JP4485007B2 - Nitrogen-containing wastewater treatment system - Google Patents

Nitrogen-containing wastewater treatment system Download PDF

Info

Publication number
JP4485007B2
JP4485007B2 JP2000095081A JP2000095081A JP4485007B2 JP 4485007 B2 JP4485007 B2 JP 4485007B2 JP 2000095081 A JP2000095081 A JP 2000095081A JP 2000095081 A JP2000095081 A JP 2000095081A JP 4485007 B2 JP4485007 B2 JP 4485007B2
Authority
JP
Japan
Prior art keywords
nitrogen
containing wastewater
treatment system
wastewater treatment
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000095081A
Other languages
Japanese (ja)
Other versions
JP2001276891A (en
Inventor
憲尋 志村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Environment Co Ltd
Original Assignee
Sumitomo Heavy Industries Environment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Environment Co Ltd filed Critical Sumitomo Heavy Industries Environment Co Ltd
Priority to JP2000095081A priority Critical patent/JP4485007B2/en
Publication of JP2001276891A publication Critical patent/JP2001276891A/en
Application granted granted Critical
Publication of JP4485007B2 publication Critical patent/JP4485007B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Removal Of Specific Substances (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、火力発電設備における排水、下水・屎尿処理設備における排水、産業排水処理設備における排水などに含まれる窒素を除去する、窒素含有排水処理システム及び窒素含有排水処理方法に関する。
【0002】
【従来の技術】
窒素含有排水を処理する従来の排水処理システムの一例を図3に示す。
【0003】
処理すべき窒素含有排水をpH調整槽110に送り、ここで消石灰(Ca(OH)2)を添加して所定のpH値となるようにアルカリ性にpH調整する。この処理により、窒素含有排水中に含まれる炭酸イオン(CO3 2-)などは、カルシウムイオン(Ca2+)と反応して塩となりスケールとして析出する。
【0004】
析出したスケールは沈殿物として回収できるため、凝集沈殿槽120に送って固液分離を行う。ここでスケールと分離された窒素含有排水を、凝集沈殿槽120から流出させ、熱交換器130を経由して加温した状態で放散塔140の塔頂に供給する。放散塔140内において、窒素含有排水を蒸気と接触させてアンモニアを放散させる。放散塔140の塔頂からの排出ガスを、所定の排ガス処理設備150に送り、ここで排出ガス中のアンモニア分を除去・回収する。一方、放散塔140において放散処理を受けた放散処理水は、熱源として熱交換130に供給した後、中和処理設備170において所定の中和処理が行われる。
【0005】
【発明が解決しようとする課題】
しかし、ここで析出するスケールは、温度上昇に伴って溶解度が低下する性質を持っているため、凝集沈殿槽120から流出した窒素含有排水が熱交換器130によって加温されることにより、スケールの溶解度が低下して排水中にスケールが析出し、熱交換器130以降の配管160内や放散塔140内に、この析出したスケールが付着する状況となる。その結果、熱交換器130と放散塔140との間の配管160では、スケールによる目詰まりが生じ易く、一端目詰まりが生じた場合には、配管160を酸で洗浄する洗浄作業や、配管160の取り替え作業などが必要となる。
【0006】
さらに、このようなスケールの発生原因となるアルカリ金属やアルカリ土類金属が高濃度で含有される窒素含有排水を処理する場合には、この現象が増長されることになり、洗浄作業等のために、排水処理システムの稼働を数日毎に停止しなければない事態となり、プロセス性能の安定維持がより一層困難となる。
【0007】
本発明はこのような課題を解決すべくなされたものであり、その目的は、温度上昇に伴って溶解度が低下する特性を有するスケールであっても、前述した凝集沈殿槽以外でのスケールの発生を抑えて、排水処理システムのプロセス性能を安定して維持し得る窒素含有排水処理システム及び窒素含有排水処理方法を提供することにある。
【0008】
【課題を解決するための手段】
そこで、請求項1にかかる窒素含有排水処理システムは、窒素含有排水から窒素を除去する窒素含有排水処理システムであって、窒素を除去すべき窒素含有排水を加温する加温手段と、加温手段を介して加温された後の窒素含有排水に対してアルカリを添加し、この窒素含有排水を所定のアルカリ性に調整する調整手段と、調整手段によってアルカリ性に調整された窒素含有排水から不溶性塩を分離する固液分離手段と、固液分離手段によって不溶性塩が分離された後の窒素含有排水を、所定の放散用ガスと接触させることにより、この窒素含有排水からアンモニアを放散させる放散手段とを備え、固液分離手段で分離された不溶性塩を、調整手段に導入する第1導入手段をさらに備えて構成する。
【0009】
アンモニアを効率よく放散させるため、放散手段には常温に比べてより高い温度の窒素含有排水を導入することが望ましく、この点、排水処理システムをこのように構成することで、予め加温手段によって加温された窒素含有排水が、調整手段、固液分離手段を経て、比較的高い温度のまま放散手段まで送ることができる。そして、固液分離手段以降の処理で加温されることがないため、温度上昇に伴って溶解度が低下する特性を有するスケールであっても、固液分離手段と放散手段との間の配管や放散手段での、スケールの発生を抑制することができる。
【0010】
請求項2にかかる窒素含有排水処理システムは、請求項1における窒素含有排水処理システムにおいて、加温手段は、前記放散手段によってアンモニアが放散された後の放散処理水と熱交換する熱交換手段である。
【0011】
このように加温手段を、放散処理水を熱源とする熱交換手段で構成することで、熱回収ができ、排熱を有効に利用することができる。
【0013】
また、請求項1にかかる窒素含有排水処理システムでは、第1導入手段によって、固液分離手段で分離された不溶性塩を再び調整手段に導入することで、調整手段に導入された不溶性塩が種となり、この種を中心として不溶性塩が成長するため不溶性塩の成長が促される。この作用により、不溶性塩がより大きな粒となって固液分離手段において沈降分離し易くなる。
【0014】
請求項3にかかる窒素含有排水処理システムは、請求項1における窒素含有排水処理システムにおいて、放散手段によってアンモニアが放散された後の放散処理水を、調整手段に導入する第2導入手段をさらに備えて構成する。
【0015】
放散処理水には調整手段で添加されたアルカリが含まれるため第2導入手段によって放散処理水を調整手段に導入することで、調整手段に添加するアルカリを回収して再利用できる。
【0018】
【発明の実施の形態】
以下、本発明の実施形態につき、添付図面を参照して説明する。
【0019】
図1に実施形態にかかる窒素含有排水(以下、「原水」と称す。)の排水処理システムを示す。アンモニア態窒素を含む原水を、まず、熱交換器10に送り、熱交換によって70°〜80°程度に加温する。そして加温した後の原水をpH調整槽20に導入する。
【0020】
pH調整槽20では、導入された原水に対してpH調整剤としての水酸化ナトリウム(NaOH)などのアルカリを添加し、所定のpH値(例えば10.5程度)となるように、アルカリ性にpH調整する。このように原水のpH値をアルカリ性に調整することで、原水中に含まれるマグネシウムイオン(Mg2+)やカルシウムイオン(Ca2+)などのアルカリ土類金属類が塩となりスケールとして析出する。
【0021】
析出したスケールは沈殿物として回収できるため、アルカリを添加した原水は、撹拌されつつ凝集沈殿槽30に送られ、凝集沈殿槽30内で固液分離される。
【0022】
凝集沈殿槽30内で沈殿し分離されたスケールは、汚泥引き抜きポンプ61にによって凝集沈殿槽30底部から引き抜かれるが、引き抜いた汚泥の一部は分岐配管71を経由させて、pH調整槽20内に再導入する。このようにして導入した汚泥は種汚泥として作用し、凝集沈殿槽30内でのスケールの成長を促すように作用する。
【0023】
一方、凝集沈殿槽30においてスケールが分離された後の上澄み液となった原水は、フィード液受層40に送られた後、フィードポンプ62によってストリッピング塔50の塔頂に供給される。ストリッピング塔50内には塔下部から蒸気が導入されており、塔頂から供給された原水が蒸気と接触して、原水からアンモニアガスがストリッピング(放散)される。ストリピングされたアンモニアガスは、循環ブロワ63によってストリッピング塔50の塔頂から吸引された後、図示しないアンモニアガス処理設備において触媒燃焼処理される。
【0024】
また、ストリッピング塔50においてストリッピング処理を受けた後の処理水は100℃程度の高温度であり、この高温度の処理水を処理水ポンプ64によって熱交換器10に送り、原水を加温する熱源として利用することで熱回収を行う。熱交換器10を経由した処理水は、図示しない中和処理設備において、酸を添加することにより中和処理する。また、処理水にはアルカリが含まれているため、熱交換器10を経由した処理水の一部を、分岐配管72によってpH調整槽20内に導入する。これにより、pH調整槽20内に導入したアルカリを回収して再利用することができる。なお、熱交換器10へ流入前の処理水を、pH調整槽20に供給することもできる。
【0025】
このように構成する排水処理システム(本システム)と図3に示した従来の排水処理システム(従来システム)の双方において、25g/lのアンモニア態窒素と、高濃度のアルカリ土類金属として0.1g/lのカルシウムイオンとを含む原水を処理した。その結果、従来システムにおける、熱交換器130と放散塔140との間の配管160が、稼働1日で目詰まりを生じたが、本システムでは、同じ稼働日数においても、フィード液受層40とストリッピング塔50との間の配管には、スケールによる目詰まりが発生せず、30日間の連続して稼働させることができ、本システムのプロセス性能が安定して維持できることが確認できた。
【0026】
また、pH調整槽20に導入する前に原水を加温することなく、図2に示すように、pH調整槽20内に配設したスチーム配管80によって、pH調整時に原水等を加熱する構成を試みた。しかし、加熱により溶解度が低下することに起因して、スチーム配管80の配管表面にスケールが付着堆積して、スチーム配管80による加熱効率が著しく低下してしまい、実用に耐えないことが確認できた。
【0027】
以上説明した実施形態では、熱交換器10を用いて原水を加温する構成を例示したが、この例に限定するものではなく、ヒータ等の所定の加熱機構によって、pH調整槽20へ導入前の原水を加温する構成であればよい。
【0028】
【発明の効果】
以上説明したように、請求項1〜3にかかる窒素含有排水処理システムによれば、窒素含有排水をアルカリ性に調整する調整手段に導入する前に、窒素含有排水を加温する加温手段を備える構成を採用してので予め加温手段によって加温された窒素含有排水が、調整手段、固液分離手段を介し、比較的高い温度のまま放散手段まで送ることができ、しかも固液分離手段以降の処理で加温されることがないため、温度上昇に伴って溶解度が低下する特性を有するスケールであっても、固液分離手段と放散手段との間の配管や放散手段での、スケールの発生を抑制することが可能となる。これにより、温度上昇に伴って溶解度が低下する特性を有するスケールであっても、固液分離手段以外でのスケールの発生を抑えて、排水処理システムのプロセス性能を安定して維持することができる。
【図面の簡単な説明】
【図1】実施形態にかかる窒素含有排水処理システムを示すブロック図である。
【図2】pH調整層内にスチーム配管を配設した状態を示す説明図である。
【図3】従来の窒素含有排水処理システムを示すブロック図である。
【符号の説明】
10…熱交換器(加温手段)、20…pH調整層(調整手段)
30…凝集沈殿層(固液分離手段)、50…ストリッピング塔(放散手段)
71…分岐配管(第1導入手段)、72…分岐配管(第2導入手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a nitrogen-containing wastewater treatment system and a nitrogen-containing wastewater treatment method for removing nitrogen contained in wastewater in thermal power generation equipment, wastewater in sewage / sewage treatment equipment, wastewater in industrial wastewater treatment equipment, and the like.
[0002]
[Prior art]
An example of a conventional wastewater treatment system for treating nitrogen-containing wastewater is shown in FIG.
[0003]
The nitrogen-containing wastewater to be treated is sent to the pH adjusting tank 110, where slaked lime (Ca (OH) 2 ) is added and the pH is adjusted to be alkaline so as to have a predetermined pH value. By this treatment, carbonate ions (CO 3 2− ) and the like contained in the nitrogen-containing wastewater react with calcium ions (Ca 2+ ) to form salts and precipitate as scales.
[0004]
Since the deposited scale can be recovered as a precipitate, it is sent to the coagulation sedimentation tank 120 for solid-liquid separation. Here, the nitrogen-containing waste water separated from the scale is discharged from the coagulation sedimentation tank 120 and supplied to the top of the stripping tower 140 in a heated state via the heat exchanger 130. In the stripping tower 140, the nitrogen-containing waste water is brought into contact with steam to diffuse ammonia. The exhaust gas from the top of the stripping tower 140 is sent to a predetermined exhaust gas treatment facility 150, where the ammonia content in the exhaust gas is removed and recovered. On the other hand, the diffusion treated water that has undergone the radiation treatment in the radiation tower 140 is supplied to the heat exchange 130 as a heat source, and then subjected to a predetermined neutralization treatment in the neutralization treatment facility 170.
[0005]
[Problems to be solved by the invention]
However, since the scale deposited here has a property that the solubility decreases as the temperature rises, the nitrogen-containing waste water flowing out from the coagulation sedimentation tank 120 is heated by the heat exchanger 130, so that The solubility is lowered and scale is deposited in the waste water, and the deposited scale adheres to the inside of the pipe 160 and the diffusion tower 140 after the heat exchanger 130. As a result, the piping 160 between the heat exchanger 130 and the stripping tower 140 is easily clogged with a scale, and when one end is clogged, a cleaning operation for cleaning the piping 160 with an acid or the piping 160 is performed. Replacement work is required.
[0006]
Furthermore, when treating nitrogen-containing wastewater containing a high concentration of alkali metals or alkaline earth metals that cause such scales, this phenomenon will be exacerbated for cleaning operations, etc. In addition, the operation of the wastewater treatment system must be stopped every few days, making it difficult to maintain stable process performance.
[0007]
The present invention has been made to solve such problems. The purpose of the present invention is to generate scales other than the above-described coagulating sedimentation tanks, even if the scale has a characteristic that the solubility decreases with increasing temperature. The present invention provides a nitrogen-containing wastewater treatment system and a nitrogen-containing wastewater treatment method that can stably maintain the process performance of the wastewater treatment system.
[0008]
[Means for Solving the Problems]
Therefore, a nitrogen-containing wastewater treatment system according to claim 1 is a nitrogen-containing wastewater treatment system that removes nitrogen from nitrogen-containing wastewater, a heating means that heats the nitrogen-containing wastewater from which nitrogen is to be removed, and heating An alkali is added to the nitrogen-containing wastewater that has been heated through the means, the adjusting means for adjusting the nitrogen-containing wastewater to a predetermined alkalinity, and the insoluble salt from the nitrogen-containing wastewater adjusted to be alkaline by the adjusting means Solid-liquid separation means that separates the nitrogen-containing wastewater from which the insoluble salt has been separated by the solid-liquid separation means, and a diffusion means that diffuses ammonia from the nitrogen-containing wastewater by bringing the nitrogen-containing wastewater into contact with a predetermined diffusion gas. And a first introduction means for introducing the insoluble salt separated by the solid-liquid separation means into the adjustment means .
[0009]
In order to dissipate ammonia efficiently, it is desirable to introduce nitrogen-containing waste water having a higher temperature than normal temperature into the dissipating means. In this respect, by configuring the waste water treatment system in this way, The heated nitrogen-containing wastewater can be sent to the dissipating means at a relatively high temperature via the adjusting means and the solid-liquid separating means. And since it is not heated in the processing after the solid-liquid separation means, even if it is a scale having the characteristic that the solubility decreases with the temperature rise, the pipe between the solid-liquid separation means and the diffusion means The generation of scale in the diffusion means can be suppressed.
[0010]
The nitrogen-containing wastewater treatment system according to claim 2 is the nitrogen-containing wastewater treatment system according to claim 1, wherein the heating means is a heat exchange means for exchanging heat with the diffused treated water after the ammonia is diffused by the diffuser. is there.
[0011]
Thus, by comprising a heating means with the heat exchange means which uses the diffusion process water as a heat source, heat recovery can be performed and waste heat can be used effectively.
[0013]
Further, in the nitrogen-containing wastewater treatment system according to claim 1, the insoluble salt separated by the solid-liquid separation unit is again introduced into the adjustment unit by the first introduction unit, so that the insoluble salt introduced into the adjustment unit is seeded. Thus, the insoluble salt grows around this species, so that the growth of the insoluble salt is promoted. By this action, the insoluble salt becomes larger particles and is easily settled and separated in the solid-liquid separation means.
[0014]
A nitrogen-containing wastewater treatment system according to a third aspect of the present invention is the nitrogen-containing wastewater treatment system according to claim 1, further comprising second introduction means for introducing the diffused treated water after ammonia has been diffused by the diffuser means into the adjusting means. Configure.
[0015]
Since the diffusion treatment water contains alkali added by the adjustment means, the alkali added to the adjustment means can be recovered and reused by introducing the diffusion treatment water into the adjustment means by the second introduction means.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings.
[0019]
FIG. 1 shows a wastewater treatment system for nitrogen-containing wastewater (hereinafter referred to as “raw water”) according to the embodiment. The raw water containing ammonia nitrogen is first sent to the heat exchanger 10 and heated to about 70 ° to 80 ° by heat exchange. Then, the heated raw water is introduced into the pH adjustment tank 20.
[0020]
In the pH adjusting tank 20, an alkali such as sodium hydroxide (NaOH) as a pH adjusting agent is added to the introduced raw water so that the pH becomes alkaline so that a predetermined pH value (for example, about 10.5) is obtained. adjust. In this way, by adjusting the pH value of the raw water to be alkaline, alkaline earth metals such as magnesium ions (Mg 2+ ) and calcium ions (Ca 2+ ) contained in the raw water become salts and precipitate as scales.
[0021]
Since the deposited scale can be recovered as a precipitate, the raw water to which the alkali is added is sent to the coagulation sedimentation tank 30 while being stirred, and is solid-liquid separated in the coagulation sedimentation tank 30.
[0022]
The scale settled and separated in the coagulation sedimentation tank 30 is extracted from the bottom of the coagulation sedimentation tank 30 by the sludge extraction pump 61, but a part of the extracted sludge passes through the branch pipe 71 to enter the pH adjustment tank 20. Reintroduced into The sludge thus introduced acts as seed sludge and acts to promote the growth of scale in the coagulation sedimentation tank 30.
[0023]
On the other hand, the raw water that has become the supernatant liquid after the scale is separated in the coagulation sedimentation tank 30 is sent to the feed liquid receiving layer 40 and then supplied to the top of the stripping tower 50 by the feed pump 62. Steam is introduced into the stripping tower 50 from the lower part of the tower, and the raw water supplied from the top of the tower comes into contact with the steam, and ammonia gas is stripped from the raw water. The stripped ammonia gas is sucked from the top of the stripping tower 50 by the circulation blower 63 and then subjected to catalytic combustion processing in an ammonia gas processing facility (not shown).
[0024]
The treated water after the stripping treatment in the stripping tower 50 has a high temperature of about 100 ° C., and this treated water at high temperature is sent to the heat exchanger 10 by the treated water pump 64 to heat the raw water. The heat is recovered by using it as a heat source. The treated water that has passed through the heat exchanger 10 is neutralized by adding an acid in a neutralization facility (not shown). Further, since the treated water contains alkali, a part of the treated water that has passed through the heat exchanger 10 is introduced into the pH adjusting tank 20 through the branch pipe 72. Thereby, the alkali introduced into the pH adjusting tank 20 can be recovered and reused. The treated water before flowing into the heat exchanger 10 can also be supplied to the pH adjustment tank 20.
[0025]
In both of the wastewater treatment system (this system) configured as described above and the conventional wastewater treatment system (conventional system) shown in FIG. 3, 25 g / l of ammonia nitrogen and 0. Raw water containing 1 g / l calcium ion was treated. As a result, the pipe 160 between the heat exchanger 130 and the diffusion tower 140 in the conventional system was clogged in one day of operation, but in this system, the feed liquid receiving layer 40 and It was confirmed that the piping between the stripping tower 50 was not clogged by scales and could be operated continuously for 30 days, and the process performance of this system could be stably maintained.
[0026]
Further, as shown in FIG. 2, the raw water is heated at the time of pH adjustment by the steam pipe 80 disposed in the pH adjustment tank 20 without heating the raw water before being introduced into the pH adjustment tank 20. Tried. However, it was confirmed that due to the decrease in solubility due to heating, scale was deposited and deposited on the surface of the steam pipe 80, and the heating efficiency of the steam pipe 80 was significantly reduced, impractical. .
[0027]
In the above-described embodiment, the configuration in which the raw water is heated using the heat exchanger 10 is illustrated, but the present invention is not limited to this example, and before introduction into the pH adjustment tank 20 by a predetermined heating mechanism such as a heater. Any raw material may be used if it is heated.
[0028]
【The invention's effect】
As described above, according to the nitrogen-containing wastewater treatment system according to claims 1 to 3 , the nitrogen-containing wastewater treatment system is provided with a heating means for heating the nitrogen-containing wastewater before being introduced into the adjusting means for adjusting the nitrogen-containing wastewater to be alkaline. Since the configuration is adopted, the nitrogen-containing wastewater that has been heated in advance by the heating means can be sent to the diffusion means at a relatively high temperature via the adjustment means and the solid-liquid separation means, and after the solid-liquid separation means Since the scale is not heated by this treatment, even if the scale has a characteristic that the solubility decreases as the temperature rises, the scale between the solid-liquid separation means and the diffusion means and the diffusion means Occurrence can be suppressed. Thereby, even if it is a scale which has the characteristic that a solubility falls with a temperature rise, generation | occurrence | production of a scale other than a solid-liquid separation means can be suppressed, and the process performance of a wastewater treatment system can be maintained stably. .
[Brief description of the drawings]
FIG. 1 is a block diagram showing a nitrogen-containing wastewater treatment system according to an embodiment.
FIG. 2 is an explanatory view showing a state in which a steam pipe is disposed in a pH adjustment layer.
FIG. 3 is a block diagram showing a conventional nitrogen-containing wastewater treatment system.
[Explanation of symbols]
10 ... heat exchanger (heating means), 20 ... pH adjustment layer (adjustment means)
30: Aggregation precipitation layer (solid-liquid separation means), 50 ... Stripping tower (dispersion means)
71: Branch piping (first introduction means), 72: Branch piping (second introduction means)

Claims (3)

窒素含有排水から窒素を除去する窒素含有排水処理システムであって、
窒素を除去すべき窒素含有排水を加温する加温手段と、
前記加温手段を介して加温された後の前記窒素含有排水に対してアルカリを添加し、この窒素含有排水を所定のアルカリ性に調整する調整手段と、
前記調整手段によってアルカリ性に調整された窒素含有排水から不溶性塩を分離する固液分離手段と、
前記固液分離手段によって前記不溶性塩が分離された後の窒素含有排水を、所定の放散用ガスと接触させることにより、この窒素含有排水からアンモニアを放散させる放散手段とを備え
前記固液分離手段で分離された不溶性塩を、前記調整手段に導入する第1導入手段をさらに備える窒素含有排水処理システム。
A nitrogen-containing wastewater treatment system for removing nitrogen from nitrogen-containing wastewater,
A heating means for heating the nitrogen-containing waste water from which nitrogen is to be removed;
Adjusting means for adding alkali to the nitrogen-containing wastewater after being heated through the heating means, and adjusting the nitrogen-containing wastewater to a predetermined alkalinity;
Solid-liquid separation means for separating insoluble salts from nitrogen-containing wastewater adjusted to be alkaline by the adjustment means;
The nitrogen-containing wastewater from which the insoluble salt has been separated by the solid-liquid separation means is provided with a diffusion means for releasing ammonia from the nitrogen-containing wastewater by bringing the nitrogen-containing wastewater into contact with a predetermined emission gas .
A nitrogen-containing wastewater treatment system further comprising first introduction means for introducing the insoluble salt separated by the solid-liquid separation means into the adjustment means .
前記加温手段は、前記放散手段によってアンモニアが放散された後の放散処理水と熱交換する熱交換手段である請求項1記載の窒素含有排水処理システム。  The nitrogen-containing wastewater treatment system according to claim 1, wherein the heating means is a heat exchange means for exchanging heat with the diffused treated water after ammonia is diffused by the diffuser. 前記放散手段によってアンモニアが放散された後の放散処理水を、前記調整手段に導入する第2導入手段をさらに備える請求項1記載の窒素含有排水処理システム。  2. The nitrogen-containing wastewater treatment system according to claim 1, further comprising a second introduction unit that introduces the diffusion treated water after ammonia is diffused by the diffusion unit into the adjustment unit.
JP2000095081A 2000-03-30 2000-03-30 Nitrogen-containing wastewater treatment system Expired - Fee Related JP4485007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000095081A JP4485007B2 (en) 2000-03-30 2000-03-30 Nitrogen-containing wastewater treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000095081A JP4485007B2 (en) 2000-03-30 2000-03-30 Nitrogen-containing wastewater treatment system

Publications (2)

Publication Number Publication Date
JP2001276891A JP2001276891A (en) 2001-10-09
JP4485007B2 true JP4485007B2 (en) 2010-06-16

Family

ID=18610030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000095081A Expired - Fee Related JP4485007B2 (en) 2000-03-30 2000-03-30 Nitrogen-containing wastewater treatment system

Country Status (1)

Country Link
JP (1) JP4485007B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100508857B1 (en) * 2003-06-30 2005-08-17 재단법인 포항산업과학연구원 System for removing ammonia in waste water
JP4912380B2 (en) * 2008-10-20 2012-04-11 中国電力株式会社 Debris removal method for denitrification equipment
CN116462380A (en) * 2023-06-20 2023-07-21 世韩(天津)节能环保科技有限公司 Catalyst wastewater treatment system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50144267A (en) * 1974-05-11 1975-11-20
JPS5539218A (en) * 1978-09-12 1980-03-19 Kawasaki Steel Corp Method and device for preventing clogging of lime still in process for deammoniating waste liquor containing ammonium salt

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5642360B2 (en) * 1974-01-21 1981-10-03
JPS5326273A (en) * 1976-08-24 1978-03-10 Kubota Ltd Treating method for waste solution

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50144267A (en) * 1974-05-11 1975-11-20
JPS5539218A (en) * 1978-09-12 1980-03-19 Kawasaki Steel Corp Method and device for preventing clogging of lime still in process for deammoniating waste liquor containing ammonium salt

Also Published As

Publication number Publication date
JP2001276891A (en) 2001-10-09

Similar Documents

Publication Publication Date Title
JPWO2014083903A1 (en) Coal gasification wastewater treatment system and coal gasification wastewater treatment method
CN111032580A (en) Treatment device and treatment method for water containing hardness component
JP2008188479A (en) Method and apparatus for treating waste acid liquid
JP2005238103A (en) Treatment method for organic waste
JP2004141799A (en) Silica-containing waste water treatment method
TWI613153B (en) Treatment device for ammonia-containing wastewater and treatment method for ammonia-containing wastewater
JP5118572B2 (en) Sewage treatment method
JP4485007B2 (en) Nitrogen-containing wastewater treatment system
JP4292610B2 (en) Organic wastewater treatment equipment
JP4330693B2 (en) Treatment method for fluorine-containing wastewater
JP2001276851A (en) Drain treatment equipment
JP2006218354A (en) Method for treating fluorine-containing waste water
KR101859706B1 (en) Desulfurization wastewater treatment method for magnesium recovery and Desulfurization wastewater treatment system for magnesium recovery
JP2007175673A (en) Treatment method of ammonia-containing drain
JP7084704B2 (en) Silica-containing water treatment equipment and treatment method
JP2001239273A (en) Method of treating water containing boron and fluorine
JP2005185967A (en) Treatment method and treatment apparatus for organic waste water
JP2007050386A (en) Apparatus for treating organic waste liquor
JP2015155084A (en) Method and apparatus for treating water containing ammonia
JP4405281B2 (en) Recycling method of electroless nickel plating waste liquid
JP2002346574A (en) Boron-containing water treatment method
JP2004284908A (en) Method of separating and recovering calcium phosphate or magnesium phosphate from phosphorous acid-containing plating waste solution
JP2000167569A (en) Method and equipment for treating copper-containing acidic waste water
JP2890043B1 (en) Anaerobic digestion method and apparatus for organic sludge
JP3967398B2 (en) Treatment method for fluorine-containing wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070216

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070628

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100324

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees