JP4865845B2 - Alkaline battery and method for producing the same - Google Patents

Alkaline battery and method for producing the same Download PDF

Info

Publication number
JP4865845B2
JP4865845B2 JP2009229672A JP2009229672A JP4865845B2 JP 4865845 B2 JP4865845 B2 JP 4865845B2 JP 2009229672 A JP2009229672 A JP 2009229672A JP 2009229672 A JP2009229672 A JP 2009229672A JP 4865845 B2 JP4865845 B2 JP 4865845B2
Authority
JP
Japan
Prior art keywords
negative electrode
current collector
brass
zinc
electrode current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009229672A
Other languages
Japanese (ja)
Other versions
JP2011076978A (en
Inventor
丞 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2009229672A priority Critical patent/JP4865845B2/en
Priority to EP10170776.8A priority patent/EP2306564B1/en
Priority to US12/853,807 priority patent/US20110081579A1/en
Priority to CN201010282273.1A priority patent/CN102034982B/en
Publication of JP2011076978A publication Critical patent/JP2011076978A/en
Application granted granted Critical
Publication of JP4865845B2 publication Critical patent/JP4865845B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/75Wires, rods or strips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/08Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with cup-shaped electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Description

本発明は、一次電池であるアルカリ乾電池に関し、特に、アルカリ乾電池の負極集電体の改良に関する。   The present invention relates to an alkaline dry battery that is a primary battery, and more particularly, to an improvement in a negative electrode current collector of an alkaline dry battery.

従来から、携帯機器等の電子機器の電源としてアルカリ乾電池が広く用いられている。
アルカリ乾電池は、正極活物質を含む中空円筒状の正極合剤と、前記正極合剤の中空部内に充填され、負極活物質を含むゲル状負極と、前記正極合剤と前記ゲル状負極との間に配されるセパレータと、前記ゲル状負極に挿入される負極集電体と、前記負極集電体と電気的に接続される負極端子板と、を具備する。負極集電体には、銅を主成分とする真鍮が用いられている。
Conventionally, alkaline batteries have been widely used as power sources for electronic devices such as portable devices.
The alkaline dry battery comprises a hollow cylindrical positive electrode mixture containing a positive electrode active material, a gelled negative electrode containing a negative electrode active material filled in a hollow portion of the positive electrode mixture, the positive electrode mixture and the gel negative electrode. A separator disposed therebetween, a negative electrode current collector inserted into the gelled negative electrode, and a negative electrode terminal plate electrically connected to the negative electrode current collector. For the negative electrode current collector, brass mainly composed of copper is used.

アルカリ乾電池が過放電状態になると、水素ガスを発生し、電解液の漏出(以下、漏液)が起こることがある。漏液のメカニズムは負極集電体の構成元素の電解液への溶出が関連していると考えられる。そこで、アルカリ乾電池の負極集電体について様々な検討が行われている。
例えば、特許文献1では、負極集電体からの水素ガス発生を抑制するため、真鍮の表面を、亜鉛、錫、および鉛からなる群より選ばれた少なくとも1種の金属でめっきすることが提案されている。これにより、負極集電体からの水素ガスの発生が抑制される。
When an alkaline battery is overdischarged, hydrogen gas is generated and electrolyte leakage (hereinafter referred to as leakage) may occur. It is considered that the leakage mechanism is related to the elution of the constituent elements of the negative electrode current collector into the electrolyte. Therefore, various studies have been conducted on the negative electrode current collector of alkaline dry batteries.
For example, Patent Document 1 proposes that the surface of brass be plated with at least one metal selected from the group consisting of zinc, tin, and lead in order to suppress generation of hydrogen gas from the negative electrode current collector. Has been. Thereby, generation of hydrogen gas from the negative electrode current collector is suppressed.

特許文献2では、真鍮の表面に錫めっき層を形成し、その厚みを0.05〜0.5μmとすることが提案されている。これにより、過放電時の漏液を抑制することができる。   Patent Document 2 proposes that a tin plating layer is formed on the surface of brass and the thickness thereof is 0.05 to 0.5 μm. Thereby, the liquid leakage at the time of overdischarge can be suppressed.

特開平5−13085号公報Japanese Patent Laid-Open No. 5-13085 特開2006−172908号公報JP 2006-172908 A

アルカリ乾電池の複数個を直列に接続した組電池が過放電状態になると、組電池を構成する電池の少なくとも1つは、不可避的に転極することが知られている。例えば、電気容量の小さい電池が転極する場合がある。また、電池の電気容量が同じ場合でも、内部抵抗や活物質の表面積の違いにより、全く同じ放電履歴を経ることはなく、放電電圧の低い電池が転極する。転極した電池では、集電体を構成する真鍮から銅および亜鉛が溶出する。その結果、亜鉛の水素発生過電圧が低下し、水素ガス発生量が多くなり、転極した電池が漏液する。このような電池の漏液は、転極した電池を含む組電池の放電回路を解放した場合に、特に起こり易い。特許文献1および2の提案では、このような漏液を防ぐには不十分である。   It is known that when an assembled battery in which a plurality of alkaline dry batteries are connected in series is in an overdischarged state, at least one of the batteries constituting the assembled battery inevitably reverses its polarity. For example, a battery having a small electric capacity may be reversed. Even when the electric capacity of the batteries is the same, due to the difference in internal resistance and the surface area of the active material, the same discharge history is not passed, and the battery with a low discharge voltage is reversed. In the reversed battery, copper and zinc are eluted from the brass constituting the current collector. As a result, the hydrogen generation overvoltage of zinc decreases, the amount of hydrogen gas generation increases, and the reversed battery leaks. Such battery leakage is particularly likely to occur when the discharge circuit of the assembled battery including the reversed battery is released. The proposals in Patent Documents 1 and 2 are insufficient to prevent such leakage.

そこで、本発明は、上記従来の問題を解決するために、過放電時のガス発生が抑制された、高い信頼性を有するアルカリ乾電池およびその製造方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a highly reliable alkaline dry battery in which gas generation during overdischarge is suppressed and a method for manufacturing the same in order to solve the above-described conventional problems.

本発明のアルカリ乾電池の一局面は、正極活物質を含む中空円筒状の正極合剤と、前記正極合剤の中空部内に充填され、負極活物質を含むゲル状負極と、前記正極合剤と前記ゲル状負極との間に配されるセパレータと、前記ゲル状負極に挿入される負極集電体と、前記負極集電体と電気的に接続される負極端子板と、電解液と、を具備するアルカリ乾電池であって、
前記負極集電体は、平均結晶粒子径が0.015mm以上の真鍮からなり、前記真鍮が亜鉛30〜40重量%含むことを特徴とする。
One aspect of the alkaline dry battery of the present invention is a hollow cylindrical positive electrode mixture containing a positive electrode active material, a gelled negative electrode containing a negative electrode active material filled in a hollow portion of the positive electrode mixture, and the positive electrode mixture A separator disposed between the gelled negative electrode, a negative electrode current collector inserted into the gelled negative electrode, a negative electrode terminal plate electrically connected to the negative electrode current collector, and an electrolyte solution. An alkaline battery comprising:
The negative electrode current collector is made of brass having an average crystal particle diameter of 0.015 mm or more, and the brass contains 30 to 40% by weight of zinc .

前記真鍮の平均結晶粒子径は、好ましくは0.030mm以上0.1mm以下、より好ましくは、0.045mm以上0.1mm以下である。
前記負極集電体は釘型であり、前記ゲル状負極に挿入される丸棒状の胴部、および前記胴部の一方の先端に設けられた頂部を有し、前記頂部は、前記負極端子板に溶接されており、前記胴部の径は、0.95〜1.35mmであるのが好ましい。
前記真鍮は、亜鉛30〜40重量%、任意成分としての錫、燐およびアルミニウムからなる群より選択される少なくとも1種0.05〜3重量%、並びに残部の銅および不可避不純物からなるのが好ましい。
The average crystal particle diameter of the brass is preferably 0.030 mm to 0.1 mm, and more preferably 0.045 mm to 0.1 mm.
The negative electrode current collector has a nail shape, and has a round bar-shaped body portion inserted into the gelled negative electrode, and a top portion provided at one end of the body portion, and the top portion includes the negative electrode terminal plate. It is preferable that the diameter of the trunk is 0.95 to 1.35 mm.
The brass, zinc 3 0-40 wt% of at least one 0.05-3 wt% is selected from tin, the group consisting of phosphorus and aluminum as an optional component, and the balance consisting of copper and unavoidable impurities Is preferred.

前記正極活物質は、二酸化マンガンおよびオキシ水酸化ニッケルの少なくとも一方を含むのが好ましい。
前記負極活物質は、亜鉛または亜鉛合金を含むのが好ましい。
前記亜鉛合金は、Alを150〜500ppm含むのが好ましい。
前記正極合剤の容量Cpに対する前記ゲル状負極の容量Cnの比:Cn/Cpは、0.95〜1.10であるのが好ましい。
The positive electrode active material preferably contains at least one of manganese dioxide and nickel oxyhydroxide.
The negative electrode active material preferably contains zinc or a zinc alloy.
The zinc alloy preferably contains 150 to 500 ppm of Al.
The ratio of the capacity Cn of the gelled negative electrode to the capacity Cp of the positive electrode mixture: Cn / Cp is preferably 0.95 to 1.10.

本発明のアルカリ乾電池の製造方法の一局面であり、
(1)亜鉛30〜40重量%を含む真鍮からなる釘型成形体を得る工程と、
(2)前記成形体を300℃以上に加熱する工程と、
(3)前記工程(2)の後、前記成形体を10℃/秒以下の速度で冷却し、前記真鍮の平均結晶粒子径が0.015mm以上である負極集電体を得る工程と、
を含む。
It is one aspect of a method for producing an alkaline dry battery of the present invention,
(1) obtaining a nail-shaped product made of brass containing zinc 30 to 40% by weight,
(2) heating the molded body to 300 ° C. or higher;
(3) After the step (2), the molded body is cooled at a rate of 10 ° C./second or less to obtain a negative electrode current collector having an average crystal particle diameter of the brass of 0.015 mm or more;
including.

本発明によれば、過放電時におけるガス発生が抑制された、高い信頼性を有するアルカリ乾電池が得られる。電池間に容量ばらつきがある複数個のアルカリ乾電池を直列に接続した組電池において、容量の小さい電池が転極した場合でも、転極した電池のガス発生が抑制され、電池の耐漏液性が向上する。   According to the present invention, it is possible to obtain a highly reliable alkaline dry battery in which gas generation during overdischarge is suppressed. In an assembled battery in which multiple alkaline batteries with different capacity between batteries are connected in series, even if a battery with a small capacity is reversed, gas generation of the reversed battery is suppressed and the leakage resistance of the battery is improved. To do.

本発明の一実施形態に係る単3形アルカリ乾電池の一部を断面とする正面図である。It is a front view which makes a part of AA alkaline dry battery concerning one embodiment of the present invention a section.

以下、従来の過放電時の真鍮の溶出に伴うガス発生のメカニズムについて説明する。
アルカリ乾電池の放電開始時には、下記式(1)および(2)の反応が進行する。正極では、二酸化マンガンの還元反応が進行する。負極では、亜鉛が溶解し、生成した酸化亜鉛が、亜鉛の表面に析出する。
正極: MnO2+H++e-→MnOOH (1)
負極: Zn+4OH-→Zn(OH)4 2-+2e- (2)
Zn(OH)4 2-→ZnO+H2O+2OH-
Hereinafter, the mechanism of gas generation accompanying the elution of brass during conventional overdischarge will be described.
At the start of discharge of the alkaline battery, the reactions of the following formulas (1) and (2) proceed. At the positive electrode, the reduction reaction of manganese dioxide proceeds. In the negative electrode, zinc is dissolved, and the generated zinc oxide is deposited on the surface of zinc.
Positive electrode: MnO 2 + H + + e → MnOOH (1)
Negative electrode: Zn + 4OH → Zn (OH) 4 2− + 2e (2)
Zn (OH) 4 2- → ZnO + H 2 O + 2OH

アルカリ乾電池の放電末期には、負極内の水分が減少するため、亜鉛へのOH-の供給が追いつかなくなり、亜鉛表面近傍のOH-濃度が低下する。亜鉛表面近傍が局部的に酸性となり、亜鉛が不働態化する。このため、負極電位が急激に上昇し、電池電圧は急激に低下する。負荷が一定の場合、電流値も急激に低下する。 At the end of discharge of the alkaline battery, the moisture in the negative electrode decreases, so that supply of OH to zinc cannot catch up, and the OH concentration near the zinc surface decreases. The vicinity of the zinc surface becomes locally acidic, and the zinc becomes passivated. For this reason, the negative electrode potential increases rapidly, and the battery voltage decreases rapidly. When the load is constant, the current value also decreases rapidly.

以下、複数個のアルカリ乾電池を直列に接続した組電池を放電する場合の一例を示す。
2個の電池AおよびBを直列に接続した組電池に、抵抗を接続して回路を閉じると、組電池は放電する。電池Aは電池Bよりも容量が小さい場合、電池Aでは、電池Bよりも先に、亜鉛が不導態化し、電池電圧が急激に低下し、放電末期の状態となる。さらに組電池の放電が進行すると、電池Aでは、電池電圧がマイナスの値を示し(0V以下の値となり)、転極が起こる。
転極した電池Aでは、亜鉛が不働態化しているにも関わらず、負極側から電子を取り出す必要がある。この電子を供給するため、負極集電体から金属がイオンとして溶出する。例えば、負極集電体が真鍮からなり、錫めっきを有する場合、負極集電体表面に析出した亜鉛等の金属(活物質から溶出した金属)、錫、真鍮中の亜鉛、真鍮中の銅の順で溶出する。負極集電体から溶出する金属の大部分は真鍮を構成する銅や亜鉛である。
Hereinafter, an example of discharging an assembled battery in which a plurality of alkaline dry batteries are connected in series will be described.
When a resistor is connected to an assembled battery in which two batteries A and B are connected in series and the circuit is closed, the assembled battery is discharged. When the capacity of the battery A is smaller than that of the battery B, in the battery A, the zinc becomes non-conductive before the battery B, the battery voltage rapidly decreases, and the battery is in the final discharge state. When the discharge of the assembled battery further proceeds, in the battery A, the battery voltage shows a negative value (becomes a value of 0 V or less), and inversion occurs.
In the reversed battery A, it is necessary to take out electrons from the negative electrode side even though zinc is inactivated. In order to supply these electrons, the metal elutes from the negative electrode current collector as ions. For example, when the negative electrode current collector is made of brass and has tin plating, a metal such as zinc deposited on the negative electrode current collector surface (metal eluted from the active material), tin, zinc in brass, copper in brass Elute in order. Most of the metal eluted from the negative electrode current collector is copper or zinc constituting brass.

転極した電池Aを含む放電回路を開くと、亜鉛の不働態化は解消され、負極電位は低下し、亜鉛本来の電位に近づく。このとき、負極電位は、水素ガス発生電位を下回り、水素ガスが発生し易い状態となる。
転極中に溶出した銅等の金属は、亜鉛の水素発生過電圧を低下させる。このため、水素ガス発生速度が増大し、水素ガス発生量が多くなり、電池内圧が上昇する。電池内圧が所定値を上回ると、所定の安全弁が破断し、漏液する。
When the discharge circuit including the reversed battery A is opened, the passivation of zinc is eliminated, the negative electrode potential is lowered, and the zinc original potential is approached. At this time, the negative electrode potential is lower than the hydrogen gas generation potential, and hydrogen gas is easily generated.
Metals, such as copper, eluted during the reversal of the poles reduce the hydrogen generation overvoltage of zinc. For this reason, the hydrogen gas generation rate increases, the amount of hydrogen gas generation increases, and the battery internal pressure increases. When the battery internal pressure exceeds a predetermined value, the predetermined safety valve breaks and leaks.

本発明のアルカリ乾電池の一実施形態を、図1を参照しながら説明する。図1は、単3形アルカリ乾電池(LR6)の一部を断面とする正面図である。図1中の矢印Xは、電池(正極合剤)の軸方向を示す。
有底円筒形の電池ケース1内に、中空円筒状の正極合剤2が収納されている。正極合剤2は、電池ケース1の内面に密着し、正極集電体を兼ねる電池ケースと電気的に接触している。電池ケース1の内面には、正極合剤との接触抵抗を低減するため、黒鉛塗膜層が形成されている。電池ケース1の底部には、凸状の正極端子1aが設けられている。電池ケース1は、例えば、ニッケルめっき鋼板を所定の寸法、形状にプレス成型することにより得られる。
An embodiment of the alkaline dry battery of the present invention will be described with reference to FIG. FIG. 1 is a front view of a cross section of a part of an AA alkaline battery (LR6). An arrow X in FIG. 1 indicates the axial direction of the battery (positive electrode mixture).
A hollow cylindrical positive electrode mixture 2 is accommodated in a bottomed cylindrical battery case 1. The positive electrode mixture 2 is in close contact with the inner surface of the battery case 1 and is in electrical contact with the battery case that also serves as the positive electrode current collector. A graphite coating layer is formed on the inner surface of the battery case 1 in order to reduce contact resistance with the positive electrode mixture. A convex positive electrode terminal 1 a is provided at the bottom of the battery case 1. The battery case 1 is obtained, for example, by press-molding a nickel-plated steel sheet into a predetermined size and shape.

正極合剤2の中空部内には、有底円筒形のセパレータ4を介して、ゲル状負極3が充填されている。セパレータ4には、例えば、ポリビニルアルコール繊維およびレーヨン繊維を主体として混抄した不織布が用いられる。   A gelled negative electrode 3 is filled in the hollow portion of the positive electrode mixture 2 via a bottomed cylindrical separator 4. For the separator 4, for example, a nonwoven fabric mainly composed of polyvinyl alcohol fiber and rayon fiber is used.

電池ケース1の開口部は、封口ユニット9により封口されている。封口ユニット9は、釘型の負極集電体6と、安全弁を備える樹脂製のガスケット5と、負極集電体6と電気的に接触している負極端子板7とにより構成される。
負極端子板7は、中央の平担部および前記平坦部の周縁部に設けられた鍔部を有する。負極端子板7は、鍔部と平坦部との境界部に、電池内のガスを外部に放出させるための孔7aを有する。負極端子板7は、例えば、ニッケルめっき鋼板またはスズめっき鋼板を所定の寸法、形状にプレス成形することにより得られる。
The opening of the battery case 1 is sealed by a sealing unit 9. The sealing unit 9 includes a nail-type negative electrode current collector 6, a resin gasket 5 having a safety valve, and a negative electrode terminal plate 7 in electrical contact with the negative electrode current collector 6.
The negative electrode terminal plate 7 has a central flat portion and a flange portion provided on a peripheral portion of the flat portion. The negative electrode terminal plate 7 has a hole 7a for releasing the gas in the battery to the outside at the boundary between the flange portion and the flat portion. The negative electrode terminal plate 7 is obtained, for example, by press-molding a nickel-plated steel plate or a tin-plated steel plate into a predetermined size and shape.

負極集電体6は、略円柱状の胴部6a、および胴部6aの一方の先端に設けられた頂部6bを有する。負極集電体の頂部6bは、負極端子板7の平担部に溶接されている。
負極集電体6の胴部6aは、その軸方向がX方向と略平行になるように、ゲル状負極3の中心部に所定の長さだけ挿入されている。胴部6aのX方向に垂直な断面は、略円形状である。
The negative electrode current collector 6 has a substantially cylindrical body portion 6a and a top portion 6b provided at one end of the body portion 6a. The top portion 6 b of the negative electrode current collector is welded to the flat portion of the negative electrode terminal plate 7.
The trunk portion 6a of the negative electrode current collector 6 is inserted into the central portion of the gelled negative electrode 3 by a predetermined length so that its axial direction is substantially parallel to the X direction. A cross section perpendicular to the X direction of the body portion 6a is substantially circular.

負極集電体6は平均結晶粒子径が0.015mm以上の真鍮からなる。真鍮の平均結晶粒子径を0.015mm以上に大きくすることにより、粒界の面積、すなわち、真鍮の反応面積(金属の溶出が起こる面積)が減少する。よって、過放電時における真鍮の電解液への溶出が抑制される。これにより、真鍮の溶出による亜鉛の水素発生過電圧の低下が抑制され、電池の耐漏液性が向上する。
真鍮の溶出を効果的に抑制するためには、少なくとも負極集電体の胴部の表面から0.2mmまでの深さの領域で、平均結晶粒子径が、0.015mm以上であることが好ましい。
The negative electrode current collector 6 is made of brass having an average crystal particle diameter of 0.015 mm or more. By increasing the average crystal particle diameter of brass to 0.015 mm or more, the area of grain boundaries, that is, the reaction area of brass (the area where metal elution occurs) decreases. Therefore, elution of brass into the electrolyte during overdischarge is suppressed. Thereby, the fall of the hydrogen generation | occurrence | production overvoltage of zinc by the elution of brass is suppressed, and the leakage resistance of a battery improves.
In order to effectively suppress the elution of brass, it is preferable that the average crystal particle diameter is 0.015 mm or more at least in a region having a depth of 0.2 mm from the surface of the body of the negative electrode current collector. .

また、真鍮の平均結晶粒子径が0.015mm以上と大きいため、負極集電体の柔軟性が改善される。このため、封口ユニット作製時において、負極集電体をガスケットの貫通孔に圧入する際、負極集電体が僅かに曲がっても、矯正される。よって、生産性が向上する。
電池の過放電時の耐漏液性向上および生産性向上の観点から、真鍮の平均結晶粒子径は、好ましくは0.030mm以上であり、より好ましくは0.045mm以上である。真鍮の平均結晶粒子径は最大で0.1mm程度である。
Moreover, since the average crystal particle diameter of brass is as large as 0.015 mm or more, the flexibility of the negative electrode current collector is improved. For this reason, even when the negative electrode current collector is slightly bent when the negative electrode current collector is press-fitted into the through hole of the gasket at the time of producing the sealing unit, it is corrected. Therefore, productivity is improved.
From the viewpoint of improving leakage resistance during battery overdischarge and improving productivity, the average crystal particle diameter of brass is preferably 0.030 mm or more, and more preferably 0.045 mm or more. The average crystal particle diameter of brass is about 0.1 mm at the maximum.

真鍮の平均結晶粒子径は、例えば、以下の方法により求められる。
偏光顕微鏡等で、胴部6aの軸方向Xに垂直な断面像を得る。表面から所定深さ(例えば、表面から深さ0.03〜0.2mm)までの領域を設定し、その領域内の任意の位置に所定長さP(例えば、50〜100μm)の線分を描く。この線分によって完全に区切られる結晶粒子の数Qを求める。そして、下記式より結晶粒子径Rを求める。
結晶粒子径R=線分の長さP/結晶粒子数Q
この作業を複数回(例えば、5〜10回)繰り返し実施し、それぞれ結晶粒子径Rを求める。その平均値を、平均結晶粒子径とする。
The average crystal particle diameter of brass is obtained, for example, by the following method.
A cross-sectional image perpendicular to the axial direction X of the body 6a is obtained with a polarizing microscope or the like. An area from the surface to a predetermined depth (for example, 0.03-0.2 mm from the surface) is set, and a line segment having a predetermined length P (for example, 50 to 100 μm) is placed at an arbitrary position within the area. Draw. The number Q of crystal grains completely divided by this line segment is obtained. And the crystal particle diameter R is calculated | required from a following formula.
Crystal particle diameter R = length of line segment P / number of crystal particles Q
This operation is repeated a plurality of times (for example, 5 to 10 times), and the crystal particle diameter R is obtained. The average value is defined as the average crystal particle size.

真鍮は、銅および亜鉛を含む合金である。ただし、真鍮は、錫、燐、およびアルミニウムからなる群より選択される少なくとも1種を、さらに含むことができる。真鍮における銅および亜鉛以外の元素の含有量は0.05〜3重量%であるのが好ましい。
集電性および強度の観点から、真鍮は、亜鉛を30〜40重量%を含むのが好ましい。真鍮の亜鉛含有量が30重量%未満であると、真鍮の機械的強度が低下し、負極集電体が過度に曲がり易くなり、生産性が低下する。また、コストが高くなる。真鍮の亜鉛含有量が40重量%を超えると、真鍮が脆くなり、加工性が低下する。
Brass is an alloy containing copper and zinc. However, brass can further include at least one selected from the group consisting of tin, phosphorus, and aluminum. The content of elements other than copper and zinc in brass is preferably 0.05 to 3% by weight.
From the viewpoint of current collection and strength, the brass preferably contains 30 to 40% by weight of zinc. If the zinc content of the brass is less than 30% by weight, the mechanical strength of the brass is lowered, the negative electrode current collector is easily bent, and the productivity is lowered. In addition, the cost increases. If the zinc content of the brass exceeds 40% by weight, the brass becomes brittle and the workability decreases.

集電性および強度の観点から、胴部6aの径は、0.95〜1.35mmが好ましい。胴部6aの径が1.35mm以下であると、負極集電体のゲル状負極(電解液)との接触面積が小さくなり、負極集電体からのガス発生が大幅に抑制される。胴部6aの径が0.95mm未満であると、機械的強度が低下して、負極集電体が過度に曲がり易くなり、生産性が低下する。
(胴部6aのゲル状負極へ挿入される部分の長さ)/(胴部6aの全長)は、0.72〜0.86が好ましい。(胴部6aのゲル状負極へ挿入される部分の長さ)/(ゲル状負極の充填高さ)は、0.72〜0.86が好ましい。これにより、負極集電体6のゲル状負極3内に挿入される部分において、ゲル状負極3と負極集電体6とが十分に接触し、良好な集電効果が得られる。
From the viewpoint of current collection and strength, the diameter of the body portion 6a is preferably 0.95 to 1.35 mm. When the diameter of the body portion 6a is 1.35 mm or less, the contact area between the negative electrode current collector and the gelled negative electrode (electrolytic solution) is reduced, and gas generation from the negative electrode current collector is significantly suppressed. When the diameter of the body portion 6a is less than 0.95 mm, the mechanical strength is lowered, the negative electrode current collector is easily bent, and the productivity is lowered.
The length of the portion inserted into the gelled negative electrode of the body portion 6a / (the total length of the body portion 6a) is preferably 0.72 to 0.86. The length of the portion inserted into the gelled negative electrode of the body 6a / (filling height of the gelled negative electrode) is preferably 0.72 to 0.86. Thereby, in the part inserted in the gel-like negative electrode 3 of the negative electrode collector 6, the gel-like negative electrode 3 and the negative electrode collector 6 fully contact, and a favorable current collection effect is acquired.

本発明のアルカリ乾電池において、負極集電体は、以下の方法により作製することができる。すなわち、本発明のアルカリ乾電池の製造方法は、
(1)真鍮からなる釘型成形体を得る工程と、
(2)前記成形体を300℃以上に加熱する工程と、
(3)前記工程(2)の後、前記成形体を10℃/秒以下の速度で冷却し、前記真鍮の平均結晶粒子径が0.015mm以上である負極集電体を得る工程と、
を含む。
In the alkaline dry battery of the present invention, the negative electrode current collector can be produced by the following method. That is, the method for producing the alkaline dry battery of the present invention comprises:
(1) obtaining a nail-shaped product made of brass,
(2) heating the molded body to 300 ° C. or higher;
(3) After the step (2), the molded body is cooled at a rate of 10 ° C./second or less to obtain a negative electrode current collector having an average crystal particle diameter of the brass of 0.015 mm or more;
including.

工程(1)では、常法により、例えば、真鍮からなる線材を所定寸法の釘型にプレス加工し、釘型成形体を得る。
工程(2)および(3)は、非酸化性雰囲気(例えば、アルゴン等の不活性ガス雰囲気)で実施するのが好ましい。
工程(2)は、真鍮を再結晶させるために実施する。
成形体の変形を防ぐため、工程(2)の加熱温度は400℃以下が好ましい。
In step (1), a wire rod made of brass, for example, is pressed into a nail mold having a predetermined size by a conventional method to obtain a nail mold body.
Steps (2) and (3) are preferably performed in a non-oxidizing atmosphere (for example, an inert gas atmosphere such as argon).
Step (2) is performed to recrystallize brass.
In order to prevent deformation of the molded body, the heating temperature in step (2) is preferably 400 ° C. or lower.

工程(3)での加熱後の冷却速度を調整することにより、真鍮の平均結晶粒子径を容易に制御することができる。工程(3)では、1秒間における温度の低下幅を10℃以内に制御して、徐々に冷却する。
工程(3)では、成形体を室温まで冷却するのが好ましい。生産性の観点から、工程(3)の冷却速度は0.5℃/秒以上が好ましい。工程(3)の冷却速度は、より好ましくは0.5〜3.3℃/秒、特に好ましくは0.5〜1.7℃/秒である。
By adjusting the cooling rate after heating in the step (3), the average crystal particle diameter of brass can be easily controlled. In the step (3), the temperature drop in 1 second is controlled within 10 ° C. and gradually cooled.
In the step (3), it is preferable to cool the molded body to room temperature. From the viewpoint of productivity, the cooling rate in the step (3) is preferably 0.5 ° C./second or more. The cooling rate in step (3) is more preferably 0.5 to 3.3 ° C./second, particularly preferably 0.5 to 1.7 ° C./second.

真鍮の電解液への溶出を抑制するため、さらに、工程(3)の後、負極集電体の表面に、錫、インジウム、およびビスマスからなる群より選択される少なくとも1種を含む保護層を形成する工程(4)を含むのが好ましい。保護層は、めっき法により形成するのが好ましい。
保護層の厚みは、0.03〜2μmが好ましい。保護層の厚みが0.03μm未満であると、電池未使用時に集電体からの水素ガス発生により漏液し易くなる。保護層が錫を含む場合、保護層の厚みが2μm超であると、過放電時に錫が溶出し、亜鉛の水素発生過電圧が低下し、水素ガスが発生し易くなる。保護層がインジウムおよびビスマスの少なくとも一方を含む場合、保護層の厚みが2μm超であると、コスト低減が困難となる。
In order to suppress the elution of brass into the electrolyte, a protective layer containing at least one selected from the group consisting of tin, indium, and bismuth is further formed on the surface of the negative electrode current collector after step (3). It is preferable to include the process (4) to form. The protective layer is preferably formed by a plating method.
The thickness of the protective layer is preferably 0.03 to 2 μm. When the thickness of the protective layer is less than 0.03 μm, it is easy to leak due to generation of hydrogen gas from the current collector when the battery is not used. When the protective layer contains tin, if the thickness of the protective layer is more than 2 μm, tin is eluted during overdischarge, the hydrogen generation overvoltage of zinc is lowered, and hydrogen gas is easily generated. When the protective layer contains at least one of indium and bismuth, if the thickness of the protective layer exceeds 2 μm, cost reduction becomes difficult.

ガスケット5は、中央筒部5a、外周筒部5b、および中央筒部5aと外周筒部5bとを連絡する連絡部からなる。中央筒部5aの貫通孔に、負極集電体6の胴部6aが圧入されている。
連絡部は、所定の安全弁として機能する薄肉部5cを有する。電池内圧が異常に上昇した時に、ガスケット5の連絡部に設けられた薄肉部5cが破断し、負極端子板7の孔7aより外部にガスを放出させることができる。
ガスケット5は、例えば、ナイロンまたはポリプロピレンを所定の寸法、形状に射出成形することにより得られる。
The gasket 5 includes a central cylindrical portion 5a, an outer peripheral cylindrical portion 5b, and a connecting portion that connects the central cylindrical portion 5a and the outer peripheral cylindrical portion 5b. The body portion 6a of the negative electrode current collector 6 is press-fitted into the through hole of the central cylinder portion 5a.
The communication part has a thin part 5c that functions as a predetermined safety valve. When the battery internal pressure rises abnormally, the thin portion 5c provided in the connecting portion of the gasket 5 is broken, and gas can be discharged to the outside from the hole 7a of the negative electrode terminal plate 7.
The gasket 5 is obtained, for example, by injection molding nylon or polypropylene into a predetermined size and shape.

電池ケース1の開口端部は、ガスケット5の外周筒部5bを介して負極端子板7の周縁部(鍔部)にかしめつけられている。これにより、電池ケース1の開口部が封口されている。電池ケース1の外表面は、外装ラベル8により被覆されている。   The opening end portion of the battery case 1 is caulked to the peripheral edge portion (the flange portion) of the negative electrode terminal plate 7 via the outer peripheral cylindrical portion 5 b of the gasket 5. Thereby, the opening part of the battery case 1 is sealed. The outer surface of the battery case 1 is covered with an exterior label 8.

正極合剤2、セパレータ4、およびゲル状負極3は、アルカリ電解液を含む。アルカリ電解液は、例えば、水酸化カリウム水溶液である。電解液中の水酸化カリウムの濃度は、30〜40重量%が好ましい。電解液は、さらに酸化亜鉛を含んでもよい。電解液中の酸化亜鉛の濃度は、1〜3重量%が好ましい。   The positive electrode mixture 2, the separator 4, and the gelled negative electrode 3 contain an alkaline electrolyte. The alkaline electrolyte is, for example, an aqueous potassium hydroxide solution. The concentration of potassium hydroxide in the electrolytic solution is preferably 30 to 40% by weight. The electrolytic solution may further contain zinc oxide. The concentration of zinc oxide in the electrolytic solution is preferably 1 to 3% by weight.

正極合剤2は、正極活物質として、二酸化マンガンおよびオキシ水酸化ニッケルの少なくとも一方を含む。正極合剤2は、例えば、正極活物質、導電剤、およびアルカリ電解液の混合物からなる。導電剤には、黒鉛粉末が用いられる。   The positive electrode mixture 2 contains at least one of manganese dioxide and nickel oxyhydroxide as a positive electrode active material. The positive electrode mixture 2 is made of, for example, a mixture of a positive electrode active material, a conductive agent, and an alkaline electrolyte. Graphite powder is used as the conductive agent.

ゲル状負極3は、負極活物質として、亜鉛または亜鉛合金を含む。ゲル状負極3は、例えば、アルカリ電解液にゲル化剤を加えたゲル状電解液、およびゲル状電解液に分散する粉末状の負極活物質からなる。ゲル化剤には、例えば、ポリアクリル酸ナトリウムが用いられる。   The gelled negative electrode 3 contains zinc or a zinc alloy as a negative electrode active material. The gelled negative electrode 3 is made of, for example, a gelled electrolyte obtained by adding a gelling agent to an alkaline electrolyte and a powdered negative electrode active material dispersed in the gelled electrolyte. As the gelling agent, for example, sodium polyacrylate is used.

ゲル状負極3の耐食性を改善するためには、亜鉛合金は、150〜500ppmのAlを含むのが好ましい。Alは活物質粒子の表面に存在するので、過放電時に不働態となり、亜鉛の溶解を遅らせる。亜鉛合金のAl含有量が150ppm未満では、ゲル状負極3の耐食性の改善効果が十分に得られない。亜鉛合金のAl含有量が500ppm超では、放電時にAlがセパレータ上に析出し、微小短絡を生じる場合がある。
さらに、ゲル状負極の耐食性を改善するためには、亜鉛合金は、50〜500ppmのインジウム、30〜200ppmのビスマス、および150〜500ppmのアルミニウムを含むのが、より好ましい。
In order to improve the corrosion resistance of the gelled negative electrode 3, the zinc alloy preferably contains 150 to 500 ppm of Al. Since Al exists on the surface of the active material particles, it becomes passive during overdischarge and delays dissolution of zinc. If the Al content of the zinc alloy is less than 150 ppm, the effect of improving the corrosion resistance of the gelled negative electrode 3 cannot be obtained sufficiently. When the Al content of the zinc alloy exceeds 500 ppm, Al may precipitate on the separator during discharge, resulting in a minute short circuit.
Furthermore, in order to improve the corrosion resistance of the gelled negative electrode, it is more preferable that the zinc alloy contains 50 to 500 ppm indium, 30 to 200 ppm bismuth, and 150 to 500 ppm aluminum.

正極合剤の容量Cpに対するゲル状負極の容量Cnの比(以下、Cn/Cp)は、0.95〜1.10が好ましい。ここでいう容量は、活物質量に基づいて算出される理論容量を示す。
Cn/Cpが小さいほど、放電時の負極活物質の利用率は向上し、放電末期の未反応の亜鉛量が減少し、ゲル状負極からのガス発生量が減少する。ゲル状負極からのガス発生を大幅に抑制するには、Cn/Cpは1.10以下であり、小さいほど好ましい。ただし、Cn/Cpが0.95未満であると、正極活物質利用率が低くなりすぎて、放電性能が低下する場合がある。
The ratio of the capacity Cn of the gelled negative electrode to the capacity Cp of the positive electrode mixture (hereinafter Cn / Cp) is preferably 0.95 to 1.10. The capacity here indicates a theoretical capacity calculated based on the amount of active material.
As Cn / Cp is smaller, the utilization factor of the negative electrode active material during discharge is improved, the amount of unreacted zinc at the end of discharge is decreased, and the amount of gas generated from the gelled negative electrode is decreased. In order to significantly suppress gas generation from the gelled negative electrode, Cn / Cp is 1.10 or less, and the smaller the better. However, when Cn / Cp is less than 0.95, the utilization rate of the positive electrode active material becomes too low, and the discharge performance may deteriorate.

以下、本発明を実施例に基づいて詳細に説明するが、本発明はこれらの実施例に限定されない。
《実施例1〜9および比較例1〜2》
下記の手順により、図1の単3形アルカリ乾電池(LR6)を作製した。
EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to these Examples.
<< Examples 1-9 and Comparative Examples 1-2 >>
The AA alkaline battery (LR6) shown in FIG. 1 was produced by the following procedure.

(1)負極集電体の作製
銅65重量%および亜鉛35重量%を含む真鍮線条(サンエツ金属(株)製)をプレス加工して、釘型成形体(全長:38.0mm、胴部の直径:1.15mm)を得た。
得られた成形体を非酸化性雰囲気にて300℃で10分間加熱した。その後、成形体を25℃になるまで、徐々に冷却した。このとき、成形体を冷却する速度を表1に示す値に変えた。このようにして、平均結晶粒子径の異なる負極集電体を得た。
その後、めっき法により、負極集電体の表面に錫層(厚さ1.5μm)を形成した。
(1) Preparation of negative electrode current collector A brass wire strip (manufactured by Sanetsu Metal Co., Ltd.) containing 65% by weight of copper and 35% by weight of zinc was pressed to form a nail mold (total length: 38.0 mm, trunk) Diameter: 1.15 mm).
The obtained molded body was heated at 300 ° C. for 10 minutes in a non-oxidizing atmosphere. Thereafter, the compact was gradually cooled to 25 ° C. At this time, the cooling rate of the compact was changed to the values shown in Table 1. In this way, negative electrode current collectors having different average crystal particle diameters were obtained.
Thereafter, a tin layer (thickness: 1.5 μm) was formed on the surface of the negative electrode current collector by plating.

[負極集電体の平均結晶粒子径の測定]
(a)前処理
負極集電体を包囲するエポキシ樹脂を硬化させ、負極集電体をエポキシ樹脂硬化物に埋め込んだ。硬化物とともに、負極集電体の胴部を、その軸方向と垂直な方向に切断した。その切断面を研磨紙およびバフを用いて研磨し、鏡面状態とした。
硬化物から露出する負極集電体の切断面をエッチング液に10秒程度浸漬し、その切断面を化学処理した後、十分水洗した。エッチング液には、アンモニア水(29重量%)と、水と、過酸化水素水(33重量%)とを、1:1:0.02の重量比で混合したものを用いた。その後、乾燥し、水分を除去した。
[Measurement of average crystal particle size of negative electrode current collector]
(A) Pretreatment The epoxy resin surrounding the negative electrode current collector was cured, and the negative electrode current collector was embedded in the cured epoxy resin. Together with the cured product, the body of the negative electrode current collector was cut in a direction perpendicular to the axial direction. The cut surface was polished with a polishing paper and a buff to obtain a mirror surface state.
The cut surface of the negative electrode current collector exposed from the cured product was immersed in an etching solution for about 10 seconds, the cut surface was chemically treated, and then sufficiently washed with water. As the etching solution, a mixture of ammonia water (29 wt%), water, and hydrogen peroxide water (33 wt%) in a weight ratio of 1: 1: 0.02 was used. Then, it dried and removed the water | moisture content.

(b)平均結晶粒子径の測定
偏光顕微鏡(Nicon(株)製、Metaphont)にて、切断面の像を得た。
切断面の所定領域における任意の位置に、長さ100μmの線分を描いた。所定領域は、負極集電体の表面から深さ0.2mmまでの間の領域すなわち、切断面における最外周から内周側にかけて0.2mm幅のリング状の領域とした。この線分により完全に区切られる結晶粒子の数をカウントした。(100μm/結晶粒子数)の値を粒子径として求めた。上記の作業を5回繰り返し実施し、その平均値を平均結晶粒子径とした。
(B) Measurement of average crystal particle diameter An image of the cut surface was obtained with a polarizing microscope (Nicon Co., Ltd., Metaphont).
A line segment having a length of 100 μm was drawn at an arbitrary position in a predetermined region of the cut surface. The predetermined region was a region between the surface of the negative electrode current collector and a depth of 0.2 mm, that is, a ring-shaped region having a width of 0.2 mm from the outermost periphery to the inner periphery on the cut surface. The number of crystal particles completely separated by this line segment was counted. The value of (100 μm / number of crystal grains) was determined as the particle diameter. The above operation was repeated 5 times, and the average value was defined as the average crystal particle size.

(2)正極ペレットの作製
二酸化マンガン粉末(平均粒径:35μm)と黒鉛粉末(平均粒径:10μm)とを92.8:6.2の重量比で混合した。そして、この混合物と、アルカリ電解液とを、99:1の重量比で混合し、充分に攪拌した後、圧縮成形してフレーク状の造粒合剤を得た。正極ペレット作製用のアルカリ電解液には、水酸化カリウム水溶液(KOH濃度:35重量%、ZnO濃度:2重量%)を用いた。
ついで、フレーク状の造粒合剤を粉砕して顆粒状とし、これを篩によって分級し、10〜100メッシュのものを中空円筒状に加圧成形して、正極ペレットを得た。
(2) Preparation of positive electrode pellet Manganese dioxide powder (average particle size: 35 μm) and graphite powder (average particle size: 10 μm) were mixed at a weight ratio of 92.8: 6.2. And this mixture and alkaline electrolyte were mixed by the weight ratio of 99: 1, and after fully stirring, it compression-molded and obtained the flaky granulation mixture. A potassium hydroxide aqueous solution (KOH concentration: 35 wt%, ZnO concentration: 2 wt%) was used as the alkaline electrolyte for producing the positive electrode pellet.
Next, the flaky granulation mixture was pulverized into granules, which were classified by a sieve, and those having a size of 10 to 100 mesh were pressure-formed into a hollow cylinder to obtain positive electrode pellets.

(3)ゲル状負極の調製
負極活物質として亜鉛合金粉末(平均粒径:170μm)と、アルカリ電解液としてアルカリ水溶液と、ゲル化剤としてポリアクリル酸ナトリウム粉末とを、63.9:35.4:0.7の重量比で混合し、ゲル状負極3を得た。亜鉛合金には、50ppmのAl、150ppmのBi、および200ppmのInを含む亜鉛合金を用いた。ゲル状負極作製用のアルカリ電解液には、水酸化カリウム水溶液(KOH濃度:35重量%、ZnO濃度:2重量%)を用いた。
(3) Preparation of gelled negative electrode Zinc alloy powder (average particle size: 170 μm) as a negative electrode active material, an alkaline aqueous solution as an alkaline electrolyte, and sodium polyacrylate powder as a gelling agent, 63.9: 35. The mixture was mixed at a weight ratio of 4: 0.7 to obtain a gelled negative electrode 3. As the zinc alloy, a zinc alloy containing 50 ppm Al, 150 ppm Bi, and 200 ppm In was used. A potassium hydroxide aqueous solution (KOH concentration: 35 wt%, ZnO concentration: 2 wt%) was used as the alkaline electrolyte for preparing the gelled negative electrode.

(4)封口ユニットの作製
6、12−ナイロンを所定の寸法、形状に射出成型してガスケット5を得た。ニッケルめっき鋼板(厚み0.4mm)を所定の寸法、形状にプレス加工して負極端子板7を得た。負極端子板7の中央の平坦部に負極集電体6の頂部6bを電気溶接した後、負極集電体6の胴部6aをガスケット5の中央の貫通孔に圧入して、封口ユニット9を作製した。
(4) Production of sealing unit 6,12-nylon was injection molded into a predetermined size and shape to obtain a gasket 5. A nickel-plated steel plate (thickness 0.4 mm) was pressed into a predetermined size and shape to obtain a negative electrode terminal plate 7. After the top portion 6b of the negative electrode current collector 6 is electrically welded to the flat portion at the center of the negative electrode terminal plate 7, the body portion 6a of the negative electrode current collector 6 is press-fitted into the through hole at the center of the gasket 5, and the sealing unit 9 is Produced.

(4)アルカリ乾電池の組立て
正極ペレットを、電池ケース1内に2個挿入し、加圧治具により正極ペレットを加圧して電池ケース1の内壁に密着させ、正極合剤2(10.4g)を得た。正極合剤2内側に有底円筒形のセパレータ4(厚み250μm)を配置した。セパレータ4内にアルカリ電解液(1.45g)を注入した。注液用のアルカリ電解液には、水酸化カリウム水溶液(KOH濃度:35重量%、ZnO:2重量%)を用いた。
(4) Alkaline battery assembly Two positive electrode pellets are inserted into the battery case 1, the positive electrode pellets are pressurized with a pressure jig and brought into close contact with the inner wall of the battery case 1, and positive electrode mixture 2 (10.4 g) Got. A bottomed cylindrical separator 4 (thickness: 250 μm) was placed inside the positive electrode mixture 2. An alkaline electrolyte (1.45 g) was injected into the separator 4. A potassium hydroxide aqueous solution (KOH concentration: 35 wt%, ZnO: 2 wt%) was used as the alkaline electrolyte for pouring.

所定時間経過した後、ゲル状負極3(6.00g)を、セパレータ4を介して正極合剤2の中空部に充填した。セパレータ4には、ポリビニルアルコール繊維およびレーヨン繊維を主体として混抄した不織布を用いた。電池ケース1の開口端部を、封口ユニット9を用いて封口した後、電池ケース1の外表面を外装ラベル8で被覆した。
なお、正極合剤2の容量Cpは2.741Ahであった。ゲル状負極3の容量Cnは3.134Ahであった。すなわち、Cn/Cpは1.14であった。
After a predetermined time had elapsed, the gelled negative electrode 3 (6.00 g) was filled into the hollow portion of the positive electrode mixture 2 through the separator 4. For the separator 4, a non-woven fabric mainly composed of polyvinyl alcohol fiber and rayon fiber was used. After the opening end of the battery case 1 was sealed using the sealing unit 9, the outer surface of the battery case 1 was covered with the exterior label 8.
The capacity Cp of the positive electrode mixture 2 was 2.741 Ah. The capacity Cn of the gelled negative electrode 3 was 3.134 Ah. That is, Cn / Cp was 1.14.

[評価]
(1)封口ユニットの組立て試験
各負極集電体を45000個ずつ準備した。これらの負極集電体を用いて封口ユニットを組立てた。このとき、封口ユニット組立て時における、ガスケットの貫通孔への負極集電体の圧入時に、負極集電体の先端が貫通孔に挿入されずに、負極集電体の胴部が曲がった数をカウントし、封口ユニット構成時の不良発生率を求めた。これは、負極集電体の先端がガスケットの貫通孔の周辺に当たり、曲がりを生じる際、微小な曲がりが矯正されることなく、この状態で負極集電体の胴部がガスケットに押し付けられることにより起こる。
[Evaluation]
(1) Assembly test of sealing unit 45,000 pieces of each negative electrode current collector were prepared. A sealing unit was assembled using these negative electrode current collectors. At this time, when the negative electrode current collector is pressed into the through hole of the gasket when the sealing unit is assembled, the tip of the negative electrode current collector is not inserted into the through hole, and the number of turns of the negative electrode current collector body is calculated. Counting was performed to determine the defect occurrence rate when the sealing unit was configured. This is because when the tip of the negative electrode current collector hits the periphery of the through-hole of the gasket and bending occurs, the negative electrode current collector body is pressed against the gasket in this state without correcting the minute bending. Occur.

(2)過放電時のガス発生量の測定
上記で作製した電池を2個準備した。2個の電池を直列に接続した組電池に10Ωの抵抗を接続し、組電池を20℃環境下で放電させた。放電時の各電池の閉路電圧を監視した。3日経過後、抵抗を取り外した。転極した電池を取り出し、45℃の恒温槽中にて1週間保存した。保存時に発生したガス量を水上置換法により測定した。
評価結果を表1に示す。
(2) Measurement of gas generation amount during overdischarge Two batteries prepared as described above were prepared. A 10Ω resistor was connected to the assembled battery in which two batteries were connected in series, and the assembled battery was discharged in a 20 ° C. environment. The closed circuit voltage of each battery during discharge was monitored. After 3 days, the resistor was removed. The reversed battery was taken out and stored in a constant temperature bath at 45 ° C. for 1 week. The amount of gas generated during storage was measured by the water displacement method.
The evaluation results are shown in Table 1.

Figure 0004865845
Figure 0004865845

負極集電体の平均結晶粒子径が0.015mm以上である実施例1〜9の電池では、過放電時のガス発生が抑制された。負極集電体の平均結晶粒子径が0.015mm未満である比較例1および2の電池では、過放電時に多量のガスが発生した。
負極集電体の平均結晶粒子径が0.030mm以上である実施例4〜9の電池では、過放電時のガス発生量がより減少した。特に、負極集電体の平均結晶粒子径が0.045mm以上である実施例7〜9の電池では、過放電時のガス発生量が大幅に減少した。
In the batteries of Examples 1 to 9 in which the average crystal particle diameter of the negative electrode current collector was 0.015 mm or more, gas generation during overdischarge was suppressed. In the batteries of Comparative Examples 1 and 2 in which the average crystal particle diameter of the negative electrode current collector was less than 0.015 mm, a large amount of gas was generated during overdischarge.
In the batteries of Examples 4 to 9 in which the average crystal particle size of the negative electrode current collector was 0.030 mm or more, the amount of gas generated during overdischarge was further reduced. In particular, in the batteries of Examples 7 to 9 in which the average crystal particle diameter of the negative electrode current collector was 0.045 mm or more, the amount of gas generated during overdischarge was greatly reduced.

実施例1〜9の電池に用いられる負極集電体は、比較例1および2の電池に用いられる負極集電体と比べて、封口ユニット構成時の不良発生率が低下した。これは、実施例1〜9の電池に用いられる負極集電体は、比較例1および2の電池に用いられる負極集電体と比べて、平均結晶粒子径が大きく、柔軟性を有するため、負極集電体をガスケットの貫通孔に圧入する際に、負極集電体の先端が微小に曲がっても、矯正され易くなったためであると考えられる。
実施例4〜9の電池に用いられる、平均結晶粒子径が0.030mm以上の負極集電体では、不良発生率がより低下した。特に、実施例7〜9の電池に用いられる、平均結晶粒子径が0.045mm以上の負極集電体では、不良が発生しなかった。
Compared with the negative electrode collector used for the batteries of Comparative Examples 1 and 2, the negative electrode current collector used for the batteries of Examples 1 to 9 had a lower incidence of defects when the sealing unit was configured. This is because the negative electrode current collector used in the batteries of Examples 1 to 9 has a larger average crystal particle size and flexibility than the negative electrode current collectors used in the batteries of Comparative Examples 1 and 2. This is probably because when the negative electrode current collector is press-fitted into the through hole of the gasket, even if the tip of the negative electrode current collector is bent slightly, it is easily corrected.
In the negative electrode current collector having an average crystal particle diameter of 0.030 mm or more used for the batteries of Examples 4 to 9, the defect occurrence rate was further reduced. In particular, no defects occurred in the negative electrode current collector having an average crystal particle diameter of 0.045 mm or more used in the batteries of Examples 7 to 9.

《実施例10〜15》
負極集電体の胴部の径を変えた以外、実施例1と同様の方法により電池を作製した。上記と同様の方法により過放電時のガス発生量を求めた。
評価結果を表2に示す。
<< Examples 10 to 15 >>
A battery was produced in the same manner as in Example 1 except that the diameter of the body part of the negative electrode current collector was changed. The amount of gas generated during overdischarge was determined by the same method as above.
The evaluation results are shown in Table 2.

Figure 0004865845
Figure 0004865845

胴部の径が小さいほど、ゲル状負極(電解液)との接触面積が減少するため、過放電時のガス発生量は減少した。特に、負極集電体の胴部の径が0.95〜1.35mmである実施例2および10〜13の電池では、過放電時のガス発生量が大幅に減少した。   The smaller the body diameter, the smaller the contact area with the gelled negative electrode (electrolyte), so the amount of gas generated during overdischarge decreased. In particular, in the batteries of Examples 2 and 10-13 in which the diameter of the body of the negative electrode current collector was 0.95 to 1.35 mm, the amount of gas generated during overdischarge was greatly reduced.

《実施例16〜20》
負極活物質に表3に示す組成の亜鉛合金を用いた以外、実施例1と同様の方法により電池を作製した。上記と同様の方法により過放電時のガス発生量を求めた。
<< Examples 16 to 20 >>
A battery was produced in the same manner as in Example 1 except that a zinc alloy having the composition shown in Table 3 was used as the negative electrode active material. The amount of gas generated during overdischarge was determined by the same method as above.

また、下記条件の放電試験Aを実施した。
20℃環境下にて、3.9Ωの負荷で5分間放電した。この放電を1日あたり1回実施した。電池の閉路電圧が0.9Vに達するまで、上記放電を繰り返し実施した。そして、電池の閉路電圧が0.9Vに達するまでの放電時間の合計を求めた。放電時間を、実施例2の放電時間を100として指数として表した。放電性能指数が80以上であれば、放電性能は良好であると判断した。
評価結果を表3に示す。
Moreover, the discharge test A of the following conditions was implemented.
In a 20 ° C. environment, the battery was discharged for 5 minutes with a load of 3.9Ω. This discharge was performed once per day. The above discharge was repeated until the closed circuit voltage of the battery reached 0.9V. And the total of discharge time until the closed circuit voltage of a battery reached 0.9V was calculated | required. The discharge time was expressed as an index with the discharge time of Example 2 as 100. If the discharge performance index was 80 or more, it was judged that the discharge performance was good.
The evaluation results are shown in Table 3.

Figure 0004865845
Figure 0004865845

いずれの電池も、過放電時のガス発生量が減少した。特に、亜鉛合金中のAl含有量が150〜500ppmである実施例17〜19の電池では、過放電時のガス発生量が大幅に減少するとともに、良好な放電性能を示した。   In all the batteries, the amount of gas generated during overdischarge decreased. In particular, in the batteries of Examples 17 to 19 in which the Al content in the zinc alloy was 150 to 500 ppm, the amount of gas generated during overdischarge was significantly reduced and good discharge performance was exhibited.

《実施例21〜25》
負極容量/正極容量(Cn/Cp)の比を変えた。具体的には、表4に示すように、正極合剤中の二酸化マンガン量を一定にし、ゲル状負極中の亜鉛合金量を変えた。これ以外は、実施例1と同様の方法により電池を作製した。上記と同様の方法により過放電時のガス発生量を求めた。
<< Examples 21 to 25 >>
The ratio of negative electrode capacity / positive electrode capacity (Cn / Cp) was changed. Specifically, as shown in Table 4, the amount of manganese dioxide in the positive electrode mixture was made constant, and the amount of zinc alloy in the gelled negative electrode was changed. A battery was manufactured in the same manner as in Example 1 except for the above. The amount of gas generated during overdischarge was determined by the same method as above.

また、下記条件の放電試験Bを実施した。
20℃の環境下にて、電池の閉路電圧が0.9Vに達するまで、10Ωの負荷で連続放電した。その時の放電時間を求めた。放電時間を、実施例2の放電時間を100とした指数として表した。放電性能指数が80以上であれば、放電性能は良好であると判断した。
評価結果を表4に示す。
Moreover, the discharge test B of the following conditions was implemented.
Under an environment of 20 ° C., the battery was continuously discharged with a load of 10Ω until the closed circuit voltage of the battery reached 0.9V. The discharge time at that time was determined. The discharge time was expressed as an index with the discharge time of Example 2 as 100. If the discharge performance index was 80 or more, it was judged that the discharge performance was good.
The evaluation results are shown in Table 4.

Figure 0004865845
Figure 0004865845

いずれの電池も、過放電時のガス発生量が減少した。特に、Cn/Cpが0.95〜1.10である実施例21〜24の電池では、過放電時のガス発生量が大幅に減少するとともに、良好な放電性能を示した。   In all the batteries, the amount of gas generated during overdischarge decreased. In particular, in the batteries of Examples 21 to 24 in which Cn / Cp was 0.95 to 1.10, the amount of gas generated during overdischarge was significantly reduced, and good discharge performance was exhibited.

本発明のアルカリ乾電池は、携帯機器等の電子機器の電源として好適に用いられる。   The alkaline dry battery of the present invention is suitably used as a power source for electronic devices such as portable devices.

1 電池ケース
2 正極合剤
3 ゲル状負極
4 セパレータ
5 ガスケット
6 負極集電体
7 負極端子板
8 外装ラベル
9 封口ユニット
DESCRIPTION OF SYMBOLS 1 Battery case 2 Positive electrode mixture 3 Gel-like negative electrode 4 Separator 5 Gasket 6 Negative electrode collector 7 Negative electrode terminal board 8 Exterior label 9 Sealing unit

Claims (10)

正極活物質を含む中空円筒状の正極合剤と、
前記正極合剤の中空部内に充填され、負極活物質を含むゲル状負極と、
前記正極合剤と前記ゲル状負極との間に配されるセパレータと、
前記ゲル状負極に挿入される負極集電体と、
前記負極集電体と電気的に接続される負極端子板と、
電解液と、
を具備するアルカリ乾電池であって、
前記負極集電体は、平均結晶粒子径が0.015mm以上の真鍮からなり、
前記真鍮が亜鉛を30〜40重量%含むことを特徴とするアルカリ乾電池。
A hollow cylindrical positive electrode mixture containing a positive electrode active material;
A gelled negative electrode filled in the hollow part of the positive electrode mixture and containing a negative electrode active material;
A separator disposed between the positive electrode mixture and the gelled negative electrode;
A negative electrode current collector inserted into the gelled negative electrode;
A negative electrode terminal plate electrically connected to the negative electrode current collector;
An electrolyte,
An alkaline battery comprising:
The negative electrode current collector is made of brass having an average crystal particle diameter of 0.015 mm or more ,
The alkaline dry battery, wherein the brass contains 30 to 40% by weight of zinc .
前記真鍮の平均結晶粒子径が0.030mm以上0.1mm以下である請求項1記載のアルカリ乾電池。   The alkaline dry battery according to claim 1, wherein the brass has an average crystal particle diameter of 0.030 mm or more and 0.1 mm or less. 前記真鍮の平均結晶粒子径が0.045mm以上0.1mm以下である請求項1記載のアルカリ乾電池。   The alkaline dry battery according to claim 1, wherein an average crystal particle diameter of the brass is 0.045 mm or more and 0.1 mm or less. 前記負極集電体は釘型であり、前記ゲル状負極に挿入される略円柱状の胴部、および前記胴部の一方の先端に設けられた頂部を有し、
前記頂部は、前記負極端子板に溶接されており、
前記胴部の径は、0.95〜1.35mmである請求項1〜3のいずれかに記載のアルカリ乾電池。
The negative electrode current collector is a nail type, and has a substantially cylindrical body part inserted into the gelled negative electrode, and a top part provided at one end of the body part,
The top is welded to the negative terminal plate;
The alkaline dry battery according to any one of claims 1 to 3, wherein a diameter of the body portion is 0.95 to 1.35 mm.
前記真鍮は、亜鉛30〜40重量%、任意成分としての錫、燐およびアルミニウムからなる群より選択される少なくとも1種0.05〜3重量%、並びに残部の銅および不可避不純物からなる請求項1〜4のいずれかに記載のアルカリ乾電池。The brass comprises 30 to 40% by weight of zinc, 0.05 to 3% by weight of at least one selected from the group consisting of tin, phosphorus and aluminum as optional components, and the balance copper and inevitable impurities. The alkaline dry battery in any one of -4. 前記正極活物質は、二酸化マンガンおよびオキシ水酸化ニッケルの少なくとも一方を含む請求項1〜5のいずれかに記載のアルカリ乾電池。   The alkaline dry battery according to any one of claims 1 to 5, wherein the positive electrode active material contains at least one of manganese dioxide and nickel oxyhydroxide. 前記負極活物質は、亜鉛または亜鉛合金を含む請求項1〜6のいずれかに記載のアルカリ乾電池。   The alkaline dry battery according to claim 1, wherein the negative electrode active material contains zinc or a zinc alloy. 前記亜鉛合金は、Alを150〜500ppm含む請求項7記載のアルカリ乾電池。   The alkaline dry battery according to claim 7, wherein the zinc alloy contains 150 to 500 ppm of Al. 前記正極合剤の容量Cpに対する前記ゲル状負極の容量Cnの比:Cn/Cpは、0.95〜1.10である請求項1〜8のいずれかに記載のアルカリ乾電池。   The ratio of the capacity Cn of the gelled negative electrode to the capacity Cp of the positive electrode mixture: Cn / Cp is 0.95 to 1.10. The alkaline dry battery according to any one of claims 1 to 8. (1)亜鉛30〜40重量%を含む真鍮からなる釘型成形体を得る工程と、
(2)前記成形体を300℃以上に加熱する工程と、
(3)前記工程(2)の後、前記成形体を10℃/秒以下の速度で冷却し、前記真鍮の平均結晶粒子径が0.015mm以上である負極集電体を得る工程と、
を含むアルカリ乾電池の製造方法。
(1) obtaining a nail-shaped product made of brass containing zinc 30 to 40% by weight,
(2) heating the molded body to 300 ° C. or higher;
(3) After the step (2), the molded body is cooled at a rate of 10 ° C./second or less to obtain a negative electrode current collector having an average crystal particle diameter of the brass of 0.015 mm or more;
A method for producing an alkaline battery comprising:
JP2009229672A 2009-10-01 2009-10-01 Alkaline battery and method for producing the same Active JP4865845B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009229672A JP4865845B2 (en) 2009-10-01 2009-10-01 Alkaline battery and method for producing the same
EP10170776.8A EP2306564B1 (en) 2009-10-01 2010-07-26 Alkaline dry battery and method for producing the same
US12/853,807 US20110081579A1 (en) 2009-10-01 2010-08-10 Alkaline dry battery and method for producing the same
CN201010282273.1A CN102034982B (en) 2009-10-01 2010-09-08 Alkaline dry battery and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009229672A JP4865845B2 (en) 2009-10-01 2009-10-01 Alkaline battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011076978A JP2011076978A (en) 2011-04-14
JP4865845B2 true JP4865845B2 (en) 2012-02-01

Family

ID=43302079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009229672A Active JP4865845B2 (en) 2009-10-01 2009-10-01 Alkaline battery and method for producing the same

Country Status (4)

Country Link
US (1) US20110081579A1 (en)
EP (1) EP2306564B1 (en)
JP (1) JP4865845B2 (en)
CN (1) CN102034982B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9040196B2 (en) * 2010-10-07 2015-05-26 Panasonic Intellectual Property Management Co., Ltd. Alkaline primary battery
JP2023526152A (en) 2020-05-22 2023-06-21 デュラセル、ユーエス、オペレーションズ、インコーポレーテッド Battery cell seal assembly

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4632890A (en) * 1985-06-28 1986-12-30 Duracell Inc. Anode metal treatment and use of said anode in cell
US4777100A (en) * 1985-02-12 1988-10-11 Duracell Inc. Cell corrosion reduction
JPH0719604B2 (en) * 1986-07-31 1995-03-06 富士電気化学株式会社 Alkaline battery manufacturing method
JPH0513085A (en) 1991-07-02 1993-01-22 Hitachi Maxell Ltd Cylindrical alkaline battery
JP2956345B2 (en) * 1992-03-23 1999-10-04 松下電器産業株式会社 Alkaline batteries
US5445908A (en) * 1991-10-17 1995-08-29 Matsushita Electric Industrial Co., Ltd. Alkaline dry cell
JPH05129016A (en) * 1991-11-01 1993-05-25 Toshiba Battery Co Ltd Alkaline dry cell
JPH05343072A (en) * 1992-04-24 1993-12-24 Toshiba Battery Co Ltd Manufacture of alkaline dry battery
JP2001335865A (en) * 2000-03-22 2001-12-04 Nippon Mining & Metals Co Ltd Brass strip excellent in deep drawability and its production method
JP2005276698A (en) * 2004-03-25 2005-10-06 Matsushita Electric Ind Co Ltd Alkaline battery
JP4314223B2 (en) * 2004-09-24 2009-08-12 株式会社東芝 Regenerative power storage system, storage battery system and automobile
JP2006172908A (en) 2004-12-16 2006-06-29 Sony Corp Alkaline battery
ES2259549B1 (en) * 2005-02-21 2007-12-16 Celaya Emparanza Y Galdos, S.A. (Cegasa) AN ALKALINE BATTERY WITH ALLOCATED ZINC AS ACTIVE MATERIAL OF THE ANODE
JP4435801B2 (en) * 2007-04-10 2010-03-24 パナソニック株式会社 Alkaline battery

Also Published As

Publication number Publication date
EP2306564B1 (en) 2019-07-03
CN102034982B (en) 2014-03-05
CN102034982A (en) 2011-04-27
US20110081579A1 (en) 2011-04-07
EP2306564A1 (en) 2011-04-06
JP2011076978A (en) 2011-04-14

Similar Documents

Publication Publication Date Title
EP1950819A1 (en) Battery can and manufacturing method thereof and battery using the same
JP5743780B2 (en) Cylindrical nickel-hydrogen storage battery
EP2224518A1 (en) Negative electrode for alkaline storage battery, method for the fabrication thereof, and alkaline storage battery using the same
JP4435801B2 (en) Alkaline battery
US7897282B2 (en) AA alkaline battery
EP2479824A1 (en) Cylindrical alkaline battery
US7544442B2 (en) Hydrogen-absorbing alloy electrode and alkaline storage battery
JP4865845B2 (en) Alkaline battery and method for producing the same
JP5219338B2 (en) Method for producing alkaline storage battery
US20090061317A1 (en) Negative electrode for alkaline storage battery and alkaline storage battery
EP3249726B1 (en) Alkaline cell
JP2009043417A (en) Cylindrical alkaline battery
JP2010010012A (en) Alkaline battery
JP2003151539A (en) Alkaline dry cell
JP2018037359A (en) Alkali battery
US6508891B2 (en) Method of manufacturing hydrogen-absorbing alloy electrode
JP2001313069A (en) Nickel hydrogen storage battery
JP2011216217A (en) Alkaline dry battery
JP5400498B2 (en) Alkaline primary battery and manufacturing method thereof
JP2006004900A (en) Alkaline dry battery
CN115280548A (en) Alkaline dry cell
JP2022143474A (en) alkaline battery
JP3553752B2 (en) Method for producing hydrogen storage alloy electrode
JP2009163896A (en) Aa alkaline dry battery
WO2012114407A1 (en) Alkali secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4865845

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150