JP5400498B2 - Alkaline primary battery and manufacturing method thereof - Google Patents

Alkaline primary battery and manufacturing method thereof Download PDF

Info

Publication number
JP5400498B2
JP5400498B2 JP2009153695A JP2009153695A JP5400498B2 JP 5400498 B2 JP5400498 B2 JP 5400498B2 JP 2009153695 A JP2009153695 A JP 2009153695A JP 2009153695 A JP2009153695 A JP 2009153695A JP 5400498 B2 JP5400498 B2 JP 5400498B2
Authority
JP
Japan
Prior art keywords
electrolytic solution
negative electrode
concentration
positive electrode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009153695A
Other languages
Japanese (ja)
Other versions
JP2011009149A (en
Inventor
治成 島村
潤 布目
文生 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2009153695A priority Critical patent/JP5400498B2/en
Publication of JP2011009149A publication Critical patent/JP2011009149A/en
Application granted granted Critical
Publication of JP5400498B2 publication Critical patent/JP5400498B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02E60/12

Description

本発明は、アルカリ一次電池に関し、アルカリ一次電池に用いられる電解液の添加剤に関する。   The present invention relates to an alkaline primary battery, and relates to an additive for an electrolytic solution used in an alkaline primary battery.

従来から、携帯機器等の電子機器の電源として、ニッケル水素蓄電池、リチウムイオン二次電池のような二次電池、およびアルカリ乾電池およびマンガン乾電池のような一次電池が広く用いられている。近年、機器の高性能化に伴い、電池性能に対する要求も高まっている。   Conventionally, nickel-metal hydride storage batteries, secondary batteries such as lithium ion secondary batteries, and primary batteries such as alkaline batteries and manganese batteries have been widely used as power sources for electronic devices such as portable devices. In recent years, the demand for battery performance has increased with the improvement in performance of devices.

二次電池について、電池性能向上を目的とした様々な検討が行われている。
例えば、特許文献1では、水酸化ニッケルを含む正極、および水素吸蔵合金を含む負極を備えるニッケル水素蓄電池において、アルカリ電解液にCsOHまたはRbOHを添加することが提案されている。これにより、サイクル寿命が長く、低温域での電池使用時でも活物質の利用率を高く保持することができる。
Various studies have been conducted on secondary batteries for the purpose of improving battery performance.
For example, Patent Document 1 proposes adding CsOH or RbOH to an alkaline electrolyte in a nickel-metal hydride storage battery including a positive electrode including nickel hydroxide and a negative electrode including a hydrogen storage alloy. Thereby, the cycle life is long, and the utilization factor of the active material can be kept high even when the battery is used in a low temperature region.

また、特許文献2では、水酸化ニッケルを含む正極、水酸化カドミウムまたは水素吸蔵合金を含む負極を備えるアルカリ蓄電池(二次電池)において、水酸化ニッケルを主体とする正極活物質表面に、Sr等を含む化合物層を形成し、さらに化合物層中にCs、Rb等の金属イオンを含ませることが提案されている。これにより、正極活物質の導電性が向上し、電池の急速充電特性が向上する
特許文献1および2は、急速充電特性向上およびサイクル寿命特性向上のような二次電池特有の性能向上を目的して、水酸化ニッケルを主体とする二次電池用正極の特性を改善することを提案している。
Moreover, in patent document 2, in the alkaline storage battery (secondary battery) provided with the positive electrode containing nickel hydroxide, the negative electrode containing cadmium hydroxide or a hydrogen storage alloy, Sr etc. on the positive electrode active material surface which has nickel hydroxide as a main component. It has been proposed to form a compound layer containing Cs, and to further include metal ions such as Cs and Rb in the compound layer. As a result, the conductivity of the positive electrode active material is improved, and the quick charge characteristics of the battery are improved. Patent Documents 1 and 2 are intended to improve the performance specific to the secondary battery, such as the quick charge characteristics and the cycle life characteristics. Thus, it has been proposed to improve the characteristics of the positive electrode for secondary batteries mainly composed of nickel hydroxide.

また、一次電池についても、電池性能向上を目的とした様々な検討が行われている。
二酸化マンガンを含む正極、亜鉛を含む負極、およびアルカリ電解液を備えるアルカリ一次電池では、放電末期に、負極において導電性の低い酸化亜鉛が析出し、負極の分極が急激に増大し、放電電圧が急激に低下しやすいという問題がある。特に、高負荷放電時には、上記の分極の増大による放電電圧の低下が顕著であった。
Various studies have also been conducted on primary batteries for the purpose of improving battery performance.
In an alkaline primary battery including a positive electrode containing manganese dioxide, a negative electrode containing zinc, and an alkaline electrolyte, zinc oxide having low conductivity is deposited at the negative electrode at the end of discharge, and the polarization of the negative electrode increases rapidly, and the discharge voltage increases. There is a problem that it is likely to drop rapidly. In particular, during high-load discharge, the decrease in discharge voltage due to the increase in polarization was significant.

特開平6−283195号公報JP-A-6-283195 特開2001−283840号公報JP 2001-283840 A

そこで、本発明は、上記従来の問題を解決するために、放電末期における負極活物質の導電性の低下による負極の分極増大が抑制された、優れた放電特性を有するアルカリ一次電池を提供することを目的とする。また、そのアルカリ一次電池の製造方法を提供することを目的とする。   Therefore, the present invention provides an alkaline primary battery having excellent discharge characteristics in which increase in polarization of the negative electrode due to a decrease in conductivity of the negative electrode active material at the end of discharge is suppressed in order to solve the above-described conventional problems. With the goal. Moreover, it aims at providing the manufacturing method of the alkaline primary battery.

本発明は、正極活物質である二酸化マンガン、および導電剤である黒鉛を含む正極、負極活物質である亜鉛または亜鉛合金を含む負極、前記正極と前記負極との間に配されるセパレータ、ならびに電解液を具備するアルカリ一次電池であって、前記電解液は、KOH、ならびに添加剤としてCsOHおよびRbOHの少なくとも一方を含む水溶液である。
前記電解液中の添加剤濃度は、0.1〜2質量%である。
前記電解液中のKOH濃度は、25〜36質量%であるのが好ましい。
前記添加剤がCsOHであるとき、前記電解液中の前記添加剤の濃度は、0.5〜2質量%であることが好ましい。前記電解液が、前記添加剤として、CsOHおよびRbOHの双方を含むとき、CsOHとRbOHとの質量比は、20:80〜80:20であることが好ましい。
The present invention includes a positive electrode including manganese dioxide as a positive electrode active material and graphite as a conductive agent, a negative electrode including zinc or a zinc alloy as a negative electrode active material, a separator disposed between the positive electrode and the negative electrode, and an alkaline primary battery comprising an electrolytic solution, said electrolytic solution, Ru aqueous der containing at least one of CsOH and RbOH as KOH, and additives.
Additive concentration of the electrolytic solution, Ru 0.1 to 2% by mass.
The KOH concentration in the electrolytic solution is preferably 25 to 36% by mass .
When the additive is CsOH, the concentration of the additive in the electrolytic solution is preferably 0.5 to 2% by mass. When the electrolytic solution contains both CsOH and RbOH as the additive, the mass ratio of CsOH to RbOH is preferably 20:80 to 80:20.

また、本発明のアルカリ一次電池の製造方法は、
(1)KOH、ならびに添加剤としてCsOHおよびRbOHの少なくとも一方を含む水溶液からなる第1電解液を得る工程、
(2)負極活物質である亜鉛または亜鉛合金、ゲル化剤、および前記工程(1)で得られた前記第1電解液を混合して負極を得る工程、
(3)正極活物質である二酸化マンガン、導電剤である黒鉛、および第2電解液を含む中空円筒形の正極を得る工程、
(4)前記正極を電池ケースに配置する工程、
(5)前記正極の中空部の内面にセパレータを配置し、前記セパレータに第3電解液を注液した後、前記正極の前記中空部に前記セパレータを介して前記負極を充填する工程、ならびに
(6)前記電池ケースの開口に封口部材を配置して、アルカリ一次電池を得る工程、
を含み、前記アルカリ一次電池に含まれる総電解液中の前記添加剤の濃度は、0.1〜2質量%である
In addition, the method for producing an alkaline primary battery of the present invention includes
(1) A step of obtaining a first electrolytic solution comprising an aqueous solution containing KOH and at least one of CsOH and RbOH as an additive,
(2) A step of obtaining a negative electrode by mixing zinc or a zinc alloy that is a negative electrode active material, a gelling agent, and the first electrolytic solution obtained in the step (1),
(3) A step of obtaining a hollow cylindrical positive electrode containing manganese dioxide as a positive electrode active material, graphite as a conductive agent, and a second electrolytic solution,
(4) a step of arranging the positive electrode in a battery case;
(5) the separator is disposed on the inner surface of the hollow portion of the positive electrode, after pouring the third electrolyte to the separator, the step of filling the positive electrode wherein through the separator into the hollow portion negative electrode of the well, ( 6) A step of arranging a sealing member in the opening of the battery case to obtain an alkaline primary battery ,
Only contains a concentration of the additive of the total electrolyte solution contained in the alkaline primary battery is a 0.1 to 2 mass%.

前記工程(1)における前記第1電解液中の前記添加剤濃度は、0.2〜4質量%であるのが好ましい。
前記工程(1)における前記第1電解液中のKOH濃度は、29〜37質量%であるのが好ましい。
前記工程(5)における前記第3電解液中のKOH濃度は、29〜37質量%であるのが好ましい。
The concentration of the additive of the first electrolytic solution in the step (1) is preferably from 0.2 to 4 mass%.
The KOH concentration in the first electrolyte solution in the step (1) is preferably 29 to 37% by mass .
The KOH concentration in the third electrolyte solution in the step (5) is preferably 29 to 37% by mass .

本発明によれば、放電末期における負極活物質の導電性の低下による負極の分極増大が抑制された、優れた放電特性を有するアルカリ一次電池を提供することができる。低負荷、中負荷、および高負荷のいずれにおいても優れた放電特性が得られる。   ADVANTAGE OF THE INVENTION According to this invention, the alkaline primary battery which has the outstanding discharge characteristic in which the polarization increase of the negative electrode by the electroconductive fall of the negative electrode active material in the end stage of discharge was suppressed can be provided. Excellent discharge characteristics can be obtained at any of low, medium, and high loads.

本発明のアルカリ一次電池の一実施形態である単3形アルカリ乾電池の一部を断面にした正面図である。It is the front view which made a part of AA alkaline dry battery which is one embodiment of the alkaline primary battery of the present invention a section.

本発明は、正極活物質である二酸化マンガン、および導電剤である黒鉛を含む正極、負極活物質である亜鉛または亜鉛合金を含む負極、前記正極と前記負極との間に配されるセパレータ、ならびにアルカリ電解液を具備するアルカリ一次電池に関する。そして、本発明は、電解液が、KOH、ならびに添加剤としてCsOHおよびRbOHの少なくとも一方を含む水溶液である点に特徴を有する。電解液は、正極、負極、およびセパレータ内に含まれる。   The present invention includes a positive electrode including manganese dioxide as a positive electrode active material and graphite as a conductive agent, a negative electrode including zinc or a zinc alloy as a negative electrode active material, a separator disposed between the positive electrode and the negative electrode, and The present invention relates to an alkaline primary battery including an alkaline electrolyte. The present invention is characterized in that the electrolytic solution is an aqueous solution containing KOH and at least one of CsOH and RbOH as an additive. The electrolytic solution is contained in the positive electrode, the negative electrode, and the separator.

アルカリ一次電池の負極では、放電時に、下記式(1)のようなZn(OH)4 2-を生じる反応が起こる。
Zn+4OH-→Zn(OH)4 2-+2e- (1)
In the negative electrode of an alkaline primary battery, a reaction that generates Zn (OH) 4 2− represented by the following formula (1) occurs during discharge.
Zn + 4OH → Zn (OH) 4 2− + 2e (1)

放電が進行し、放電末期になると、下記式(2)のようにZn(OH)4 2-がZnOに変化する反応が起こり易くなる。負極活物質の表面にZnOが析出すると、負極の導電性が低下し、分極が増大する。
Zn(OH)4 2-→ZnO+H2O+2OH- (2)
When the discharge proceeds and reaches the end of the discharge, a reaction in which Zn (OH) 4 2− changes to ZnO easily occurs as shown in the following formula (2). When ZnO precipitates on the surface of the negative electrode active material, the conductivity of the negative electrode decreases and the polarization increases.
Zn (OH) 4 2− → ZnO + H 2 O + 2OH (2)

これに対して、本発明では、アルカリ一次電池のKOH水溶液からなる電解液に、KOHよりも電離度が大きいCsOHおよびRbOHの少なくとも一方を添加することにより、式(2)の反応(ZnOの生成)が抑制される。従って、放電末期の負極でのZnOの生成による分極増大が抑制され、放電特性が向上する。低負荷、中負荷だけでなく、高負荷においても、優れた放電特性が得られる。   In contrast, in the present invention, at least one of CsOH and RbOH having a degree of ionization higher than that of KOH is added to an electrolytic solution composed of an aqueous KOH solution of an alkaline primary battery, thereby generating a reaction (formation of ZnO). ) Is suppressed. Therefore, an increase in polarization due to the formation of ZnO at the negative electrode at the end of discharge is suppressed, and the discharge characteristics are improved. Excellent discharge characteristics can be obtained not only at low and medium loads, but also at high loads.

電池内の電解液中の上記添加剤濃度は、0.02〜7重量%であるのが好ましい。
ここで、電池内の電解液とは、正極、負極、およびセパレータからなる発電要素に含まれる電解液全体のことをいう。
電池内の電解液中の上記添加剤濃度は、例えば、以下の方法により得られる。製造後(例えば、製造してから1〜4週間経過後)の電池内から負極を取り出し、その負極内の電解液中の上記添加剤濃度を測定する。そして、電池内の負極に存在する電解液の上記添加剤濃度を、電池内の電解液中の上記添加剤濃度として求める。
電池内の電解液中の上記添加剤濃度が0.02重量%未満であると、添加剤による効果が十分に得られない場合がある。電池内の電解液中の上記添加剤濃度が7重量%を超えると、高負荷放電特性が低下する場合がある。より優れた放電特性を得るためには、電池内の電解液中の上記添加剤濃度は、より好ましくは0.1〜5重量%であり、さらに好ましくは0.1〜2重量%である。
The concentration of the additive in the electrolytic solution in the battery is preferably 0.02 to 7% by weight.
Here, the electrolytic solution in the battery refers to the entire electrolytic solution contained in the power generation element composed of the positive electrode, the negative electrode, and the separator.
The additive concentration in the electrolytic solution in the battery can be obtained, for example, by the following method. The negative electrode is taken out from the battery after production (for example, after 1 to 4 weeks have passed since production), and the concentration of the additive in the electrolyte solution in the negative electrode is measured. And the said additive concentration of the electrolyte solution which exists in the negative electrode in a battery is calculated | required as the said additive concentration in the electrolyte solution in a battery.
If the concentration of the additive in the electrolyte in the battery is less than 0.02% by weight, the effect of the additive may not be sufficiently obtained. When the concentration of the additive in the electrolytic solution in the battery exceeds 7% by weight, the high load discharge characteristics may be deteriorated. In order to obtain more excellent discharge characteristics, the concentration of the additive in the electrolytic solution in the battery is more preferably 0.1 to 5% by weight, and further preferably 0.1 to 2% by weight.

優れた中負荷放電特性を得るためには、添加剤はRbOHであるのが好ましい。材料コストを重視する場合、添加剤はCsOHであるのが好ましい。放電特性および材料コストの観点から、添加剤に、CsOHおよびRbOHを組み合わせて用いる場合、両者の混合重量比は、好ましくは20〜80:80〜20であり、より好ましくは30〜70:70〜30である。   In order to obtain excellent medium load discharge characteristics, the additive is preferably RbOH. When importance is attached to the material cost, the additive is preferably CsOH. From the viewpoint of discharge characteristics and material cost, when CsOH and RbOH are used in combination as an additive, the mixing weight ratio between them is preferably 20-80: 80-20, more preferably 30-70: 70- 30.

電池内の電解液中のKOH濃度は、25〜36重量%であるのが好ましい。電池内の電解液中のKOH濃度が25重量%以上であると、電解液のイオン伝導性が向上し、放電特性が大幅に向上する。電池内の電解液中のKOH濃度が36重量%を超えると、電解液のイオン伝導性が低下し、高負荷放電特性が低下する場合がある。
優れた高負荷放電特性を得るためには、電池内の電解液中のKOH濃度は30〜36重量%であるのが、より好ましい。優れた中負荷放電特性を得るためには、電池内の電解液中のKOH濃度は27〜34重量%であるのが、より好ましい。優れた低負荷放電特性を得るためには、電解液中のKOH濃度は25〜32重量%であるのが、より好ましい。
The KOH concentration in the electrolytic solution in the battery is preferably 25 to 36% by weight. When the KOH concentration in the electrolytic solution in the battery is 25% by weight or more, the ionic conductivity of the electrolytic solution is improved, and the discharge characteristics are greatly improved. When the KOH concentration in the electrolytic solution in the battery exceeds 36% by weight, the ionic conductivity of the electrolytic solution is lowered, and the high-load discharge characteristics may be lowered.
In order to obtain excellent high-load discharge characteristics, the KOH concentration in the electrolyte solution in the battery is more preferably 30 to 36% by weight. In order to obtain excellent medium load discharge characteristics, the KOH concentration in the electrolyte in the battery is more preferably 27 to 34% by weight. In order to obtain excellent low-load discharge characteristics, the KOH concentration in the electrolytic solution is more preferably 25 to 32% by weight.

電解液は、負極の水素ガス発生による漏液を抑制するため、さらにZnOを含むのが好ましい。電池内の電解液中のZnO濃度は、1〜3重量%が好ましい。電解液中のZnO濃度が3重量%を超えると、放電特性が低下する場合がある。電池内における電解液中のKOH濃度は27〜33重量%およびZnO濃度は1〜3重量%が好ましい。
電池内の電解液中のKOH濃度およびZnO濃度は、例えば、以下の方法により得られる。製造後(例えば、製造してから1〜4週間経過後)の電池内から負極を取り出し、その負極内の電解液中のKOH濃度およびZnO濃度を測定する。そして、電池内の負極に存在する電解液のKOH濃度およびZnO濃度を、電池内の電解液中のKOH濃度およびZnO濃度として求める。
なお、負極作製用、正極作製用、および注液用に、KOH濃度が29〜37重量%の電解液を用い、正極活物質に電解二酸化マンガン(EMD)を用いて電池を構成する場合、製造後(例えば、製造してから1〜4週間経過後)の電池内の電解液中のKOH濃度を測定すると、25〜36重量%となり、電池の作製で用いた電解液中のKOH濃度よりも若干低くなる。これは、EMDの作製の際にEMDに付着した硫酸根(例えば、硫酸マンガンなど)が、電解液中のKOHの一部と中和反応を起こすためであると考えられる。
The electrolyte preferably further contains ZnO in order to suppress leakage due to hydrogen gas generation in the negative electrode. The ZnO concentration in the electrolytic solution in the battery is preferably 1 to 3% by weight. When the ZnO concentration in the electrolytic solution exceeds 3% by weight, the discharge characteristics may deteriorate. The KOH concentration in the electrolyte in the battery is preferably 27 to 33% by weight and the ZnO concentration is preferably 1 to 3% by weight.
The KOH concentration and ZnO concentration in the electrolytic solution in the battery can be obtained, for example, by the following method. The negative electrode is taken out from the battery after manufacture (for example, after 1 to 4 weeks have elapsed since manufacture), and the KOH concentration and ZnO concentration in the electrolyte solution in the negative electrode are measured. Then, the KOH concentration and ZnO concentration of the electrolytic solution present in the negative electrode in the battery are obtained as the KOH concentration and ZnO concentration in the electrolytic solution in the battery.
In addition, when a battery is constituted by using an electrolytic solution having a KOH concentration of 29 to 37% by weight for negative electrode preparation, positive electrode preparation, and injection, and using electrolytic manganese dioxide (EMD) as a positive electrode active material, manufacturing is performed. When the KOH concentration in the electrolyte in the battery after measurement (for example, after 1 to 4 weeks has elapsed since manufacture) is 25 to 36% by weight, which is higher than the KOH concentration in the electrolyte used in the production of the battery. Slightly lower. This is presumably because sulfate radicals (for example, manganese sulfate) attached to the EMD during the production of the EMD cause a neutralization reaction with a part of KOH in the electrolytic solution.

上記添加剤の電解液への添加方法については、電池作製時において電解液中に添加剤が含まれるように添加すればよく、特に限定されない。
上記添加剤の効果がより確実に得られるため、上記添加剤は、ゲル状負極作製時に用いられる電解液に添加するのが好ましい。これ以外に、上記添加剤は、正極合剤作製時に用いられる電解液に含ませてもよく、電池作製時にセパレータ(電池内)に注液する電解液中に含ませてもよい。いずれの場合でも、最終的には添加剤は、電池内の発電要素全体(正極合剤、ゲル状負極、およびセパレータ)に分散する。
KOH濃度を容易に調整するためには、正極作製用の電解液、負極作製用の電解液、およびセパレータ注液用の電解液は、互いにKOH濃度が同じであるのが好ましい。
ZnOの場合についても、上記添加剤の場合と同様の方法により添加すればよい。
The method for adding the additive to the electrolytic solution is not particularly limited as long as the additive is contained in the electrolytic solution during battery production.
In order to obtain the effect of the additive more reliably, it is preferable to add the additive to the electrolytic solution used in preparing the gelled negative electrode. In addition to this, the additive may be included in an electrolytic solution used when preparing a positive electrode mixture, or may be included in an electrolytic solution poured into a separator (inside the battery) when preparing a battery. In any case, the additive is finally dispersed throughout the power generation element (positive electrode mixture, gelled negative electrode, and separator) in the battery.
In order to easily adjust the KOH concentration, it is preferable that the electrolytic solution for producing the positive electrode, the electrolytic solution for producing the negative electrode, and the electrolytic solution for injecting the separator have the same KOH concentration.
In the case of ZnO, it may be added by the same method as in the case of the additive.

また、本発明のアルカリ一次電池の製造方法は、負極作製時に用いられる電解液に上記添加剤を添加する方法である。
すなわち、本発明のアルカリ一次電池の製造方法は、
(1)KOH、ならびに添加剤としてCsOHおよびRbOHの少なくとも一方を含む水溶液からなる電解液を得る工程、
(2)負極活物質である亜鉛または亜鉛合金、ゲル化剤、および前記工程(1)で得られた電解液を混合して負極を得る工程、
(3)正極活物質である二酸化マンガン、導電剤である黒鉛、および電解液を含む中空円筒形の正極を得る工程、
(4)前記正極を電池ケース内に配置する工程、
(5)前記正極の中空部の内面にセパレータを配置し、前記セパレータに電解液を注液した後、前記正極の中空部に前記セパレータを介して前記負極を充填する工程、ならびに
(6)前記電池ケースの開口に封口部材を配置する工程、
を含む。
Moreover, the manufacturing method of the alkaline primary battery of this invention is a method of adding the said additive to the electrolyte solution used at the time of negative electrode preparation.
That is, the method for producing an alkaline primary battery of the present invention includes:
(1) A step of obtaining an electrolytic solution comprising an aqueous solution containing KOH and at least one of CsOH and RbOH as an additive,
(2) A step of obtaining a negative electrode by mixing zinc or a zinc alloy as a negative electrode active material, a gelling agent, and the electrolytic solution obtained in the step (1),
(3) obtaining a hollow cylindrical positive electrode containing manganese dioxide as a positive electrode active material, graphite as a conductive agent, and an electrolyte;
(4) a step of arranging the positive electrode in a battery case;
(5) placing a separator on the inner surface of the hollow part of the positive electrode, injecting an electrolyte into the separator, and then filling the negative electrode into the hollow part of the positive electrode through the separator; and (6) Arranging a sealing member in the opening of the battery case;
including.

[工程(1)]
工程(1)の添加剤を含む電解液は、工程(2)の負極の作製に用いられる。
工程(1)における電解液中の添加剤濃度は、0.04〜14重量%であるのが好ましい。工程(1)における電解液中の添加剤濃度が0.04重量%未満であると、添加剤による効果が十分に得られない場合がある。工程(1)における電解液中の添加剤濃度が14重量%を超えると、高率放電特性が低下する場合がある。
より優れた放電特性を得るためには、工程(1)における電解液中の添加剤濃度は、より好ましくは0.2〜10重量%であり、さらに好ましくは0.2〜4重量%である。
添加剤濃度が0.04〜14重量%である電解液を用いて、ゲル状負極を作製するが、最終的に得られる電池内に存在する電解液全体(正極合剤、セパレータおよびゲル状負極中の電解液の合計量)に対する添加剤濃度が0.02〜7重量%となるように上記範囲内で添加剤濃度を適宜設定すればよい。
[Step (1)]
The electrolytic solution containing the additive in the step (1) is used for producing the negative electrode in the step (2).
The additive concentration in the electrolytic solution in the step (1) is preferably 0.04 to 14% by weight. If the additive concentration in the electrolytic solution in step (1) is less than 0.04% by weight, the effect of the additive may not be sufficiently obtained. When the additive concentration in the electrolytic solution in the step (1) exceeds 14% by weight, the high rate discharge characteristics may be deteriorated.
In order to obtain more excellent discharge characteristics, the additive concentration in the electrolytic solution in the step (1) is more preferably 0.2 to 10% by weight, and further preferably 0.2 to 4% by weight. .
A gelled negative electrode is prepared using an electrolytic solution having an additive concentration of 0.04 to 14% by weight, but the entire electrolytic solution (positive electrode mixture, separator and gelled negative electrode) present in the finally obtained battery. What is necessary is just to set an additive concentration suitably within the said range so that the additive concentration with respect to the total amount of electrolyte solution in it may be 0.02 to 7 weight%.

工程(1)における電解液中のKOH濃度は、好ましくは29〜37重量%であり、より好ましくは31〜35重量%である。工程(1)における電解液中のKOH濃度が29重量%以上であると、電解液のイオン伝導性が向上し、放電特性が大幅に向上する。工程(1)における電解液中のKOH濃度が37重量%を超えると、電解液のイオン伝導性が低下し、高負荷放電特性が低下する場合がある。
KOH濃度が29〜37重量%である電解液を用いて、ゲル状負極を作製するが、最終的に得られる電池内に存在する電解液全体(正極合剤、セパレータおよびゲル状負極中の電解液の合計量)に対するKOH濃度が25〜36重量%となるように上記範囲内でKOH濃度を適宜設定すればよい。
The KOH concentration in the electrolytic solution in the step (1) is preferably 29 to 37% by weight, more preferably 31 to 35% by weight. When the KOH concentration in the electrolytic solution in the step (1) is 29% by weight or more, the ionic conductivity of the electrolytic solution is improved, and the discharge characteristics are greatly improved. When the KOH concentration in the electrolytic solution in the step (1) exceeds 37% by weight, the ionic conductivity of the electrolytic solution may be lowered, and the high load discharge characteristics may be lowered.
A gelled negative electrode is prepared using an electrolytic solution having a KOH concentration of 29 to 37% by weight, but the entire electrolytic solution present in the battery finally obtained (positive electrode mixture, separator and electrolysis in the gelled negative electrode) The KOH concentration may be appropriately set within the above range so that the KOH concentration with respect to the total amount of the liquid is 25 to 36% by weight.

[工程(2)]
工程(2)では、工程(1)で得られた添加剤を含む電解液を用いて負極を作製する。
工程(2)において、負極は、例えば、工程(1)で得られた電解液にゲル化剤を添加して得られたゲル状電解液に、負極活物質として亜鉛合金粉末を混合分散させることにより得られる。
[Step (2)]
In step (2), a negative electrode is produced using the electrolytic solution containing the additive obtained in step (1).
In the step (2), for example, the negative electrode is obtained by mixing and dispersing zinc alloy powder as a negative electrode active material in a gel electrolyte obtained by adding a gelling agent to the electrolyte obtained in the step (1). Is obtained.

負極活物質には、粉末状の亜鉛または亜鉛合金が用いられる。亜鉛合金は耐食性に優れたものを用いるのが好ましく、さらには、環境に配慮して水銀、カドミウム、もしくは鉛、またはそれら全てが無添加であるものがより好ましい。例えば、亜鉛合金は、インジウム、ビスマス、アルミニウムのような元素を含むのが好ましい。これらの元素を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。亜鉛合金は、0.01〜0.1重量%のインジウム、0.005〜0.02重量%のビスマス、および0.001〜0.005重量%のアルミニウムを含むのが好ましい。亜鉛合金には、三井金属(株)製の70SA−H(Al、Bi、およびInの含有量が、それぞれ50ppm、50ppm、および200ppm)を用いるのが好ましい。   As the negative electrode active material, powdery zinc or a zinc alloy is used. It is preferable to use a zinc alloy having excellent corrosion resistance, and it is more preferable that mercury, cadmium, lead, or all of them are not added in consideration of the environment. For example, the zinc alloy preferably contains elements such as indium, bismuth, and aluminum. These elements may be used alone or in combination of two or more. The zinc alloy preferably includes 0.01 to 0.1 wt% indium, 0.005 to 0.02 wt% bismuth, and 0.001 to 0.005 wt% aluminum. It is preferable to use 70SA-H (Al, Bi, and In contents of 50 ppm, 50 ppm, and 200 ppm, respectively) manufactured by Mitsui Kinzoku Co., Ltd. as the zinc alloy.

工程(2)における電解液の添加量は、負極活物質100重量部あたり50〜60重量部であるのが好ましい。
ゲル化剤には、例えば、ポリアクリル酸ナトリウムが用いられる。
ゲル化剤の添加量は、負極活物質100重量部あたり1〜5重量部であるのが好ましい。
The amount of the electrolytic solution added in the step (2) is preferably 50 to 60 parts by weight per 100 parts by weight of the negative electrode active material.
As the gelling agent, for example, sodium polyacrylate is used.
The addition amount of the gelling agent is preferably 1 to 5 parts by weight per 100 parts by weight of the negative electrode active material.

[工程(3)]
工程(3)では、例えば、正極活物質、導電剤、および電解液からなる粒状の混合物(例えば、粒径38〜1000μm)を得、これを中空円筒形に加圧成形することにより、中空円筒形の正極合剤ペレットが得られる。
正極活物質には、粉末状の電解二酸化マンガン(例えば、東ソー(株)製、HH−TF7)が用いられる。電解二酸化マンガンの粒径は、例えば0.1〜100μmである。
導電剤には、粉末状の黒鉛(例えば、日本黒鉛(株)製、SP−20)が用いられる。黒鉛の粒径は、例えば粒径3〜30μmである。
黒鉛の添加量は、正極活物質100重量部あたり6〜10重量部であるのが好ましい。
また、正極活物質として、二酸化マンガンにオキシ水酸化ニッケルを組み合わせて用いてもよい。この場合、オキシ水酸化ニッケルは、二酸化マンガン100重量部あたり5〜50重量部用いるのが好ましい。
[Step (3)]
In the step (3), for example, a granular mixture (for example, a particle size of 38 to 1000 μm) composed of a positive electrode active material, a conductive agent, and an electrolytic solution is obtained, and this is pressed into a hollow cylinder, thereby forming a hollow cylinder. In the form of a positive electrode mixture pellet.
As the positive electrode active material, powdered electrolytic manganese dioxide (for example, HH-TF7 manufactured by Tosoh Corporation) is used. The particle size of the electrolytic manganese dioxide is, for example, 0.1 to 100 μm.
As the conductive agent, powdery graphite (for example, SP-20 manufactured by Nippon Graphite Co., Ltd.) is used. The particle diameter of graphite is, for example, 3 to 30 μm.
The amount of graphite added is preferably 6 to 10 parts by weight per 100 parts by weight of the positive electrode active material.
Further, as the positive electrode active material, manganese dioxide and nickel oxyhydroxide may be used in combination. In this case, it is preferable to use 5 to 50 parts by weight of nickel oxyhydroxide per 100 parts by weight of manganese dioxide.

工程(3)の正極作製に用いられる電解液の添加量は、正極活物質100重量部あたり0.8〜3重量部であるのが好ましい。
負極作製用および注液用の電解液とKOH濃度が同じ電解液を用いる場合、工程(3)で用いられる電解液は、濃度29〜37重量%のKOH水溶液であるのが好ましい。
また、所定の成形用の金型に上記の粒状の混合物を充填し、加圧成形して、中空円筒形の正極合剤ペレットを得る場合、成形用の金型が錆びないようにするためには、工程(3)で用いられる電解液に、36〜42重量%の高濃度のKOH水溶液を用いるのが好ましい。
また、必要に応じて、上記混合物にポリエチレン粉末等の結着剤やステアリン酸塩等の滑沢剤を添加してもよい。
It is preferable that the addition amount of the electrolyte solution used for producing the positive electrode in the step (3) is 0.8 to 3 parts by weight per 100 parts by weight of the positive electrode active material.
When using an electrolytic solution having the same KOH concentration as the electrolytic solution for preparing the negative electrode and for pouring, the electrolytic solution used in step (3) is preferably a KOH aqueous solution having a concentration of 29 to 37% by weight.
Also, when filling a predetermined molding die with the above granular mixture and pressing to obtain a hollow cylindrical positive electrode mixture pellet, in order to prevent the molding die from rusting In the step (3), it is preferable to use a 36 to 42% by weight high-concentration KOH aqueous solution for the electrolytic solution.
If necessary, a binder such as polyethylene powder or a lubricant such as stearate may be added to the above mixture.

[工程(4)]
工程(4)では、例えば、中空円筒形の正極合剤ペレットの複数個を電池ケースに配置した後、再度加圧成形し、電池ケースの内面に正極合剤ペレットを密着させることにより、正極合剤が電池ケース内に配置される。
電池ケースと正極合剤との間の接触抵抗を低減するため、電池ケースの内面には、黒鉛塗膜(例えば、厚み0.1〜5μm)が配されているのが好ましい。
[Step (4)]
In step (4), for example, a plurality of hollow cylindrical positive electrode mixture pellets are placed in the battery case, and then pressed again, and the positive electrode mixture pellets are brought into close contact with the inner surface of the battery case. An agent is placed in the battery case.
In order to reduce the contact resistance between the battery case and the positive electrode mixture, it is preferable that a graphite coating (for example, a thickness of 0.1 to 5 μm) is disposed on the inner surface of the battery case.

[工程(5)]
工程(5)では、例えば、正極合剤の中空部の内面(中空部の側面および底面)に、一端が封じられた筒状のセパレータを配置し、セパレータ(電池ケース内)に電解液を注液した後、正極合剤の中空部内にセパレータを介してゲル状負極を充填する。
セパレータには、耐アルカリ性に優れた微多孔性シートが用いられる。セパレータには、例えば、ポリビニルアルコール繊維およびレーヨン繊維を主体として混抄した不織布が用いられる。セパレータの厚みは、例えば、80〜250μmである。
負極の作製に用いる電解液のみに添加剤を含ませる場合、工程(5)で用いられる電解液は、濃度29〜37重量%のKOH水溶液であるのが好ましく、濃度31〜35重量%のKOH水溶液であるのがより好ましい。工程(5)における電解液中のKOH濃度が29重量%以上であると、電解液のイオン伝導性が向上し、放電特性が大幅に向上する。工程(5)における電解液中のKOH濃度が37重量%を超えると、電解液のイオン伝導性が低下し、高負荷放電特性が低下する場合がある。
[Step (5)]
In the step (5), for example, a cylindrical separator sealed at one end is arranged on the inner surface (side surface and bottom surface of the hollow portion) of the positive electrode mixture, and the electrolytic solution is poured into the separator (in the battery case). After the liquid, the gelled negative electrode is filled into the hollow part of the positive electrode mixture through the separator.
For the separator, a microporous sheet excellent in alkali resistance is used. For the separator, for example, a nonwoven fabric mainly composed of polyvinyl alcohol fiber and rayon fiber is used. The thickness of the separator is, for example, 80 to 250 μm.
When the additive is included only in the electrolytic solution used for producing the negative electrode, the electrolytic solution used in step (5) is preferably a KOH aqueous solution having a concentration of 29 to 37% by weight, and a KOH concentration of 31 to 35% by weight. More preferably, it is an aqueous solution. When the KOH concentration in the electrolytic solution in the step (5) is 29% by weight or more, the ionic conductivity of the electrolytic solution is improved, and the discharge characteristics are greatly improved. When the KOH concentration in the electrolytic solution in the step (5) exceeds 37% by weight, the ionic conductivity of the electrolytic solution may be lowered, and the high load discharge characteristics may be lowered.

[工程(6)]
工程(6)では、例えば、後述する図1に示す、樹脂製のガスケット5、釘型の負極集電体6、および負極端子を兼ねる底板7からなる組立封口部9を封口部材に用い、これを電池ケースの開口に配置することにより、電池ケースを密閉する。
[Step (6)]
In the step (6), for example, an assembly sealing portion 9 including a resin gasket 5, a nail-shaped negative electrode current collector 6, and a bottom plate 7 also serving as a negative electrode terminal shown in FIG. Is placed in the opening of the battery case to seal the battery case.

樹脂封口体は、例えば、6,6−ナイロンのようなポリアミド、またはポリプロピレン等の耐アルカリ性および気密性に優れた樹脂を所定の寸法、形状に射出成形することにより得られる。
負極集電体は、例えば、銀、銅、真鍮等の線材を釘型にプレス加工して得られる。なお、加工時の不純物を排除し、隠蔽効果を得るため、表面に錫やインジウムでメッキを施すことが好ましい。
底板は、例えば、錫めっき鋼板などを所定形状にプレス成形することにより得られる。
The resin sealing body is obtained, for example, by injection molding a resin having excellent alkali resistance and airtightness such as polyamide such as 6,6-nylon or polypropylene to a predetermined size and shape.
The negative electrode current collector is obtained, for example, by pressing a wire such as silver, copper, or brass into a nail shape. In order to eliminate impurities during processing and obtain a concealing effect, the surface is preferably plated with tin or indium.
The bottom plate is obtained, for example, by press-molding a tin-plated steel plate or the like into a predetermined shape.

以下、本発明のアルカリ一次電池の一実施形態である単3形アルカリ乾電池について、図1を参照しながら説明する。図1は、本発明のアルカリ一次電池の一実施形態である単3形アルカリ乾電池の一部を断面とする正面図である。
ニッケルめっき鋼板からなる有底円筒形の電池ケース1内に、正極2が挿入されている。正極2は、正極活物質である二酸化マンガン、および導電材である黒鉛を含む中空円筒形の正極合剤からなる。電池ケース1の内面には、黒鉛塗装膜(図示しない)が形成されている。
Hereinafter, an AA alkaline battery which is an embodiment of the alkaline primary battery of the present invention will be described with reference to FIG. FIG. 1 is a front view of a cross section of a part of an AA alkaline battery which is an embodiment of the alkaline primary battery of the present invention.
A positive electrode 2 is inserted into a bottomed cylindrical battery case 1 made of a nickel-plated steel plate. The positive electrode 2 is made of a hollow cylindrical positive electrode mixture containing manganese dioxide as a positive electrode active material and graphite as a conductive material. A graphite coating film (not shown) is formed on the inner surface of the battery case 1.

正極2の中空部には、セパレ−タ4を介して、負極6が充填されている。負極6は、負極活物質である亜鉛粉末または亜鉛合金粉末を含むゲル状負極からなる。セパレータは、例えば、ポリビニルアルコール繊維およびレーヨン繊維を主体として混抄した不織布からなる。正極2、負極6、およびセパレータ4は、KOH、ならびに添加剤としてCsOHおよびRbOHの少なくとも一方を含む水溶液からなる電解液を含む。   A hollow portion of the positive electrode 2 is filled with a negative electrode 6 via a separator 4. The negative electrode 6 is composed of a gelled negative electrode containing zinc powder or zinc alloy powder as a negative electrode active material. The separator is made of a nonwoven fabric mainly composed of polyvinyl alcohol fiber and rayon fiber, for example. The positive electrode 2, the negative electrode 6, and the separator 4 include an electrolytic solution made of an aqueous solution containing KOH and at least one of CsOH and RbOH as an additive.

電池ケース1の開口部は、組立封口体9により封口されている。組立封口体9は、樹脂製のガスケット5、負極端子を兼ねる底板7、および釘型の負極集電体6からなる。負極集電体6はゲル状負極3内に挿入されている。負極集電体6の胴部はガスケット5の中央部に設けられた貫通孔に挿入され、負極集電体6の頭部は底板7に溶接されている。電池ケース1の開口端部は、ガスケット5を介して底板7の周縁部にかしめつけられている。電池ケース1の外表面には外装ラベル8が被覆されている。   The opening of the battery case 1 is sealed by an assembly sealing body 9. The assembly sealing body 9 includes a resin gasket 5, a bottom plate 7 also serving as a negative electrode terminal, and a nail-type negative electrode current collector 6. The negative electrode current collector 6 is inserted into the gelled negative electrode 3. The body of the negative electrode current collector 6 is inserted into a through hole provided in the center of the gasket 5, and the head of the negative electrode current collector 6 is welded to the bottom plate 7. The open end of the battery case 1 is caulked to the peripheral edge of the bottom plate 7 via a gasket 5. The outer surface of the battery case 1 is covered with an exterior label 8.

以下、本発明の実施例を詳細に説明するが、本発明はこれらの実施例に限定されない。
《実施例1》
(1)負極の作製
負極活物質と、電解液と、ゲル化剤としてポリアクリル酸ナトリウムとを、重量比63.9:35.15:0.74の割合で混合し、ゲル状の負極を得た。負極活物質には、亜鉛合金(三井金属(株)製、70SA−H)を用いた。負極作製用の電解液には、KOH(濃度33重量%)、ZnO(濃度2重量%)、およびCsOHを含む水溶液を用いた。
Examples of the present invention will be described in detail below, but the present invention is not limited to these examples.
Example 1
(1) Production of negative electrode A negative electrode active material, an electrolytic solution, and sodium polyacrylate as a gelling agent are mixed at a weight ratio of 63.9: 35.15: 0.74, and a gelled negative electrode is prepared. Obtained. As the negative electrode active material, a zinc alloy (manufactured by Mitsui Kinzoku Co., Ltd., 70SA-H) was used. An aqueous solution containing KOH (concentration: 33% by weight), ZnO (concentration: 2% by weight), and CsOH was used as the electrolyte for preparing the negative electrode.

(2)正極ペレットの作製
正極活物質として電解二酸化マンガン(東ソー(株)製、HH−TF7)、導電剤として黒鉛粉末(日本黒鉛(株)製、SP−20M)、および電解液を重量比94:6:1.5の割合で混合した。この混合物をミキサーで均一に撹拌・混合した後、一定粒度に整粒した。得られた粒状物を所定の成形用金型に充填し、加圧成形し、中空円筒形の正極ペレットを得た。正極作製用の電解液には、KOH(濃度39重量%)およびZnO(濃度2重量%)を含む水溶液を用いた。
(2) Production of positive electrode pellets Electrolytic manganese dioxide (manufactured by Tosoh Corp., HH-TF7) as a positive electrode active material, graphite powder (SP-20M made by Nippon Graphite Co., Ltd.) as a conductive agent, and an electrolyte solution in a weight ratio The mixture was 94: 6: 1.5. This mixture was uniformly stirred and mixed with a mixer, and then sized to a constant particle size. The obtained granular material was filled in a predetermined molding die and subjected to pressure molding to obtain a hollow cylindrical positive electrode pellet. An aqueous solution containing KOH (concentration 39% by weight) and ZnO (concentration 2% by weight) was used as the electrolyte for producing the positive electrode.

(3)アルカリ一次電池の作製
上記で得られた正極ペレットを用いて図1に示す単3形アルカリ乾電池を以下のように作製した。
内面に黒鉛塗装膜が形成された、ニッケルめっき鋼板からなる有底円筒形の電池ケース1内に、正極ペレットを2個挿入した後、電池ケース1内にて再度加圧成形し、電池ケース1の内面に密着する中空円筒形の正極2を得た。正極2の内側に、セパレ−タ4(厚さ0.25mm)を配した後、電池ケース1内に、アルカリ電解液を注液した。注液用の電解液には、KOH(濃度33重量%)およびZnO(2重量%)を含む水溶液を用いた。セパレータ4には、ポリビニルアルコール繊維およびレーヨン繊維を主体として混抄した不織布を用いた。
(3) Production of Alkaline Primary Battery Using the positive electrode pellet obtained above, an AA alkaline battery shown in FIG. 1 was produced as follows.
Two positive electrode pellets were inserted into a bottomed cylindrical battery case 1 made of a nickel-plated steel sheet having a graphite coating film formed on the inner surface, and then press-molded again in the battery case 1, and the battery case 1 A hollow cylindrical positive electrode 2 in close contact with the inner surface was obtained. After the separator 4 (thickness: 0.25 mm) was disposed inside the positive electrode 2, an alkaline electrolyte was injected into the battery case 1. An aqueous solution containing KOH (concentration 33% by weight) and ZnO (2% by weight) was used as the electrolyte for injection. For the separator 4, a non-woven fabric mainly composed of polyvinyl alcohol fiber and rayon fiber was used.

注液した後、セパレータ4の内側にゲル状の負極3を充填した。6,6−ナイロン製のガスケット5の中央部に設けられた貫通孔に、銅製の負極集電体6の胴部を挿入し、負極集電体6の頭部を、錫めっき鋼板製の底板7に溶接し、組立封口体9を得た。電池ケース1の開口部を組立封口体9で封口した。このとき、負極集電体6をゲル状負極3に差し込み、電池ケース1の開口端部を、ガスケット5の外周部を介して底板7の周縁部にかしめつけた。次いで、電池ケース1の外表面に外装ラベル8を被覆した。このようにして、アルカリ一次電池を作製した。作製したアルカリ一次電池内の総電解液中のKOH濃度は約28重量%であり、ZnO濃度は約2.7重量%であった。   After the injection, the gelled negative electrode 3 was filled inside the separator 4. The body of the negative electrode current collector 6 made of copper is inserted into a through hole provided in the center of the gasket 6 made of 6,6-nylon, and the head of the negative electrode current collector 6 is placed on the bottom plate made of a tin-plated steel plate. 7 to obtain an assembled sealing body 9. The opening of the battery case 1 was sealed with the assembly sealing body 9. At this time, the negative electrode current collector 6 was inserted into the gelled negative electrode 3, and the opening end portion of the battery case 1 was caulked to the peripheral portion of the bottom plate 7 through the outer peripheral portion of the gasket 5. Next, the exterior label 8 was coated on the outer surface of the battery case 1. In this way, an alkaline primary battery was produced. The KOH concentration in the total electrolyte in the produced alkaline primary battery was about 28% by weight, and the ZnO concentration was about 2.7% by weight.

上記負極作製時において、電解液のKOH濃度およびZnO濃度を一定にし、CsOH濃度が表1に示す値となるようにCsOHを添加した。表1には、作製した電池内の総電解液のCsOH濃度も示す。
なお、作製した電池内の総電解液中の各成分(KOH、ZnO、およびCsOH)の濃度については、電池を作製してから3週間経過後に、電池内から負極を取り出し、以下のように、負極内の電解液中の各成分の濃度を測定した。
At the time of producing the negative electrode, the KOH concentration and ZnO concentration of the electrolytic solution were made constant, and CsOH was added so that the CsOH concentration became a value shown in Table 1. Table 1 also shows the CsOH concentration of the total electrolyte in the produced battery.
In addition, about the density | concentration of each component (KOH, ZnO, and CsOH) in the total electrolyte solution in the produced battery, the negative electrode was taken out from the battery after 3 weeks from the production of the battery, as follows: The concentration of each component in the electrolyte solution in the negative electrode was measured.

KOH濃度は中和滴定法により求めた。具体的には、電池を分解し、電池内から負極集電子を取り除いた電池を遠心分離機にセットし、遠心分離(2000回転で10分間)により、負極中(正極の中空部内)のゲル状物(ゲル化剤および負極活物質)を下方に移動させ、電解液と分離させた。その後、そのゲル状物が混入しないように、マイクロピペットで電解液を200μl採取し、純水を加えて50mlに定容し、フェノールフタレイン中和指示薬を加え、測定用溶液を得た。0.1mol/Lの塩酸を用いて、この測定用溶液を中和滴定した。
ZnO濃度はキレート滴定法により求めた。具体的には、上記で中和滴定した溶液に0.1mol/Lの塩酸を5ml程度加えて酸性にした後、純水を加えて250mlに定容し、試料溶液を得た。この試料溶液の25mlに、酢酸―酢酸アンモニウム溶液5mlおよびXOキレート指示薬を3滴加え、測定用溶液を得た。0.01mol/LのEDTA溶液を用いて、この測定用溶液をキレート滴定した。
CsOH濃度はICP発光分光分析法により求めた。具体的には、上記の試料溶液から10ml分取し、純水を加えて20mlに定容し、測定用溶液を得た。サーモフィッシャーサイエンティフィック(株)製のiCAP6300を用いて、この測定用溶液をICP発光分光分析した。
The KOH concentration was determined by neutralization titration method. Specifically, the battery is disassembled, the battery from which the negative electrode current collector has been removed is set in a centrifuge, and the gel is formed in the negative electrode (in the hollow part of the positive electrode) by centrifugation (2000 rpm for 10 minutes). The product (gelator and negative electrode active material) was moved downward to separate it from the electrolyte. Thereafter, 200 μl of the electrolytic solution was collected with a micropipette so that the gel-like material was not mixed, and the volume was adjusted to 50 ml with pure water, and a phenolphthalein neutralization indicator was added to obtain a measurement solution. This measurement solution was subjected to neutralization titration with 0.1 mol / L hydrochloric acid.
The ZnO concentration was determined by chelate titration method. Specifically, about 5 ml of 0.1 mol / L hydrochloric acid was added to the solution subjected to neutralization titration to make it acidic, and then pure water was added to make a constant volume of 250 ml to obtain a sample solution. To 25 ml of this sample solution, 5 ml of an acetic acid-ammonium acetate solution and 3 drops of an XO chelate indicator were added to obtain a measurement solution. This measurement solution was subjected to chelate titration using a 0.01 mol / L EDTA solution.
The CsOH concentration was determined by ICP emission spectroscopy. Specifically, 10 ml was taken from the above sample solution, and pure water was added to make a constant volume of 20 ml to obtain a measurement solution. This measurement solution was subjected to ICP emission spectroscopic analysis using iCAP6300 manufactured by Thermo Fisher Scientific Co., Ltd.

Figure 0005400498
Figure 0005400498

《比較例1》
負極作製用の電解液として、CsOHを添加した実施例1の電解液の代わりに、CsOH無添加の電解液を用いた以外、実施例1と同様の方法によりアルカリ一次電池を作製した。
<< Comparative Example 1 >>
An alkaline primary battery was produced in the same manner as in Example 1 except that an electrolytic solution without addition of CsOH was used instead of the electrolytic solution of Example 1 to which CsOH was added as an electrolytic solution for producing a negative electrode.

[評価]
実施例1の各電池および比較例1の電池について、以下の放電試験を実施した。
(1)低負荷放電特性の評価
各アルカリ乾電池を、21℃の環境下にて、電池の閉路電圧が0.9Vに達するまで、100mAで連続放電した。連続放電時間を求め、比較例1の電池の連続放電時間を100とした指数として表した。
[Evaluation]
The following discharge tests were carried out for each battery of Example 1 and the battery of Comparative Example 1.
(1) Evaluation of low-load discharge characteristics Each alkaline battery was continuously discharged at 100 mA in an environment of 21 ° C. until the closed circuit voltage of the battery reached 0.9V. The continuous discharge time was determined and expressed as an index with the continuous discharge time of the battery of Comparative Example 1 as 100.

(2)中負荷放電特性の評価
各アルカリ乾電池を、21℃の環境下にて、電池の閉路電圧が0.8Vに達するまで、間欠放電した。間欠放電では、3.9Ωで1時間連続放電した後、23時間休止するステップを繰り返した。放電時間を求め、比較例1の電池の放電時間を100とした指数として表した。ここでいう、放電時間とは、各ステップで放電した時間を合計した値である。
(2) Evaluation of medium load discharge characteristics Each alkaline battery was intermittently discharged in an environment of 21 ° C. until the closed circuit voltage of the battery reached 0.8V. In the intermittent discharge, a step of continuously discharging for 1 hour at 3.9Ω and then resting for 23 hours was repeated. The discharge time was determined and expressed as an index with the discharge time of the battery of Comparative Example 1 being 100. Here, the discharge time is a total value of the discharge time in each step.

(3)高負荷放電特性の評価
各アルカリ乾電池を、21℃の環境下にて、電池の閉路電圧が1.05Vに達するまで、DSCモードで間欠放電した。
具体的には、1500mWで2秒間放電した後、650mWで28秒間放電する放電ステップを10回繰り返した。この条件で5分間放電した後、55分間休止する間欠放電ステップを繰り返した。電池の閉路電圧が1.05Vになるまでに繰り返した放電の回数を求め、比較例1の放電回数を100とした指数として表した。ここでいう、放電の回数とは、1500mWで2秒間放電した後、650mWで28秒間放電する放電ステップを1回としてカウントした数であり、電池の閉路電圧が1.05Vに達した放電ステップは含まれない。
これらの評価結果を表1に示す。
(3) Evaluation of high-load discharge characteristics Each alkaline battery was intermittently discharged in DSC mode under a 21 ° C. environment until the closed circuit voltage of the battery reached 1.05V.
Specifically, a discharge step of discharging at 1500 mW for 2 seconds and then discharging at 650 mW for 28 seconds was repeated 10 times. After discharging for 5 minutes under these conditions, an intermittent discharge step of resting for 55 minutes was repeated. The number of discharges repeated until the closed circuit voltage of the battery reached 1.05 V was determined and expressed as an index with the number of discharges of Comparative Example 1 being 100. Here, the number of discharges is a number obtained by counting a discharge step of discharging at 1500 mW for 2 seconds and then discharging at 650 mW for 28 seconds as one, and the discharge step when the battery closing voltage reaches 1.05 V is Not included.
These evaluation results are shown in Table 1.

表1に示すように、電解液にCsOHを添加した実施例1の各電池では、CsOH無添加の比較例1の電池と比べて、低負荷、中負荷、および高負荷のいずれにおいても良好な放電特性が得られた。実施例1の電池の中でも、No.1−2、1−3、1−4および1−5の電池では、特に、優れた中負荷放電特性が得られた。   As shown in Table 1, each battery of Example 1 in which CsOH was added to the electrolytic solution was good at any of low load, medium load, and high load as compared with the battery of Comparative Example 1 in which CsOH was not added. Discharge characteristics were obtained. Among the batteries of Example 1, no. In the batteries of 1-2, 1-3, 1-4, and 1-5, excellent medium load discharge characteristics were obtained.

《実施例2》
負極作製時において、電解液のKOH濃度およびZnO濃度を一定にし、RbOH濃度が表2に示す値となるように、RbOHを添加した。上記以外は、実施例1と同様の方法によりアルカリ一次電池を作製し、評価した。作製した電池内の総電解液中のRbOHの濃度は、実施例1のCsOHの濃度の場合と同様の方法により求めた。
その評価結果を表2に示す。表2に、実施例2の各電池とともに比較例1の結果も示す。
Example 2
At the time of producing the negative electrode, RbOH was added so that the KOH concentration and ZnO concentration of the electrolytic solution were kept constant and the RbOH concentration became the value shown in Table 2. Except for the above, an alkaline primary battery was prepared and evaluated in the same manner as in Example 1. The concentration of RbOH in the total electrolyte solution in the produced battery was determined in the same manner as in the case of the CsOH concentration in Example 1.
The evaluation results are shown in Table 2. Table 2 also shows the results of Comparative Example 1 together with the batteries of Example 2.

Figure 0005400498
Figure 0005400498

表2に示すように、電解液にRbOHを添加した実施例2の各電池では、RbOH無添加の比較例1の電池と比べて、低負荷、中負荷、および高負荷のいずれにおいても良好な放電特性が得られた。実施例2の電池の中でも、No.2−2、2−3、2−4および2−5の電池では、特に、優れた中負荷放電特性が得られた。   As shown in Table 2, each battery of Example 2 in which RbOH was added to the electrolyte solution was good at any of low load, medium load, and high load as compared with the battery of Comparative Example 1 without RbOH addition. Discharge characteristics were obtained. Among the batteries of Example 2, no. In the batteries of 2-2, 2-3, 2-4, and 2-5, particularly excellent medium load discharge characteristics were obtained.

《実施例3》
負極作製時において、電解液のKOH濃度およびZnO濃度を一定にし、CsOH濃度およびRbOH濃度が表3に示す値となるように、CsOHおよびRbOHを添加した。このとき、電解液中のCsOHおよびRbOHを合計した濃度が1重量%となるようにCsOH濃度およびRbOH濃度を調整した。上記以外は、実施例1と同様の方法によりアルカリ一次電池を作製し、評価した。
その評価結果を表3に示す。表3に、実施例3の各電池とともに比較例1の結果も示す。
Example 3
At the time of producing the negative electrode, CsOH and RbOH were added so that the KOH concentration and ZnO concentration of the electrolytic solution were constant and the CsOH concentration and RbOH concentration were as shown in Table 3. At this time, the CsOH concentration and the RbOH concentration were adjusted so that the total concentration of CsOH and RbOH in the electrolytic solution was 1% by weight. Except for the above, an alkaline primary battery was prepared and evaluated in the same manner as in Example 1.
The evaluation results are shown in Table 3. Table 3 also shows the results of Comparative Example 1 together with the batteries of Example 3.

Figure 0005400498
Figure 0005400498

表3に示すように、電解液にCsOHおよびRbOHを添加した実施例3の各電池では、CsOHおよびRbOHが無添加である比較例1の電池と比べて、低負荷、中負荷、および高負荷のいずれにおいても良好な放電特性が得られた。実施例3の電池の中でも、No.3−2〜3−4の電池では、特に、優れた中負荷放電特性が得られた。   As shown in Table 3, in each battery of Example 3 in which CsOH and RbOH were added to the electrolytic solution, compared with the battery of Comparative Example 1 in which CsOH and RbOH were not added, low load, medium load, and high load In both cases, good discharge characteristics were obtained. Among the batteries of Example 3, no. In the batteries of 3-2 to 3-4, particularly excellent medium load discharge characteristics were obtained.

《実施例4》
負極作製用の電解液には、KOHおよびCsOH(濃度2重量%)を含む水溶液を用いた。負極作製用および注液用の電解液のKOH濃度を表4に示す値に変えた。上記以外は、実施例1と同様の方法によりアルカリ一次電池を作製し、評価した。
その評価結果を表4に示す。
Example 4
An aqueous solution containing KOH and CsOH (concentration 2% by weight) was used as the electrolyte for preparing the negative electrode. The KOH concentration of the electrolyte for preparing the negative electrode and for pouring was changed to the values shown in Table 4. Except for the above, an alkaline primary battery was prepared and evaluated in the same manner as in Example 1.
The evaluation results are shown in Table 4.

Figure 0005400498
Figure 0005400498

表4に示すように、KOH濃度が29〜37重量%であるNo.4−2〜4−6の電池では、低負荷、中負荷、および高負荷のいずれにおいても、良好な放電特性が得られた。これらの中でも、KOH濃度が31〜35重量%であるNo.4−3〜4−5の電池では、優れた中負荷放電特性が得られた。   As shown in Table 4, the KOH concentration was 29 to 37% by weight. In the batteries of 4-2 to 4-6, good discharge characteristics were obtained at any of low load, medium load and high load. Among these, No. whose KOH concentration is 31 to 35% by weight. In the batteries of 4-3 to 4-5, excellent medium load discharge characteristics were obtained.

本発明のアルカリ一次電池は、携帯機器等の電子機器の電源として好適に用いられる。   The alkaline primary battery of the present invention is suitably used as a power source for electronic devices such as portable devices.

1 電池ケース
2 正極
3 ゲル状負極
4 セパレータ
5 ガスケット
6 負極集電体
7 底板
8 外装ラベル
9 組立封口体
DESCRIPTION OF SYMBOLS 1 Battery case 2 Positive electrode 3 Gel-like negative electrode 4 Separator 5 Gasket 6 Negative electrode collector 7 Bottom plate 8 Exterior label 9 Assembly sealing body

Claims (8)

正極活物質である二酸化マンガン、および導電剤である黒鉛を含む正極、
負極活物質である亜鉛または亜鉛合金を含む負極、
前記正極と前記負極との間に配されるセパレータ、ならびに
電解液を具備するアルカリ一次電池であって、
前記電解液は、KOH、ならびに添加剤としてCsOHおよびRbOHの少なくとも一方を含む水溶液であり、
前記電解液中の前記添加剤の濃度は、0.1〜2質量%である、アルカリ一次電池。
A positive electrode comprising manganese dioxide as a positive electrode active material and graphite as a conductive agent;
A negative electrode containing zinc or a zinc alloy as a negative electrode active material,
A separator disposed between the positive electrode and the negative electrode, and an alkaline primary battery comprising an electrolyte solution,
The electrolyte, Ri aqueous der containing at least one of CsOH and RbOH as KOH, and additives,
The alkaline primary battery in which the concentration of the additive in the electrolytic solution is 0.1 to 2% by mass .
前記電解液中のKOH濃度は、25〜36質量%である請求項1記載のアルカリ一次電池。 The alkaline primary battery according to claim 1 , wherein the KOH concentration in the electrolytic solution is 25 to 36 mass %. 前記添加剤がCsOHであるとき、前記電解液中の前記添加剤の濃度は、0.5〜2質量%である、請求項1記載のアルカリ一次電池。The alkaline primary battery according to claim 1, wherein when the additive is CsOH, the concentration of the additive in the electrolytic solution is 0.5 to 2 mass%. 前記電解液が、前記添加剤として、CsOHおよびRbOHの双方を含むとき、CsOHとRbOHとの質量比は、20:80〜80:20である、請求項1記載のアルカリ一次電池。The alkaline primary battery according to claim 1, wherein when the electrolytic solution contains both CsOH and RbOH as the additive, the mass ratio of CsOH to RbOH is 20:80 to 80:20. (1)KOH、ならびに添加剤としてCsOHおよびRbOHの少なくとも一方を含む水溶液からなる第1電解液を得る工程、
(2)負極活物質である亜鉛または亜鉛合金、ゲル化剤、および前記工程(1)で得られた前記第1電解液を混合して負極を得る工程、
(3)正極活物質である二酸化マンガン、導電剤である黒鉛、および第2電解液を含む中空円筒形の正極を得る工程、
(4)前記正極を電池ケース内に配置する工程、
(5)前記正極の中空部の内面にセパレータを配置し、前記セパレータに第3電解液を注液した後、前記正極の前記中空部に前記セパレータを介して前記負極を充填する工程、ならびに
(6)前記電池ケースの開口に封口部材を配置して、アルカリ一次電池を得る工程、
を含み、
前記アルカリ一次電池に含まれる総電解液中の前記添加剤の濃度は、0.1〜2質量%である、アルカリ一次電池の製造方法。
(1) A step of obtaining a first electrolytic solution comprising an aqueous solution containing KOH and at least one of CsOH and RbOH as an additive,
(2) A step of obtaining a negative electrode by mixing zinc or a zinc alloy that is a negative electrode active material, a gelling agent, and the first electrolytic solution obtained in the step (1),
(3) A step of obtaining a hollow cylindrical positive electrode containing manganese dioxide as a positive electrode active material, graphite as a conductive agent, and a second electrolytic solution,
(4) a step of arranging the positive electrode in a battery case;
(5) the separator is disposed on the inner surface of the hollow portion of the positive electrode, after pouring the third electrolyte to the separator, the step of filling the positive electrode wherein through the separator into the hollow portion negative electrode of the well, ( 6) A step of arranging a sealing member in the opening of the battery case to obtain an alkaline primary battery ,
Only including,
The manufacturing method of an alkaline primary battery whose density | concentration of the said additive in the total electrolyte solution contained in the said alkaline primary battery is 0.1-2 mass% .
前記工程(1)における前記第1電解液中の前記添加剤濃度は、0.2〜4質量%である請求項記載のアルカリ一次電池の製造方法。 The method for producing an alkaline primary battery according to claim 5 , wherein the concentration of the additive in the first electrolytic solution in the step (1) is 0.2 to 4% by mass . 前記工程(1)における前記第1電解液中のKOH濃度は、29〜37質量%である請求項記載のアルカリ一次電池の製造方法。 The method for producing an alkaline primary battery according to claim 5 , wherein the KOH concentration in the first electrolytic solution in the step (1) is 29 to 37 % by mass . 前記工程(5)における前記第3電解液中のKOH濃度は、29〜37質量%である請求項記載のアルカリ一次電池の製造方法。 The method for producing an alkaline primary battery according to claim 5 , wherein the KOH concentration in the third electrolytic solution in the step (5) is 29 to 37 % by mass .
JP2009153695A 2009-06-29 2009-06-29 Alkaline primary battery and manufacturing method thereof Expired - Fee Related JP5400498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009153695A JP5400498B2 (en) 2009-06-29 2009-06-29 Alkaline primary battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009153695A JP5400498B2 (en) 2009-06-29 2009-06-29 Alkaline primary battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011009149A JP2011009149A (en) 2011-01-13
JP5400498B2 true JP5400498B2 (en) 2014-01-29

Family

ID=43565561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009153695A Expired - Fee Related JP5400498B2 (en) 2009-06-29 2009-06-29 Alkaline primary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5400498B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57148878A (en) * 1981-03-12 1982-09-14 Toshiba Corp Electric cell

Also Published As

Publication number Publication date
JP2011009149A (en) 2011-01-13

Similar Documents

Publication Publication Date Title
US8728652B2 (en) Cylindrical alkaline battery having specific electrode packing densities and electrode thickness
JP2009259706A (en) Aa alkaline battery
EP2479824B1 (en) Cylindrical alkaline battery
JP2008262732A (en) Alkaline dry battery
JP4736345B2 (en) Alkaline battery
JP5419256B2 (en) Alkaline battery
US20090169988A1 (en) AA and AAA Alkaline dry batteries
US8206851B2 (en) AA alkaline battery and AAA alkaline battery
JP2009266661A (en) Alkaline dry cell
US11637278B2 (en) Alkaline dry batteries
JP2007227011A (en) Alkaline cell
JP5400498B2 (en) Alkaline primary battery and manufacturing method thereof
US8283069B2 (en) Zinc-alkaline battery
JP2009043417A (en) Cylindrical alkaline battery
JP2018037359A (en) Alkali battery
JP4865845B2 (en) Alkaline battery and method for producing the same
JP4253172B2 (en) Sealed nickel zinc primary battery
JPWO2020188900A1 (en) Alkaline batteries
JP2002117859A (en) Alkaline battery
JP2004502279A (en) Electrochemical cell with anode containing sulfur
JP7315381B2 (en) alkaline battery
JP2009163896A (en) Aa alkaline dry battery
JP2009170161A (en) Aaa alkaline battery
JP5116249B2 (en) Positive electrode for alkaline storage battery
JP2003168473A (en) Cylinder type storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131025

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees