JP4863545B2 - Method and apparatus for digesting organic sludge - Google Patents

Method and apparatus for digesting organic sludge Download PDF

Info

Publication number
JP4863545B2
JP4863545B2 JP2000375722A JP2000375722A JP4863545B2 JP 4863545 B2 JP4863545 B2 JP 4863545B2 JP 2000375722 A JP2000375722 A JP 2000375722A JP 2000375722 A JP2000375722 A JP 2000375722A JP 4863545 B2 JP4863545 B2 JP 4863545B2
Authority
JP
Japan
Prior art keywords
sludge
ammonia
gas
organic
hot alkali
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000375722A
Other languages
Japanese (ja)
Other versions
JP2002177994A (en
Inventor
篤 宮田
省吾 武野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP2000375722A priority Critical patent/JP4863545B2/en
Publication of JP2002177994A publication Critical patent/JP2002177994A/en
Application granted granted Critical
Publication of JP4863545B2 publication Critical patent/JP4863545B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Description

【0001】
【発明の属する技術分野】
本発明は、熱アルカリ前処理を利用した有機性汚泥の消化処理方法及び装置に関するものである。
【0002】
【従来の技術】
下水処理場などから発生する有機性汚泥の処理方法のひとつとして、嫌気性消化処理法が知られている。この方法は、有機性汚泥を嫌気性消化槽でメタン発酵させることにより有機物を分解すると同時に、有価資源であるメタンガスを回収することができる利点がある。
【0003】
本発明者は、この嫌気性消化槽の前段に熱アルカリ前処理槽を設置して有機性汚泥を熱アルカリ処理することにより、有機物の可溶化を促進して嫌気性消化槽における処理能力を向上させる方法を先に開発し、既に、特開平06-099199号公報、特開平04-326998号公報、特開平06-071297号公報、等として多数の特許出願済みである。
【0004】
しかしこの方法で有機物の可溶化を促進しても、処理すべき有機性汚泥の濃度が高くなり過ぎると嫌気性消化が完全に行えなくなる。このため従来は有機性汚泥のVS(汚泥中の全有機物濃度)を2%未満に抑えた運転がなされており、嫌気性消化槽の有機物負荷を2kg/m・日以上とすることは困難であった。
【0005】
【発明が解決しようとする課題】
本発明は上記した従来の問題点を解決して、嫌気性消化槽の有機物負荷を従来よりも更に高めることができ、また有機性汚泥からの資源回収をより進めることができる有機性汚泥の消化処理方法及び装置を提供するためになされたものである。
【0006】
この課題を解決するために本発明者は検討を重ねた結果、嫌気性消化槽におけるメタン発酵を阻害する要因の一つである液中のアンモニアに着目した。アンモニアは特に遊離態アンモニアがメタン発酵の阻害になるといわれている。そして有機性汚泥のVSを従来よりも高め、かつ熱アルカリ前処理槽のpHを10以上とすることにより、熱アルカリ前処理槽あるいはその後段においてアンモニアガスを発生させ、アンモニアを液から分離できることを発見した。合わせてpHを10以上とすることにより、汚泥中有機物の可溶化率も向上することを発見した。
【0007】
【課題を解決するための手段】
本発明の有機性汚泥の消化処理方法は上記の知見に基づいて完成されたものであって、汚泥中の全有機物濃度(VS)が2%を越えるように汚泥を遠心濃縮する工程と、該VSが2%を越える高濃度の有機性汚泥を、pHが10以上、温度が35〜100℃に制御された熱アルカリ前処理槽に導入して、該有機性汚泥に含有される有機物の可溶化を促進する工程と、該有機物の可溶化を促進する工程で同時に生成したアンモニア性窒素を、アンモニア除去装置に導き、アンモニアガスとして、前処理汚泥から分離除去する工程と、アンモニアガスを分離除去した後の前処理汚泥を、pHが7〜8.5に制御された嫌気性消化槽に導入してメタン発酵させる工程とからなり、該アンモニア除去装置と該熱アルカリ前処理槽との間でポンプによって汚泥の一部を循環させることを特徴とするものである。
該有機物の可溶化を促進する工程で同時に生成したアンモニア性窒素を、アンモニア除去装置に導き、アンモニアガスとして、前処理汚泥から分離除去する工程は、嫌気性雰囲気ガスによるガスパージ、吸引、気液接触の何れかの手段により行うことができる。
【0008】
また本発明の有機性汚泥の消化処理装置は、高濃度の有機性汚泥をpHが10以上、温度が35〜100℃の条件下で処理する熱アルカリ前処理槽と、この熱アルカリ前処理により発生するアンモニアガスを前処理汚泥から分離除去するアンモニア除去装置と、該アンモニア除去装置と該熱アルカリ前処理槽との間でポンプによって汚泥の一部を循環させる循環経路と、アンモニアガスを分離除去した後の前処理汚泥をpHが7〜8.5の条件下でメタン発酵させる嫌気性消化槽とからなることを特徴とするものである。
【0009】
上記した本発明の有機性汚泥の消化処理方法及び装置によれば、嫌気性消化槽におけるメタン発酵の阻害要因であるアンモニアをその前段で液中から除去することができるのでメタン発酵菌の活性が高まり、嫌気性消化槽における有機物負荷を従来よりも大幅に高めることができる。しかも、有機性汚泥からメタンガスとともにアンモニアガスも回収することができるから、資源回収の観点から見ても大きな利点がある。
【0010】
【発明の実施の形態】
以下に本発明の実施形態を示すが、まず、図1を用いて、参考形態を説明する。
図1において、1は熱アルカリ前処理槽、2は嫌気性消化槽である。下水処理場から発生する初沈汚泥、余剰汚泥や、食品工場等から発生する蛋白含有汚泥などの有機性汚泥は、ポンプ等によってまず熱アルカリ前処理槽1に流入する。なお、以下に示すように汚泥の種類によって各槽の好ましい条件が異なるが、これは初沈汚泥では炭水化物が主成分であり、余剰汚泥(蛋白含有汚泥も同様)では蛋白質が主成分であるためである。
【0011】
前記したように、従来は流入する有機性汚泥(流入汚泥)のVSを2%未満に抑えていたのであるが、本発明ではVSが2%を越える高濃度の有機性汚泥を、熱アルカリ前処理槽1に流入させる。一般に高濃度汚泥ほど消化した場合にアンモニア濃度が高くなりメタン発酵反応への阻害が顕著となるが、本発明においてはアンモニア除去装置を設けるため、より高濃度の有機性汚泥を対象にするほど、通常の高濃度消化処理方法と比較して、メタン発酵反応における効果が大きくなる。従って濃縮の容易な初沈汚泥の場合にはVSを3%以上とし、余剰汚泥の場合にはVSを2%以上とすることが好ましい。
【0012】
また本発明では、流入汚泥のVSを従来よりも高めたことと関連して、熱アルカリ前処理槽1のpHを従来よりも高い10以上とする。初沈汚泥の場合にはpHを10〜12程度、余剰汚泥の場合にはpHを10〜11程度とすることが好ましい。このようなpHが維持されるように、NaOH等のアルカリが熱アルカリ前処理槽1内に添加される。また適宜の加熱手段によって、熱アルカリ前処理槽1は35〜100℃に加熱される。具体的には、初沈汚泥の場合には35℃程度、余剰汚泥の場合には70℃程度が好ましい。
【0013】
このような条件で有機性汚泥を熱アルカリ処理すると、有機性汚泥中の有機物は従来と同様に可溶化されるのであるが、それと同時にアンモニア性窒素が生成する。そこでこのアンモニア性窒素を、アンモニア除去装置5によりアンモニアガスとして液から分離除去する。このアンモニアガスは有価資源として、例えば汚泥処理場の脱硝などに再利用することができる。
【0014】
アンモニアガスの分離方法としては、種々の方法が考えられる。例えば図2に示すように、熱アルカリ前処理槽1の内部に溜まったアンモニアガスあるいは汚泥中のアンモニア態窒素を、不溶性嫌気性の例えば窒素ガスパージにより取り出す方法がある。ここで空気の代わりに嫌気性の窒素ガスを用いたのは、後段の嫌気性消化槽2が好気的雰囲気となり、嫌気性菌の活性低下を招くことを防止するためにおこなうものである。従って一般的には初期に空気等の不溶性好気性雰囲気ガスを封入しても長期間の運転により嫌気性雰囲気が形成されるため、長期的にみればこれらのガスを用いることは可能である。
【0015】
また図3に示すように、熱アルカリ前処理槽1の内部に溜まったアンモニアガスを、ブロワ3で吸引する方法する方法を採用することもできる。この方法によれば、アンモニアガスを単独で取り出せるが、気液界面の接触面積が小さくなる場合にはアンモニア除去が十分に行えず律速になる場合がある。
【0016】
さらに図4に示すように、気液接触によりアンモニアガスを取り出すこともできる。図4の方法では、熱アルカリ処理槽1から流出した前処理汚泥を、多段式の流路に沿って流下させつつ下方から吹き込まれる嫌気性雰囲気ガス等と接触させ、ガス(アンモニアガス+嫌気性雰囲気ガス)と前処理汚泥とを分離することができる。しかし図2〜図4の方法によると、アンモニアの液中からの分離により熱アルカリ前処理槽1のpHが低下し、本来の目的である汚泥中有機物の可溶化率が低下する欠点もある。
【0017】
そこでさらに望ましい分離方法として、図5〜図7に示すようにアンモニア除去装置5の前後にU字状のガスシール4を設ける方法がある。図5の例では中間部分に設けられたアンモニア除去装置5から、アンモニアガスをブロワ3でパージする。図6の例ではアンモニアガスをブロワ3で吸引する。さらに図7の例では、アンモニア除去装置5として気液接触装置を用い、アンモニアガスを気液接触により分離する。これらの方法によれば、アンモニア除去に伴うpH低下の影響が熱アルカリ前処理槽1に及びにくい利点がある。なお、図1ではこれらの種々の分離手段をアンモニア除去装置5として示した。当然このようにアンモニア除去装置を設ける場合には、熱アルカリ前処理槽と同等あるいはそれ以上の温度とする方がアンモニア除去が効率的に進むため、ジャケット水等による加温を考える。またアンモニア除去装置のpHはアンモニア除去の影響により、熱アルカリ前処理槽のpHよりも低くなる。
【0018】
図2、図4、図5、図7の例においては、窒素等の嫌気性雰囲気ガスを用いてガスパージを行なうため、このガスの流れを図8に示すような閉鎖循環系とし、別途分離されたアンモニアを吸収する吸収槽を設けることが望ましい。
【0019】
このようにしてアンモニアガスが分離除去された前処理後の汚泥は、従来と同様に嫌気性消化槽2に送られ、メタン発酵される。しかし従来とは異なり、液中から予めアンモニアが除去されているために嫌気性消化槽2においてメタン発酵が阻害されることはなく、流入汚泥のVSを従来よりも高めたにもかかわらず、効率よくメタン発酵が行われる。このとき発生したメタンガスは、有価資源として回収される。
【0020】
なお効率よくメタン発酵を進行させるためには、嫌気性消化槽2のpH%を、7〜8.5としておくことが好ましい。より詳細には、初沈汚泥の場合には7.0〜7.8程度、余剰汚泥の場合には7.8〜8.1程度とすることが望ましい。温度は中温発酵の場合には35℃程度、高温発酵の場合には55℃程度とする。このように嫌気性消化槽2のpHは特別な操作を行わなくとも自然に下がる。その理由は、メタン発酵により生成する炭酸ガスが液中に溶解し、消化汚泥を酸性側に移行させるためである。
【0021】
以上に述べたように、本発明によれば流入汚泥のVSを従来より高めたにもかかわらず効率よくメタン発酵が行われるので、嫌気性消化槽2における有機物負荷を、従来の2kg/m・日から3kg/m・日以上にまで大幅に高めることができる。またこの方法を応用すれば2段直列の嫌気性消化槽がある場合にその間にアンモニア除去装置5を設けて後段の嫌気性消化を活性化させることが可能である。あるいは嫌気性消化槽2から流出する消化汚泥の一部をアンモニア除去装置5に循環させてアンモニアの除去を促進させ、嫌気性消化を活性化させることが可能である。
【0022】
以上に説明した参考形態では、図1に示すように熱アルカリ前処理槽1から自然流下により後段のアンモニア除去装置5に導き、アンモニアを除去した後の前処理汚泥を全て嫌気性消化槽2に自然流下させた。しかし、本発明では、図9や図10に示すように、アンモニア除去装置5と熱アルカリ前処理槽1との間でポンプ等によって汚泥の一部を循環させている。このように前処理汚泥からアンモニアを除去することにより、熱アルカリ前処理槽1におけるアンモニウム塩,アンモニウムイオン,非解離アンモニアの平衡がより非解離アンモニア側へ移行し、アンモニア除去装置においてより多量のアンモニアガスの分離が可能となる。アンモニア除去装置5は図9のように熱アルカリ前処理槽1の後段においても、図10のように熱アルカリ前処理槽1と並列に設けても良い。
【0023】
以下にアンモニア除去に関する実験結果を示す。用いた実験装置は、1L容量の熱アルカリ前処理槽と10L容量の嫌気性消化槽に、アンモニア除去装置を組み合わせたものである。まず下水処理場の余剰汚泥を遠心濃縮してVSが3%に濃縮された有機性汚泥とし、pH10.5、温度70℃に制御された熱アルカリ前処理槽に1日に1Lの割合で入れて処理した。この時アンモニア除去装置において1日当り400mg−Nのアンモニアガスが発生したのでこれを分離回収した。
【0024】
このようにして得られた前処理汚泥を、pH8.0、温度37℃に制御された嫌気性消化槽に入れて消化日数10日間で処理したところ、メタン発酵が効率よく進行し、有機物の消化率は56%であった。また10L/日のメタンガスと、1L/日の炭酸ガスとが回収された。10L容量の嫌気性消化槽における有機物負荷は1日当たり30gであり、これは通常用いられる単位に換算すると3kg/m・日となる。
【0025】
次に、同じ実験装置を用いて同じ負荷でアンモニアを分離させない従来法による試験を行った。下水処理場の余剰汚泥をVSが3%になるよう調整し、pH10.5、温度70℃に制御された熱アルカリ前処理槽に1日に1Lの割合で入れて処理したが、熱アルカリ前処理ではガスの発生は全くなかった。この前処理汚泥を、pH8.0、温度37℃に制御された嫌気性消化槽に入れて10日間メタン発酵処理した。この場合の有機物の消化率は40%であった。また7.0L/日のメタンガスと、0.7L/日の炭酸ガスとが回収された。アンモニア除去装置がないことでメタンガスの発生が少なかったのはアンモニア阻害による結果だと判断できる。
【0026】
さらに、同じ実験装置を用いて余剰汚泥VS2%2kg/m・日の低負荷(低濃度)でアンモニアを分離させない従来法による試験を行った。pH9.0、温度70℃に制御された熱アルカリ前処理槽に1日に1Lの割合で入れて処理したが熱アルカリ前処理ではガスの発生は全くなかった。この前処理汚泥とpH8.0、温度37℃に制御された嫌気性消化槽に入れて10日間メタン発酵処理した。この場合の有機物消化率は50%であった。また5.8L/日のメタンガスと0.58Lの炭酸ガスが回収された。
【0027】
【発明の効果】
以上に説明したように、本発明の有機性汚泥の消化処理方法及び装置によれば、従来は2kg/m・日程度にとどまっていた嫌気性消化槽の有機物負荷を、3kg/m・日程度まで大幅に引き上げることができる。またこれとともに、有機性汚泥から多量のメタンガス及びアンモニアガスを回収することができるから、資源回収の観点や地球温暖化防止の観点からも優れた効果がある。特に前にガスシールを備えたアンモニア除去装置を用いれば、熱アルカリ前処理槽からのアンモニアガス発生が抑制されるため、熱アルカリ前処理槽でpHが低下することがなく、汚泥中有機物の可溶化率の低下を防止できる利点がある。また特に後にガスシールを備えたアンモニア除去装置を用いれば、アンモニア除去装置で発生したアンモニアガスの嫌気性消化槽への移動・再溶解を抑制するとともに、嫌気性消化槽で発生した消化ガスのアンモニア除去装置への移動を抑制して消化ガスのより完全な回収が可能となる。
【図面の簡単な説明】
【図1】参考例の工程を示すブロック図である。
【図2】ガスパージによるアンモニア分離方法を示す説明図である。
【図3】吸引によるアンモニア分離方法を示す説明図である。
【図4】気液接触によるアンモニア分離方法を示す説明図である。
【図5】ガスシールとガスパージを組み合わせたアンモニア分離方法を示す説明図である。
【図6】ガスシールと吸引を組み合わせたアンモニア分離方法を示す説明図である。
【図7】ガスシールと気液接触を組み合わせたアンモニア分離方法を示す説明図である。
【図8】アンモニア除去装置とアンモニア吸収装置によるアンモニア分離・回収方法を示す説明図である。
【図9】本発明の工程を示すブロック図である。
【図10】アンモニア除去装置の他の配置例を示すブロック図である。
【符号の説明】
1 熱アルカリ前処理槽、2 嫌気性消化槽、3 ブロワ、4 ガスシール、5 アンモニア除去装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for digesting organic sludge using hot alkali pretreatment.
[0002]
[Prior art]
An anaerobic digestion treatment method is known as one of the treatment methods for organic sludge generated from sewage treatment plants. This method has the advantage that organic sludge can be decomposed in an anaerobic digester in an anaerobic digester to simultaneously decompose organic matter and at the same time recover methane gas, which is a valuable resource.
[0003]
The present inventor has improved the treatment capacity in the anaerobic digestion tank by promoting the solubilization of organic matter by installing a hot alkali pretreatment tank in the previous stage of the anaerobic digestion tank and treating the organic sludge with the heat alkali treatment. A number of patent applications have already been filed, such as Japanese Patent Application Laid-Open No. 06-099199, Japanese Patent Application Laid-Open No. 04-326998, Japanese Patent Application Laid-Open No. 06-071297, and the like.
[0004]
However, even if solubilization of organic substances is promoted by this method, anaerobic digestion cannot be completely performed if the concentration of the organic sludge to be treated becomes too high. For this reason, in the past, the organic sludge was operated with the VS (total organic matter concentration in the sludge) suppressed to less than 2%, and it was difficult to increase the organic matter load of the anaerobic digester to 2 kg / m 3 · day or more. Met.
[0005]
[Problems to be solved by the invention]
The present invention solves the above-mentioned conventional problems, can further increase the organic load of the anaerobic digester, and can further promote resource recovery from the organic sludge. It is made in order to provide the processing method and apparatus.
[0006]
As a result of repeated studies to solve this problem, the present inventors have focused on ammonia in the liquid, which is one of the factors that inhibit methane fermentation in an anaerobic digester. As for ammonia, it is said that free ammonia in particular inhibits methane fermentation. And, by increasing the VS of organic sludge from the conventional level and setting the pH of the hot alkali pretreatment tank to 10 or more, ammonia gas can be generated in the hot alkali pretreatment tank or its subsequent stage, and ammonia can be separated from the liquid. discovered. In addition, it was discovered that the solubilization rate of organic substances in sludge is improved by setting the pH to 10 or more.
[0007]
[Means for Solving the Problems]
The organic sludge digestion treatment method of the present invention has been completed based on the above findings, and the step of centrifugally concentrating sludge such that the total organic matter concentration (VS) in the sludge exceeds 2%, The organic sludge having a high concentration exceeding VS of 2% is introduced into a hot alkali pretreatment tank having a pH of 10 or more and a temperature of 35 to 100 ° C., and the organic matter contained in the organic sludge is allowed. The process of promoting solubilization, the process of promoting the solubilization of the organic matter, the ammonia nitrogen produced at the same time is guided to an ammonia removal device, and separated and removed from the pretreated sludge as ammonia gas, and the ammonia gas is separated and removed the pretreatment sludge after, pH is Ri Do and a step of methane fermentation is introduced into the anaerobic digestion tank is controlled to 7-8.5, between the ammonia removal apparatus and heat the alkali pretreatment reservoir By pump Is characterized in that the circulating part of the sludge.
Ammonia nitrogen produced simultaneously in the process of promoting solubilization of the organic matter is guided to an ammonia removal device, and as a process of separating and removing ammonia gas from the pretreated sludge, gas purging with anaerobic atmosphere gas, suction, gas-liquid contact It can be performed by any one of the following means.
[0008]
In addition, the organic sludge digestion treatment apparatus of the present invention comprises a hot alkali pretreatment tank for treating high-concentration organic sludge at a pH of 10 or more and a temperature of 35 to 100 ° C. , and this hot alkali pretreatment. Ammonia removal device for separating and removing generated ammonia gas from pretreatment sludge, a circulation path for circulating a part of sludge by a pump between the ammonia removal device and the hot alkali pretreatment tank, and separation and removal of ammonia gas It consists of an anaerobic digester which carries out methane fermentation of the pre-treatment sludge after having been pH 7-8.5 .
[0009]
According to the organic sludge digestion treatment method and apparatus of the present invention described above, ammonia, which is an inhibitory factor of methane fermentation in an anaerobic digester, can be removed from the liquid in the previous stage, so the activity of methane fermentation bacteria is increased. The organic load in the anaerobic digester can be significantly increased as compared with the conventional case. Moreover, since ammonia gas can be recovered from organic sludge as well as methane gas, there is a great advantage from the viewpoint of resource recovery.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described below. First, a reference embodiment will be described with reference to FIG.
In FIG. 1, 1 is a hot alkali pretreatment tank, and 2 is an anaerobic digestion tank. Organic sludge such as primary sludge generated from a sewage treatment plant, excess sludge, and protein-containing sludge generated from a food factory or the like first flows into the hot alkali pretreatment tank 1 by a pump or the like. As shown below, the preferred conditions for each tank differ depending on the type of sludge. This is because the primary sludge is mainly composed of carbohydrates, and surplus sludge (as well as protein-containing sludge) is mainly composed of proteins. It is.
[0011]
As described above, VS of inflowing organic sludge (inflow sludge) has been conventionally suppressed to less than 2%. However, in the present invention, high-concentration organic sludge having a VS of over 2% is used before hot alkali. It flows into the processing tank 1. In general, when the higher concentration sludge is digested, the ammonia concentration becomes higher and the inhibition to the methane fermentation reaction becomes remarkable, but in the present invention, in order to provide an ammonia removal device, the more concentrated organic sludge is targeted, Compared with a normal high-concentration digestion method, the effect in the methane fermentation reaction is increased. Therefore, it is preferable to set the VS to 3% or more in the case of an easily settled initial settling sludge and to set the VS to 2% or more in the case of excess sludge.
[0012]
Moreover, in this invention, in connection with having raised VS of inflow sludge from the past, pH of the hot alkali pretreatment tank 1 shall be 10 or more higher than before. In the case of primary sludge, the pH is preferably about 10 to 12, and in the case of excess sludge, the pH is preferably about 10 to 11. An alkali such as NaOH is added to the hot alkali pretreatment tank 1 so that such a pH is maintained. Moreover, the hot alkali pretreatment tank 1 is heated to 35 to 100 ° C. by an appropriate heating means. Specifically, about 35 ° C. is preferable in the case of initial settling sludge, and about 70 ° C. is preferable in the case of excess sludge.
[0013]
When the organic sludge is subjected to hot alkali treatment under such conditions, the organic matter in the organic sludge is solubilized as in the conventional case, but at the same time, ammoniacal nitrogen is generated. Therefore, the ammonia nitrogen is separated and removed from the liquid as ammonia gas by the ammonia removing device 5. This ammonia gas can be reused as a valuable resource, for example, for denitration of a sludge treatment plant.
[0014]
Various methods can be considered as a method for separating ammonia gas. For example, as shown in FIG. 2, there is a method in which ammonia gas accumulated in the hot alkali pretreatment tank 1 or ammonia nitrogen in sludge is taken out by insoluble anaerobic, for example, nitrogen gas purge. Here, anaerobic nitrogen gas was used instead of air in order to prevent the anaerobic digestion tank 2 in the subsequent stage from becoming an aerobic atmosphere and causing the activity of the anaerobic bacteria to decrease. Therefore, generally, even if an insoluble aerobic atmosphere gas such as air is initially sealed, an anaerobic atmosphere is formed by a long-term operation. Therefore, these gases can be used in the long term.
[0015]
Moreover, as shown in FIG. 3, the method of attracting | sucking the ammonia gas collected in the inside of the hot alkali pretreatment tank 1 with the blower 3 is also employable. According to this method, ammonia gas can be taken out alone, but if the contact area at the gas-liquid interface is small, ammonia removal may not be sufficiently performed and the rate may be limited.
[0016]
Furthermore, as shown in FIG. 4, ammonia gas can also be taken out by gas-liquid contact. In the method of FIG. 4, the pretreated sludge that has flowed out of the hot alkali treatment tank 1 is brought into contact with an anaerobic atmosphere gas or the like blown from below while flowing down along a multistage flow path, and gas (ammonia gas + anaerobic) Atmosphere gas) and pretreatment sludge can be separated. However, according to the method shown in FIGS. 2 to 4, there is a disadvantage that the pH of the hot alkali pretreatment tank 1 is lowered by the separation of ammonia from the liquid, and the solubilization rate of organic substances in the sludge, which is the original purpose, is lowered.
[0017]
Therefore, as a more preferable separation method, there is a method of providing a U-shaped gas seal 4 before and after the ammonia removing device 5 as shown in FIGS. In the example of FIG. 5, ammonia gas is purged by the blower 3 from the ammonia removing device 5 provided in the intermediate portion. In the example of FIG. 6, ammonia gas is sucked by the blower 3. Further, in the example of FIG. 7, a gas-liquid contact device is used as the ammonia removing device 5, and ammonia gas is separated by gas-liquid contact. According to these methods, there is an advantage that the influence of the pH decrease accompanying ammonia removal does not easily reach the hot alkali pretreatment tank 1. In FIG. 1, these various separation means are shown as an ammonia removing device 5. Naturally, when the ammonia removing device is provided in this way, the ammonia removal proceeds more efficiently at a temperature equal to or higher than that of the hot alkali pretreatment tank. Therefore, heating with jacket water or the like is considered. Further, the pH of the ammonia removing device is lower than the pH of the hot alkali pretreatment tank due to the influence of ammonia removal.
[0018]
In the examples of FIGS. 2, 4, 5, and 7, since the gas purge is performed using an anaerobic atmosphere gas such as nitrogen, the gas flow is a closed circulation system as shown in FIG. It is desirable to provide an absorption tank for absorbing ammonia.
[0019]
The sludge after the pretreatment from which the ammonia gas has been separated and removed in this manner is sent to the anaerobic digestion tank 2 and subjected to methane fermentation in the same manner as before. However, unlike the conventional case, ammonia is previously removed from the liquid, so the methane fermentation is not inhibited in the anaerobic digester 2, and the efficiency of the influent sludge is increased despite the fact that the VS of the influent sludge is increased compared to the conventional case. Methane fermentation is often performed. Methane gas generated at this time is recovered as a valuable resource.
[0020]
In addition, in order to advance methane fermentation efficiently, it is preferable to make pH% of the anaerobic digester 2 7-8.5. More specifically, it is desirable that the initial sludge is about 7.0 to 7.8, and the excess sludge is about 7.8 to 8.1. The temperature is about 35 ° C. for medium temperature fermentation and about 55 ° C. for high temperature fermentation. Thus, the pH of the anaerobic digester 2 is naturally lowered without any special operation. The reason is that carbon dioxide gas generated by methane fermentation dissolves in the liquid and shifts the digested sludge to the acidic side.
[0021]
As described above, according to the present invention, methane fermentation is efficiently performed despite the fact that the VS of the influent sludge is increased as compared with the prior art, so the organic load in the anaerobic digester 2 is reduced to the conventional 2 kg / m 3. from-days to more than 3-days 3kg / m can be greatly increased. In addition, if this method is applied, when there is a two-stage anaerobic digestion tank, it is possible to provide an ammonia removing device 5 between them to activate the anaerobic digestion at the latter stage. Alternatively, it is possible to circulate a part of the digested sludge flowing out from the anaerobic digestion tank 2 to the ammonia removing device 5 to promote the removal of ammonia and activate the anaerobic digestion.
[0022]
In the reference form described above, as shown in FIG. 1, the pretreatment sludge after removing ammonia is introduced into the anaerobic digestion tank 2 by being naturally flowed from the hot alkali pretreatment tank 1 to the downstream ammonia removal device 5. I let it flow down naturally. However, in the present invention, as shown in FIGS. 9 and 10, a part of the sludge is circulated between the ammonia removing device 5 and the hot alkali pretreatment tank 1 by a pump or the like. By removing ammonia from the pretreatment sludge in this way, the equilibrium of ammonium salt, ammonium ions, and non-dissociated ammonia in the hot alkali pretreatment tank 1 is shifted to the non-dissociated ammonia side, and a larger amount of ammonia is removed in the ammonia removing device. Gas separation becomes possible. The ammonia removing device 5 may be provided in parallel with the hot alkali pretreatment tank 1 as shown in FIG. 10 even at the rear stage of the hot alkali pretreatment tank 1 as shown in FIG.
[0023]
The experimental results regarding ammonia removal are shown below. The experimental apparatus used is a combination of a 1 L capacity hot alkali pretreatment tank and a 10 L capacity anaerobic digestion tank combined with an ammonia removal apparatus. First, the excess sludge from the sewage treatment plant is centrifugally concentrated to give organic sludge with a VS concentration of 3%, and placed in a hot alkali pretreatment tank controlled at pH 10.5 and temperature 70 ° C at a rate of 1 liter per day. And processed. At this time, 400 mg-N ammonia gas was generated per day in the ammonia removing device, and this was separated and recovered.
[0024]
When the pretreated sludge thus obtained was placed in an anaerobic digester controlled at pH 8.0 and temperature of 37 ° C. and treated for 10 days, digestion of methane progressed efficiently and digestion of organic matter was achieved. The rate was 56%. Further, 10 L / day of methane gas and 1 L / day of carbon dioxide gas were recovered. The organic load in an anaerobic digester with a capacity of 10 L is 30 g per day, which is 3 kg / m 3 · day when converted to a unit normally used.
[0025]
Next, the test by the conventional method which does not isolate | separate ammonia by the same load using the same experiment apparatus was done. Excess sludge from the sewage treatment plant was adjusted to 3% VS and placed in a hot alkali pretreatment tank controlled at pH 10.5 and temperature 70 ° C at a rate of 1 L per day. There was no gas evolution during the treatment. This pretreated sludge was put in an anaerobic digester controlled at pH 8.0 and temperature 37 ° C. and subjected to methane fermentation treatment for 10 days. In this case, the digestibility of the organic matter was 40%. Further, 7.0 L / day of methane gas and 0.7 L / day of carbon dioxide gas were recovered. It can be judged that the fact that there was little generation of methane gas due to the absence of an ammonia removal device was the result of ammonia inhibition.
[0026]
Furthermore, tests were conducted by the conventional method which does not separate the ammonia in a low load of excess sludge VS2% 2kg / m 3 · day (low density) using the same experimental apparatus. In the hot alkali pretreatment tank controlled at pH 9.0 and temperature of 70 ° C., it was processed at a rate of 1 L per day, but no gas was generated in the hot alkali pretreatment. This pretreated sludge was subjected to methane fermentation treatment for 10 days in an anaerobic digester controlled at pH 8.0 and temperature of 37 ° C. In this case, the organic matter digestibility was 50%. Further, 5.8 L / day of methane gas and 0.58 L of carbon dioxide gas were recovered.
[0027]
【Effect of the invention】
As described above, according to the organic sludge digestion treatment method and apparatus of the present invention, the organic matter load of the anaerobic digester that has been limited to about 2 kg / m 3 · day is reduced to 3 kg / m 3 · It can be greatly increased to about a day. At the same time, since a large amount of methane gas and ammonia gas can be recovered from the organic sludge, there are excellent effects from the viewpoint of resource recovery and the prevention of global warming. In particular, if an ammonia removal device equipped with a gas seal is used in advance, the generation of ammonia gas from the hot alkali pretreatment tank is suppressed, so that the pH does not decrease in the hot alkali pretreatment tank, and organic substances in sludge are allowed. There is an advantage that a decrease in the dissolution rate can be prevented. In particular, if an ammonia removal device equipped with a gas seal is used later, the ammonia gas generated in the ammonia removal device can be prevented from moving to an anaerobic digester and re-dissolved, and the ammonia of the digested gas generated in the anaerobic digester It is possible to more completely recover the digestion gas by suppressing the movement to the removal device.
[Brief description of the drawings]
FIG. 1 is a block diagram showing steps of a reference example .
FIG. 2 is an explanatory view showing an ammonia separation method by gas purging.
FIG. 3 is an explanatory diagram showing an ammonia separation method by suction.
FIG. 4 is an explanatory diagram showing an ammonia separation method by gas-liquid contact.
FIG. 5 is an explanatory diagram showing an ammonia separation method combining a gas seal and a gas purge.
FIG. 6 is an explanatory view showing an ammonia separation method combining gas sealing and suction.
FIG. 7 is an explanatory diagram showing an ammonia separation method combining a gas seal and gas-liquid contact.
FIG. 8 is an explanatory diagram showing an ammonia separation / recovery method using an ammonia removal device and an ammonia absorption device.
FIG. 9 is a block diagram showing a process of the present invention .
FIG. 10 is a block diagram showing another arrangement example of the ammonia removing device.
[Explanation of symbols]
1 thermal alkali pretreatment tank, 2 anaerobic digestion tank, 3 blower, 4 gas seal, 5 ammonia removal device

Claims (4)

汚泥中の全有機物濃度(VS)が2%を越えるように汚泥を遠心濃縮する工程と、
該VSが2%を越える高濃度の有機性汚泥を、pHが10以上、温度が35〜100℃に制御された熱アルカリ前処理槽に導入して、該有機性汚泥に含有される有機物の可溶化を促進する工程と、
該有機物の可溶化を促進する工程で同時に生成したアンモニア性窒素を、アンモニア除去装置に導き、アンモニアガスとして、前処理汚泥から分離除去する工程と、
アンモニアガスを分離除去した後の前処理汚泥を、pHが7〜8.5に制御された嫌気性消化槽に導入してメタン発酵させる工程とからなり、
該アンモニア除去装置と該熱アルカリ前処理槽との間でポンプによって汚泥の一部を循環させることを特徴とする有機性汚泥の消化処理方法。
Centrifugal concentration of the sludge so that the total organic matter concentration (VS) in the sludge exceeds 2%;
The organic sludge having a high concentration exceeding VS of 2% is introduced into a hot alkali pretreatment tank having a pH of 10 or more and a temperature of 35 to 100 ° C., and the organic sludge contained in the organic sludge A step of promoting solubilization;
A step of introducing ammonia nitrogen simultaneously generated in the step of promoting solubilization of the organic matter to an ammonia removing device, and separating and removing it as pretreatment sludge as ammonia gas;
The pretreatment sludge after ammonia gas separated off, Ri Do and a step of methane fermentation pH is introduced into the anaerobic digestion tank is controlled to 7-8.5,
A method for digesting organic sludge, wherein a part of the sludge is circulated by a pump between the ammonia removing device and the hot alkali pretreatment tank .
該有機物の可溶化を促進する工程で同時に生成したアンモニア性窒素を、アンモニア除去装置に導き、アンモニアガスとして、前処理汚泥から分離除去する工程は、
嫌気性雰囲気ガスによるガスパージ、吸引、気液接触の何れかの手段を用いることを特徴とする請求項1記載の有機性汚泥の消化処理方法。
The step of introducing ammonia nitrogen simultaneously generated in the step of promoting solubilization of the organic substance to an ammonia removing device and separating and removing it from the pretreated sludge as ammonia gas,
2. The method for digesting organic sludge according to claim 1 , wherein any one of gas purging, suction, and gas-liquid contact with an anaerobic atmosphere gas is used.
高濃度の有機性汚泥をpHが10以上、温度が35〜100℃の条件下で処理する熱アルカリ前処理槽と、
この熱アルカリ前処理により発生するアンモニアガスを前処理汚泥から分離除去するアンモニア除去装置と、
該アンモニア除去装置と該熱アルカリ前処理槽との間でポンプによって汚泥の一部を循環させる循環経路と、
アンモニアガスを分離除去した後の前処理汚泥をpHが7〜8.5の条件下でメタン発酵させる嫌気性消化槽とからなることを特徴とする有機性汚泥の消化処理装置。
A hot alkali pretreatment tank for treating high-concentration organic sludge under conditions where the pH is 10 or more and the temperature is 35 to 100 ° C . ;
An ammonia removal device for separating and removing ammonia gas generated by this hot alkali pretreatment from the pretreatment sludge;
A circulation path for circulating a part of sludge by a pump between the ammonia removing device and the hot alkali pretreatment tank;
An apparatus for digesting organic sludge, comprising an anaerobic digester for methane fermentation of pretreated sludge after separation and removal of ammonia gas under conditions of pH 7 to 8.5 .
該アンモニア除去装置が、その前後にガスシールを備えたものである請求項3記載の有機性汚泥の消化処理装置。  The organic sludge digestion treatment apparatus according to claim 3, wherein the ammonia removal apparatus includes a gas seal before and after the ammonia removal apparatus.
JP2000375722A 2000-12-11 2000-12-11 Method and apparatus for digesting organic sludge Expired - Fee Related JP4863545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000375722A JP4863545B2 (en) 2000-12-11 2000-12-11 Method and apparatus for digesting organic sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000375722A JP4863545B2 (en) 2000-12-11 2000-12-11 Method and apparatus for digesting organic sludge

Publications (2)

Publication Number Publication Date
JP2002177994A JP2002177994A (en) 2002-06-25
JP4863545B2 true JP4863545B2 (en) 2012-01-25

Family

ID=18844693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000375722A Expired - Fee Related JP4863545B2 (en) 2000-12-11 2000-12-11 Method and apparatus for digesting organic sludge

Country Status (1)

Country Link
JP (1) JP4863545B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003010895A (en) * 2001-07-05 2003-01-14 Nkk Corp Method for anaerobic treatment of organic substance and apparatus therefor
JP2007061710A (en) * 2005-08-30 2007-03-15 Kobelco Eco-Solutions Co Ltd Organic sludge treatment method and apparatus
JP6858326B2 (en) * 2016-11-17 2021-04-14 株式会社サピエナント Organic matter treatment system and organic matter treatment method
US11198632B2 (en) 2017-03-30 2021-12-14 The University Of Queensland Process for the treatment of sludge

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5939395A (en) * 1982-08-27 1984-03-03 Mitsubishi Kakoki Kaisha Ltd Treatment of ammonia nitrogen-contg. waste water
JPS60216899A (en) * 1984-04-09 1985-10-30 Takuma Sogo Kenkyusho:Kk Anaerobic digestion method
JPS6269134A (en) * 1985-09-21 1987-03-30 Toshiba Eng Constr Co Ltd Pressure detecting structure in low negative pressure container
JPH0698356B2 (en) * 1990-01-25 1994-12-07 荏原インフイルコ株式会社 Organic wastewater treatment method
JPH0698358B2 (en) * 1990-02-14 1994-12-07 荏原インフイルコ株式会社 Treatment method for human waste
JP2655007B2 (en) * 1990-08-06 1997-09-17 大阪瓦斯株式会社 Wastewater and sludge treatment methods
JPH0783878B2 (en) * 1991-04-26 1995-09-13 日本碍子株式会社 Sewage sludge treatment method
JP2890043B1 (en) * 1998-05-15 1999-05-10 川崎重工業株式会社 Anaerobic digestion method and apparatus for organic sludge
JP2000097512A (en) * 1998-09-25 2000-04-04 Hitachi Building Equipment Engineering Co Ltd Method for increasing heating capacity of absorption- water cooled/warmer and increasing load absorption water cooler/warmer

Also Published As

Publication number Publication date
JP2002177994A (en) 2002-06-25

Similar Documents

Publication Publication Date Title
JP4427234B2 (en) Wet gas purification method and system
RU2144510C1 (en) Anaerobic removal of sulfur compounds from sewage
JP2002273489A (en) Treatment method of liquid organic waste and system for the same
CN111807589A (en) Method for recycling high-grade ammonium chloride from high-ammonia nitrogen wastewater in coal chemical industry
JP4863545B2 (en) Method and apparatus for digesting organic sludge
JP2011161305A (en) Method and apparatus for processing high concentration nitrogen-containing water
JP5797150B2 (en) Magnesium ammonium phosphate production suppression system and methane fermentation system
JP4902468B2 (en) Organic waste processing apparatus and processing method
JP3653427B2 (en) Tofu drainage treatment method and equipment
JP3600815B2 (en) Anaerobic fermentation system for organic waste
JPH11253745A (en) Method and apparatus for recovering ammonia
JP2004167423A (en) Apparatus and method for pure water production
JP2002079299A (en) Method for treating ammonia-containing waste
JP2019098206A (en) Ammonia concentration method and device
KR101913826B1 (en) Recovery System of Useful Resources from Biogas Plant and Recovery Method of Useful Resources Using the same
JP2004024929A (en) Methane fermentation method and system for the same
CN204958599U (en) Professional equipment of ammonia nitrogen diffusion barrier refuse disposal filtration liquid technology
JP2003071497A (en) Method and apparatus for treating organic waste
JP4010733B2 (en) Organic wastewater treatment method and apparatus
JP2001170614A (en) Organic waste water treating method and treating system
JP3937625B2 (en) Biological treatment method for organic waste
JPH0839066A (en) Treatment of water
JP4485007B2 (en) Nitrogen-containing wastewater treatment system
JP2005238151A (en) Treatment apparatus and treatment method for organic waste
KR20120136782A (en) Treatment system for wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060825

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080331

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4863545

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees