JP2006172908A - Alkaline battery - Google Patents

Alkaline battery Download PDF

Info

Publication number
JP2006172908A
JP2006172908A JP2004364004A JP2004364004A JP2006172908A JP 2006172908 A JP2006172908 A JP 2006172908A JP 2004364004 A JP2004364004 A JP 2004364004A JP 2004364004 A JP2004364004 A JP 2004364004A JP 2006172908 A JP2006172908 A JP 2006172908A
Authority
JP
Japan
Prior art keywords
mass
potassium hydroxide
zinc
battery
alkaline battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004364004A
Other languages
Japanese (ja)
Inventor
Kuniyasu Oya
邦泰 大矢
Kenta Yamamoto
賢太 山本
Naoko Yamakawa
直子 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004364004A priority Critical patent/JP2006172908A/en
Publication of JP2006172908A publication Critical patent/JP2006172908A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Abstract

<P>PROBLEM TO BE SOLVED: To provide an alkaline battery improved greatly in leakage prevention of an electrolyte solution at the time of over-discharge state. <P>SOLUTION: The alkaline battery uses zinc as a principal active material of a negative electrode and manganese dioxide or nickel oxy-hydride as a principal active material of a positive electrode, a potassium hydride water solution as an electrolytic liquid, and a current collection pin in which copper or brass of nearly nail shape is applied with tin plating as a current collector of negative electrode side. The mass concentration of the potassium hydride water solution is 36 to 40 wt.%, and the ratio of zinc and potassium hydride is potassium hydride 37-40 against zinc 100. Furthermore, the thickness of tin plated on the surface of the current collection pin is 0.05 μm-0.5 μm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、アルカリ電池に関するものであり、さらに詳しくは、過放電状態時の電解液の漏出を大幅に改善したアルカリ電池に関する。   The present invention relates to an alkaline battery, and more particularly to an alkaline battery in which leakage of an electrolytic solution during an overdischarge state is greatly improved.

近年、電子機器は小型化、ポータブル化され、アルカリ電池で駆動する商品が増加してきている。このアルカリ電池の電解液には、水酸化カリウム水溶液が用いられているがこの電解液が電池外部に漏出した場合、電子機器や人体に損傷を与える可能性があり問題となっている。未使用の電池を長期保存すると、亜鉛が水酸化カリウム水溶液中の溶解し、この亜鉛に接している集電ピン上で水素ガスが発生するようになる。その結果、電池内圧が高まって、電解液が電池封口部より漏出するようになる。下記の特許文献1に開示されているように、これを防止するために集電ピンの表面にすず、亜鉛等でメッキを施し、水素ガスが発生し難くする手段が用いられるようになってきている。   In recent years, electronic devices have become smaller and more portable, and products driven by alkaline batteries have been increasing. A potassium hydroxide aqueous solution is used as the electrolytic solution of the alkaline battery. However, when this electrolytic solution leaks out of the battery, there is a possibility that the electronic device or the human body may be damaged. When an unused battery is stored for a long period of time, zinc is dissolved in an aqueous potassium hydroxide solution, and hydrogen gas is generated on a current collecting pin in contact with the zinc. As a result, the battery internal pressure increases, and the electrolyte solution leaks from the battery sealing portion. As disclosed in the following Patent Document 1, in order to prevent this, a means for preventing the generation of hydrogen gas by plating the surface of the current collecting pin with tin or the like with zinc or the like has come to be used. Yes.

特開平5−135776号公報Japanese Patent Application Laid-Open No. 5-135576

しかしながら、従来の技術においては、未使用の電池では電解液の漏出に関し効果をあげているが、使用済みの電池を機器に入れっぱなしにした場合での電解液の漏出に関しては、十分な対応がとれていないのが現状である。特に放電反応により亜鉛が不働態化を起こした後のいわゆる過放電状態で電解液の漏出現象は多く認められ、この過放電漏液についての対応が望まれている。   However, in the prior art, an unused battery has an effect on leakage of the electrolyte, but sufficient measures are taken for leakage of the electrolyte when the used battery is left in the equipment. The current situation is that it has not been removed. In particular, a large amount of electrolyte leakage phenomenon is observed in a so-called overdischarge state after zinc has been passivated by a discharge reaction, and countermeasures for this overdischarge leakage liquid are desired.

この発明は、上記課題を解決するため、集電ピンのすずメッキが過放電状態の電池の電解液漏出に大きく影響を与えていることに着想し、負極の主たる活物質として亜鉛を用い、正極の主たる活物質として二酸化マンガンもしくはオキシ水酸化ニッケルを用い、電解液として水酸化カリウム水溶液を用い、負極側の集電として略釘状の銅ないし真鍮にすずメッキを施した集電ピンを用いたアルカリ電池であって、水酸化カリウム水溶液の質量濃度が36質量%〜40質量%の範囲であり、かつ亜鉛と水酸化カリウムの比率が亜鉛質量100に対し、水酸化カリウム質量が37〜40の範囲にあり、さらに集電ピン表面にメッキされているすずの厚さが0.05μm〜0.5μmの範囲であることを特徴とするアルカリ電池を提供する。   In order to solve the above problems, the present invention has been conceived that tin plating of current collecting pins has a great influence on electrolyte leakage of batteries in an overdischarged state, and zinc is used as a main active material of the negative electrode. As the main active material, manganese dioxide or nickel oxyhydroxide was used, an aqueous potassium hydroxide solution was used as the electrolyte, and a current collecting pin in which a substantially nail-like copper or brass was tin-plated was used as a current collector on the negative electrode side. It is an alkaline battery, wherein the mass concentration of the aqueous potassium hydroxide solution is in the range of 36 mass% to 40 mass%, and the ratio of zinc and potassium hydroxide is 100 masses of zinc, and the mass of potassium hydroxide is 37-40. The alkaline battery is characterized in that the thickness of the tin plated on the surface of the current collecting pin is in the range of 0.05 μm to 0.5 μm.

集電ピン上のすずメッキは前記のように未放電状態での電解液の漏出には効果をあげるが、メッキ量が多い場合はすずが過放電時に電解液中の溶解し、放電しきれなかった残余亜鉛に作用し、水素ガスを発生させる原因となる。したがって、集電ピン表面にメッキされているすずの厚さは、0.05μm〜0.5μmの範囲とするのが好適である。集電ピン表面にメッキされているすずの厚さが0.05μm〜0.5μmの範囲であるように制限すれば、たとえ過放電時にすずが溶出する状態になっても、すずそのものの絶対量が少ないので、より確実に過放電状態時の電解液の漏出を防止するという課題を解決できる。   Tin plating on the current collector pin is effective for leakage of the electrolyte in the undischarged state as described above, but when the plating amount is large, tin dissolves in the electrolyte during overdischarge and cannot be fully discharged. It acts on the remaining zinc and causes hydrogen gas to be generated. Therefore, the thickness of the tin plated on the surface of the current collecting pin is preferably in the range of 0.05 μm to 0.5 μm. If the thickness of the tin plated on the surface of the current collecting pin is limited to be in the range of 0.05 μm to 0.5 μm, the absolute amount of tin itself will be reduced even if the tin elutes during overdischarge. Since there are few, the subject of preventing the leakage of the electrolyte solution at the time of an overdischarge state can be solved more reliably.

また、すずの溶解は、過放電時に水酸化カリウムが多量に存在すると起こるので、水酸化カリウムの添加量を制限することにより、すずの溶解が起こらず、水素ガスの発生も抑制できる。水酸化カリウム水溶液の濃度が36質量%〜40質量%の範囲であり、かつ亜鉛と水酸化カリウムの比率が亜鉛質量100に対し、水酸化カリウム質量37〜40とすることで過放電時でのすずの溶出を抑制し、ガス発生量を低減させ、漏液を防止できる。   Further, since dissolution of tin occurs when a large amount of potassium hydroxide is present during overdischarge, by limiting the amount of potassium hydroxide added, dissolution of tin does not occur and generation of hydrogen gas can be suppressed. The concentration of the potassium hydroxide aqueous solution is in the range of 36% by mass to 40% by mass, and the ratio of zinc and potassium hydroxide is set to the potassium hydroxide mass of 37 to 40 with respect to the zinc mass of 100. Elution of tin can be suppressed, gas generation can be reduced, and leakage can be prevented.

この発明では、水酸化カリウムと亜鉛の質量比を規定することで放電特性および過放電漏液特性を満足する電池を提供することができる。さらに集電ピン表面のすずメッキ量をその厚みを規定することでより一層過放電漏液特性を向上させることができる。   In the present invention, a battery satisfying discharge characteristics and overdischarge leakage characteristics can be provided by defining the mass ratio of potassium hydroxide and zinc. Furthermore, the overdischarge leakage characteristics can be further improved by defining the thickness of the tin plating on the surface of the current collecting pin.

以下、図1を参照してこの発明の実施の形態について説明する。図1にこの発明の実施の形態に係わる円筒形アルカリ乾電池1の一構成例を示す。この円筒形アルカリ乾電池1は、開口部を有する中空有底円筒状の金属製正極缶2内に中空円筒状の正極4と、正極4に当接されるように配置されて有底円筒状に形成されたセパレータ5と、セパレータ5の内側に配置される負極6と電解液が収納されている。また円筒形電池1は、上記正極缶2の開口部を封口させる封口ユニットを備える。なおこの円筒形電池1は、その円筒外周面が外装ラベル11で覆われている。正極4は、二酸化マンガン、黒鉛、電解液である水酸化カリウム水溶液等からなる正極合剤が中空円筒状に形成されてなり、負極6は、粒状亜鉛と電解液である水酸化カリウム水溶液、増粘剤等を含有しゲル状とした負極合剤からなる。この負極合剤は、有底円筒状のセパレータ5の内部に注入されている。セパレータ5は、その材料として例えばポリオレフィン不織布が用いられ、円筒状に形成された正極4の中空部に当節するように配置されており、電解液である水酸化カリウム水溶液が含浸されている。封口ユニットは、封口部材7と補強部材8と集電ピン9と負極端子10とからなる。   Hereinafter, an embodiment of the present invention will be described with reference to FIG. FIG. 1 shows a configuration example of a cylindrical alkaline battery 1 according to an embodiment of the present invention. This cylindrical alkaline dry battery 1 is arranged in a hollow cylindrical metal positive electrode can 2 having a hollow bottom with an opening, and is arranged so as to be in contact with the hollow cylindrical positive electrode 4 and the positive electrode 4 to form a bottomed cylindrical shape. The formed separator 5, the negative electrode 6 disposed inside the separator 5, and the electrolytic solution are accommodated. The cylindrical battery 1 includes a sealing unit that seals the opening of the positive electrode can 2. The cylindrical battery 1 has a cylindrical outer peripheral surface covered with an exterior label 11. The positive electrode 4 is made of a positive electrode mixture made of manganese dioxide, graphite, an aqueous potassium hydroxide solution that is an electrolytic solution, and the like, and the negative electrode 6 is made of granular zinc and an aqueous potassium hydroxide solution that is an electrolytic solution. It consists of a negative electrode mixture containing a sticky agent and the like in a gel form. This negative electrode mixture is injected into the bottomed cylindrical separator 5. For example, a polyolefin non-woven fabric is used as the material of the separator 5, and the separator 5 is disposed so as to be in contact with the hollow part of the positive electrode 4 formed in a cylindrical shape, and is impregnated with an aqueous potassium hydroxide solution as an electrolytic solution. The sealing unit includes a sealing member 7, a reinforcing member 8, a current collecting pin 9, and a negative electrode terminal 10.

また、封口部材7は、その中央部に貫通孔が設けられ、この貫通孔から釘状の集電ピン9が圧入される。集電ピン9は、その材料として、例えば黄銅等が用いられ、その表面はすずメッキが施されており、上記封口部材7の中央部に設けられた貫通孔内に、外側から圧入されて、負極に接している。   Further, the sealing member 7 is provided with a through hole at the center thereof, and a nail-shaped current collecting pin 9 is press-fitted from the through hole. The current collecting pin 9 is made of, for example, brass or the like as its material, and its surface is tin-plated, and is press-fitted from the outside into the through hole provided in the central portion of the sealing member 7, It is in contact with the negative electrode.

上記円筒形アルカリ乾電池において、電解液である水酸化カリウム水溶液の濃度が36質量%〜40質量%の範囲であり、亜鉛と水酸化カリウムの比率が亜鉛質量100に対して水酸化カリウム質量が37〜40であり、さらに集電ピン表面にメッキされているすずの厚さが0.05μm〜0.5μmの範囲とすることにより、過放電状態時の電解液の漏出が防止できる。   In the cylindrical alkaline dry battery, the concentration of the potassium hydroxide aqueous solution as the electrolytic solution is in the range of 36% by mass to 40% by mass, and the ratio of zinc and potassium hydroxide is 37% by mass with respect to 100% by mass of zinc. Furthermore, when the thickness of the tin plated on the surface of the current collecting pin is in the range of 0.05 μm to 0.5 μm, leakage of the electrolytic solution in the overdischarge state can be prevented.

電解液である水酸化カリウム水溶液の質量濃度が36質量%未満であると比重が小さくなりすぎ、負極反応に必要なOH-が不足し十分な放電容量が得られなくなり、また40質量%を超えていると特に低温時での放電容量が著しく低下する。ここで言う水酸化カリウム水溶液濃度は、電池の正極中、負極中、セパレータ中に含まれるトータル質量%濃度のことである。亜鉛と水酸化カリウムの質量比率の下限値は、1000mA程度の重負荷で電池が放電される時に必要な最小限の水酸化カリウム質量で決定される。また亜鉛と水酸化カリウムの質量比率の上限値は、過放電時にすずが溶解しない最大限の水酸化カリウム質量で決定される。その範囲としては、亜鉛と水酸化カリウムの質量比率が亜鉛質量100に対し、水酸化カリウム質量37〜40の範囲である。 If the concentration of the potassium hydroxide aqueous solution as the electrolyte is less than 36% by mass, the specific gravity becomes too small, OH necessary for the negative electrode reaction is insufficient, and a sufficient discharge capacity cannot be obtained, and it exceeds 40% by mass. In particular, the discharge capacity particularly at low temperatures is significantly reduced. The aqueous potassium hydroxide concentration referred to here is the total mass% concentration contained in the positive electrode, negative electrode, and separator of the battery. The lower limit of the mass ratio of zinc and potassium hydroxide is determined by the minimum potassium hydroxide mass required when the battery is discharged with a heavy load of about 1000 mA. The upper limit of the mass ratio of zinc and potassium hydroxide is determined by the maximum potassium hydroxide mass that does not dissolve tin during overdischarge. As the range, the mass ratio of zinc and potassium hydroxide is in the range of potassium hydroxide mass 37 to 40 with respect to zinc mass 100.

さらに集電ピン表面にメッキされているすずの厚さを0.05μm〜0.5μmの範囲とすることで、未放電時及び過放電時の耐漏液特性を向上させることができる。集電ピン表面にメッキされているすずの厚さが0.05μm未満であると、未放電時の電解液の漏出が増えてしまう。一方、集電ピン表面にメッキされているすずの厚さが0.5μmを超えると、過放電時にすずの溶解量が増え、残余亜鉛からのガス発生量が多くなり漏液しやすくなる。   Furthermore, by setting the thickness of the tin plated on the surface of the current collecting pins to be in the range of 0.05 μm to 0.5 μm, it is possible to improve the liquid leakage resistance at the time of non-discharge and overdischarge. If the thickness of the tin plated on the surface of the current collecting pin is less than 0.05 μm, the leakage of the electrolyte during non-discharge increases. On the other hand, if the thickness of the tin plated on the surface of the current collecting pin exceeds 0.5 μm, the amount of tin dissolved during overdischarge increases, and the amount of gas generated from the residual zinc increases, which makes it easy to leak.

以下、実施例に基づいてこの発明をさらに具体的に説明するが、この発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not limited to these Examples.

〔実施例1〕
図1に示したような構成の円筒形アルカリ乾電池を作成して、その大電流放電特性を評価した。正極缶に、二酸化マンガン85.5質量%と黒鉛8質量%と質量濃度36%の水酸化カリウム水溶液6.5質量%との割合で均一に混合して得られた正極合剤3.6gを外径13.2mm、内径9.1mm、高さ15mmのリング状に成形したものを3個挿入した。次に、正極合剤の中空部に有底円筒状のセパレータを挿入し、セパレータの内部に質量濃度36%の水酸化カリウム水溶液1.10gと亜鉛65質量%、酸化亜鉛1質量%、ゲル化剤0.5質量%、質量濃度36%の水酸化カリウム水溶液33.5質量%からなる負極合剤を5.4g装填した。次に、正極缶の開口部を負極端子とプラスチックシールと補強板と釘状の真鍮の表面に0.5μmのすずメッキを施した集電ピンからなる封口ユニットで密封して、円筒形アルカリ電池を作成した。この電池に用いられた水酸化カリウムの総質量は1.30gであった。また亜鉛の質量は3.51gであり、水酸化カリウムと亜鉛の質量比率は、亜鉛質量100に対し、水酸化カリウム質量は37であった。
[Example 1]
Cylindrical alkaline batteries having the configuration as shown in FIG. 1 were prepared and their large current discharge characteristics were evaluated. 3.6 g of the positive electrode mixture obtained by uniformly mixing the positive electrode can at a ratio of 85.5% by mass of manganese dioxide, 8% by mass of graphite, and 6.5% by mass of a potassium hydroxide aqueous solution having a mass concentration of 36%. Three pieces formed into a ring shape having an outer diameter of 13.2 mm, an inner diameter of 9.1 mm, and a height of 15 mm were inserted. Next, a bottomed cylindrical separator is inserted into the hollow portion of the positive electrode mixture, and 1.10 g of an aqueous potassium hydroxide solution having a mass concentration of 36%, 65% by mass of zinc, 1% by mass of zinc oxide, and gelation inside the separator. 5.4 g of a negative electrode mixture consisting of 33.5% by mass of an aqueous potassium hydroxide solution having a mass concentration of 0.5% by mass and a mass concentration of 36% was charged. Next, the opening of the positive electrode can is sealed with a sealing unit made up of a negative electrode terminal, a plastic seal, a reinforcing plate, and a current collecting pin with a tin plating of 0.5 μm on the surface of a nail-like brass. It was created. The total mass of potassium hydroxide used in this battery was 1.30 g. Moreover, the mass of zinc was 3.51 g, and the mass ratio of potassium hydroxide to zinc was 37 with respect to 100 masses of zinc hydroxide.

〔実施例2〕
セパレータに充填した質量濃度36%の水酸化カリウム水溶液の質量が1.20gであること以外は、実施例1と同様の製造方法で円筒形アルカリ電池を作成した。この電池に用いられた水酸化カリウム総質量は1.34gであった。また亜鉛の質量は3.51gであり、水酸化カリムと亜鉛の質量比率は、亜鉛質量100に対し、水酸化カリウム質量38であった。
[Example 2]
A cylindrical alkaline battery was produced in the same manner as in Example 1 except that the mass of the 36% potassium hydroxide aqueous solution filled in the separator was 1.20 g. The total mass of potassium hydroxide used in this battery was 1.34 g. The mass of zinc was 3.51 g, and the mass ratio of kalim hydroxide to zinc was 38 mass of potassium hydroxide with respect to 100 masses of zinc.

〔実施例3〕
正極、負極に用いた水酸化カリウム水溶液およびセパレータに充填した水酸化カリウム水溶液の質量濃度が38%であって、セパレータに充填した水酸化カリウム水溶液の質量が1.00gであること以外は、実施例1と同様の製造方法で円筒形アルカリ電池を作成した。この電池に用いられた水酸化カリウム総質量は1.33gであった。また亜鉛の質量は3.51gであり、水酸化カリウムと亜鉛の比率は、亜鉛質量100に対し、水酸化カリウム質量38であった。
Example 3
Implementation was performed except that the mass concentration of the potassium hydroxide aqueous solution used for the positive electrode and the negative electrode and the potassium hydroxide aqueous solution filled in the separator was 38%, and the mass of the potassium hydroxide aqueous solution filled in the separator was 1.00 g. A cylindrical alkaline battery was produced by the same production method as in Example 1. The total mass of potassium hydroxide used in this battery was 1.33 g. Further, the mass of zinc was 3.51 g, and the ratio of potassium hydroxide to zinc was 38 mass of potassium hydroxide with respect to 100 masses of zinc.

〔実施例4〕
正極、負極に用いた水酸化カリウム水溶液およびセパレータに充填した水酸化カリウム水溶液の質量濃度が38%であって、セパレータに充填した水酸化カリウム水溶液の質量が1.10gであること以外は、実施例1と同様の製造方法で円筒形アルカリ電池を作成した。この電池に用いられた水酸化カリウム総質量は1.37gであった。また亜鉛の質量は3.51gであり、水酸化カリウムと亜鉛の比率は、亜鉛質量100に対し、水酸化カリウム質量39であった。
Example 4
Implementation was performed except that the mass concentration of the potassium hydroxide aqueous solution used for the positive electrode and the negative electrode and the potassium hydroxide aqueous solution filled in the separator was 38%, and the mass of the potassium hydroxide aqueous solution filled in the separator was 1.10 g. A cylindrical alkaline battery was produced by the same production method as in Example 1. The total mass of potassium hydroxide used in this battery was 1.37 g. Moreover, the mass of zinc was 3.51 g, and the ratio of potassium hydroxide to zinc was 39 potassium hydroxide mass per 100 mass zinc.

〔実施例5〕
正極、負極に用いた水酸化カリウム水溶液およびセパレータに充填した水酸化カリウム水溶液の質量濃度が40%であって、セパレータに充填した水酸化カリウム水溶液の質量が1.00gであること以外は、実施例1と同様の製造方法で円筒形アルカリ電池を作成した。この電池に用いられた水酸化カリウム総質量は1.40gであった。また亜鉛の質量は3.51gであり、水酸化カリウムと亜鉛の比率は、亜鉛質量100に対し、水酸化カリウム質量40であった。
Example 5
Implementation was performed except that the mass concentration of the potassium hydroxide aqueous solution used for the positive electrode and the negative electrode and the potassium hydroxide aqueous solution filled in the separator was 40%, and the mass of the potassium hydroxide aqueous solution filled in the separator was 1.00 g. A cylindrical alkaline battery was produced by the same production method as in Example 1. The total mass of potassium hydroxide used in this battery was 1.40 g. The mass of zinc was 3.51 g, and the ratio of potassium hydroxide to zinc was 40 mass of potassium hydroxide with respect to 100 mass of zinc.

〔比較例1〕
セパレータに充填した質量濃度36%の水酸化カリウム水溶液の質量が1.00gであること以外は、実施例1と同様の製造方法で円筒形アルカリ電池を作成した。この電池に用いられた水酸化カリウム総質量は1.26gであった。また亜鉛の質量は3.51gであり、水酸化カリウムと亜鉛の比率は、亜鉛質量100に対し、水酸化カリウム質量36であった。
[Comparative Example 1]
A cylindrical alkaline battery was produced by the same production method as in Example 1 except that the mass of the 36% by weight potassium hydroxide aqueous solution filled in the separator was 1.00 g. The total mass of potassium hydroxide used in this battery was 1.26 g. Moreover, the mass of zinc was 3.51 g, and the ratio of potassium hydroxide and zinc was 36 mass of potassium hydroxide with respect to 100 masses of zinc.

〔比較例2〕
セパレータに充填した質量濃度38%の水酸化カリウム水溶液の質量が1.25gであること以外は、実施例3と同様の製造方法で円筒形アルカリ電池を作成した。この電池に用いられた水酸化カリウム総質量は1.43gであった。また亜鉛の質量は3.51gであり、水酸化カリウムと亜鉛の比率は、亜鉛質量100に対し、水酸化カリウム質量41であった。
[Comparative Example 2]
A cylindrical alkaline battery was produced by the same production method as in Example 3 except that the mass of the 38% potassium hydroxide aqueous solution filled in the separator was 1.25 g. The total mass of potassium hydroxide used in this battery was 1.43 g. Further, the mass of zinc was 3.51 g, and the ratio of potassium hydroxide to zinc was 41 mass of potassium hydroxide with respect to 100 masses of zinc.

〔比較例3〕
セパレータに充填した質量濃度40%の水酸化カリウム水溶液の質量が1.10gであること以外は、実施例5と同様の製造方法で円筒形アルカリ電池を作成した。この電池に用いられた水酸化カリウム総質量は1.44gであった。また亜鉛の質量は3.51gであり、水酸化カリウムと亜鉛の比率は、亜鉛質量100に対し、水酸化カリウム質量41であった。
[Comparative Example 3]
A cylindrical alkaline battery was produced in the same manner as in Example 5 except that the mass of the 40% potassium hydroxide aqueous solution filled in the separator was 1.10 g. The total mass of potassium hydroxide used in this battery was 1.44 g. Further, the mass of zinc was 3.51 g, and the ratio of potassium hydroxide to zinc was 41 mass of potassium hydroxide with respect to 100 masses of zinc.

[実施例1〜5および比較例1〜3の評価方法]
以上のようにして得られた実施例1〜5及び比較例1〜3の電池をそれぞれ30個づつ作成した。各々の電池を10個ずつ1000mAの定電流で放電し、0.9Vまでの放電時間を測定する試験を行った。結果は表1に示す。なお、表中の数値は全て電池10個(n=10)の平均値である。
[Evaluation methods of Examples 1 to 5 and Comparative Examples 1 to 3]
30 batteries of Examples 1 to 5 and Comparative Examples 1 to 3 obtained as described above were prepared. Each battery was discharged 10 times at a constant current of 1000 mA, and a test was conducted to measure the discharge time up to 0.9V. The results are shown in Table 1. The numerical values in the table are all average values of 10 batteries (n = 10).

(未放電漏液試験)
各々の電池10個を未放電状態で温度60℃、湿度90%の高温槽中に60日間保存し、漏液の発生率を測定した。結果は表1に示す。
(Undischarged liquid leakage test)
Ten batteries were stored in an undischarged state in a high-temperature bath at 60 ° C. and 90% humidity for 60 days, and the rate of leakage was measured. The results are shown in Table 1.

(過放電漏液試験)
各々の電池10個を10Ωで48時間放電させた後、60℃の高温槽中に40日間保存し漏液の発生率を測定した。結果は表1に示す。
(Overdischarge leakage test)
Each battery was discharged at 10Ω for 48 hours, and then stored in a high-temperature bath at 60 ° C. for 40 days, and the occurrence rate of liquid leakage was measured. The results are shown in Table 1.

Figure 2006172908
Figure 2006172908

表1に示されるように比較例1以外の電池が50分以上の放電時間を保持している。比較例1の電池は亜鉛に対する水酸化カリウムの質量比率が36と低く、十分な放電容量が得られなかった。また比較例2および3の電池は過放電漏液試験において100%漏液しているのに対し、実施例1〜5および比較例1の電池は漏液発生率が50%以下で良好な結果を示している。特に、実施例1においては未放電漏液、過放電漏液ともに漏液発生率は0であった。   As shown in Table 1, batteries other than Comparative Example 1 have a discharge time of 50 minutes or more. In the battery of Comparative Example 1, the mass ratio of potassium hydroxide to zinc was as low as 36, and a sufficient discharge capacity was not obtained. The batteries of Comparative Examples 2 and 3 leaked 100% in the overdischarge leakage test, whereas the batteries of Examples 1 to 5 and Comparative Example 1 had a good leak rate of 50% or less. Is shown. In particular, in Example 1, the leakage occurrence rate was 0 for both undischarged leakage and overdischarge leakage.

次に、集電ピン表面へのすずメッキ量の漏液試験に及ぼす影響を検討するために、実施例6〜7、比較例4〜5の電池を試作した。   Next, in order to examine the influence of the amount of tin plating on the surface of the current collecting pin on the liquid leakage test, batteries of Examples 6 to 7 and Comparative Examples 4 to 5 were made as prototypes.

〔実施例6〕
真鍮の表面に0.05μmのすずメッキを施した集電ピンを用いたこと以外は、実施例1と同様の製造方法で円筒形アルカリ電池を作成した。
Example 6
A cylindrical alkaline battery was produced by the same production method as in Example 1 except that a current collecting pin having a surface of brass plated with 0.05 μm of tin was used.

〔実施例7〕
真鍮の表面に0.1μmのすずメッキを施した集電ピンを用いたこと以外は、実施例1と同様の製造方法で円筒形アルカリ電池を作成した。
Example 7
A cylindrical alkaline battery was produced by the same production method as in Example 1 except that a current collecting pin having a 0.1 μm tin plating on the surface of brass was used.

〔比較例4〕
真鍮の表面にすずメッキを施さない集電ピンを用いたこと以外は、実施例1と同様の製造方法で円筒形アルカリ電池を作成した。
[Comparative Example 4]
A cylindrical alkaline battery was produced by the same production method as in Example 1 except that a current collecting pin not plated with tin was used on the surface of brass.

〔比較例5〕
真鍮の表面にすずメッキの厚さを0.03μmとしたこと以外は、実施例1と同様の製造方法で円筒形アルカリ電池を作成した。
[Comparative Example 5]
A cylindrical alkaline battery was produced by the same production method as in Example 1 except that the thickness of the tin plating was 0.03 μm on the brass surface.

[実施例6〜7および比較例4〜5の評価方法]
以上のようにして得られた実施例6〜7および比較例4〜5の電池をそれぞれ30個づつ作成した。各々の電池を10個ずつ1000mAの定電流で放電し、0.9Vまでの放電時間を測定する試験を行った。結果は表2に示す。なお、表中の数値は全て電池10個(n=10)の平均値である。
[Evaluation methods of Examples 6 to 7 and Comparative Examples 4 to 5]
30 batteries of Examples 6 to 7 and Comparative Examples 4 to 5 obtained as described above were prepared. Each battery was discharged 10 times at a constant current of 1000 mA, and a test was conducted to measure the discharge time up to 0.9V. The results are shown in Table 2. The numerical values in the table are all average values of 10 batteries (n = 10).

(未放電漏液試験)
各々の電池10個を未放電状態で温度60℃、湿度90%の高温槽中に60日間保存し、漏液の発生率を測定した。結果は表2に示す。
(Undischarged liquid leakage test)
Ten batteries were stored in an undischarged state in a high-temperature bath at 60 ° C. and 90% humidity for 60 days, and the rate of leakage was measured. The results are shown in Table 2.

(過放電漏液試験)
各々の電池10個を10Ωで48時間放電させた後、60℃の高温槽中に40日間保存し漏液の発生率を測定した。結果は表2に示す。
(Overdischarge leakage test)
Each battery was discharged at 10Ω for 48 hours, and then stored in a high-temperature bath at 60 ° C. for 40 days, and the occurrence rate of liquid leakage was measured. The results are shown in Table 2.

Figure 2006172908
Figure 2006172908

表2の結果より比較例4、比較例5以外の電池の未放電漏液は0であった。未放電漏液、過放電漏液ともに0のものは実施例6、実施例7であった。   From the results in Table 2, the undischarged liquid leakage of batteries other than Comparative Example 4 and Comparative Example 5 was zero. Examples with zero undischarged leakage and overdischarge leakage were Example 6 and Example 7.

表1、表2の結果より、水酸化カリウム水溶液の濃度が36質量%〜40質量%の範囲であり、かつ亜鉛と水酸化カリウムの比率が亜鉛質量100に対し、水酸化カリウム質量37〜40とすることでガス発生量を低減させ、漏液を防止できることが立証できる。さらに、集電ピン表面にメッキされているすずの厚さを、0.05μm〜0.5μmの範囲とすることで、さらに未放電時、過放電時の漏液防止効果を高めることができる。   From the results of Tables 1 and 2, the concentration of the potassium hydroxide aqueous solution is in the range of 36% by mass to 40% by mass, and the ratio of zinc to potassium hydroxide is 100% of the mass of zinc. Thus, it can be proved that the amount of gas generation can be reduced and leakage can be prevented. Furthermore, by setting the thickness of the tin plated on the surface of the current collecting pins to be in the range of 0.05 μm to 0.5 μm, it is possible to further enhance the effect of preventing leakage at the time of non-discharge and overdischarge.

この発明に係わる円筒形電池の一構成例を示す図である。It is a figure which shows the example of 1 structure of the cylindrical battery concerning this invention.

符号の説明Explanation of symbols

1 円筒形電池、
2 正極缶
3 導電性塗料
4 正極
5 セパレータ
6 負極
7 封口部材
8 補強部材
9 集電ピン
10 負極端子
11 外装ラベル
1 Cylindrical battery,
2 Positive electrode can 3 Conductive paint 4 Positive electrode 5 Separator 6 Negative electrode 7 Sealing member 8 Reinforcing member 9 Current collecting pin 10 Negative electrode terminal 11 Exterior label

Claims (2)

負極の主たる活物質として亜鉛を用い、正極の主たる活物質として二酸化マンガンもしくはオキシ水酸化ニッケルを用い、電解液として水酸化カリウム水溶液を用い、負極側の集電として略釘状の銅、乃至真鍮にすずメッキを施した集電ピンを用いたアルカリ電池であって、水酸化カリウム水溶液の質量濃度が36質量%〜40質量%の範囲であり、かつ亜鉛と水酸化カリウムの比率が亜鉛質量100に対し、水酸化カリウム質量が37〜40の範囲であることを特徴とするアルカリ電池。   Zinc is used as the main active material of the negative electrode, manganese dioxide or nickel oxyhydroxide is used as the main active material of the positive electrode, an aqueous potassium hydroxide solution is used as the electrolyte, and substantially nail-shaped copper or brass is used as the current collector on the negative electrode side. An alkaline battery using a tin-plated current collecting pin, wherein the mass concentration of the potassium hydroxide aqueous solution is in the range of 36 mass% to 40 mass%, and the ratio of zinc to potassium hydroxide is 100 mass of zinc. On the other hand, an alkaline battery characterized in that the mass of potassium hydroxide is in the range of 37-40. 上記集電ピン表面にメッキされているすずの厚さが0.05μm〜0.5μmの範囲である請求項1記載のアルカリ電池。

2. The alkaline battery according to claim 1, wherein a thickness of tin plated on the surface of the current collecting pin is in a range of 0.05 [mu] m to 0.5 [mu] m.

JP2004364004A 2004-12-16 2004-12-16 Alkaline battery Pending JP2006172908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004364004A JP2006172908A (en) 2004-12-16 2004-12-16 Alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004364004A JP2006172908A (en) 2004-12-16 2004-12-16 Alkaline battery

Publications (1)

Publication Number Publication Date
JP2006172908A true JP2006172908A (en) 2006-06-29

Family

ID=36673421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004364004A Pending JP2006172908A (en) 2004-12-16 2004-12-16 Alkaline battery

Country Status (1)

Country Link
JP (1) JP2006172908A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009170157A (en) * 2008-01-11 2009-07-30 Panasonic Corp Aa alkaline battery
EP2306564A1 (en) 2009-10-01 2011-04-06 Panasonic Corporation Alkaline dry battery and method for producing the same
CN109065972A (en) * 2018-08-13 2018-12-21 福建南平南孚电池有限公司 A kind of alkaline battery that can efficiently discharge battery capacity

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05109411A (en) * 1991-10-17 1993-04-30 Matsushita Electric Ind Co Ltd Alkaline dry battery
JPH0620694A (en) * 1992-07-07 1994-01-28 Matsushita Electric Ind Co Ltd Alkaline dry battery
JPH07122276A (en) * 1993-10-21 1995-05-12 Matsushita Electric Ind Co Ltd Cylindrical alkaline battery
JPH08509095A (en) * 1993-04-12 1996-09-24 デュラセル インコーポレイテッド Electrochemical cell using zinc anode
JP2002500418A (en) * 1997-12-31 2002-01-08 デュラセル インコーポレイテッド Electrochemical cell balance
JP2006019092A (en) * 2004-06-30 2006-01-19 Matsushita Electric Ind Co Ltd Alkaline dry cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05109411A (en) * 1991-10-17 1993-04-30 Matsushita Electric Ind Co Ltd Alkaline dry battery
JPH0620694A (en) * 1992-07-07 1994-01-28 Matsushita Electric Ind Co Ltd Alkaline dry battery
JPH08509095A (en) * 1993-04-12 1996-09-24 デュラセル インコーポレイテッド Electrochemical cell using zinc anode
JPH07122276A (en) * 1993-10-21 1995-05-12 Matsushita Electric Ind Co Ltd Cylindrical alkaline battery
JP2002500418A (en) * 1997-12-31 2002-01-08 デュラセル インコーポレイテッド Electrochemical cell balance
JP2006019092A (en) * 2004-06-30 2006-01-19 Matsushita Electric Ind Co Ltd Alkaline dry cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009170157A (en) * 2008-01-11 2009-07-30 Panasonic Corp Aa alkaline battery
EP2306564A1 (en) 2009-10-01 2011-04-06 Panasonic Corporation Alkaline dry battery and method for producing the same
CN109065972A (en) * 2018-08-13 2018-12-21 福建南平南孚电池有限公司 A kind of alkaline battery that can efficiently discharge battery capacity
CN109065972B (en) * 2018-08-13 2020-03-10 福建南平南孚电池有限公司 Alkaline battery capable of efficiently releasing battery capacity

Similar Documents

Publication Publication Date Title
KR100194186B1 (en) Manganese dioxide cathode for rechargeable battery and battery containing same
US20020068220A1 (en) Electrochemical cell and negative electrode therefor
JPWO2012042743A1 (en) Alkaline secondary battery
JP4789914B2 (en) AA alkaline batteries
JP5172181B2 (en) Zinc alkaline battery
US9040196B2 (en) Alkaline primary battery
JP2009170157A (en) Aa alkaline battery
JP2006172908A (en) Alkaline battery
JPH07122276A (en) Cylindrical alkaline battery
JP2006040887A (en) Alkaline battery
JP2008047497A (en) Alkaline battery
JP2008041490A (en) Alkaline battery
CN101640272A (en) Anode material of alkaline secondary battery, anode and alkaline secondary battery
JP2006040701A (en) Alkaline dry battery
JP2011216217A (en) Alkaline dry battery
JP4514588B2 (en) AA alkaline batteries
JP5395694B2 (en) Alkaline battery
JP2010282744A (en) Alkaline dry battery
JP2007048623A (en) Alkaline dry cell
JP2013051027A (en) Alkaline dry cell
JP2006004900A (en) Alkaline dry battery
JP2003323914A (en) Nickel - hydrogen battery
JP2008234894A (en) Sealed type secondary battery
JPH01315962A (en) Alkali secondary battery
JP6232722B2 (en) Nickel-cadmium storage battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20061222

Free format text: JAPANESE INTERMEDIATE CODE: A711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070413

A977 Report on retrieval

Effective date: 20091001

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A02 Decision of refusal

Effective date: 20100316

Free format text: JAPANESE INTERMEDIATE CODE: A02