のON/OFFは、それぞれのゲートG1〜G4へのON信号の入力によって行われる。より詳細には、各ゲートG1〜G4は、スイッチ制御部120に接続されており、スイッチ制御部120が生成するゲート信号(ON信号)が入力される。つまり、スイッチ制御部120のゲート信号が入力された場合に、各逆導通型半導体スイッチ111〜114は、順方向だけでなく逆方向にも導通する。
(MERS110の特性)
ここで、MERS110の動作を説明することにより、MERS110の特性について説明する。
MERS110は、ペア内の逆導通型半導体スイッチは、同時にON/OFFされ、一方のペアがONの時、他方のペアはOFFにされる。ここでは、この一方のペアがONされ他方のペアがOFFされた状態から、一方のペアがOFFされ他方のペアがONされた状態への切り替えを、「スイッチング」といい、このスイッチングが行われる時点を、「スイッチ切替タイミング」という。
このスイッチングは、交流電源20の電源電圧の周期の1/2の周期で行われる。そして、電源電圧が0となる時点を「ゼロクロスポイント」というが、このゼロクロスポイントとスイッチ切替タイミングとの時間差が、上述の「ゲート位相角α」である。換言すれば、ゼロクロスポイントからゲート位相角αだけ位相がずれた周期でスイッチングが行われる。
更に、ゲート位相角αは、全ての逆導通型半導体スイッチが電源電圧の印可方向に対して導通する際に0°に決定される。つまり、α=0°では、図1に示す方向にVaが印可された場合、逆導通型半導体スイッチ111,113がONされ、導通経路として端子a→端子b→端子dと、端子a→端子c→端子dとが確保される。また、図1に示す方向と逆方向にVaが印可された場合、逆導通型半導体スイッチ112,114がONされ、導通経路として端子d→端子c→端子aと、端子d→端子b→端子aとが確保される。
このゲート位相角αを0°からずらすと、逆導通型半導体スイッチのペアの一方が電源電圧の印可方向に対して導通しない時間が発生する。つまり、α≠0°の場合、例えば、図1に示す方向にVaが印可される際に、αの大きさに応じた時間間隔だけ、逆導通型半導体スイッチ112,114だけがONされ、コンデンサCに電圧が印可される状態(導通経路が端子a→端子b→端子c→端子dとなった状態)が発生する。電圧が逆に印可された場合にも同様に、αの大きさに応じた時間間隔だけ、逆導通型半導体スイッチ111,113だけがONされ、コンデンサCに電圧が印可された状態(導通経路が端子d→端子b→端子c→端子aとなった状態)が発生する。このコンデンサCに印可される電圧は、電源電圧の方向によらず一方向に印可される(図1では、端子b→端子c)。
従って、ゲート位相角αを0°からずらすと、電源電圧の周期に対して、コンデンサCに充電が行われる期間と、全ての逆導通型半導体スイッチが電源電圧の印可方向に対して導通してコンデンサCの放電が行われる期間とが生じる。この結果として、ゲート位相角αを制御することにより、コンデンサCの充電及び放電を調整することができ、MERS110から出力される電圧(図2では、負荷電圧Vload)を制御することが可能となる。ここで、この出力電圧の大きさは、Vload=Va×sinα/cosΦで表される。尚、Φは、モータ10の力率角である。
このゲート位相角αに対する出力電圧Vloadの変化についてより詳細に説明すれば、以下のようになる。
電源電圧としてVaが印可された場合、MERS110のスイッチングによってコンデンサCへの充放電が行われ、放電する際にコンデンサCは、ベクトルVmersの電圧を出力する。ただし、このベクトルVmersは、ベクトルVaに対してゲート位相角αだけ遅延又は先行する。従って、ベクトルVaとベクトルVmersとの和の電圧がVloadとしてMERS110から出力される。そして、Vloadが印可された負荷には、リアクタンス成分等により進み位相又は遅れ位相Φの電流Iが流れる。
また、ベクトルVloadはベクトルVaとベクトルVmersとの和であるため、|Vmers|にもよるが、0°<α<90°では、|Vload|>|Va|となる。従って、MERS110は、ゲート位相角αによってVaよりも高電圧を出力することができる。一方、α>90°では、|Vload|<|Va|となりうる。この両者の境界である|Vload|=|Va|となるゲート位相角αの値は、|Vmers|の変化によって異なるが、90°以下になることはない。尚、|Vmers|は、コンデンサCの容量や負荷の特性、ゲート位相角αの大きさ等により変化する。
このようにゲート位相角αに対して変化する出力電圧|Vload|の測定例を図3に示す。図3は、ゲート位相角に対するMERS110の出力電圧の変化の一例を示すグラフである。
図3に示すように、α=0°では、ほぼ入力電圧Vaに等しい電圧が出力される。しかし、αを大きくすると、Vaよりも大きいVloadが出力され、α=130°で|Vload|=|Va|となる。更にαを大きくすると、|Vload|は|Va|よりも小さくなり、α=180°で|Vload|=0となる。尚、α>180°において、Vloadは、α=180°で反転させたような変化を示す。
従って、この測定例では、130°<α<230°とすることにより、|Vload|を|Va|未満にすることができる。また、この|Vload|=|Va|となるゲート位相角αは、コンデンサCの容量、負荷のリアクタンス成分等の特性によって異なるので、これらを適切に選択することにより、90°<α<230°の範囲内で|Vload|を|Va|未満にすることができる。
<本発明の一実施形態に係るモータ制御装置100の動作>
以上、本発明の一実施形態に係るモータ制御装置100の構成について説明した。
次に、図4を参照して、上記構成を有するモータ制御装置100の動作について説明する。図4は、本実施形態に係るモータ制御装置100の一動作を説明するためのフローチャートである。
(指令電圧生成ステップS101)
まず、モータ10のON/OFFを制御するスイッチの一例であるスイッチ30がONされると、交流電源20と、モータ制御装置100のMERS110と、モータ10とが1つの閉回路を形成する。そして、この閉回路が形成されると、指令電圧生成部150が動作を開始する。動作を開始した指令電圧生成部150は、指令電圧Voをゲート位相角変更部140に出力する。
指令電圧Voは、モータ10の起動を開始した時点から所定の時間をかけて、0Vから定格電圧Vaまで、ランプ状に増加する電圧である。つまり、指令電圧Voは、0Vから定格電圧Vaまで一次関数的に増加する。この指令電圧Voの増加は、実測値等を参考に予め設定されている。尚、この指令電圧Voの単位時間あたりの増加量は、モータ10の回転子の回転数の増加が追従可能な量に設定される。
換言すれば、指令電圧Voの増加量を大きくすると、後述するモータ制御装置100の動作により、この指令電圧Voの増加に追従して負荷電圧Vloadも増加する。つまり、モータ10の回転子の回転数が低い場合、つまり、この負荷電圧Vloadの増加に対して、モータ10の回転子の回転数の増加が追従していない場合には、モータ10に大きな起動電流Iが流れる。従って、予めモータ10への起動電流Iの最大値を定め、実際にモータ10に流れる起動電流Iを実測して、この起動電流Iが最大値を超えない範囲内で、負荷電圧Vloadの増加量を定める。そして、この実測により定めた負荷電圧Vloadの増加量から、指令電圧Voの増加量を定めることができる。
(負荷電圧検出ステップS103)
次に、負荷電圧検出部160により、モータ10の負荷電圧Vloadを検出する。
より具体的には、例えば、負荷電圧検出部160は、MERS110と負荷電圧Vloadとの間の経路から電圧をタッピングする。そして、三相−二相変換回路161により三相の電圧を二相の電圧に変換し、実効値回路162により、この変換した二相の電圧から二相間の実効電圧を算出する。その後、実効電圧は、ローパスフィルタ163により低周波ノイズを除去される。そして、この負荷電圧Vload(低周波ノイズが除去された実効電圧、例えばVrms)は、ゲート位相角変更部140に出力される。
(指令電圧Voと負荷電圧Vloadとの比較ステップS105)
そして、指令電圧Voと負荷電圧Vloadとを受け取ったゲート位相角変更部140により、この指令電圧Voと負荷電圧Vloadとの比較が行われ、両者の差がオフセット値未満の場合、動作を終了し、両者の差がオフセット値以上である場合は、次にステップに進む。
より具体的には、例えば、差分回路141により、指令電圧Voから負荷電圧Vloadを減算してえられる差電圧ΔVを算出する。そして、ゲイン回路142により、この差電圧ΔVをK倍してゲート位相角αの変更量Δαを算出し、リミッタ143により、変更量Δαがオフセット値以下である場合には、変更量を出力せずに動作を終了する。一方、変更量Δαがオフセット値以上である場合には、変更量Δαは、ゲート位相角決定回路144に出力される。この際、変更量Δαがオフセット値以上であり、更に所定の上限値超過である場合には、変更量Δαの代わりに上限値が、ゲート位相角決定回路144に出力される。
このオフセット値は、実測値や回路構成等から予め定められた値であり、適宜変更可能である。尚、ゲート位相角αを|Vload|=|Va|となる角度(例えば、130°)に設定しても、モータ10に印可される負荷電圧Vloadは、電源電圧Vaから回路の抵抗やリアクタンス成分等により降下する。この降下した電圧値の大きさを実測しておき、このオフセット値として設定することが可能である。また、各回路の抵抗やリアクタンス成分等を考慮し、制御ゲインの調製を行うことにより、このオフセット値をゼロにすることも可能である。
また、上記の上限値も、実測値や回路構成等から予め定められた値であり、適宜変更可能である。尚、ゲート位相角αの変更量Δαを大きな値に設定すると、ゲート位相角αの変更量が大きすぎ、指令電圧Voと負荷電圧Vloadとの差が増大してしまう。従って、この上限値も、実測値や回路構成等から予め定めておくことが好ましい。
(ゲート位相角変更ステップS107)
説明をモータ制御装置100の動作に戻す。
上記の比較ステップS105において、ゲート位相角αの変更量Δαがリミッタ143から出力された場合について説明すると、以下の動作が行われる。尚、変更量Δαに代わり上限値が出力された場合も同様であるため、以下では、変更量Δαが出力された場合について説明する。
つまり、次の動作として、ゲート位相角変更部140により、ゲート位相角αは、上記の変更量Δαだけ変更されて、新たなゲート位相角αとして設定され、スイッチ制御部120に出力される。
より具体的には、変更量Δαを受け取ったゲート位相角決定回路144は、新たなゲート位相角αを、それ以前に設定されていたゲート位相角αから変更量Δαだけ変更した値に設定する。そして、ゲート位相角決定回路144は、新たに設定したゲート位相角αをスイッチ制御部120に出力する。
(スイッチ制御ステップS109)
そして、新たに設定されたゲート位相角αを受け取ったスイッチ制御部120により、ゲート位相角αに基づいたスイッチ切替タイミングでMERS110の各逆導通型半導体スイッチ111〜114をON/OFFするためのゲート信号が生成され、MERS110に送られる。結果、MERS110は、このゲート信号により制御される。
ゲート信号の入力を受けたMERS110は、ゲート位相角αが変更されたことにより、上述したように、ゲート位相角αに基づいて変更された負荷電圧Vloadをモータ10に印可する。
以上、モータ制御装置100の一連の動作について説明した。尚、この動作は、スイッチ制御ステップ(S109)が行われている間に、負荷電圧検出ステップ(S103)以降の動作が順次実行される。よって、モータ10が起動されてから、負荷電圧検出ステップ(S103)〜スイッチ制御ステップ(S109)は、指令電圧Voと負荷電圧Vloadとの差電圧ΔV(本実施形態では変更量Δα)がオフセット値未満となるまで、繰り返される。一方、この動作とは独立して、指令電圧生成ステップ(S101)で生成された指令電圧Voは、所定の時間をかけて0Vから定格電圧Vaまで変化する。従って、上記の負荷電圧検出ステップ(S103)〜スイッチ制御ステップ(S109)を通じて、MERS110から出力される負荷電圧Vloadは、指令電圧Voの変化に追従して変化する。
この結果、負荷電圧Vloadは、指令電圧Voの最大値である定格電圧Va近傍まで増加し、所定の時間後には、モータ10に通常運転時と同様の定格電圧Vaが印可される(Vload≒Va)。そして、モータ10の起動時の動作を終えたモータ制御装置100は、最後に決定したゲート位相角αでスイッチングを行うことにより、モータ10の通常運転を行う。
<本発明の一実施形態に係るモータ制御装置100の動作の一例>
この動作の一例について、図5を参照して説明する。
図5は、本実施形態に係るモータ制御装置100の動作の一例を説明するためのグラフである。
尚、図5の(A)は、負荷電圧Vload等の電圧及びモータ10に流れる起動電流Iの時間変化を示すグラフであり、(B)は、ゲート位相角αの時間変化を示すグラフである。また、以下では、例えば、交流電源20の定格電圧Vaは、約400Vであり、定格電流Iは、約9.4Aである場合について説明する。この際、オフセット値は、例えば、電圧換算すると約25Vとする。
図5の(A)に示すように、時間が0秒の時点において、スイッチ30がONされ、モータ10が起動される。指令電圧生成部150は、例えば、0Vから定格電圧Vaまで、約25秒の時間をかけて増加する指令電圧Voを出力する。
この指令電圧Voが出力されることにより、上記の動作を通じてゲート位相角αは、図5の(B)に示すように変更される。このゲート位相角αの変更量Δαは、上述のように指令電圧Voと負荷電圧Vloadとの差電圧ΔVをK倍することによって決定される。
このゲート位相角αが変更される様子を定性的に説明すると以下のようになる。
(A)に示すように、例えば、スイッチ30がONされてから15秒の時点において、指令電圧Voと負荷電圧Vloadとの間には、差電圧ΔV1だけの差がある。このΔV1がK倍され、(B)に示す変更量Δα1が算出される。このΔα1がオフセット値以上であり上限値以下である場合、15秒の時点において設定されていたゲート位相角α1は、Δα1だけ変更されて、新たなゲート位相角α2が設定される。そして、次の時点(例えば、15秒の時点からΔt秒後)においては、ゲート位相角α2によって、スイッチ切替タイミングが決定され、このスイッチ切替タイミングで、MERS110の制御が行われる。この結果、15秒の時点でV1であった負荷電圧Vloadは、次の時点(例えば、15秒の時点からΔt秒後)においては、V2へと増加される。従って、この動作が繰り返されることにより、負荷電圧Vloadは、上記の指令電圧Voの増加に追従して増加する。
上記のように変更されたゲート位相角αは、図5(B)に示すように起動した直後(0秒)の約165°から約13秒の時点及び約25秒の時点には130°へと減少されている。尚、起動した直後のゲート位相角αを180°にすることも可能であるが、この例では165°となっている。これは、モータ10を前回起動したときに印可された電圧が残留電圧としてモータ10の固定子の巻線に残留しているため、図5(A)に示すように0秒の時点におけるVloadの値が0でない所定の値をとることに由来する。よって、この残留電圧を取りにのぞくことにより、0秒の時点におけるゲート位相角αを180°にすることができる。尚、この残留電圧を取り除くことにより、0秒の時点における負荷電圧Vloadを0とすることができることは言うまでもない。
この際に、モータ10に流れる起動電流Iを図5の(A)に示す。起動電流Iは、モータ10を起動してから(0秒の時点から)徐々に増加し、最大で35.9Aとなった後降下し、約22秒後には、モータ10の定格電流値にほぼ等しい約9.37Aとなる。
上述のように従来の直入れ起動の場合、モータ10には最大で約83.4Aの起動電流が流れたことと比較すると、本実施形態に係るモータ制御装置100によれば、起動時にモータ10に流れる起動電流Iの最大値を約1/2倍にまで減少させることができることが判る。尚、指令電圧Voの増加量や回路構成等を変更することにより、このモータ10に流れる起動電流Iの最大値を更に減少させることも可能である。
<本実施形態に係るモータ制御装置100による効果>
以上、本発明の一実施形態に係るモータ制御装置100の構成及び動作について説明した。このモータ制御装置100によれば、モータ10の起動時に、モータ10に流れる起動電流Iを減少させたソフトスタートを行うことができるため、モータ10の巻線にかかる負荷を低減することができ、モータ10の長寿命化を実現することができる。
そして、モータ制御装置100の構成は、上述のように単純であり、各構成回路も安価であるため、リアクトル起動やY−Δ起動のような他の起動方式に必要な装置よりも製造コストを削減することが可能である。
更に、MERS110のコンデンサCにより、交流電源20から供給される定格電圧Vaと、MERS110から出力される負荷電圧Vloadとの差分の電気エネルギーの一部を回生することができる。従って、モータ10の起動時の力率を高めることができる。
また、モータ制御装置100は、モータ10の起動電流Iを減少させ、かつ、力率を向上させることができるので、モータ10の起動時の消費電力を削減することができ、エネルギー効率を高めることができる。
以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
例えば、上記実施形態では、スイッチ制御部120,ゲート位相角変更部140,及び負荷電圧検出部160の回路構成例を示した。しかし、本発明はかかる例に限定されず、スイッチ制御部120,ゲート位相角変更部140,及び負荷電圧検出部160が、上述の動作を行いうる如何なる回路で構成されても良い。
また、上記実施形態では、ゲート位相角変更部140は、ゲート位相角決定回路144を有するとした。しかし、本発明はかかる例に限定されず、ゲート位相角変更部140は、例えば、ゲート位相角決定回路144を備えなくても良い。この場合、例えば、ゲート位相角変更部140は、ゲート位相角αの変更量Δα又は上限値をスイッチ制御部120に出力し、スイッチ制御部120は、この変更量Δα又は上限値だけ、スイッチ切替タイミングを変更しても良い。
また、上記実施形態では、指令電圧Voは、0Vから定格電圧Vaまでランプ状に増加する電圧であるとしたが、本発明はかかる例に限定されない。この指令電圧Voは、ランプ状、すなわち時間に対して一次関数的に増加する以外にも、例えば、時間に対して二次関数的に増加してもよく、逆関数的に増加してもよい。他にも、指令電圧Voは、所定の時間をかけて緩やかに増加するように設定することができる。
また、上記実施形態では、ゲイン回路142の後段にリミッタ143が配置され、オフセット値及び上限値は、ゲート位相角αの変更量Δαに対する値であるとして説明した。しかし、本発明はかかる例に限定されない。例えば、リミッタ143は、ゲイン回路142の前段に配置され、差分回路141から出力される差電圧ΔVに対する値として、オフセット値及び上限値を設定してもよい。この場合のオフセット値及び上限値は、上記実施形態と同様に決定されるため、ここでの詳しい説明は省略する。
本発明の一実施形態に係るモータ制御装置の構成の概要を説明するための説明図である。 同実施形態に係るモータ制御装置の回路構成の一例を説明するための説明図である。 ゲート位相角に対するMERSの出力電圧の変化の一例を示すグラフである。 同実施形態に係るモータ制御装置の一動作を説明するためのフローチャートである。 同実施形態に係るモータ制御装置の動作の一例を説明するためのグラフである。 従来の直入れ駆動時にモータに流れる起動電流を示すグラフである。
符号の説明
10 モータ
20 交流電源
30 スイッチ
100 モータ制御装置
110 MERS
120 スイッチ制御部
121 スイッチ切替タイミング決定回路
122 ゲート信号生成回路
130 位相検出部
140 ゲート位相角変更部
141 差分回路
142 ゲイン回路
143 リミッタ
144 ゲート位相角決定回路
150 指令電圧生成部
160 負荷電圧検出部
161 三相−二相変換回路
162 実効値回路
163 ローパスフィルタ
111,112,113,114 逆導通型半導体スイッチ
D1,D2,D3,D4 ダイオード
S1,S2,S3,S4 半導体スイッチ
G1,G2,G3,G4 ゲート
C コンデンサ
L リアクタンス成分
R 抵抗成分

Claims (10)

  1. 交流電源と誘導電動機との間に直列に接続され、前記誘導電動機に印可する負荷電圧を調整する磁気エネルギー回生双方向電流スイッチと、
    前記誘導電動機の起動時に、前記磁気エネルギー回生双方向電流スイッチを制御して、前記誘導電動機の回転数の増加が前記負荷電圧の増加に追従するように、前記負荷電圧を0から前記誘導電動機の定格電圧まで増加させるスイッチ制御部と、
    を備えることを特徴とする、誘導電動機起動制御装置。
  2. 前記磁気エネルギー回生双方向電流スイッチは、
    第1経路に第1逆導通型半導体スイッチと第4逆導通型半導体スイッチとがスイッチオフ時の導通方向を相互に逆向きにして直列に配置され、第2経路に第2逆導通型半導体スイッチと第3逆導通型半導体スイッチとがスイッチオフ時の導通方向を相互に逆向きにして直列に配置されたブリッジ回路と、
    前記第1逆導通型半導体スイッチと前記第4逆導通型半導体スイッチとの間の前記第1経路と、前記第2逆導通型半導体スイッチと前記第3逆導通型半導体スイッチとの間の前記第2経路との間に接続されたコンデンサと、
    を含み、
    前記スイッチ制御部は、
    前記交流電源電圧の半周期毎のスイッチ切替タイミングで、前記第1逆導通型半導体スイッチ及び前記第3逆導通型半導体スイッチと、前記第2逆導通型半導体スイッチ及び前記第4逆導通型半導体スイッチと、を交互にオン/オフして、前記コンデンサに充電及び放電させ、かつ、
    前記スイッチ切替タイミングを変更することにより、前記コンデンサの充電量及び放電量を変化させ、前記負荷電圧を0から前記誘導電動機の定格電圧まで増加させることを特徴とする、請求項1に記載の誘導電動機起動制御装置。
  3. 前記誘導電動機の起動時に、前記誘導機電動機の回転数の増加が追従可能な速さで0から前記誘導電動機の定格電圧まで増加する指令電圧を生成する指令電圧生成部と、
    前記誘導電動機に印可された負荷電圧を検出する負荷電圧検出部と、
    前記負荷電圧が前記指令電圧に追従するように、前記磁気エネルギー回生双方向電流スイッチの前記スイッチ切替タイミングと前記交流電源電圧のゼロクロスポイントとの時間差を表すゲート位相角を変更するゲート位相角変更部と、
    を更に備え、
    前記スイッチ制御部は、前記ゲート位相角変更部により変更された前記ゲート位相角に基づく前記スイッチ切替タイミングで、前記磁気エネルギー回生双方向電流スイッチを制御することを特徴とする、請求項2に記載の誘導電動機起動制御装置。
  4. 前記ゲート位相角変更部は、前記誘導電動機の起動時に、90°以上270°以下の角度に前記ゲート位相角を変更することを特徴とする、請求項3に記載の誘導電動機起動制御装置。
  5. 前記ゲート位相角変更部は、前記誘導電動機の起動時に、前記負荷電圧が前記指令電圧に追従するように、前記ゲート位相角を180°から130°へと減少させることを特徴とする、請求項4に記載の誘導電動機起動制御装置。
  6. 誘導電動機に印可する負荷電圧を調整する磁気エネルギー回生双方向電流スイッチを用いて前記誘導電動機の起動を制御する誘導電動機起動制御方法であって、
    前記誘導電動機の起動時に、前記磁気エネルギー回生双方向電流スイッチを制御して、前記誘導電動機の回転数の増加が前記負荷電圧の増加に追従するように、前記誘導電動機に印可する負荷電圧を0から前記誘導電動機の定格電圧まで増加させることを特徴とする、誘導電動機起動制御方法。
  7. 前記磁気エネルギー回生双方向電流スイッチは、
    第1経路に第1逆導通型半導体スイッチと第4逆導通型半導体スイッチとがスイッチオフ時の導通方向を相互に逆向きにして直列に配置され、第2経路に第2逆導通型半導体スイッチと第3逆導通型半導体スイッチとがスイッチオフ時の導通方向を相互に逆向きにして直列に配置されたブリッジ回路と、
    前記第1逆導通型半導体スイッチと前記第4逆導通型半導体スイッチとの間の前記第1経路と、前記第2逆導通型半導体スイッチと前記第3逆導通型半導体スイッチとの間の前記第2経路との間に接続されたコンデンサと、
    を含み、
    交流電源電圧の半周期毎のスイッチ切替タイミングで、前記第1逆導通型半導体スイッチ及び前記第3逆導通型半導体スイッチと、前記第2逆導通型半導体スイッチ及び前記第4逆導通型半導体スイッチと、を交互にオン/オフして、前記コンデンサに充電及び放電させ、かつ、
    前記スイッチ切替タイミングを変更することにより、前記コンデンサの充電量及び放電量を変化させて、前記負荷電圧を0から前記誘導電動機の定格電圧まで増加させることを特徴とする、請求項6に記載の誘導電動機起動制御方法。
  8. 前記誘導機電動機の回転数の増加が追従可能な速さで0から前記誘導電動機の定格電圧まで増加する指令電圧を生成し、
    前記誘導電動機に印可する負荷電圧が前記指令電圧に追従するように、前記磁気エネルギー回生双方向電流スイッチの前記スイッチ切替タイミングと前記交流電源電圧のゼロクロスポイントとの時間差を表すゲート位相角を変更し、
    前記変更したゲート位相角に基づく前記スイッチ切替タイミングで、前記磁気エネルギー回生双方向電流スイッチを制御することを特徴とする、請求項7に記載の誘導電動機起動制御方法。
  9. 前記誘導電動機の起動時に、前記ゲート位相角を90°以上270°以下の角度に変更することを特徴とする、請求項8に記載の誘導電動機起動制御方法。
  10. 前記誘導電動機の起動時に、前記負荷電圧が前記指令電圧に追従するように、前記ゲート位相角を180°から130°へと減少させることを特徴とする、請求項9に記載の誘導電動機起動制御方法。
JP2007198164A 2007-07-30 2007-07-30 誘導電動機起動制御装置及び誘導電動機起動制御方法 Expired - Fee Related JP4870044B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007198164A JP4870044B2 (ja) 2007-07-30 2007-07-30 誘導電動機起動制御装置及び誘導電動機起動制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007198164A JP4870044B2 (ja) 2007-07-30 2007-07-30 誘導電動機起動制御装置及び誘導電動機起動制御方法

Publications (2)

Publication Number Publication Date
JP2009033942A JP2009033942A (ja) 2009-02-12
JP4870044B2 true JP4870044B2 (ja) 2012-02-08

Family

ID=40403824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007198164A Expired - Fee Related JP4870044B2 (ja) 2007-07-30 2007-07-30 誘導電動機起動制御装置及び誘導電動機起動制御方法

Country Status (1)

Country Link
JP (1) JP4870044B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5724103B2 (ja) * 2010-10-13 2015-05-27 株式会社MERSTech 誘導電動機制御装置及び誘導電動機制御方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63157690A (ja) * 1986-12-18 1988-06-30 Matsushita Electric Ind Co Ltd 電気掃除機の電力制御装置
JP3634982B2 (ja) * 1999-06-11 2005-03-30 財団法人理工学振興会 スナバーエネルギーを回生する電流順逆両方向スイッチ
JP3488684B2 (ja) * 1999-11-30 2004-01-19 三菱電機株式会社 整流回路および圧縮機駆動装置
JP2005057980A (ja) * 2003-08-04 2005-03-03 Ryuichi Shimada 磁気エネルギー回生電流スイッチを用いた電動機および発電機の電力制御

Also Published As

Publication number Publication date
JP2009033942A (ja) 2009-02-12

Similar Documents

Publication Publication Date Title
JP4167232B2 (ja) ブラッシュレス直流モーターの制御方法
WO2007102601A1 (ja) 電力変換装置及び方法並びに三角波発生回路
JP2010193702A (ja) 誘導電動機制御装置、誘導電動機制御方法
JP2004104842A (ja) インバータ装置
TW200924366A (en) Matrix converter
US9742339B2 (en) Apparatus for controlling inverter
EP1643626A2 (en) Direct current power supply apparatus and control method for the same, and a compressor drive apparatus
WO2004025819A1 (ja) 誘導電動機の制御方法
JPWO2018235189A1 (ja) サイリスタ起動装置
US20220140749A1 (en) Isolated inverters
JP2006350900A (ja) 電力変換装置
CN105556816A (zh) 电力转换装置和电力转换装置的控制方法
WO2007069314A1 (ja) 電力変換装置
JP5168955B2 (ja) 電動機制御装置
JP2007049798A (ja) 電力変換装置
JP4870044B2 (ja) 誘導電動機起動制御装置及び誘導電動機起動制御方法
JP2007082321A (ja) 電動機駆動装置
JP2009544271A (ja) 可変電圧供給システム
JP2020137329A (ja) インバータ装置
JP2009254102A (ja) 無停電電源装置
JP4269921B2 (ja) ブラシレスモータの駆動装置
JP7149770B2 (ja) 電力変換装置及び、これを用いたインバータ装置
WO2020044890A1 (ja) インバータ装置
JP4488409B2 (ja) 電力変換装置
JP4415608B2 (ja) 電源装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111116

R151 Written notification of patent or utility model registration

Ref document number: 4870044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees