JP2001239273A - Method of treating water containing boron and fluorine - Google Patents

Method of treating water containing boron and fluorine

Info

Publication number
JP2001239273A
JP2001239273A JP2000060420A JP2000060420A JP2001239273A JP 2001239273 A JP2001239273 A JP 2001239273A JP 2000060420 A JP2000060420 A JP 2000060420A JP 2000060420 A JP2000060420 A JP 2000060420A JP 2001239273 A JP2001239273 A JP 2001239273A
Authority
JP
Japan
Prior art keywords
solid
liquid
separated
fluorine
sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000060420A
Other languages
Japanese (ja)
Other versions
JP4543481B2 (en
Inventor
Yoshihiro Eto
良弘 恵藤
Takeshi Sato
武 佐藤
Hiroyuki Asada
裕之 朝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2000060420A priority Critical patent/JP4543481B2/en
Publication of JP2001239273A publication Critical patent/JP2001239273A/en
Application granted granted Critical
Publication of JP4543481B2 publication Critical patent/JP4543481B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of treating water containing boron and fluorine, in which boron and fluorine are subjected to an advanced treatment and removed with a high removal rate and by which the amount of a reagent to be used can be reduced by utilizing magnesium and subjecting water containing boron and fluorine to the advanced treatment when the magnesium is contained in the water to be treated. SOLUTION: Water 11 containing boron and fluorine, an aluminum compound 12, a calcium compound 13 and a pH-controlling agent 14 are introduced into a first reaction tank 1 and then insoluble deposits are deposited by adjusting pH to a value of >=9. The reaction liquid thus obtained is separated into solid and liquid at a first solid-liquid separating tank 2. After sending the separated liquid 17 to a second reaction tank 3, a magnesium compound 18 and a pH-controlling agent 19 are added and insoluble deposits are deposited by adjusting pH to a value of >=9.5, and the reaction liquid 20 is separated into solid and liquid at a second solid-liquid separating tank 4. A portion of the separated sludge of the first solid-liquid separating tank 2 is neutralized in a neutralization tank 5 by adding an acid 25. The neutralized sludge is dehydrated with a dehydrator 6, and the separated liquid 27 is used as the magnesium compound 18.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はホウ素およびフッ素
含有水をアルミニウム化合物およびカルシウム化合物で
処理し、固液分離してホウ素を除去し、その分離液をさ
らに処理してフッ素を除去するホウ素およびフッ素含有
水の処理方法に関するものである。
The present invention relates to a method for treating boron and fluorine-containing water with an aluminum compound and a calcium compound, removing boron by solid-liquid separation, and further treating the separated liquid to remove fluorine. The present invention relates to a method for treating contained water.

【0002】[0002]

【従来の技術】ホウ素化合物およびフッ素化合物は種々
の分野で使用されており、これらの分野から発生する排
水、あるいは他の分野で発生する排水にはホウ素化合物
およびフッ素化合物を含むものがある。このような化合
物は有害とされているため、ホウ素化合物およびフッ素
化合物含有水からホウ素化合物およびフッ素化合物を除
去するための処理が行なわれている。
2. Description of the Related Art Boron compounds and fluorine compounds are used in various fields, and wastewater generated from these fields or wastewater generated in other fields includes those containing boron compounds and fluorine compounds. Since such a compound is considered harmful, a treatment for removing the boron compound and the fluorine compound from the water containing the boron compound and the fluorine compound is performed.

【0003】ホウ素含有水の処理方法として、アルミニ
ウム化合物およびカルシウム化合物によりpH9以上で
不溶化物として沈殿させ、固液分離する方法(特開昭5
7−81881号)、ならびにアルミニウム化合物およ
びカルシウム化合物で処理して固液分離し、分離液をア
ニオン交換樹脂で処理する方法(特開昭57−1804
93号)などが知られている。しかしこれらの方法では
ホウ素の除去は可能であるが、フッ素の除去は不十分で
ある。
[0003] As a method for treating boron-containing water, a method of precipitating as an insolubilized substance at a pH of 9 or more with an aluminum compound and a calcium compound and performing solid-liquid separation (Japanese Patent Application Laid-open No. Sho.
No. 7-81881), and a method of treating with an aluminum compound and a calcium compound to carry out solid-liquid separation, and treating the separated solution with an anion exchange resin (JP-A-57-1804).
No. 93) is known. However, these methods can remove boron but do not remove fluorine sufficiently.

【0004】一方、フッ素含有水をカルシウム化合物お
よびアルミニウム化合物の存在下にpH5〜8.5に調
整して沈殿物を分離し、分離液をマグネシウム化合物の
存在下にpH9.5以上に調整して沈殿物を分離し、得
られた沈殿物を返送する方法(特開昭57−27191
号)が知られている。しかしこの方法ではフッ素の除去
は可能であるが、ホウ素の除去は不十分である。
On the other hand, the precipitate is separated by adjusting the pH of the fluorine-containing water to pH 5 to 8.5 in the presence of a calcium compound and an aluminum compound, and the separated solution is adjusted to pH 9.5 or more in the presence of a magnesium compound. A method of separating the precipitate and returning the obtained precipitate (Japanese Patent Application Laid-Open No. 57-27191)
No.) is known. However, this method can remove fluorine but does not remove boron sufficiently.

【0005】また、ホウ素およびフッ化物含有水の処理
方法として、アルミニウム化合物の存在下pH4以下に
調整し、さらにカルシウム化合物を加えてpH5以上に
調整した後固液分離し、分離液にアルミニウム化合物お
よび必要によりアルカリ剤を加えてpH10以上に調整
した後固液分離し、分離した固形物を返送する方法(特
開昭57−144086号)が知られている。しかしこ
の方法では、ホウ素およびフッ素除去率は必ずしも満足
できるものではなく、また被処理水にマグネシウムが含
まれている場合にはマグネシウムは第1段の反応で析出
して除去され、後段のフッ素の高度処理に利用できない
ため薬剤使用量が多くなるなどの問題点がある。
As a method for treating water containing boron and fluoride, the pH is adjusted to 4 or less in the presence of an aluminum compound, and the pH is adjusted to 5 or more by further adding a calcium compound, followed by solid-liquid separation. A method is known in which an alkali agent is added to adjust the pH to 10 or more, if necessary, followed by solid-liquid separation, and the separated solid is returned (Japanese Patent Laid-Open No. 57-144086). However, in this method, the boron and fluorine removal rates are not always satisfactory, and when the water to be treated contains magnesium, the magnesium is precipitated and removed in the first-stage reaction, and the fluorine in the subsequent stage is removed. Since it cannot be used for advanced treatment, there is a problem that the amount of drug used increases.

【0006】[0006]

【発明が解決しようとする課題】本発明の課題は、ホウ
素およびフッ素を高度処理して高除去率で除去すること
ができ、被処理水中にマグネシウムが含まれる場合には
そのマグネシウムを利用して高度処理を行なうことによ
り薬剤使用量を少なくすることが可能なホウ素およびフ
ッ素含有水の処理方法を得ることである。
SUMMARY OF THE INVENTION An object of the present invention is to remove boron and fluorine at a high removal rate by advanced treatment, and to use magnesium when the water to be treated contains magnesium. An object of the present invention is to provide a method for treating boron and fluorine-containing water, which can reduce the amount of chemicals used by performing advanced treatment.

【0007】[0007]

【課題を解決するための手段】本発明は次のホウ素およ
びフッ素含有水の処理方法である。 (1) ホウ素およびフッ素含有水を、アルミニウム化
合物およびカルシウム化合物の存在下にpH9以上に調
整して不溶性析出物を生成させる第1の反応工程と、第
1の反応工程の反応液を分離液と分離汚泥とに固液分離
する第1の固液分離工程と、第1の固液分離工程の分離
液をマグネシウム化合物の存在下にpH9.5以上に調
整して不溶性析出物を生成させる第2の反応工程と、第
2の反応工程の反応液を分離液と分離汚泥とに固液分離
する第2の固液分離工程とを含むホウ素およびフッ素含
有水の処理方法。 (2) 第1の固液分離工程の分離汚泥の一部を第1の
返送汚泥として第1の反応工程に返送する第1の返送工
程を含む上記(1)記載の方法。 (3) 第1の固液分離工程の分離汚泥の一部を引き抜
き、酸で中和してpH5〜8とする中和工程を含む上記
(1)または(2)記載の方法。 (4) 中和工程の反応液を固液分離し、分離液を第2
の反応工程に送る第3の固液分離工程を含む上記(3)
記載の方法。 (5) 第2の固液分離工程の分離汚泥を第2の返送汚
泥として第1の反応工程に返送する第2の返送工程を含
む上記(1)ないし(4)のいずれかに記載のホウ素お
よびフッ素含有水の処理方法。
The present invention is the following method for treating water containing boron and fluorine. (1) A first reaction step in which water containing boron and fluorine is adjusted to pH 9 or more in the presence of an aluminum compound and a calcium compound to generate an insoluble precipitate, and a reaction solution in the first reaction step is separated into a separated solution. A first solid-liquid separation step of solid-liquid separation into separated sludge, and a second step of adjusting the pH of the separated liquid in the first solid-liquid separation step to 9.5 or more in the presence of a magnesium compound to form insoluble precipitates. And a second solid-liquid separation step of solid-liquid separation of the reaction solution of the second reaction step into a separated liquid and a separated sludge. (2) The method according to the above (1), further including a first return step of returning a part of the separated sludge in the first solid-liquid separation step to the first reaction step as a first return sludge. (3) The method according to the above (1) or (2), further comprising a neutralization step of extracting a part of the separated sludge in the first solid-liquid separation step and neutralizing the sludge with an acid to pH 5 to 8. (4) The reaction solution in the neutralization step is subjected to solid-liquid separation, and
(3) including a third solid-liquid separation step sent to the reaction step of
The described method. (5) The boron according to any one of the above (1) to (4), including a second return step of returning the separated sludge of the second solid-liquid separation step to the first reaction step as a second return sludge. And a method for treating fluorine-containing water.

【0008】本発明において処理対象となるホウ素およ
びフッ素含有水はホウ素およびフッ素を含む水であり、
アルミニウムの電解製錬工程、リン酸肥料の製造工程、
シリコン等の電機部品の洗浄工程およびウラン製錬工
程、表面処理洗浄工程等から排出される排水、排煙脱硫
および(または)脱硝排水などが例示できる。ホウ素お
よびフッ素含有水中では通常ホウ素はオルトホウ酸(H
3BO3)、フッ素はフッ化物イオン(F-)の形で含ま
れる場合が多いが、それぞれ他の形で含まれていてもよ
く、また両者が結合してホウフッ化物イオン(BF4 -
の形で含まれていてもよい。ホウフッ化物を含む場合
は、前処理としてアルミニウム化合物の存在下にpH4
以下に調整することにより、ホウ酸とフッ化物に分解し
て本発明の処理に供するのが好ましい。
In the present invention, the water containing boron and fluorine to be treated is water containing boron and fluorine.
Aluminum electrolytic smelting process, phosphate fertilizer manufacturing process,
Examples include wastewater, flue gas desulfurization, and / or denitrification wastewater discharged from a cleaning step of an electrical component such as silicon, a uranium smelting step, a surface treatment cleaning step, and the like. In water containing boron and fluorine, boron is usually orthoboric acid (H
3 BO 3 ) and fluorine are often contained in the form of fluoride ions (F ), but may be contained in other forms, respectively, or they are combined to form borofluoride ions (BF 4 ).
May be included. In the case where borofluoride is contained, a pH of 4 is set as a pretreatment in the presence of an aluminum compound.
It is preferable to decompose into boric acid and fluoride by the following adjustment and to provide it to the treatment of the present invention.

【0009】本発明ではこのようなホウ素およびフッ素
含有水を第1の反応工程において、アルミニウム化合物
およびカルシウム化合物の存在下にpH9以上、好まし
くは11以上に調整して反応させ不溶性析出物を析出さ
せる。反応工程に先立って沈降分離、濾過等の前処理を
行って固形分等を除去しておいてもよい。
In the present invention, such a water containing boron and fluorine is reacted in the first reaction step by adjusting the pH to 9 or more, preferably 11 or more in the presence of an aluminum compound and a calcium compound to precipitate an insoluble precipitate. . Prior to the reaction step, pretreatment such as sedimentation and filtration may be performed to remove solids and the like.

【0010】アルミニウム化合物およびカルシウム化合
物を存在させる量は被処理水のホウ素濃度その他の条件
によって異なるが、例えば被処理水中のホウ素濃度が1
000〜3000mg/lの場合、アルミニウムとして
200〜5,000mg/l、好ましくは400〜3,
000mg/l、カルシウムとして2,000〜50,
000mg/l、好ましくは4,000〜30,000
mg/lとすることができる。このようなアルミニウム
およびカルシウム濃度とするために、被処理水中にこれ
らが不足する場合には、アルミニウム化合物および/ま
たはカルシウム化合物を添加することができる。
The amount of the aluminum compound and the calcium compound to be present varies depending on the boron concentration of the water to be treated and other conditions.
In the case of 000-3000 mg / l, 200-5,000 mg / l as aluminum, preferably 400-3,
2,000 mg / l, 2,000 to 50,
000 mg / l, preferably 4,000 to 30,000
mg / l. In order to achieve such aluminum and calcium concentrations, when these are insufficient in the water to be treated, an aluminum compound and / or a calcium compound can be added.

【0011】添加するアルミニウム化合物としては硫酸
アルミニウム、塩化アルミニウム、ポリ塩化アルミニウ
ム等のアルミニウム塩が好ましいが、水酸化アルミニウ
ムその他のアルミニウム化合物でもよい。カルシウム化
合物としては水酸化カルシウムがpH調整剤と兼用でき
るため好ましいが、酸化カルシウム、塩化カルシウム、
硫酸カルシウムその他のカルシウム化合物でもよい。こ
のほかにpH調整剤が必要な場合には、水酸化ナトリウ
ム、水酸化カリウム等のアルカリが一般に添加すること
ができるが、場合によっては塩酸、硫酸等の酸を添加す
ることができる。
As the aluminum compound to be added, aluminum salts such as aluminum sulfate, aluminum chloride and polyaluminum chloride are preferable, but aluminum hydroxide and other aluminum compounds may be used. As the calcium compound, calcium hydroxide is preferable because it can also serve as a pH adjuster, but calcium oxide, calcium chloride,
Calcium sulfate or other calcium compounds may be used. In addition, when a pH adjuster is required, an alkali such as sodium hydroxide or potassium hydroxide can be generally added. In some cases, an acid such as hydrochloric acid or sulfuric acid can be added.

【0012】これらの薬剤の添加順序は特に制限されな
いが、水酸化カルシウムを含むpH調整剤は最後に添加
するのが好ましい。従ってアルミニウム化合物およびカ
ルシウム化合物が塩の場合は両者のいずれを先に添加し
てもよいが、水酸化カルシウムのようにpH調整剤とし
て兼用する場合は水酸化カルシウムは最後に添加する。
また水酸化アルミニウム、炭酸カルシウム等の不溶性ま
たは難溶性化合物を添加する場合には酸性条件下で添加
するなどして溶解し、イオン化することができる。
The order of adding these agents is not particularly limited, but it is preferable to add the pH adjuster containing calcium hydroxide last. Therefore, when the aluminum compound and the calcium compound are salts, either of them may be added first, but when the compound is also used as a pH adjuster like calcium hydroxide, calcium hydroxide is added last.
When an insoluble or poorly soluble compound such as aluminum hydroxide or calcium carbonate is added, the compound can be dissolved and ionized by adding it under acidic conditions.

【0013】第1の反応工程における反応はホウ素およ
びフッ素含有水にアルミニウム化合物、カルシウム化合
物、pH調整剤等を添加し撹拌して行う。この場合アル
ミニウム化合物およびカルシウム化合物が水酸化物とな
って析出する際、フッ素はフッ化カルシウム等の不溶化
物となって析出し、ホウ素は析出する不溶性析出物中に
取り込まれる。この反応は常温、常圧で行うことができ
るが、加熱、加圧下に行ってもよい。
The reaction in the first reaction step is carried out by adding an aluminum compound, a calcium compound, a pH adjuster and the like to water containing boron and fluorine and stirring the mixture. In this case, when the aluminum compound and the calcium compound are precipitated as hydroxides, fluorine is precipitated as an insolubilized substance such as calcium fluoride, and boron is taken into the insoluble precipitate. This reaction can be carried out at normal temperature and normal pressure, but may be carried out under heat and pressure.

【0014】このように反応を行ったのち、反応液を第
1の固液分離工程において分離液と分離汚泥に分離す
る。固液分離手段としては沈降分離が一般的であるが、
濾過、遠心分離、膜分離等の他の分離手段でもよい。固
液分離により大部分のホウ素およびフッ素は分離汚泥側
に分離される。分離液中のホウ素は10mg/l以下に
処理可能であるが、フッ素は10〜30mg/l程度と
残留するため、第2の反応工程において主としてフッ素
除去の高度処理を行う。
After the reaction, the reaction liquid is separated into a separated liquid and a separated sludge in a first solid-liquid separation step. As solid-liquid separation means, sedimentation separation is common,
Other separation means such as filtration, centrifugation, and membrane separation may be used. Most of boron and fluorine are separated to the separated sludge side by solid-liquid separation. Although boron in the separated liquid can be treated to 10 mg / l or less, fluorine remains at about 10 to 30 mg / l, and therefore, in the second reaction step, advanced treatment for removing fluorine is mainly performed.

【0015】第1の固液分離工程の分離液は第2の反応
工程においてマグネシウム化合物の存在下にpH9.5
以上、好ましくはpH9.5〜11に調整して不溶性析
出物を析出させる。マグネシウムを存在させる量は10
0〜1000mg/l、好ましくは200〜500mg
/lとすることができる。マグネシウム化合物としては
塩化マグネシウム、硫酸マグネシウム等のマグネシウム
塩が好ましいが、他のマグネシウム化合物を添加しても
よい。被処理水がマグネシウムを含む場合には、マグネ
シウムは第1の反応工程で析出するので、第1の固液分
離工程の分離汚泥を後述の中和工程で中和し、第3の固
液分離工程で分離した分離液をマグネシウム化合物とし
て用いるのが好ましい。pH調整剤としては前記のもの
が使用できる。
The liquid separated in the first solid-liquid separation step is subjected to pH 9.5 in the presence of a magnesium compound in the second reaction step.
As described above, the pH is preferably adjusted to 9.5 to 11 to precipitate insoluble precipitates. The amount of magnesium present is 10
0-1000 mg / l, preferably 200-500 mg
/ L. As the magnesium compound, a magnesium salt such as magnesium chloride or magnesium sulfate is preferable, but another magnesium compound may be added. When the water to be treated contains magnesium, magnesium is precipitated in the first reaction step, so the separated sludge in the first solid-liquid separation step is neutralized in a neutralization step described below, and the third solid-liquid separation is performed. It is preferable to use the separated liquid separated in the step as a magnesium compound. The above-mentioned thing can be used as a pH adjuster.

【0016】第2の反応工程では第1の固液分離工程の
分離液にマグネシウム化合物を添加し、さらにpH調整
剤を添加して撹拌し、pH9.5以上に調整して反応さ
せる。これによりマグネシウムが水酸化マグネシウムと
なって析出する際、フッ素が取り込まれて不溶性析出物
を生成する。
In the second reaction step, a magnesium compound is added to the separated liquid in the first solid-liquid separation step, a pH adjuster is further added, and the mixture is stirred to adjust the pH to 9.5 or more. As a result, when magnesium is precipitated as magnesium hydroxide, fluorine is taken in to form an insoluble precipitate.

【0017】第2の反応工程の反応液は第2の固液分離
工程において分離液と分離汚泥に固液分離する。ここで
得られる分離液はホウ素およびフッ素濃度は低くなる。
このためそのまま排出することができるが、さらにイオ
ン交換処理を行うことができる。
The reaction liquid in the second reaction step is separated into a separated liquid and separated sludge in the second solid-liquid separation step. The separation liquid obtained here has a low boron and fluorine concentration.
Therefore, it can be discharged as it is, but can be further subjected to ion exchange treatment.

【0018】第1の固液分離工程の分離汚泥は全量をそ
のまま、または中和工程を経て排出してもよいが、分離
汚泥の一部を第1の返送工程において、第1の返送汚泥
として第1の反応工程に返送するのが好ましい。また第
2の固液分離工程の分離汚泥は全量を第2の返送工程に
おいて第2の返送汚泥として第1の反応工程に返送する
のが好ましい。
Although the whole amount of the separated sludge in the first solid-liquid separation step may be discharged as it is or through a neutralization step, a part of the separated sludge is used as the first returned sludge in the first return step. It is preferable to return to the first reaction step. Further, it is preferable that the entire amount of the separated sludge in the second solid-liquid separation step is returned to the first reaction step as the second returned sludge in the second return step.

【0019】第1の反応工程に第1および/または第2
の返送汚泥を返送すると、原水中のホウ素およびフッ素
が返送汚泥に吸着されて濃縮され、原水中に残留するホ
ウ素およびフッ素は新たに添加されるアルミニウム化合
物およびカルシウム化合物の存在下にpH調整して生成
する不溶性析出物に捕捉されて除去される。このような
操作を繰り返し行うことにより分離汚泥のホウ素および
フッ素濃度は高くなり、ホウ素およびフッ素が高濃縮さ
れる。
In the first reaction step, the first and / or second
When returned sludge is returned, the boron and fluorine in the raw water are adsorbed on the returned sludge and concentrated, and the boron and fluorine remaining in the raw water are adjusted to pH in the presence of newly added aluminum and calcium compounds. It is trapped and removed by the generated insoluble precipitate. By repeating such an operation, the concentration of boron and fluorine in the separated sludge is increased, and the concentration of boron and fluorine is highly concentrated.

【0020】例えばアルミニウム化合物およびカルシウ
ム化合物の存在下にpH9以上で凝集沈殿処理する場合
は、生成する不溶性析出物(SS)中のホウ素量は0.
01(g/g)程度である。すなわち、例えば100m
g/lのホウ素を処理すると10000mg/l程度と
多量のSSが生成する。このことは汚泥発生量が多いと
ともに使用薬剤量が多いことを意味する。これに対して
発生した析出物を沈殿槽等で固液分離し、汚泥を反応槽
に返送することにより汚泥が改質され、分離汚泥濃度お
よびホウ素およびフッ素濃度を上げることができる。ま
た、第1の反応工程での新たなアルミニウム化合物およ
びカルシウム化合物の添加量を減らすことができ、その
分汚泥発生量も減少する。この場合、薬剤添加量を同等
とした場合は処理水中ホウ素およびフッ素濃度が低くな
る。
For example, in the case of performing coagulation precipitation treatment at pH 9 or more in the presence of an aluminum compound and a calcium compound, the amount of boron in the insoluble precipitate (SS) formed is 0.1%.
It is about 01 (g / g). That is, for example, 100 m
When g / l of boron is treated, a large amount of SS of about 10,000 mg / l is generated. This means that a large amount of sludge is generated and a large amount of chemical is used. On the other hand, the generated precipitate is separated into solid and liquid in a sedimentation tank or the like, and the sludge is returned to the reaction tank, whereby the sludge is reformed and the concentration of the separated sludge and the concentration of boron and fluorine can be increased. In addition, the amount of new aluminum compound and calcium compound added in the first reaction step can be reduced, and the amount of sludge generated is reduced accordingly. In this case, when the amounts of the chemicals added are equal, the concentrations of boron and fluorine in the treated water are low.

【0021】汚泥を返送しない場合は、固液分離により
濃縮されるSS濃度は50000mg/l(ホウ素濃度
で500mg/l)程度が限界である。この程度の汚泥
濃度の汚泥のpHを中性にすると大部分のホウ素が汚泥
中から溶出するため、埋め立て処理や、石炭火力発電所
のように脱硫装置で回収される石コウ(pH5〜8)と
混合処分を行うことができない。これに対して汚泥返送
により改質し、汚泥中のホウ素濃度を1000mg/l
以上とすることにより、pHを中性にしても溶出を防止
することができる。これはホウ素濃度を高めることによ
りポリホウ酸化(高分子化)などによりホウ素化合物の
形態が変わるため、中性でも水酸化アルミニウム等に吸
着あるいは反応して固定化するものと推定される。
When sludge is not returned, the concentration of SS concentrated by solid-liquid separation is limited to about 50,000 mg / l (boron concentration: 500 mg / l). If the pH of the sludge having such a sludge concentration is made neutral, most of the boron is eluted from the sludge. Therefore, landfill treatment and stone slag (pH 5 to 8) collected by a desulfurization unit such as a coal-fired power plant And mixed disposal cannot be performed. On the other hand, the sludge was reformed by returning it, and the boron concentration in the sludge was reduced to 1000 mg / l.
By doing so, elution can be prevented even when the pH is neutral. This is presumed that the form of the boron compound changes due to polyboration (polymerization) by increasing the boron concentration, so that even if the compound is neutral, it is adsorbed or reacted with aluminum hydroxide or the like and immobilized.

【0022】前述のように分離汚泥を返送して反応を行
うことにより使用薬剤量が減少し、使用薬剤を同等にし
たときには高度処理により処理水のホウ素およびフッ素
濃度が低くなるため、第2の反応工程でフッ素を除去し
た処理水はそのまま放流可能な場合があり、この場合に
は本発明の処理はこれで完結する。しかしさらにホウ素
濃度を低くする場合には後述のイオン交換工程において
処理水中の残留ホウ素を除去することができる。
As described above, the amount of the chemical used is reduced by returning the separated sludge and performing the reaction, and when the chemicals used are equalized, the concentration of boron and fluorine in the treated water is reduced by the advanced treatment. In some cases, the treated water from which fluorine has been removed in the reaction step can be discharged as it is, in which case the treatment of the present invention is completed. However, when the boron concentration is further reduced, the residual boron in the treated water can be removed in the ion exchange step described below.

【0023】第1の固液分離工程の分離汚泥の一部は引
抜汚泥として引き抜いて排出されるが、引抜汚泥は中和
工程において酸で中和し、pH5〜8としたのち排出す
ると、環境汚染がなく好ましい。この場合中和する酸と
しては硫酸や塩酸等の鉱酸を用いることができるが、後
述のイオン交換工程を採用する場合はそこで生じる酸性
再生排液を用いるのが好ましい。このように引抜汚泥を
酸で中和してもホウ素の溶出は少なく、環境汚染のおそ
れは低い。また被処理液がマグネシウムを含む場合、マ
グネシウムは第1の反応工程で析出して分離汚泥側に移
行するが、中和工程において中和すると、汚泥中のアル
ミニウムおよびカルシウムは溶出しないにもかかわら
ず、マグネシウムは溶出する。
A part of the separated sludge in the first solid-liquid separation step is drawn out as a drawn sludge and discharged. The drawn sludge is neutralized with an acid in a neutralization step, adjusted to pH 5 to 8, and then discharged. It is preferable because there is no contamination. In this case, a mineral acid such as sulfuric acid or hydrochloric acid can be used as the acid to be neutralized. However, when an ion exchange step described later is adopted, it is preferable to use an acidic regenerated effluent generated there. Thus, even if the extracted sludge is neutralized with an acid, the elution of boron is small and the risk of environmental pollution is low. When the liquid to be treated contains magnesium, magnesium precipitates in the first reaction step and moves to the separated sludge side. However, when neutralized in the neutralization step, aluminum and calcium in the sludge are not eluted. , Magnesium elutes.

【0024】このため中和工程の反応液を第3の固液分
離工程において分離液と分離汚泥に固液分離すると、分
離液はマグネシウムを含む。このためこの分離液を第2
の反応工程に送ると、第2の反応工程におけるマグネシ
ウムの添加量を減少させることができる。この場合、第
2の反応工程に送るマグネシウムの量が不足する場合に
はマグネシウムを新たに添加することができ、また過剰
に存在するときは中和工程におけるpHを高めに調整し
てマグネシウム溶解量を制御することができる。第3の
固液分離工程で分離した分離汚泥はそのまま排出するこ
とができる。
For this reason, when the reaction liquid in the neutralization step is solid-liquid separated into a separated liquid and separated sludge in the third solid-liquid separation step, the separated liquid contains magnesium. Therefore, this separated liquid is
In the second reaction step, the amount of magnesium added in the second reaction step can be reduced. In this case, when the amount of magnesium to be sent to the second reaction step is insufficient, magnesium can be newly added. When the amount of magnesium is excessive, the pH in the neutralization step is adjusted to a higher level to dissolve the magnesium. Can be controlled. The separated sludge separated in the third solid-liquid separation step can be discharged as it is.

【0025】第2の固液分離工程の分離液をさらにイオ
ン交換工程で高度処理する場合、イオン交換工程では固
液分離工程で分離した分離液をイオン交換樹脂で処理す
ることにより残留するホウ素およびフッ素を吸着除去す
る。イオン交換樹脂としてはアニオン交換樹脂が使用さ
れる。アニオン交換樹脂は強塩基性、中または弱塩基性
のいずれの樹脂でもよく、またホウ素を選択的に除去す
る場合はホウ素選択性イオン交換樹脂、例えばN−メチ
ルグルカミン型樹脂でもよい。アニオン交換樹脂はSO
4形等の酸形またはOH形で使用することができるが、
酸を再生剤として再生するものが好ましい。
In the case where the separated liquid in the second solid-liquid separation step is further subjected to advanced treatment in the ion exchange step, in the ion exchange step, the separated liquid separated in the solid-liquid separation step is treated with an ion exchange resin to remove residual boron and Adsorb and remove fluorine. An anion exchange resin is used as the ion exchange resin. The anion exchange resin may be a strongly basic, medium or weakly basic resin, and when selectively removing boron, a boron-selective ion exchange resin such as an N-methylglucamine type resin may be used. The anion exchange resin is SO
It can be used in acid form such as form 4 or OH form,
Those which regenerate using an acid as a regenerant are preferred.

【0026】イオン交換による処理は浸漬法等でもよい
が、カラム通水法が好ましい。カラム通水の場合の通水
速度はSV0.1〜10hr-1、好ましくは1〜3hr
-1程度とすることができる。このようなイオン交換によ
りホウ酸等のアニオンがアニオン交換樹脂に交換吸着し
て除去され、処理水はホウ素濃度が低くなっているた
め、そのまま放流してもよく、また回収して再利用して
もよい。
The treatment by ion exchange may be a dipping method or the like, but a column water flow method is preferred. The flow rate in the case of column flow is SV 0.1 to 10 hr -1 , preferably 1 to 3 hr.
It can be about -1 . By such ion exchange, anions such as boric acid are exchanged and adsorbed to the anion exchange resin and removed, and the treated water may be discharged as it is because the boron concentration is low, or it may be recovered and reused. Is also good.

【0027】ホウ素を吸着した樹脂は再生剤で再生する
ことにより再生することができる。このとき再生剤とし
て酸を使用し、再生排液を引抜汚泥と混合して中和を行
うと、引抜汚泥を中和できるとともに、再生排液中のホ
ウ素およびフッ素も引抜汚泥に捕捉される。そして、こ
の中和反応物は固液分離して固形物を排汚泥として排出
し、分離液は原水とともに反応工程に送って処理を繰り
返すことができるが、分離液中のホウ素およびフッ素濃
度は低く処理は容易である。
The resin having adsorbed boron can be regenerated by regenerating with a regenerating agent. At this time, if an acid is used as a regenerant and the regenerated effluent is mixed with the extracted sludge for neutralization, the extracted sludge can be neutralized, and boron and fluorine in the regenerated effluent are also captured by the extracted sludge. The neutralized reactant is separated into solid and liquid to discharge the solid as waste sludge, and the separated liquid can be sent to the reaction step together with raw water to repeat the treatment, but the concentration of boron and fluorine in the separated liquid is low. Processing is easy.

【0028】再生剤として酸を使用する場合、硫酸、塩
酸等の鉱酸を使用することができる。アニオン交換樹脂
をOH形で使用する場合は水酸化ナトリウム、水酸化カ
リウム等のアルカリを使用することができ、特にホウ素
選択性イオン交換樹脂を用いる場合は、酸で再生後アル
カリで再生するのが好ましい。樹脂の再生方法は通常の
再生方法を採用することができ、1〜10重量%の酸ま
たはアルカリ水溶液を流速SV0.1〜10hr-1で通
液する薬注工程、および同流速で純水で通液する押出工
程を行った後、イオン交換工程と同等の流速で純水を通
水する洗浄工程を行うことができる。
When an acid is used as a regenerant, a mineral acid such as sulfuric acid or hydrochloric acid can be used. When the anion exchange resin is used in the OH form, an alkali such as sodium hydroxide or potassium hydroxide can be used. Particularly, when using a boron-selective ion exchange resin, it is preferable to regenerate with an acid and then regenerate with an alkali. preferable. As a method for regenerating the resin, a normal regenerating method can be adopted. A chemical injection step in which a 1 to 10% by weight aqueous acid or alkali solution is passed at a flow rate SV of 0.1 to 10 hr -1 , and pure water at the same flow rate After performing the extrusion step of passing the liquid, a washing step of passing pure water at the same flow rate as the ion exchange step can be performed.

【0029】再生排液は酸濃度またはアルカリ濃度の高
い初期の排出部分を中和等に利用することができる。酸
性再生排液を引抜汚泥の中和に利用するときは、引抜汚
泥と酸性再生排液と混合して反応させ、固液分離して固
形分を排汚泥として排出し、分離液を反応工程に返戻す
る。アルカリ性再生排液が発生する場合にはそのまま反
応工程に返戻してアルカリ剤として使用し、含まれるホ
ウ素およびフッ素は不溶性析出物に捕捉させることがで
きる。
The regenerated effluent can be used to neutralize the initial effluent having a high acid or alkali concentration. When the acid regenerated effluent is used for neutralization of the extracted sludge, the extracted sludge and the acid regenerated effluent are mixed and reacted, solid-liquid separated, solids are discharged as waste sludge, and the separated liquid is used in the reaction process. I will return. When the alkaline regenerated effluent is generated, it is returned to the reaction step as it is and used as an alkaline agent, and the contained boron and fluorine can be captured by insoluble precipitates.

【0030】[0030]

【発明の効果】本発明によれば、第1の反応工程におい
てホウ素およびフッ素含有水をアルミニウム化合物およ
びカルシウム化合物の存在下にpH9以上に調整して不
溶性析出物を生成させ、固液分離した分離液を第2の反
応工程においてマグネシウム化合物の存在下にpH9.
5以上に調整して不溶性析出物を生成させ固液分離する
ようにしたので、ホウ素およびフッ素を高度処理して高
除去率で除去することができ、被処理水中にマグネシウ
ムが含まれる場合にはそのマグネシウムを利用して高度
処理を行なうことにより薬剤使用量を少なくすることが
可能なホウ素およびフッ素含有水の処理方法を得る。
According to the present invention, in the first reaction step, water containing boron and fluorine is adjusted to pH 9 or more in the presence of an aluminum compound and a calcium compound to form an insoluble precipitate, and the solid-liquid separation is performed. The solution was subjected to pH 9 in the second reaction step in the presence of a magnesium compound.
Since it was adjusted to 5 or more to generate insoluble precipitates and perform solid-liquid separation, boron and fluorine can be removed at a high removal rate by advanced treatment, and when magnesium is contained in the water to be treated, By performing advanced treatment using magnesium, a method for treating boron and fluorine-containing water that can reduce the amount of chemicals used is obtained.

【0031】また固液分離した第1および/または第2
の分離汚泥を第1の反応工程に返送することにより、少
ない薬剤量により高除去率で効率的にホウ素およびフッ
素を除去することができ、発生汚泥量も少なく、しかも
汚泥を中和してもホウ素およびフッ素の溶出を少なくす
ることができる。
Further, the first and / or second solid-liquid separated
By returning the separated sludge to the first reaction step, boron and fluorine can be efficiently removed at a high removal rate with a small amount of chemicals, the amount of generated sludge is small, and even if the sludge is neutralized, Elution of boron and fluorine can be reduced.

【0032】さらに固液分離工程の分離汚泥を中和して
排出することにより、環境汚染を少なくできるほか、被
処理水にマグネシウムを含む場合には、マグネシウムを
溶出させてフッ素の除去に使用することができ、薬剤使
用量をさらに少なくして高度処理を行うことができる。
Further, by neutralizing and discharging the separated sludge in the solid-liquid separation step, environmental pollution can be reduced. When the water to be treated contains magnesium, magnesium is eluted and used for removing fluorine. Advanced treatment can be performed with a further reduced amount of drug used.

【0033】[0033]

【発明の実施の形態】以下、本発明の実施の形態を図面
により説明する。図1は実施形態のホウ素およびフッ素
含有水の処理方法を示すフロー図であり、1は第1反応
槽、2は第1固液分離槽、3は第2反応槽、4は第2固
液分離槽、5は中和槽、6は脱水機である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a flow chart showing a method for treating boron and fluorine-containing water according to an embodiment, wherein 1 is a first reaction tank, 2 is a first solid-liquid separation tank, 3 is a second reaction tank, and 4 is a second solid-liquid. A separation tank, 5 is a neutralization tank, and 6 is a dehydrator.

【0034】図1の処理方法は、第1の反応工程におい
て第1反応槽1に原水11を導入し、アルミニウム化合
物12、カルシウム化合物13、pH調整剤14等を注
入してpH9以上、好ましくは11以上に調整し、攪拌
機7で撹拌混合して反応させ不溶性析出物を生成させ、
ホウ素およびフッ素を捕捉させる。
In the treatment method shown in FIG. 1, raw water 11 is introduced into a first reaction tank 1 in a first reaction step, and an aluminum compound 12, a calcium compound 13, a pH adjuster 14 and the like are injected and a pH of 9 or more, preferably Adjusted to 11 or more, stirred and mixed with a stirrer 7 and reacted to form an insoluble precipitate,
Captures boron and fluorine.

【0035】第1反応槽1の反応液15は第1の固液分
離工程として第1固液分離槽2に送り、その際必要によ
り高分子凝集剤等の凝集剤16を添加してフロックを生
成させ、第1固液分離槽2で静置させることにより固液
分離を行う。
The reaction liquid 15 in the first reaction tank 1 is sent to the first solid-liquid separation tank 2 as a first solid-liquid separation step, and if necessary, a flocculant 16 such as a polymer flocculant is added to form a floc. The solid-liquid separation is performed by allowing the liquid to be generated and leaving the first solid-liquid separation tank 2 to stand still.

【0036】第2の反応工程として第1固液分離槽2で
分離した分離液17を第2反応槽3に送り、マグネシウ
ム化合物18を注入するとともにpH調整剤19を注入
し、攪拌機8で撹拌してpH9.5以上、好ましくは
9.5〜11に調整して不溶性析出物を生成させ、主と
してフッ素を捕捉する。第2反応槽3の反応液20は第
2の固液分離工程として第2固液分離槽4に送り、その
際必要により高分子凝集剤21を添加してフロックを生
成させ、第2固液分離槽4で静置することにより固液分
離する。
As a second reaction step, the separated liquid 17 separated in the first solid-liquid separation tank 2 is sent to the second reaction tank 3, and the magnesium compound 18 and the pH adjuster 19 are injected, and the mixture is stirred by the stirrer 8. Then, the pH is adjusted to 9.5 or more, preferably 9.5 to 11, to generate insoluble precipitates, and mainly to capture fluorine. The reaction liquid 20 in the second reaction tank 3 is sent to the second solid-liquid separation tank 4 as a second solid-liquid separation step, and at that time, a polymer flocculant 21 is added as necessary to generate flocs. Solid-liquid separation is performed by allowing the mixture to stand in the separation tank 4.

【0037】第1固液分離槽2の分離汚泥22の一部は
第1の返送汚泥23として第1反応槽1に返送し一部は
引抜汚泥24として中和槽5に送り、ここで酸25を添
加して攪拌機9で撹拌してpH5〜8に調整して中和す
る。中和汚泥26は第3の固液分離工程として脱水機6
に送って固液分離し、分離液27はマグネシウム化合物
18として第2反応槽3に送り、分離汚泥28は排汚泥
として排出する。
A part of the separated sludge 22 in the first solid-liquid separation tank 2 is returned to the first reaction tank 1 as a first returned sludge 23 and a part is sent to the neutralization tank 5 as a drawn sludge 24, where the acid is removed. 25 is added and the mixture is stirred with a stirrer 9 to adjust the pH to 5 to 8 and neutralized. The neutralized sludge 26 is supplied to the dehydrator 6 as a third solid-liquid separation step.
The separated liquid 27 is sent to the second reaction tank 3 as the magnesium compound 18 and the separated sludge 28 is discharged as waste sludge.

【0038】第2固液分離槽4の分離汚泥29は第1反
応槽1に返送し、分離液30は処理水として排出する。
分離液30はイオン交換樹脂(図示せず)によりさらに
高度処理することができるが、この場合酸で再生した再
生排液は酸25として中和に利用することができる。
The separated sludge 29 in the second solid-liquid separation tank 4 is returned to the first reaction tank 1, and the separated liquid 30 is discharged as treated water.
The separation liquid 30 can be further treated with an ion exchange resin (not shown). In this case, the regenerated effluent regenerated with an acid can be used as an acid 25 for neutralization.

【0039】[0039]

【実施例】以下、本発明の実施例について説明する。Embodiments of the present invention will be described below.

【0040】比較例1 ホウ素110mg/l、フッ素145mg/l、マグネ
シウム267mg/lを含み、pH6.1の石炭火力排
煙脱硫排水を図1の第1反応槽1および第1固液分離槽
2に通水した。硫酸バンド5000mg/l(固形)添
加し、消石灰にてpHを12.2〜12.5に調整し
た。第1反応槽1の滞留時間は原水流量当たり3時間と
し、第1固液分離槽2の分離汚泥を原水流量の6倍流量
で返送したところ、10日間通水後の処理水中ホウ素濃
度は5.6mg/l、フッ素濃度は15.7mg/l、
マグネシウム濃度は0.1mg/l以下、沈殿汚泥濃度
は153g/lとなった。
COMPARATIVE EXAMPLE 1 A coal-fired flue gas desulfurization effluent containing 110 mg / l of boron, 145 mg / l of fluorine, and 267 mg / l of magnesium and having a pH of 6.1 was supplied to the first reaction tank 1 and the first solid-liquid separation tank 2 in FIG. Water. 5000 mg / l (solid) of a sulfuric acid band was added, and the pH was adjusted to 12.1 to 12.5 with slaked lime. The residence time in the first reaction tank 1 was set to 3 hours per raw water flow rate, and the separated sludge in the first solid-liquid separation tank 2 was returned at a flow rate 6 times the raw water flow rate. 0.6 mg / l, fluorine concentration 15.7 mg / l,
The magnesium concentration was 0.1 mg / l or less, and the sedimentation sludge concentration was 153 g / l.

【0041】実施例1 比較例1で得られた第1固液分離槽2の分離汚泥に硫酸
を添加し、pHを7.1に調整して脱水したところ、脱
水濾液中マグネシウム濃度は3320mg/lであっ
た。この脱水濾液を比較例1の処理水と流量比(1:1
3)で混合後、硫酸でpH10.7に調整し析出した析
出物を固液分離したところ、処理水中フッ素濃度は5.
0mg/l、マグネシウム濃度は96mg/lであっ
た。
Example 1 Sulfuric acid was added to the separated sludge of the first solid-liquid separation tank 2 obtained in Comparative Example 1 to adjust the pH to 7.1 and dewatered. The magnesium concentration in the dehydrated filtrate was 3320 mg / l. This dehydrated filtrate was treated with the treated water of Comparative Example 1 at a flow ratio (1: 1).
After mixing in 3), the pH was adjusted to 10.7 with sulfuric acid, and the deposited precipitate was subjected to solid-liquid separation.
The concentration was 0 mg / l and the magnesium concentration was 96 mg / l.

【0042】比較例2 比較例1の処理水に硫酸を添加、pH10.7に調整
後、固液分離したところ、処理水中フッ素濃度は15.
4mg/lであり、ほとんど除去されなかった。
COMPARATIVE EXAMPLE 2 Sulfuric acid was added to the treated water of Comparative Example 1 to adjust the pH to 10.7 and then subjected to solid-liquid separation.
4 mg / l, which was hardly removed.

【0043】以上の結果より、アルミニウム化合物およ
びカルシウム化合物で析出させた後マグネシウム化合物
で析出させることにより、ホウ素およびフッ素を高除去
率で処理できることがわかる。この場合分離汚泥を酸で
中和することによりマグネシウムを有効に利用して薬剤
を減少させることができることがわかる。
From the above results, it can be seen that boron and fluorine can be treated at a high removal rate by precipitating with an aluminum compound and a calcium compound and then precipitating with a magnesium compound. In this case, it can be seen that neutralizing the separated sludge with an acid makes it possible to effectively utilize magnesium and reduce the amount of chemicals.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態のホウ素およびフッ素含有水の処理方
法のフロー図である。
FIG. 1 is a flowchart of a method for treating boron and fluorine-containing water according to an embodiment.

【符号の説明】[Explanation of symbols]

1 第1反応槽 2 第1固液分離槽 3 第2反応槽 4 第2固液分離槽 5 中和槽 6 脱水機 DESCRIPTION OF SYMBOLS 1 1st reaction tank 2 1st solid-liquid separation tank 3 2nd reaction tank 4 2nd solid-liquid separation tank 5 Neutralization tank 6 Dehydrator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 朝田 裕之 東京都新宿区西新宿三丁目4番7号 栗田 工業株式会社内 Fターム(参考) 4D015 BA19 BA25 BB16 CA20 DA02 DA19 DA22 EA12 EA15 EA32 FA12 4D038 AA08 AB25 AB40 AB41 AB42 BA04 BB13 BB18 4D062 BA19 BA25 BB16 CA20 DA02 DA19 DA22 EA12 EA15 EA32 FA12  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Hiroyuki Asada 3-4-7 Nishishinjuku, Shinjuku-ku, Tokyo F-term (reference) in Kurita Kogyo Co., Ltd. 4D015 BA19 BA25 BB16 CA20 DA02 DA19 DA22 EA12 EA15 EA32 FA12 4D038 AA08 AB25 AB40 AB41 AB42 BA04 BB13 BB18 4D062 BA19 BA25 BB16 CA20 DA02 DA19 DA22 EA12 EA15 EA32 FA12

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ホウ素およびフッ素含有水を、アルミニ
ウム化合物およびカルシウム化合物の存在下にpH9以
上に調整して不溶性析出物を生成させる第1の反応工程
と、 第1の反応工程の反応液を分離液と分離汚泥とに固液分
離する第1の固液分離工程と、 第1の固液分離工程の分離液をマグネシウム化合物の存
在下にpH9.5以上に調整して不溶性析出物を生成さ
せる第2の反応工程と、 第2の反応工程の反応液を分離液と分離汚泥とに固液分
離する第2の固液分離工程とを含むホウ素およびフッ素
含有水の処理方法。
1. Separating a first reaction step in which water containing boron and fluorine is adjusted to pH 9 or more in the presence of an aluminum compound and a calcium compound to form an insoluble precipitate, and a reaction solution in the first reaction step A first solid-liquid separation step of solid-liquid separation into a liquid and a separated sludge; and adjusting the pH of the separated liquid in the first solid-liquid separation step to 9.5 or more in the presence of a magnesium compound to generate insoluble precipitates. A method for treating boron and fluorine-containing water, comprising: a second reaction step; and a second solid-liquid separation step of solid-liquid separation of the reaction solution of the second reaction step into a separated liquid and a separated sludge.
【請求項2】 第1の固液分離工程の分離汚泥の一部を
第1の返送汚泥として第1の反応工程に返送する第1の
返送工程を含む請求項1記載の方法。
2. The method according to claim 1, further comprising a first return step of returning a part of the separated sludge of the first solid-liquid separation step to the first reaction step as a first return sludge.
【請求項3】 第1の固液分離工程の分離汚泥の一部を
引き抜き、酸で中和してpH5〜8とする中和工程を含
む請求項1または2記載の方法。
3. The method according to claim 1, further comprising a neutralization step of extracting a part of the separated sludge in the first solid-liquid separation step and neutralizing the sludge with an acid to pH 5 to 8.
【請求項4】 中和工程の反応液を固液分離し、分離液
を第2の反応工程に送る第3の固液分離工程を含む請求
項3記載の方法。
4. The method according to claim 3, further comprising a third solid-liquid separation step in which the reaction liquid in the neutralization step is subjected to solid-liquid separation and the separated liquid is sent to the second reaction step.
【請求項5】 第2の固液分離工程の分離汚泥を第2の
返送汚泥として第1の反応工程に返送する第2の返送工
程を含む請求項1ないし4のいずれかに記載のホウ素お
よびフッ素含有水の処理方法。
5. The method according to claim 1, further comprising a second return step of returning the separated sludge of the second solid-liquid separation step to the first reaction step as a second return sludge. A method for treating fluorine-containing water.
JP2000060420A 2000-03-01 2000-03-01 Method for treating water containing boron and fluorine Expired - Fee Related JP4543481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000060420A JP4543481B2 (en) 2000-03-01 2000-03-01 Method for treating water containing boron and fluorine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000060420A JP4543481B2 (en) 2000-03-01 2000-03-01 Method for treating water containing boron and fluorine

Publications (2)

Publication Number Publication Date
JP2001239273A true JP2001239273A (en) 2001-09-04
JP4543481B2 JP4543481B2 (en) 2010-09-15

Family

ID=18580740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000060420A Expired - Fee Related JP4543481B2 (en) 2000-03-01 2000-03-01 Method for treating water containing boron and fluorine

Country Status (1)

Country Link
JP (1) JP4543481B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005131532A (en) * 2003-10-30 2005-05-26 Tosoh Corp Fluorine-containing wastewater treatment method
JP2005262186A (en) * 2004-03-22 2005-09-29 Nec Facilities Ltd Method for treating boron-containing waste water
JP2007038171A (en) * 2005-08-04 2007-02-15 Nec Facilities Ltd Method and apparatus for treating boron-containing drainage
JP2007185602A (en) * 2006-01-13 2007-07-26 Japan Organo Co Ltd Two-stage solid-liquid separation system and method
JP2013203642A (en) * 2012-03-29 2013-10-07 Solt Industry Center Of Japan Method for recovering boron
JP2014050841A (en) * 2013-11-08 2014-03-20 Waseda Univ Water treatment method
JP2017189725A (en) * 2016-04-11 2017-10-19 新日鐵住金株式会社 Water treatment method and water treatment system
JP2017189724A (en) * 2016-04-11 2017-10-19 新日鐵住金株式会社 Water treatment method and water treatment system
JP2019069399A (en) * 2017-10-06 2019-05-09 オルガノ株式会社 Processor and processing method for silica-containing water

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5258253A (en) * 1975-11-08 1977-05-13 Hashimoto Kasei Kougiyou Kk Method of treating water solution containing borofluoric acid ion
JPS5268754A (en) * 1975-12-03 1977-06-07 Showa Koji Kk Method of treating waste water containing borofluoride
JPS52138359A (en) * 1976-05-14 1977-11-18 Asahi Glass Co Ltd Treating method of waste liquor containing fluorine
JPS5310553A (en) * 1976-07-15 1978-01-31 Kurita Water Ind Ltd Mehtod of treating waste water containing fluorine and boron
JPS5727191A (en) * 1980-07-28 1982-02-13 Kurita Water Ind Ltd Method for treating water containing fluoride ion
JPS57144086A (en) * 1981-03-03 1982-09-06 Kurita Water Ind Ltd Treatment of water contg. fluoride
JPS57180493A (en) * 1981-04-27 1982-11-06 Kurita Water Ind Ltd Treatment of water containing boron
JPS59166290A (en) * 1983-03-10 1984-09-19 Unitika Ltd Method for removing harmful component in waste water of smoke scrubbing
JPS6328492A (en) * 1986-07-22 1988-02-06 Takuma Co Ltd Treatment of waste liquid of stack gas scrubbing
JPH01107890A (en) * 1987-10-19 1989-04-25 Chiyoda Corp Treatment of effluent water containing fluorine
JPH0338294A (en) * 1989-07-03 1991-02-19 Chiyoda Corp Method for flocculation treatment of waste water
JPH0490888A (en) * 1990-08-01 1992-03-24 Tohoku Electric Power Co Inc Treatment of fluoride-containing solution
JPH07323292A (en) * 1994-05-30 1995-12-12 Kurita Water Ind Ltd Treatment of boron-containing water
JPH08197070A (en) * 1995-01-24 1996-08-06 Kurita Water Ind Ltd Treatment of fluorine-containing water
JPH10263532A (en) * 1997-03-27 1998-10-06 Nec Corp Treatment of fluorine-containing waste water

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5258253A (en) * 1975-11-08 1977-05-13 Hashimoto Kasei Kougiyou Kk Method of treating water solution containing borofluoric acid ion
JPS5268754A (en) * 1975-12-03 1977-06-07 Showa Koji Kk Method of treating waste water containing borofluoride
JPS52138359A (en) * 1976-05-14 1977-11-18 Asahi Glass Co Ltd Treating method of waste liquor containing fluorine
JPS5310553A (en) * 1976-07-15 1978-01-31 Kurita Water Ind Ltd Mehtod of treating waste water containing fluorine and boron
JPS5727191A (en) * 1980-07-28 1982-02-13 Kurita Water Ind Ltd Method for treating water containing fluoride ion
JPS57144086A (en) * 1981-03-03 1982-09-06 Kurita Water Ind Ltd Treatment of water contg. fluoride
JPS57180493A (en) * 1981-04-27 1982-11-06 Kurita Water Ind Ltd Treatment of water containing boron
JPS59166290A (en) * 1983-03-10 1984-09-19 Unitika Ltd Method for removing harmful component in waste water of smoke scrubbing
JPS6328492A (en) * 1986-07-22 1988-02-06 Takuma Co Ltd Treatment of waste liquid of stack gas scrubbing
JPH01107890A (en) * 1987-10-19 1989-04-25 Chiyoda Corp Treatment of effluent water containing fluorine
JPH0338294A (en) * 1989-07-03 1991-02-19 Chiyoda Corp Method for flocculation treatment of waste water
JPH0490888A (en) * 1990-08-01 1992-03-24 Tohoku Electric Power Co Inc Treatment of fluoride-containing solution
JPH07323292A (en) * 1994-05-30 1995-12-12 Kurita Water Ind Ltd Treatment of boron-containing water
JPH08197070A (en) * 1995-01-24 1996-08-06 Kurita Water Ind Ltd Treatment of fluorine-containing water
JPH10263532A (en) * 1997-03-27 1998-10-06 Nec Corp Treatment of fluorine-containing waste water

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4608868B2 (en) * 2003-10-30 2011-01-12 東ソー株式会社 Treatment method for fluorine-containing wastewater
JP2005131532A (en) * 2003-10-30 2005-05-26 Tosoh Corp Fluorine-containing wastewater treatment method
JP2005262186A (en) * 2004-03-22 2005-09-29 Nec Facilities Ltd Method for treating boron-containing waste water
JP4583786B2 (en) * 2004-03-22 2010-11-17 Necファシリティーズ株式会社 Treatment method for boron-containing wastewater
JP2007038171A (en) * 2005-08-04 2007-02-15 Nec Facilities Ltd Method and apparatus for treating boron-containing drainage
JP4615447B2 (en) * 2006-01-13 2011-01-19 オルガノ株式会社 Two-stage solid-liquid separation system and two-stage solid-liquid separation treatment method
JP2007185602A (en) * 2006-01-13 2007-07-26 Japan Organo Co Ltd Two-stage solid-liquid separation system and method
JP2013203642A (en) * 2012-03-29 2013-10-07 Solt Industry Center Of Japan Method for recovering boron
JP2014050841A (en) * 2013-11-08 2014-03-20 Waseda Univ Water treatment method
JP2017189725A (en) * 2016-04-11 2017-10-19 新日鐵住金株式会社 Water treatment method and water treatment system
JP2017189724A (en) * 2016-04-11 2017-10-19 新日鐵住金株式会社 Water treatment method and water treatment system
JP2019069399A (en) * 2017-10-06 2019-05-09 オルガノ株式会社 Processor and processing method for silica-containing water
JP7108392B2 (en) 2017-10-06 2022-07-28 オルガノ株式会社 Silica-containing water treatment apparatus and treatment method

Also Published As

Publication number Publication date
JP4543481B2 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
JP2004141799A (en) Silica-containing waste water treatment method
JPH1190165A (en) Treatment of waste water from flue gas desulfurization
JP3600458B2 (en) Treatment of flue gas desulfurization wastewater
JP2001239273A (en) Method of treating water containing boron and fluorine
WO2008030234A1 (en) Nutrient recovery process
JP4954131B2 (en) Treatment method of water containing borofluoride
JP4543478B2 (en) Method for treating boron-containing water
JP2010036107A (en) Sewage treatment method
JP2007175673A (en) Treatment method of ammonia-containing drain
JP4396965B2 (en) Heavy metal removal method and apparatus
JP4014276B2 (en) Treatment method for boron-containing wastewater
JP2912237B2 (en) Treatment method for fluorine-containing wastewater
JPS6339308B2 (en)
JP3672262B2 (en) Method for treating boron-containing water
JP3203745B2 (en) Fluorine-containing water treatment method
JP2000126766A (en) Treatment of tetraalkylammonium ion-containing liquid
JP2002346574A (en) Boron-containing water treatment method
JPH0975925A (en) Treatment of flue gas desulfurization waste water
JP4347097B2 (en) Waste water treatment system and exhaust gas treatment system using the same
JP2005324137A (en) Method for removing fluoride ion in wastewater
WO2003080519A1 (en) Method of wastewater treatment
KR100262689B1 (en) Treatment of stack gas desulfurization waste water
JP2020018992A (en) Method and apparatus for treating silica/hardness component-containing water
CN218810940U (en) High hydrochloric acid solution recovery processing system
JP2737610B2 (en) Treatment of flue gas desulfurization wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4543481

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140709

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees