KR100262689B1 - Treatment of stack gas desulfurization waste water - Google Patents

Treatment of stack gas desulfurization waste water Download PDF

Info

Publication number
KR100262689B1
KR100262689B1 KR1019980023946A KR19980023946A KR100262689B1 KR 100262689 B1 KR100262689 B1 KR 100262689B1 KR 1019980023946 A KR1019980023946 A KR 1019980023946A KR 19980023946 A KR19980023946 A KR 19980023946A KR 100262689 B1 KR100262689 B1 KR 100262689B1
Authority
KR
South Korea
Prior art keywords
fluorine
wastewater
flue gas
agent
gas desulfurization
Prior art date
Application number
KR1019980023946A
Other languages
Korean (ko)
Other versions
KR19990029232A (en
Inventor
에이지 오찌
신이찌로 이와사끼
히로시 바바
히라야스 나까가와
히데끼 가미요시
모리까따 니시다
Original Assignee
마스다 노부유키
미츠비시 쥬고교 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 마스다 노부유키, 미츠비시 쥬고교 가부시키가이샤 filed Critical 마스다 노부유키
Publication of KR19990029232A publication Critical patent/KR19990029232A/en
Application granted granted Critical
Publication of KR100262689B1 publication Critical patent/KR100262689B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/583Treatment of water, waste water, or sewage by removing specified dissolved compounds by removing fluoride or fluorine compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/62Heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction

Abstract

본 발명의 배연탈황 배수 처리방법은, 배수중에 산화제를 첨가하여, 질소-유황함유 화합물을 분해한 후, 환원제에 의하여 과잉 산화제를 분해 제거하는 COD성분 분해공정 1과, 중금속 포집용 킬레이트제와, 알루미늄 화합물과, pH 조정용 알칼리제를 첨가하고, 불소 및 중금속을 포함하는 고형물을 석출시켜 분리하는 응집침전공정 A2와, 탄산 나트륨과 pH 조정용 알칼리제를 첨가하고, 칼슘 및 불소를 포함하는 고형물을 석출시켜 분리하는 응집침전공정 B3와, 활성탄과 접촉시켜, 유기성 COD 성분을 흡착 제거하는 활성탄 흡착공정 7과, 불소 흡착수지를 접촉시켜, 잔존하는 불소를 흡착 제거한 후, 알카리제에 의하여 pH 5.8 내지 8.6으로 조정하는 불소 흡착공정 8을 포함한다. 본 발명의 처리방법에 의하면, 석회 연소 배기가스중의 유황화합물을 흡수 제거하는 습식 배연 탈황장치의 배수로부터, COD성분, 불소, 중금속 등을 효율적이고 또한 충분하게 제거할 수 있다.The flue gas desulfurization wastewater treatment method of the present invention comprises: a COD component decomposition step 1 of decomposing and removing an excess oxidant with a reducing agent by adding an oxidizing agent to the waste water to decompose the nitrogen-sulfur-containing compound, a chelating agent for collecting heavy metals, Agglomeration sedimentation step A2 which adds an aluminum compound, an alkali chemicals for pH adjustment, and precipitates and isolates solids containing fluorine and heavy metals, and adds sodium carbonate and an alkali chemicals for pH adjustment, precipitates and separates solids containing calcium and fluorine. After contacting the flocculation sedimentation step B3 with activated carbon, the activated carbon adsorption step 7 which adsorbs and removes the organic COD component and the fluorine adsorption resin are contacted to remove the remaining fluorine, and then adjusted to pH 5.8 to 8.6 with an alkaline agent. Fluorine adsorption step 8. According to the treatment method of the present invention, COD components, fluorine, heavy metals, and the like can be efficiently and sufficiently removed from the wastewater of the wet flue gas desulfurization apparatus that absorbs and removes sulfur compounds in lime combustion exhaust gas.

Description

배연 탈황 배수의 처리방법Treatment method of flue gas desulfurization drainage

본 발명은, 석탄 등의 연소 배기가스중의 산화유황 가스를, 석회-석고법에 의하여 알칼리 흡수액을 이용하여 탈황하는 탈황장치, 특히 매연(soot) 혼합형 탈황장치로부터 배출되는 배연 탈황 배수 처리방법에 관한 것이다.The present invention is directed to a method for treating flue gas desulfurization which is discharged from a desulfurization apparatus, in particular a soot mixed desulfurization apparatus, which desulfurizes sulfur oxide gas in combustion exhaust gas such as coal by an alkali absorption liquid by a lime-gypsum method. It is about.

석탄 등을 연료로 하는 연소 배기가스는, 석회-석고법에 의한 탈황장치에서 처리되어, 난분해성의 COD성분(화학적 산소요구량의 원인이 되는 성분) 및 불소를 함유하는 배수가 배출된다.The combustion exhaust gas which uses coal etc. as fuel is processed by the desulfurization apparatus by the lime-gypsum method, and the waste water containing fluorine-decomposable COD component (component which causes chemical oxygen demand) and fluorine is discharged | emitted.

이때, 탈황 배수중에 포함되는 난분해성 COD성분에는, 무기성 COD성분과 유기성 COD성분이 있다. 이 중에서, 무기성 COD성분은, 탈황 장치에 있어서 흡수액에 흡수된 SO2와 NOx의 일부가 반응하여 생성된 질소-유황화합물(이하, 「N-S 화합물」이라고도 함」)로 구성되는 것으로, 또한 유기성 COD성분은, 주로, 탈황장치의 보급수로서 사용되는 공업용수중의 유기성 성분으로 이루어지는 것이다.At this time, the hardly decomposable COD component contained in the desulfurization wastewater includes an inorganic COD component and an organic COD component. Among these, the inorganic COD component is composed of a nitrogen-sulfur compound (hereinafter also referred to as an "NS compound") produced by reacting a part of SO 2 and NO x absorbed in the absorbent liquid in the desulfurization apparatus and is organic. The COD component mainly consists of the organic component in industrial water used as replenishment water of a desulfurization apparatus.

이러한 COD성분은, 통상의 응집제를 사용한 응집 침전법이나 미생물을 이용한 활성 슬러지제거법으로는 제거하기 어려우며, COD성분의 배출 기준치(예를 들면 20mg/L 이하)를 달성하는 것은 상당히 곤란하다.Such COD components are difficult to remove by a coagulation precipitation method using a conventional flocculant or an activated sludge removal method using microorganisms, and it is very difficult to achieve a discharge standard value (for example, 20 mg / L or less) of the COD component.

또한, 이러한 COD성분 중, N-S 화합물을 분해하는 방법으로서, 아초산염(NO2-) 분해법이 알려져 있다. 이 방법은, 아초산 나트륨을,In addition, among these COD components, a method of decomposing an NS compound is known to decompose an acetate salt (NO 2 −). This method, sodium acetate,

NO2 --N / N-S화합물 = 1 ∼ 2 (몰비)NO 2 -- N / NS Compound = 1-2 (molar ratio)

의 비율로 첨가하고, pH2이하, 온도 45℃이상의 조건에서 분해하는 것이다. 그러나, 매연 혼합형 배연탈황장치로부터 배출되는 탈황배수는, 통상, 약산성으로, pH2이하가 되므로 다량의 산을 필요로 하고, 또한 반응 종료 후에 중성 내지 약알칼리성으로 중화하기 위하여 다량의 알칼리제가 필요하여, 비용이 낭비되고 손이 많이 가는 결점이 있다.It is added in the ratio of and decomposes on the conditions of pH2 or less and the temperature of 45 degreeC or more. However, since the desulfurization drainage discharged from the soot-mixed flue gas desulfurization apparatus is usually weakly acidic and has a pH of 2 or less, a large amount of acid is required, and a large amount of alkaline agent is required to neutralize to neutral to weak alkaline after completion of the reaction. It is a waste of money and a lot of hands.

본 출원인은 먼저 일본특허 공개공보 평4-59026호 공보에 기재되어 있는 바와 같이, 탈황장치의 흡수 슬러리의 일부를 꺼내어 고액 분리시킨 후, 그 분리액(여액)을 pH3 내지 4로 조정하여 차아염소산염을 첨가함으로써, N-S화합물을 제거하는 방법을 제안하였다. 이 처리법에서는, 처리수중의 N-S화합물을 5m mol/L이하까지 제거할 수 있다.As described in Japanese Patent Laid-Open Publication No. Hei 4-59026, the present applicant first takes out a part of the absorption slurry of the desulfurization apparatus to separate the solid and liquid, and then adjusts the separation liquid (filtrate) to pH 3 to 4 to hypochlorite. By adding, a method of removing the NS compound has been proposed. In this treatment method, the N-S compound in the treated water can be removed to 5 m mol / L or less.

그러나, 이 공보는, 탈황배수중의 N-S화합물의 처리법에 대하여 개시하고 있으나, 기타 유기성 COD, 불소, 중금속 등의 공존 성분을 함께 처리하는 방법에 대하여는 언급하고 있지 않다.However, this publication discloses a method for treating N-S compounds in desulfurization drainage, but does not mention a method for treating other organic COD, fluorine, heavy metals, and the like.

또한, 탈황배수중에 포함된 유기성 COD성분도 매우 난분해성이다. 이 난분해성의 유기성 COD성분의 처리법으로서는, 활성탄 흡착법이 일반적이다. 그러나, 탈황 배수중의 유기성분은, 공업용수에 유래하는 것으로, 일반 유기물에 비하여 활성탄에 대한 흡착성이 상당히 적다. 따라서, 유기성분을 충분히 흡착제거하기 위하여는, 흡착설비를 대형화하여야하는 문제가 있다.In addition, the organic COD component contained in the desulfurization drainage is also very difficult to decompose. As a treatment method of this hardly decomposable organic COD component, the activated carbon adsorption method is common. However, the organic component in the desulfurization waste water is derived from industrial water, and has less adsorption to activated carbon than general organic matter. Therefore, in order to sufficiently adsorb and remove the organic components, there is a problem that the adsorption facility must be enlarged.

한편, 불소를 포함하는 배수의 처리방법으로서는, 불소 이온에 대하여 2 내지 3배량의 칼슘이온을 첨가하여 불화 칼슘으로서 제거하는 칼슘 응집침전법이 일반적이다. 그러나, 이 방법으로는, 불소를 충분히 제거할 수 없으며, 전국적으로 일률적인 배출기준치(15mg/L 이하)를 달성하는 것은 상당히 곤란하다.On the other hand, as a treatment method of wastewater containing fluorine, a calcium coagulation sedimentation method in which 2 to 3 times the amount of calcium ions is added to fluorine ions and removed as calcium fluoride is common. However, with this method, it is not possible to sufficiently remove fluorine, and it is quite difficult to achieve a uniform emission standard (15 mg / L or less) nationwide.

또한, 이를 개량한 처리방법으로서, 2단 응집침전법이 알려져 있다. 이 방법은, 탈황배수에 소석회를 첨가하면 중성 부근에서 생성되는 중금속 수산화물, 석고, 불화 칼슘으로 구성되는 침전물을 일단 제거한 후, 다시 수산화 나트륨 등의 알칼리제를 첨가하여 pH 10 이상의 알칼리 영역으로 함으로서, 배기가스 성분에 유래하는 마그네슘 이온을 수산화 마그네슘의 침전물로서 석출시킴과 동시에, 잔존하는 불소 이온을 함께 침전시켜, 분리하는 방법이다.In addition, a two-stage flocculation sedimentation method is known as an improved treatment method. This method removes the precipitate composed of heavy metal hydroxide, gypsum and calcium fluoride, which is formed in the neutral vicinity when slaked lime is added to the desulfurization drainage, and then adds an alkali chemicals such as sodium hydroxide to give an alkaline region of pH 10 or more. It is a method of precipitating magnesium ions derived from a gas component as a precipitate of magnesium hydroxide, and simultaneously precipitating and separating the remaining fluorine ions.

이 방법에 의하면, 처리된 배수중의 불소 이온 농도를 상기 배출 기준치 이하로 할 수 있다. 그러나, 추가된 기준 등에 의하여 더욱 엄격한 규제가 요구되는 경우, 예컨데, 방류수중의 불소를 2mg/L 이하로 할 것이 요구되는 경우, 이 방법에 의하여 규제치를 달성하는 것은 곤란하다.According to this method, the concentration of fluorine ions in the treated waste water can be made equal to or less than the above discharge standard value. However, when stricter regulations are required by the added standards or the like, for example, when it is required to reduce the fluorine in the discharged water to 2 mg / L or less, it is difficult to achieve the regulation value by this method.

본 발명의 목적은, 석회 연소 배기가스의 습식 배연탈황장치의 탈황배수로부터, 무기성 COD성분, 유기성 COD 성분, 불소, 중금속 등의 성분을, 효율적이고 충분하게 제거하는 방법을 제공하는 것이다.An object of the present invention is to provide a method for efficiently and sufficiently removing components such as inorganic COD components, organic COD components, fluorine, heavy metals, etc. from the desulfurization drainage of the wet flue gas desulfurization apparatus of lime combustion exhaust gas.

본 발명의 첫째 배연 탈황 배수 처리방법은, 석탄연소 배기가스중의 유황화합물을 흡수 제거하는 습식 배연탈황장치로부터 배출되는 배연 탈황 배수 처리방법에 있어서,In the first flue gas desulfurization wastewater treatment method of the present invention, in the flue gas desulfurization wastewater treatment method discharged from a wet flue gas desulfurization apparatus that absorbs and removes sulfur compounds in coal combustion exhaust gas,

(a) 그 배수 중에 산화제를 첨가하여, 배수중의 COD성분인 질소-유황화합물을 분해한 후, 다시 환원제를 첨가하여, 과잉 산화제를 분해 제거하는 COD성분 분해공정과,(a) a COD component decomposition step of adding an oxidizing agent to the wastewater to decompose the nitrogen-sulfur compound as a COD component in the drainage, and then adding a reducing agent to decompose and remove the excess oxidizing agent;

(b) 그 COD 성분 분해공정으로 처리된 배수에, 중금속 포집용 킬레이트제와, 알루미늄 화합물과, pH조정용 알칼리제를 첨가하고, 불소 및 중금속을 포함하는 고형물을 석출시켜 분리하는 응집침전공정 A와,(b) a coagulation sedimentation step A for adding a heavy metal chelating agent, an aluminum compound, and a pH adjusting alkali agent to precipitates separated from solids containing fluorine and heavy metals to the waste water treated by the COD component decomposition step;

(c) 그 응집 침전공정 A로 처리된 배수에, 탄산 나트륨과 pH조정용 알칼리제를 첨가하고, 칼슘 및 불소를 포함하는 고형물을 석출시켜 분리하는 응집 침전공정B를 포함하는 것을 특징으로 한다.(c) a coagulation precipitation step B which adds sodium carbonate and a pH adjusting alkali agent to the waste water treated by the coagulation precipitation step A, and precipitates and separates solids containing calcium and fluorine.

그 방법은, 또한,That way, also,

(d) 상기 응집 침전공정 B에서 처리된 배수를, 활성탄과 접촉시켜, 유기성 COD 성분을 흡착 제거하는 활성탄 흡착공정과,(d) an activated carbon adsorption step of bringing the wastewater treated in the flocculation precipitation step B into contact with activated carbon to adsorb and remove the organic COD component;

(e) 그 활성탄 흡착공정에서 처리된 배수를, 불소 흡착수지와 접촉시켜, 잔존하는 불소를 흡착 제거한 후, 알칼리제에 의하여 pH 5.8 내지 8.6으로 조정하는 불소 흡착공정을 포함하여도 된다.(e) The fluorine adsorption process may be included in which the wastewater treated in the activated carbon adsorption process is brought into contact with the fluorine adsorption resin to adsorb and remove the remaining fluorine, and then adjusted to pH 5.8 to 8.6 with an alkaline agent.

본 발명의 제2의 배연 탈황 유황 배수 처리방법은, 석탄 연소 배기가스증의 유황 화합물을 흡수 제거하는 습식 배연 탈황 장치로부터 배출되는 배연 탈황 배수 처리방법에 있어서,The second flue gas desulfurization wastewater treatment method of the present invention is the flue gas desulfurization wastewater treatment method discharged from a wet flue gas desulfurization apparatus that absorbs and removes sulfur compounds of coal combustion exhaust gas.

(a) 그 배수중에 산화제를 첨가하여, 배수중의 COD 성분인 질소-유황 화합물을 분해한 후, 다시 환원제를 첨가하여, 과잉 산화제를 분해 제거하는 COD 성분분해공정과,(a) a COD component decomposition step of adding an oxidizing agent to the wastewater to decompose the nitrogen-sulfur compound as a COD component in the drainage, and then adding a reducing agent to decompose and remove the excess oxidizing agent;

(b) 그 COD 성분 분해공정에서 처리된 배수에, pH조정용 알칼리제를 첨가하고, 알칼리성 하에서 마그네슘 및 불소를 포함하는 고형물을 석출하여 분리하는 응집 침전공정C와,(b) a coagulation precipitation step C for adding a pH adjusting alkali agent to the wastewater treated in the COD component decomposition step and depositing and separating solids containing magnesium and fluorine under alkalinity;

(c) 그 COD 분해공정에서 처리된 배수에, 중금속 포집용 킬레이트제와, 알루미늄화합물과, pH조정용 알칼리제를 첨가하여, 불소 및 중금속을 포함하는 고형물을 석출시켜 분리하는 응집침전공정 A를 포함하는 것을 특징으로 한다.(c) a coagulation sedimentation step A for depositing and separating solids containing fluorine and heavy metals by adding a chelating agent for heavy metal collection, an aluminum compound, and an alkali chemicals for pH adjustment to the wastewater treated in the COD decomposition step. It is characterized by.

그 방법은, 또한That way, also

(d) 그 응집침전공정 A에서 처리된 배수를, 활성탄과 접촉시켜, 유기성 COD성분을 흡착 제거하는 활성탄 흡착공정과,(d) an activated carbon adsorption step of adsorbing and removing organic COD components by bringing the wastewater treated in the flocculation settling step A into contact with activated carbon;

(e) 그 활성탄 흡착공정에서 처리된 배수를, 불소 흡착수지와 접촉시켜, 잔존하는 불소를 흡착제거한 후, 알칼리제에 의하여 pH5.8 내지 8.6으로 조정하는 불소흡착공정을 포함하여도 된다.(e) A fluorine adsorption step of adjusting the pH of the activated carbon adsorption step by contacting the fluorine adsorption resin with the fluorine adsorption resin to remove the remaining fluorine and adjusting the pH to 5.8 to 8.6 with an alkaline agent.

상기 본 발명의 제1 또는 제2 배연 탈황 배수처리방법에 있어서, 상기 COD성분 분해공정중, 산화제로서 차아염소산나트륨을 이용하여, 염산에 의하여 배수를 pH4 이하로 조정하고, 배수중의 질소-유황화합물을 분해 제거할 수 있다.In the first or second flue gas desulfurization wastewater treatment method of the present invention, during the decomposition of the COD component, using sodium hypochlorite as an oxidizing agent, the wastewater is adjusted to pH 4 or less by hydrochloric acid, and nitrogen-sulfur in the wastewater. Compounds can be decomposed and removed.

상기 본 발명의 제 1 또는 제 2 배연 탈황배수 처리방법에 있어서, 상기 응집침전공정 A중, 중금속 포집용 킬레이트제로서, 예를 들면, 디티오카르바민산기 또는 티올기를 가지는 것을 사용할 수 있다.In the first or second flue gas desulfurization and wastewater treatment method of the present invention, as the chelating agent for heavy metal capture in the flocculation sedimentation step A, for example, one having a dithiocarbamic acid group or a thiol group can be used.

상기 본 발명의 제1 또는 제2 배연 탈황 배수 처리방법에 있어서, 상기 불소 흡착공정중, 염산에 의하여 배수를 pH2 내지 4로 조정한 후, 그 pH 조정한 배수를 불소 흡착 수지층 중에 통과시켜 불소를 흡착 제거할 수 있다.In the first or the second flue gas desulfurization wastewater treatment method of the present invention, during the fluorine adsorption step, the wastewater is adjusted to pH 2 to 4 by hydrochloric acid, and then the pH-adjusted wastewater is passed through the fluorine adsorption resin layer. Can be adsorbed and removed.

이 때, 그 불소 흡착수지로서, 예를 들면, 포스포 메틸 아미노기 킬레이트 수지, 지르코늄 담지(擔持)형 수지, 셀륨 담지형 수지로부터 선택한 적어도 1종류 이상을 이용할 수 있다.At this time, as the fluorine adsorption resin, for example, at least one or more selected from phosphomethyl amino group chelate resins, zirconium-supported resins, and cerium-supported resins can be used.

본 발명의 제 1 또는 제2 배연 탈황 배수 처리방법에 있어서, 상기 불소 흡착공정에 있어서 불소의 흡착후, 불소 흡착수지의 재생 시에 생성되는 재생폐액을 배연탈황장치로 반송하는 공정을 추가로 포함하여도 된다.In the first or second flue gas desulfurization wastewater treatment method of the present invention, the method further includes a step of returning a regeneration waste liquid generated upon regeneration of the fluorine adsorption resin to the flue gas desulfurization apparatus after the adsorption of fluorine in the fluorine adsorption step. You may also do it.

도 1은 본 발명의 제 1 처리방법의 공정도.1 is a process diagram of a first treatment method of the present invention.

도 2는 본 발명의 제 2 처리방법의 공정도.2 is a process chart of the second treatment method of the present invention.

도 3은 본 발명의 제 1 및 제 2 처리방법중의 COD성분 분해공정의 설명도.3 is an explanatory diagram of a COD component decomposition step in the first and second treatment methods of the present invention.

도 4는 본 발명의 제 1 및 제 2 처리방법 중의 응집 침전공정 A 의 설명도.4 is an explanatory diagram of a coagulation precipitation step A in the first and second treatment methods of the present invention;

도 5는 본 발명의 제 1 처리방법 중의 응집침전공정 B 의 설명도.5 is an explanatory diagram of a coagulation sedimentation step B in the first treatment method of the present invention.

도 6은 본 발명의 제 2의 처리방법중의 응집 침전공정 C의 설명도.6 is an explanatory diagram of a coagulation precipitation step C in a second treatment method of the present invention;

본 발명의 방법을 공정 순으로 설명한다. 또한 본 발명의 처리방법과 제2 처리방법에서 공통되는 공정에 대하여는, 함께 설명한다.The method of the present invention will be described in the order of process. In addition, the process common to the processing method of this invention and a 2nd processing method is demonstrated together.

(1) COD 성분 분해공정(1) COD component decomposition process

COD성분 분해공정은, 배수 중에 산화제를 첨가하고, 배수중의 COD 성분인 질소-유황 화합물을 분해한 후, 다시 환원제를 첨가하여, 과잉 산화제를 분해 제거하는 공정이다.The COD component decomposition step is a step of adding an oxidant to the wastewater, decomposing the nitrogen-sulfur compound as the COD component in the wastewater, and then adding a reducing agent to decompose and remove the excess oxidant.

석탄 연소 배기가스를 처리하는 탈황장치로부터 배출된 탈황배수를, COD성분 분해공정에 도입한다. 이 배수 중에는, 탈황장치인 SO2와 NOx가 반응하여 생성한 주로 다음의 조성을 가진 N-S화합물(무기성 COD성분)을 포함하고 있다.The desulfurization wastewater discharged from the desulfurization apparatus for treating coal combustion exhaust gas is introduced into a COD component decomposition step. This wastewater contains an NS compound (inorganic COD component) mainly having the following composition produced by the reaction of SO 2 and NOx as a desulfurization apparatus.

히드록시 아민 모노설포네이트 HONHSO3 - Hydroxy amine monosulfonate HONHSO 3-

히드록시아민 디설포네이트 HON(SO3)2 2- Hydroxyamine disulfonate HON (SO 3 ) 2 2-

히드록시아민 트리설포네이트 ON(SO3)3 3- Hydroxyamine trisulfonate ON (SO 3 ) 3 3-

이 배수에, 염산 등의 광산으로, pH4 이하, 바람직하게는 약품사용량 중 불필요하게 사용되는 부분을 없애기 위하여 pH3 내지 4로 조정한 후, 배수의 산화 환원 전위(ORP)를 토대로 N-S화합물의 함유량을 구하고, 이에 대응하는 소정량의 차아염소산 나트륨(NaOCl) 등의 산화제를 첨가하여, N-S 화합물을 분해한다. 이 때 광산으로서 황산을 이용하면, 스케일이 발생하기 쉬우므로, 염산을 이용하는 것이 바람직하다. 또한, 산화제로서는, 차아염소염을 들 수 있고, 그 중에서도, 처리성 및 경제성 면에서 차아염소산 나트륨이 바람직하다.In this wastewater, the acid content of NS compound is adjusted to pH3 to 4 in order to eliminate unnecessary portions of the pH 4 or less, preferably in the chemical usage, and then the content of the NS compound based on the redox potential (ORP) of the wastewater. A corresponding amount of an oxidizing agent such as sodium hypochlorite (NaOCl) or the like is added to decompose the NS compound. When sulfuric acid is used as the photonic acid at this time, since scale easily occurs, it is preferable to use hydrochloric acid. Moreover, hypochlorite is mentioned as an oxidizing agent, Especially, sodium hypochlorite is preferable from a processability and economical viewpoint.

또한, 실험 결과, 차아염소산 나트륨의 첨가량을 NaOCl/N-S화합물 = 3.0 내지 5.0(몰비)으로 하고, 온도 40℃이상, 체류시간 2시간 이상에서 반응시킴으로써, COD성분 분해율이 95%이상에 달하는 것이 확인되었다. 상기 N-S화합물 중, 대표예로서, 히드록시 아민 트리설포네이트 분해반응을 아래에 기재하였다. 이 반응에서는 중금속의 일부도 산화된다.As a result of the experiment, the addition amount of sodium hypochlorite was set to NaOCl / NS compound = 3.0 to 5.0 (molar ratio), and it was confirmed that the decomposition rate of COD component reached 95% or more by reacting at a temperature of 40 ° C or more and a residence time of 2 hours or more. It became. Among the N-S compounds, as a representative example, hydroxy amine trisulfonate decomposition reaction is described below. In this reaction, some of the heavy metals are also oxidized.

6ON(SO3)3 3-+ 18ClO-+ 10H2O 6ON (SO 3) 3 3- + 18ClO - + 10H 2 O

→ 4NO + 2NO3 -+ 18HSO4 -+ 18Cl-+ H++ 3O2 → 4NO + 2NO 3 - + 18HSO 4 - + 18Cl - + H + + 3O 2

N-S화합물을 분해 처리한 후, 배수의 산화환원전위를 기초로 산화제의 잔존량을 구하고, 이와 거의 동량의 아황산나트륨(Na2SO3), 산성 아황산 나트륨(NaHSO3), 티오황산나트륨(Na2S2O3) 등 중 하나를 환원제로 첨가하고, 차아염소산 나트륨 등의 과잉 산화제를 분해한다.After decomposing the NS compound, the residual amount of the oxidizing agent is determined based on the redox potential of the drainage, and almost the same amount of sodium sulfite (Na 2 SO 3 ), acidic sodium sulfite (NaHSO 3 ), and sodium thiosulfate (Na 2 S) are obtained. 2 O 3 ) or the like is added as a reducing agent to decompose excess oxidant such as sodium hypochlorite.

이러한 산화환원반응 종료후의 COD성분이 분해 처리된 배수는, 다음공정(제 1 방법 중의 응집침전공정A, 또는 제 2 방법중의 응집침전 공정 C)에서 처리된다.The wastewater from which the COD component has been decomposed after completion of the redox reaction is treated in the next step (coagulation sedimentation step A in the first method or coagulation sedimentation step C in the second method).

(2) 응집침전공정 A(2) Coagulation Sedimentation Process A

응집침전공정 A는, 배수에 중금속 포집용 킬레이트제와, 알루미늄화합물과, pH조정용 알칼리제를 첨가하고, 불소 및 중금속을 포함하는 고형물을 석출시켜 분리하는 공정이다.In the flocculation sedimentation step A, a chelating agent for collecting heavy metals, an aluminum compound, and an alkali chemicals for adjusting pH are added to the waste water to precipitate and separate solids containing fluorine and heavy metals.

중금속 포집용 킬레이트제로는, 디티오카르바민산기(-NH-CS2Na), 티올기(-SNa) 등의 킬레이트 형성기를 가지는 액체의 고분자 중금속 포집제를 들 수 있다. 중금속 포집용 킬레이트제를, 통상, 10 내지 100mg/L 첨가함으로써, 중금속을 포집한 마이크로 플록이 생성된다.Examples of the chelating agent for heavy metal collection include liquid high molecular heavy metal collecting agents having chelate forming groups such as dithiocarbamic acid groups (-NH-CS 2 Na) and thiol groups (-SNa). The microfloc which collected the heavy metal is produced by adding 10-100 mg / L of chelating agents for heavy metal collection normally.

알루미늄화합물은, 응집제로서 작용하는 것으로, 구체적으로는, 폴리 염화 알루미늄(PAC), 염화 알루미늄, 황산 알루미나(황산 알루미늄) 등을 사용할 수 있다. 첨가량은, 배수중의 불소농도에 의존하던가, 통상, A1/ F = 0.1 내지 0.5정도이다.An aluminum compound acts as a flocculant, Specifically, poly aluminum chloride (PAC), aluminum chloride, alumina sulfate (aluminum sulfate), etc. can be used. The addition amount depends on the fluorine concentration in the wastewater or is usually about A1 / F = 0.1 to 0.5.

pH 조정용 알칼리제로서는, 수산화 나트륨 등이 사용된다. pH 조정용 알칼리제를 가하여 중성 부근(pH 6 내지 8)로 조정함으로써, 다음의 반응이 발생하고, 불소-알루미늄 착체 [Al(OH)3…F]가 형성됨과 동시에, 수산화 알루미늄의 플록이 형성된다. 이 착체가 형성된 플록에 흡착, 포함되어 침전된다.As the alkali agent for pH adjustment, sodium hydroxide etc. are used. By the addition of an alkaline agent for pH adjustment and adjustment to near neutral (pH 6 to 8), the following reaction occurs, resulting in the fluorine-aluminum complex [Al (OH) 3 ... F] is formed and at the same time, a floc of aluminum hydroxide is formed. The complex is adsorbed and contained in the formed floc to precipitate.

Al3++ 3OH-+ F → Al(OH)3 …F Al 3+ + 3OH - + F → Al (OH) 3 ... F

이 때, 중금속을 포집한 상기 마이크로 플록이나 유기성 COD성분의 일부(20 내지 30%)도, 흡착 제거된다.At this time, a part (20 to 30%) of the microfloc or organic COD component in which the heavy metal is collected is also removed by adsorption.

폴리아크릴아미드 등의 음이온계 고분자 응집제를 적적하게 첨가하고, 또한 조대한 플록을 형성시켜, 분리성을 향상시킬 수 있다.Anionic polymer coagulants, such as polyacrylamide, can be added suitably, and coarse floc can be formed and separability can be improved.

이러한 플록을 포함하는 현탁액 중의 고형액은, 침전조에 있어서 분리된다. 상징수는, 다음 공정(제 1 처리방법중의 응집침전공정 B, 또는 제 2 처리방법 중의 활성탄 흡착공정)에 있어서 처리된다.The solid liquid in the suspension containing such flocs is separated in the settling tank. The supernatant is treated in the next step (agglomeration sedimentation step B in the first treatment method or activated carbon adsorption step in the second treatment method).

(3) 응집침전공정 B(3) Coagulation sedimentation process B

응집침전공정 B는, 응집침전공정 A에서 처리된 배수에, 탄산나트륨과 pH조정용 알칼리제를 첨가하고, 칼슘 및 불소를 포함하는 고형물을 석출시켜 분리하는 공정이다.The flocculation sedimentation step B is a step of adding sodium carbonate and an alkali chemicals for pH adjustment to the wastewater treated in the flocculation sedimentation step A to precipitate and separate solids containing calcium and fluorine.

탄산나트륨의 첨가량은, 배수중의 칼슘 농도에 의존하거나, 통상, 그 칼슘 농도를 10 내지 50% 저감시키는 량, 즉, 칼슘 ( Ca)량에 대하여 0.1 내지 0,5몰보다 다소 많은 양이다.The amount of sodium carbonate added depends on the concentration of calcium in the wastewater, or is usually an amount that is reduced by 10 to 50%, that is, an amount slightly larger than 0.1 to 0.5 mol relative to the amount of calcium (Ca).

응집침전공정 B에서는, 탄산나트륨을 첨가함과 동시에, pH조정용 알칼리제로서 pH 9 내지 10으로 조정함으로써, 다음과 같은 반응이 발생하고, 배수중의 칼슘이온이 탄산칼슘이 되고, 또한 pH 10 이상으로 조정함으로써, 마그네슘 이온이 수산화 마그네슘이 된다. 탄산칼슘 및 수산화 마그네슘은, 각각 플록을 형성한다. 이 때, 불소 이온이 이렇게 형성된 플록에 흡착하여 포함되고 침전된다.In the flocculation sedimentation step B, by adding sodium carbonate and adjusting it to pH 9 to 10 as the alkali agent for pH adjustment, the following reaction occurs, and calcium ions in the drainage become calcium carbonate and are adjusted to pH 10 or more. As a result, magnesium ions become magnesium hydroxide. Calcium carbonate and magnesium hydroxide each form a floc. At this time, fluorine ions are adsorbed and contained in the flocs thus formed and precipitated.

Ca2++ CO3 2-+ F-→ CaCO3… F Ca 2+ + CO 3 2+ F - → CaCO 3 ... F

Mg2++ 2OH-+ F_→ Mg(OH)2… F Mg 2+ + 2OH - + F _ → Mg (OH) 2 ... F

이 때 전술한 바와 같이, 음이온계 고분자 응집제를 적절하게 첨가하고, 다시 조대한 플록을 형성시켜, 분리성을 향상시킬 수 있다.At this time, as described above, the anionic polymer flocculant may be appropriately added, and coarse flocs are formed again to improve the separability.

이러한 플록을 포함하는 현탁액중의 고형물은, 침전조에서 분리된다. 상징수는, 다음 공정(제 1 처리방법중의 활성탄 흡착공정)에 있어서 처리된다.Solids in suspension containing these flocs are separated in the settling bath. The supernatant water is treated in the next step (activated carbon adsorption step in the first treatment method).

(4) 응집침전 공정C(4) Coagulation sedimentation process C

응집침전공정 C는, 배수에 pH조정용 알칼리제를 첨가하고, 알칼리성 하에서 마그네슘 및 불소를 포함하는 고형물을 석출시켜 분리하는 공정이다.The flocculation sedimentation step C is a step of adding a pH-adjusting alkali agent to the waste water, and depositing and separating a solid containing magnesium and fluorine under alkaline conditions.

응집침전공정C에서는, 수산화나트륨 및 소석회(수산화 칼슘) 등의 pH조정용 알칼리제로 pH 10 내지 11로 조정함으로써, 배수중의 마그네슘 이온이 수산화 마그네슘이 되어 플록을 형성한다. 이 때, 불소이온이 형성된 플록에 흡착하여 포함되어 침전된다.In the flocculation sedimentation step C, by adjusting the pH to 10 to 11 with a pH adjusting alkali agent such as sodium hydroxide and slaked lime (calcium hydroxide), the magnesium ions in the wastewater become magnesium hydroxide to form flocs. At this time, the floc ions are adsorbed on the floc formed and precipitated.

이러한 플록을 포함하는 현탁액중의 고형물은, 침전조에 있어서는 분리된다. 상징수는, 다음공정(제 2 처리방법 중의 응집침전공정 A)에 있어서 처리된다.Solids in suspension containing such flocs are separated in the settling tank. The symbol water is treated in the next step (coagulation sedimentation step A in the second treatment method).

(5) 농축공정(5) concentration process

농축공정은, 제 1 처리방법중의 응집침전공정 A 및 B에 있어서, 또는 제2 처리방법중의 응집침전공정 C 및 A에 있어서, 고형물로서 분리되어 배출된 오염된 슬러지를 농축장치에 의하여 농축하는 공정이다.The concentration step is carried out in a flocculation sedimentation step A and B of the first treatment method, or in the flocculation sedimentation steps C and A of the second treatment method, the contaminated sludge separated and discharged as a solid is concentrated by a concentration device. It is a process to do it.

이러한 각 오염된 슬러지의 농도는, 통상, 1 내지 2 중량%정도이나, 농축 후는 5중량%정도가 된다. 그 분리수는, 전단의 공정 (제 1 처리방법중의 응집침전공정 A, 또는 제 2 처리방법중의 응집침전공정 C)으로 반송하고, COD 성분을 분해 처리한 배수와 함께 재처리된다. 농축액의 오염된 슬러지는 탈수공정으로 보내진다.The concentration of each contaminated sludge is usually about 1 to 2% by weight, but is about 5% by weight after concentration. The separated water is returned to the front end step (coagulation sedimentation step A in the first treatment method, or coagulation sedimentation step C in the second treatment method), and reprocessed together with the waste water from which the COD component is decomposed. Contaminated sludge from the concentrate is sent to the dehydration process.

(6) 탈수공정(6) dehydration process

탈수공정은, 농축된 오염된 슬러지를 다시 탈수하고, 케이크화하여 배출하는 공정이다. 탈수기로는, 필터프레스, 벨트프레스, 스크류 디캔터 등을 사용할 수 있다. 예를 들면, 필터 프레스의 경우, 오염된 슬러지의 함수율을 70 중량% 이하로 할 수 있다.The dewatering process is a process of dewatering the concentrated contaminated sludge again, converting it into cake, and discharging it. As the dehydrator, a filter press, a belt press, a screw decanter or the like can be used. For example, in the case of a filter press, the moisture content of contaminated sludge can be 70 weight% or less.

(7) 활성탄 흡착공정(7) Activated Carbon Adsorption Process

활성탄 흡착공정은, 배수를 활성탄과 접촉시켜, 유기성 COD성분을 흡착 제거하는 공정이다.The activated carbon adsorption step is a step of adsorbing and removing organic COD components by bringing drainage into contact with activated carbon.

전단의 공정(제 1 처리방법 중의 응집침전공정 B, 또는 제 2 처리방법 중의 응집침전공정 A)에서 배출된 배수는, 필요에 따라, 모래여과 등에 의하여 부유물을 제거한 후, 활성탄 흡착공정으로 도입한다. 배수 알칼리성을 띄고 있는 경우에는, 염산 등의 광산으로 배수를 pH 6 내지 8로 조정한 후, 그 pH조정한 배수를, 충전탑 내의 입상 활성탄 층에 통과시켜, 주로 공업용수에 기인하는 유기성 COD성분을 흡착 제거한다.The wastewater discharged in the front-end process (coagulation sedimentation step B in the first treatment method or coagulation sedimentation step A in the second treatment method) is introduced into the activated carbon adsorption step after removing the suspended matter by sand filtration or the like as necessary. . In the case of alkaline drainage, after adjusting the drainage to pH 6-8 with a mineral acid such as hydrochloric acid, the pH-adjusted drainage is passed through the granular activated carbon layer in the packed column, and the organic COD component mainly derived from industrial water. Adsorption removes.

유기성 COD성분을 흡착 제거한 배수는, 불소 흡착공정으로 유도하여 처리한다.The drained water from which the organic COD component has been adsorbed is led to a fluorine adsorption step for treatment.

또한, 일정 기간 배수를 통과시켜 찌꺼기로 가득찬 활성탄은, 물로 역세정함으로써, 전단의 공정(제 1 처리방법중의 응집 침전공정 A, 또는 제 2 처리방법중의 응집침전공정 C)으로 반송되고, COD 성분을 분해 처리한 배수와 함께 재처리된다.In addition, the activated carbon filled with waste by passing the waste water for a certain period of time is returned to the step (agglomeration sedimentation step A in the first treatment method or the coagulation sedimentation step C in the second treatment method) by backwashing with water. The COD component is then reprocessed with the decomposed drain.

(8) 불소 흡착공정(8) Fluorine adsorption process

불소 흡착공정은, 활성탄 흡착공정으로 처리된 배수를, 불소 흡착수지와 접촉시켜, 잔존하는 불소를 흡착제거한 후, 알칼리제에 의하여 pH 5.8 내지 8.6으로 조정하는 공정이다.The fluorine adsorption step is a step of adjusting the wastewater treated by the activated carbon adsorption step into contact with the fluorine adsorption resin to adsorb and remove the remaining fluorine to pH 5.8 to 8.6 with an alkaline agent.

불소흡착공정에서는, 염산 등의 광산으로 배수를 pH 2 내지 4로 조정한 후, 그 pH조정한 배수를 불소 흡착탑 내의 불소흡착 수지층으로 통액하고, 액중에 잔존하는 미량의 불소 이온을 흡착 제거한다. 불소 흡착수지에는, 관능기나 담지금속으로서 여러 가지 형태를 가진 것이 있고, 구체적으로는, 포스포틸 아미노기 킬레이트 수지, 지르코늄 담지형 수지, 셀륨 담지형 수지 등을 들 수 있다. 그 중에서 예를 들면, 셀륨 담지형 수지는, 불소 이온과 다음과 같이 반응한다.In the fluorine adsorption step, after the wastewater is adjusted to pH 2 to 4 with a mineral acid such as hydrochloric acid, the pH-adjusted wastewater is passed through the fluorine adsorption resin layer in the fluorine adsorption column to adsorb and remove a small amount of fluorine ions remaining in the liquid. . The fluorine adsorption resin may have various forms as functional groups or supported metals, and specific examples thereof include phosphotyl amino group chelate resins, zirconium-supported resins, and cerium-supported resins. Among them, for example, the cerium-supported resin reacts with fluorine ions as follows.

[흡착반응] Ce … OH-+ F_→ Ce … F-+ OH- [Adsorption reaction] Ce. OH - + F _ → Ce ... F - + OH -

또한, 일정 기간 배수를 통과시켜 불소흡착능력이 저하된 흡착수지는, 수산화나트륨 등의 알칼리제와 다음과 같이 반응시켜 재생시킨 후, 염산 등의 광산 및 물로써 세정하고, 활성을 부여할 수 있다.In addition, the adsorptive resin whose fluorine adsorption capacity is lowered by passing drainage for a certain period of time can be regenerated by reacting with an alkali agent such as sodium hydroxide as follows, and then washed with mineral acid such as hydrochloric acid and water, to impart activity.

[재생반응] Ce - F-+ NaOH → Ce … OH_+ NaFPlay reaction] Ce - F - + NaOH → Ce ... OH _ + NaF

이 때 배출된 재생폐액은, 전단의 공정(제1 처리방법 중의 응집침전공정 A, 또는 제2 처리방법중의 응집 침전공정 C)으로 반송하고, COD성분이 분해 처리된 배수와 함께 다시 처리시키거나, 또는 배연탈황장치로 반송하여, 연소 배기가스를 냉각 및 흡수할 때의 보급수로서 유효하게 이용할 수 있다.The recycled waste liquid discharged at this time is returned to the front end process (agglomeration sedimentation step A in the first treatment method, or the coagulation sedimentation step C in the second treatment method), and is again treated with the waste water in which the COD component is decomposed. Or, it can return to a flue gas desulfurization apparatus, and can utilize effectively as replenishment water at the time of cooling and absorbing combustion exhaust gas.

재생폐액을 배연 탈황장치로 반송한 경우에는 다음과 같은 반응이 일어나고, 탈황 장치내의 대량의 칼슘이온에 의하여, 재생 폐액중의 불소이온이 포착된다.When the regenerated waste liquid is returned to the flue gas desulfurization apparatus, the following reaction occurs, and fluorine ions in the regenerated waste liquid are captured by a large amount of calcium ions in the desulfurization apparatus.

Ca2++ 2NaF → CaF2+ 2Na+ Ca 2+ + 2NaF → CaF 2 + 2Na +

이와 같이 불소이온은, 불화 칼슘으로서 고정되고, 동시에 생성하는 석고(CaSO4)에 포함되어 배출된다. 이 때문에, 탈황 배수중의 불소이온이 증가하지는 않는다. 또한, 이 때 생성되는 불화 칼슘의 량은, 석고의 량에 비하여 압도적으로 적으므로, 회수된 석고의 품질 저하를 초래하지는 않는다. 불화 칼슘은, 유가물로서, 예를 들면 시멘트용 자재 등으로 이용할 수 있다.In this way, the fluorine ions are fixed as calcium fluoride and included in the gypsum (CaSO 4 ) produced at the same time and discharged. For this reason, the fluorine ion in desulfurization waste water does not increase. In addition, since the quantity of calcium fluoride produced | generated at this time is overwhelmingly small compared with the quantity of gypsum, it does not cause the quality fall of collect | recovered gypsum. Calcium fluoride can be used as a valuable material, for example as a cement material.

불소이온을 흡착 제거한 배수는, 수산화나트륨 등의 알칼리제로 pH 5.8 내지 8.6으로 조정되고, 방류 또는 재이용된다.The wastewater from which fluorine ions have been adsorbed is adjusted to pH 5.8 to 8.6 with an alkaline agent such as sodium hydroxide and discharged or reused.

실시예Example

이하, 실시예에 근거하여, 본 발명의 처리방법을 설명한다.Hereinafter, the processing method of this invention is demonstrated based on an Example.

실시예 1 (제1 처리방법)Example 1 (First Treatment Method)

도 1에 있어서, 본 실시예는, COD 성분 분해공정 1, 응집침전공정 A 2, 응집침전공정 B 3, 활성탄 흡착공정 7, 불소 흡착공정 8을 포함한다. 탈황배수 10은, 이러한 공정에 의하여, 차례로 처리하였다. 또한, 이러한 공정과 함께 농축공정 5 및 탈수공정 6을 부대적으로 설치하고, 응집침전공정 A 2 및 응집침전공정 B 3에서 발생하는 오염된 슬러지를 처리하였다. 이하 본 실시예를 상술한다.In FIG. 1, the present embodiment includes a COD component decomposition step 1, an aggregation precipitation step A 2, an aggregation precipitation step B 3, an activated carbon adsorption step 7, and a fluorine adsorption step 8. Desulfurization wastewater 10 was sequentially processed by this step. In addition to this process, the concentration step 5 and the dehydration step 6 were additionally installed, and contaminated sludge generated in the coagulation sedimentation step A 2 and the coagulation sedimentation step B 3 was treated. Hereinafter, the present embodiment will be described in detail.

먼저, 석회연소 배기가스를 처리하는 탈황장치로부터 배출된 탈황 배수 10을, COD성분 분해공정 1에 도입하였다. COD성분 분해 공정 1은, 도3에 도시하는 산화조 1a 및 환원조 1b로 구성되고, 산화조 1a에서는, 탈황 배수 10을 광산 21에 의하여 pH4 이하로 조정하였다. 산화제 21로서, 차아염소산 나트륨을 첨가하고, 무기성 COD 성분을 분해하였다. 산화제 21의 첨가량은, 산화 환원전위(ORP) 하에서 N-S화합물 함유량을 확인하고, NaOCl/N-S화합물 = 3.0(몰비)이 되도록 하였다. 이 때 반응조건으로서, 온도를 약 40℃, 체류시간을 3시간으로 하였다. 이 조건하에서 N-S 화합물이 95%이상 분해되었다. N-S화합물을 분해한 후의 배수 중에는, 과잉 산화제 (차아염소산 나트륨) 22가 잔류하고 있으므로, 환원조 1b로 유도하고, 환원제 23을 첨가하여 분해하였다. 환원제 23으로서, 산성아황산 나트륨을 이용하였다. 환원제의 첨가량은, 산화환원전위 하에서 잔존 산화물량을 확인하고, 산화제에 대하여, 거의 당량 첨가하였다. COD성분을 분해 처리한 배수 11은, 응집침전공정 A2로 유도하였다.First, the desulfurization wastewater 10 discharged from the desulfurization apparatus for treating the lime combustion exhaust gas was introduced into the COD component decomposition step 1. COD component decomposition | disassembly process 1 is comprised from oxidation tank 1a and reduction tank 1b shown in FIG. As the oxidant 21, sodium hypochlorite was added to decompose the inorganic COD component. The addition amount of the oxidizing agent 21 confirmed the content of N-S compound under redox potential (ORP) and made it NaOCl / N-S compound = 3.0 (molar ratio). At this time, as the reaction conditions, the temperature was about 40 ° C. and the residence time was 3 hours. Under these conditions, N-S compounds decomposed over 95%. The excess oxidant (sodium hypochlorite) 22 remained in the waste water after the N-S compound was decomposed, so it was led to a reducing tank 1b and decomposed by the addition of a reducing agent 23. As the reducing agent 23, acidic sodium sulfite was used. The addition amount of the reducing agent confirmed the amount of remaining oxides under the redox potential, and was almost equivalent to the oxidizing agent. The wastewater 11 in which the COD component was decomposed was led to the coagulation sedimentation step A2.

응집침전공정 A2은, 도4에 도시하는 응집조 2a, 반응조 2b 및 침전조 2c로 이루어진다. 응집조 2a로 유도된 COD성분을 분해 처리한 배수 11에, 킬레이트제 24 및 알루미늄 화합물 25을 첨가한 후, 알칼리제(수산화나트륨) 26에서 pH6 내지 8로 조정하였다. 이 때, 킬레이트제 24로서, 액체 킬레이트제의 「에포플록 L-1」(미요시유지사 제조)을 10mg/L 첨가하였다. 또한, 알루미늄화합물 25로서는, 황산 알루미늄(황산 알루미나)을 F/A1=0.3으로 되도록 첨가하였다. 알칼리제(수산화나트륨)26을 가하여 pH 조정함으로써, 불소-알루미늄 착체 [Al(OH)3- F]가 형성됨과 동시에, 수산화 알루미늄의 플록이 형성되었다. 이 때, 킬레이트제의 첨가에 의하여 생성된, 중금속을 포집한 마이크로 플록이나, 유기성 COD성분의 일부 (20 내지 30% 정도), 및 여기서 생성된 불소-알루미늄 착체가, 형성된 수산화 알루미늄의 플록에 흡착하여 포함되었다.The flocculation sedimentation step A2 consists of the flocculation tank 2a, the reaction tank 2b, and the precipitation tank 2c shown in FIG. The chelating agent 24 and the aluminum compound 25 were added to the wastewater 11 in which the COD component guide | induced to the coagulation tank 2a was decomposed, and it adjusted to pH 6-8 in the alkali chemicals (sodium hydroxide) 26. At this time, 10 mg / L of "Epoploflo L-1" (made by Miyoshi Oil Holding Co., Ltd.) of the liquid chelating agent was added as the chelating agent 24. In addition, as aluminum compound 25, aluminum sulfate (alumina sulfate) was added so that F / A1 = 0.3. By adjusting the pH by adding an alkali agent (sodium hydroxide) 26, a fluorine-aluminum complex [Al (OH) 3 -F] was formed and a floc of aluminum hydroxide was formed. At this time, the micro-floc which collected the heavy metal by the addition of a chelating agent, a part of organic COD component (about 20-30%), and the fluorine-aluminum complex produced here adsorb | suck to the floc of the formed aluminum hydroxide. Was included.

이 플록을 포함하는 응집액을 반응조 2b로 유도하고, 고분자 응집제 27을 적절하게 첨가함으로써, 더욱 분해성이 좋은 조대한 플록을 형성시켰다. 침전조 2c에 있어서, 이러한 플록으로 이루어지는 고형물을 분리하였다. 상징수는, 응집침전 처리수 A12로서, 다음의 응집침전공정 B3으로 처리하였다. 응집침전 오염된 슬러지 A12s는, 농축공정 5로 보내어 처리하였다.The flocculant containing this floc was led to Reactor 2b, and the coagulant floc which was more degradable was formed by adding the polymer flocculant 27 suitably. In settling tank 2c, the solid consisting of these floes was separated. The supernatant was coagulated sedimentation treated water A12, which was treated by the next coagulated sedimentation step B3. The coagulated sedimentary contaminated sludge A12s was sent to a concentration step 5 for treatment.

응집침전공정 B3은, 도5에 도시하는 응집조 3a, 반응조 3b 및 침전조 3c로 이루어진다. 응집조 3a내에 유도되는 응집침전 처리수 A12에 액중의 칼슘량에 대하여, 0.3몰 량의 탄산나트륨 28을 첨가한 후, 알칼리제(수산화나트륨) 26에서 pH 9 내지 10으로 조정하였다. 이 때, 액중의 칼슘이온은, 탄산칼슘으로 되고, 다시 알칼리제 26을 가하여, pH 10이상으로 조정하였더니, 배수 중에 처음부터 존재한 마그네슘 이온이, 수산화 마그네슘이 되었다. 탄산칼슘과 수산화 마그네슘은, 각각 플록을 형성하고, 불소이온이 이렇게 형성된 플록에 흡착하여 포함되고 침전되었다.The flocculation sedimentation step B3 consists of the flocculation tank 3a, the reaction tank 3b, and the precipitation tank 3c shown in FIG. 0.3 mol amount of sodium carbonate 28 was added to the flocculation sedimentation-treated water A12 guide | induced in the flocculation tank 3a, and it adjusted to pH 9-10 in the alkali chemicals (sodium hydroxide) 26. At this time, the calcium ions in the liquid became calcium carbonate, and an alkali chemicals 26 was added again to adjust the pH to 10 or higher. As a result, magnesium ions initially present in the wastewater became magnesium hydroxide. Calcium carbonate and magnesium hydroxide each formed flocs, and fluorine ions were adsorbed on the flocs thus formed and precipitated.

이 플록을 포함하는 응집액을 반응조 3b로 유도하여, 고분자 응집제의「산폴리 305」(삼공화성사 제조) 27을 적절히 첨가함으로써, 분리성이 좋은 조대한 플록이 형성되었다. 침전조 3C에 있어서, 이러한 플록으로 구성되는 고형물을 분리하였다. 상징수는, 응집침전 처리수 B13으로서, 다음의 활성탄 흡착공정 7로 처리하였다. 응집침전 오염된 슬러지 B13S는, 농축공정 5로 보내어 처리하였다.The flocculant containing this floc was guide | induced to reaction tank 3b, and the coarse floc with good separability was formed by adding "San Poly 305" (made by Sampo Corporation) 27 of a polymeric flocculant suitably. In settling tank 3C, the solids consisting of these flocs were separated. The supernatant water was treated by coagulation sedimentation treatment water B13 in the following activated carbon adsorption step 7. Agglomerated precipitate contaminated sludge B13S was sent to a concentration step 5 for treatment.

응집침전 오염된 슬러지 A12S 및 응집침전 오염된 슬러지 B13S는, 농축 공정 5로 유도한 후, 농축장치로 함께 침강 분리시켰다. 실기(實機)에 의한 시험결과에서는, 이러한 각 오염된 슬러지의 농도가 1 내지 2 중량 % 정도였으나, 농축 후는 5중량 %정도까지 농축되어 있었다. 이 때 분리한 분리수 15는, COD성분을 분해 처리한 배수 11과 함께 응집 침전공정 A2에서 재처리하였다. 한편, 농축된 오염된 슬러지는, 탈수공정 6으로 유도하여 다시 탈수하고, 케이크 16으로서 계외로 배출하였다. 탈수기로서 필터 프레스를 이용하였더니, 함수율이 70% 이하의 케이크가 얻어졌다.Agglomerated sediment contaminated sludge A12S and Agglomerated sediment contaminated sludge B13S were led to concentration step 5, followed by sedimentation and separation with a concentrator. In actual test results, the concentration of each contaminated sludge was about 1 to 2% by weight, but after concentration, it was concentrated to about 5% by weight. The separated water 15 separated at this time was reprocessed in the coagulation precipitation step A2 together with the wastewater 11 from which the COD component was decomposed. On the other hand, the concentrated contaminated sludge was led to dehydration step 6 to be dewatered again and discharged out of the system as cake 16. When a filter press was used as the dehydrator, a cake having a water content of 70% or less was obtained.

한편, 응집침전 처리수 B13은, 필요에 따라 모래여과 처리(도시 생략)에 의하여 부유물을 제거한 후, 활성탄 흡착공정 7으로 보내지고, 알칼리성을 띤 경우에는 염산 등의 광산으로 pH 6 내지 8로 조정하여, 충전탑내의 입상활성탄층으로 통과시켜, 주로 공업용수에 기인하는 유기성 COD성분을 흡착 제거하였다. 활성탄 흡착 처리된 배수 17은, 불소 흡착공정 8로 보내졌다.On the other hand, the flocculation sedimentation treatment water B13 is sent to activated carbon adsorption step 7 after removing the suspended matter by sand filtration (not shown), if necessary, and adjusted to pH 6 to 8 with a mineral acid such as hydrochloric acid if it is alkaline. Then, the mixture was passed through a granular activated carbon layer in the packed column, and the organic COD component mainly derived from industrial water was adsorbed and removed. Waste water 17 treated with activated carbon adsorption was sent to fluorine adsorption step 8.

이러한 흡착처리에 의하여 활성탄층이 걸러낸 찌꺼기에 의하여 가득찬 경우에는, 동 활성탄층에 역세정수를 보내어 이러한 찌꺼기를 제거할 수 있다. 이 때 배출된 역세정수 17W는, 응집침전공정 A2으로 반송하고, COD 분해처리수 11과 함께 다시 재처리된다.When the activated carbon layer is filled with the residues filtered out by the adsorption treatment, backwash water can be sent to the activated carbon layer to remove these residues. The backwash water 17W discharged at this time is returned to the coagulation sedimentation step A2, and reprocessed together with the COD decomposition treatment water 11.

불소 흡착공정 8에서는, 도입된 활성탄 흡착처리수 17을 염산 등의 광산에서 pH2 내지 4로 조정한 후, 불소 흡착수지층으로 통액하고, 액중에 잔존하는 불소를 흡착 제거하였다. 불소 흡착수지로서는, 함수 셀륨(CeO2·nH2O) 담지형 수지(아사히 엔지니어링 주식회사 제조)를 이용하였다.In the fluorine adsorption step 8, the activated activated carbon adsorption treatment water 17 was adjusted to pH 2 to 4 in a mine such as hydrochloric acid, and then passed through a fluorine adsorption resin layer to adsorb and remove fluorine remaining in the liquid. As a fluorine adsorption resin, hydrous cerium (CeO 2 nH 2 O) supported resin (manufactured by Asahi Engineering Co., Ltd.) was used.

활성탄 흡착 처리수 17에는, 전단의 각 응집침전공정에서 제거되지 않고, 잔존하는 미량의 불소가 포함되어 있을 뿐으로, 수지에 대한 부하를 최소한으로 하고, 불소 흡착능력을 장기간 유지할 수 있다. 그러나 이러한 흡착처리를 계속하는 동안 결국에는 파열되므로, 정기적으로 수산화나트륨 등의 알칼리제에 의하여 재생 처리할 필요가 있다. 수지를 부활시킨 후, 이 수지를 염산 등의 광산 21 및 물로서 세정하고, 배출되는 재생 폐액 18W는, 상기 응집침전 공정 A2로 반송하여, COD분해처리수 11과 함께 재처리하거나, 또는 배연탈황 장치로 반송하여, 연소 배기가스의 냉각 및 흡수시의 보급수로서 이용할 수 있다.The activated carbon adsorption treatment water 17 contains only a small amount of residual fluorine, which is not removed in each flocculation settling step at the front end, so that the load on the resin can be minimized and the fluorine adsorption capacity can be maintained for a long time. However, it is ruptured eventually while continuing this adsorption treatment, and therefore it is necessary to regularly regenerate with an alkaline agent such as sodium hydroxide. After activating the resin, the resin is washed with mineral acid 21 such as hydrochloric acid and water, and the recycled waste liquid 18W discharged is returned to the coagulation sedimentation step A2, and retreated with COD decomposition water 11, or flue gas desulfurization. It can be conveyed to an apparatus and can be used as replenishment water at the time of cooling and absorption of combustion exhaust gas.

불소 이온을 흡착 제거한 최종 처리수 19는, 알칼리제(수산화나트륨) 26에서 pH5.8 내지 8.6으로 조정하고, 방류 또는 재이용하였다.The final treated water 19 from which fluorine ions were adsorbed was adjusted to pH5.8 to 8.6 with an alkalizing agent (sodium hydroxide) 26 and discharged or reused.

실시예 2(제2 처리방법)Example 2 (second treatment method)

도2에 있어서, 본실시예는, COD성분분해공정 1, 응집침전공정 C4, 응집침전공정 A2, 활성탄 흡착공정 7 및 불소 흡착공정 8을 포함한다. 탈황배수 10을 이러한 공정으로 순차 처리하였다. 또한, 이러한 공정과 함께 농축공정 5 및 탈수공정 6이 부대적으로 설치되어, 응집침전공정 C 4 및 응집침전공정 A 2에서 발생하는 오염된 슬러지를 처리하였다.In FIG. 2, this embodiment includes a COD component decomposition step 1, an aggregation precipitation step C4, an aggregation precipitation step A2, an activated carbon adsorption step 7, and a fluorine adsorption step 8. Desulfurization drainage 10 was sequentially treated in this process. In addition to this process, a concentration step 5 and a dehydration step 6 were additionally installed to treat the contaminated sludge generated in the coagulation sedimentation step C 4 and the coagulation sedimentation step A 2.

본실시예에서는, 응집침전공정 A2의 전단에 응집침전공정 C4를 설치하고, 후단의 응집침전공정 B3을 생략한 점이 실시예 1(제1 처리방법)과 상이하다.This embodiment differs from Example 1 (first processing method) in that the coagulation sedimentation step C4 is provided at the front end of the coagulation sedimentation step A2, and the coagulation sedimentation step B3 at the next stage is omitted.

실시예 1과 마찬가지로, 석회연소배기가스를 처리하는 탈황장치로부터 배출된 탈황 배출수 10을, COD성분 제거 공정 1로 도입하고, 산화제 (차아염소산 나트륨) 22에서 N-S화합물을 분해하였다. 반응 후, 과잉된 산화제 (차아염소산 나트륨)22를, 환원제(산성아황산 나트륨) 23에서 분해하고, COD성분을 분해 처리한 배수 11을, 응집침전공정 C4로 유도하였다.In the same manner as in Example 1, the desulfurization discharged water 10 discharged from the desulfurization apparatus for treating the lime combustion exhaust gas was introduced into the COD component removal step 1, and the N-S compound was decomposed in the oxidizing agent (sodium hypochlorite) 22. After the reaction, the excess oxidant (sodium hypochlorite) 22 was decomposed in a reducing agent (sodium sulphite) 23, and the drainage 11 obtained by decomposing the COD component was led to the coagulation sedimentation step C4.

도 6에 있어서, 응집침전공정 C4는, 응집조 4a, 반응조 4b 및 침전조 4c로 구성된다. 응집조 4a로 유도된 COD분해처리수 11을 , 수산화나트륨 또는 소석회 등의 알칼리제 26로 pH 10 내지 11로 조정함으로써, 배수중의 마그네슘 이온이 수산화 마그네슘이 되었다. 이 때, 불소 이온이 이 생성물로 흡착되어 포함된다.In FIG. 6, the flocculation settling process C4 is comprised by the flocculation tank 4a, the reaction tank 4b, and the precipitation tank 4c. Magnesium ions in the wastewater became magnesium hydroxide by adjusting the COD decomposition treatment water 11 induced in the coagulation tank 4a to pH 10 to 11 with an alkaline agent 26 such as sodium hydroxide or slaked lime. At this time, fluorine ions are adsorbed into this product and included.

이 플록을 포함하는 응집액을 반응조 4b로 유도하고, 고분자 응집제 27을 적절하게 첨가함으로써, 더욱 분리성이 좋은 조대한 플록을 형성시켰다. 다음의 침전조 4c에 있어서, 이러한 플록으로 구성되는 고형물을 분리하였다. 상징수는, 응집 침전처리수 C 14로서, 다음의 응집 침전공정 A2로 처리하였다. 응집침전 오염된 슬러지 C 14s 는, 농축공정 5로 보내어 처리하였다.The flocculant containing this floc was led to reaction tank 4b, and the coagulant floc which was more separable was formed by adding the polymer flocculant 27 suitably. In the following settling tank 4c, the solids consisting of these floes were separated. The supernatant was coagulated sedimentation treated water C 14, which was treated in the next coagulated sedimentation step A2. The coagulated sedimentary contaminated sludge C 14s was sent to a concentration step 5 for treatment.

응집침전공정 A 2로 도입된 응집침전 처리수 C14는, 실시예 1의 경우와 마찬가지로 처리하였다. 이 때 발생한 응집침전 처리수 A12는, 다시 활성탄 흡착공정으로 유도되었다. 이하, 실시예 1과 마찬가지로 순차 처리하여, 최종 처리수 19를 얻었다.The flocculation sedimentation treated water C14 introduced in the flocculation sedimentation step A 2 was treated in the same manner as in Example 1. The flocculation sedimentation treated water A12 generated at this time was guided to the activated carbon adsorption step again. Hereinafter, it processed similarly to Example 1 and obtained the final process water 19.

본 실시예 1 및 실시예 2에 의하여 탈황 배수를 처리한 결과를 표1에 정리하여 개시한다.Table 1 summarizes the results of the desulfurization wastewater treatment according to the first and second embodiments.

탈황배수의원수(原水)의 수질Water Quality of Desulfurization Wastewater 처리된 물의 수질Water quality of treated water 실시예 1Example 1 실시예 2Example 2 온 도Temperature 4949 4040 4040 pHpH -- (약산성)(Weakly acidic) 7.27.2 7.17.1 마그네슘(Mg)Magnesium (Mg) mg/Lmg / L 1180011800 1170011700 60006000 T-CODT-COD mg/Lmg / L 170170 〈15〈15 〈15〈15 NS-CODNS-COD mg/Lmg / L 5050 〈10〈10 〈10〈10 불소Fluoride mg/Lmg / L 3838 〈2<2 〈2<2

(주) T-COD : COD 성분의 총량T-COD: Total amount of COD component

NS-COD : N-S 화합물의 량NS-COD: Amount of N-S Compound

이상 설명한 본 발명의 방법에는, 다음의 효과가 있다.The method of this invention demonstrated above has the following effects.

탈황 배수중의 각 성분에 따른 처리 공정을 유기적으로 조합하여 다단계로 처리함으로써, 복수의 성분을 매우 효율 좋게 고도로 처리할 수 잇고, COD성분, 중금속 및 불소중 어느 성분도, 배출 기준으로 정해진 값을 항상 만족시킬 수 있다.By organically combining the treatment processes for each component in the desulfurization drainage and processing in multiple stages, a plurality of components can be treated highly efficiently and highly, and any component among COD components, heavy metals, and fluorine is always kept at a predetermined value based on emission standards. Can satisfy.

탈황 배수처리공정에 필요한 각 설비를 소형화할 수 있고, 설비 비용 및 약품의 사용량을 대폭 절감할 수 있다.Each equipment required for the desulfurization wastewater treatment process can be miniaturized, and the equipment cost and the amount of chemicals used can be greatly reduced.

불소흡착수지 재생시의 재생배수를, 탈황장치의 보급수로서, 유효하게 이용할 수 있다. 이에 따라서, 보급수로서 이용되는 공업용수의 사용량을 절감할 수 있다.The regeneration drainage at the time of regeneration of the fluorine adsorption resin can be effectively used as the replenishment water of the desulfurization apparatus. As a result, the amount of industrial water used as replenishment water can be reduced.

불소흡착수지의 재생배수를 탈황장치내에서 처리하는 경우, 배수 처리계 내에서 처리하는 경우에 비하여, 약품의 사용량을 대폭 절감할 수 있다.When the regeneration wastewater of the fluorine adsorption resin is treated in a desulfurization apparatus, the amount of chemicals used can be significantly reduced as compared with the case where the fluorine adsorption resin is treated in a desulfurization system.

불소흡착수지의 재생배수는, 알칼리(NaOH) 과잉이므로, 연소배기가스의 산성도를 완화하는 작용이 있고, 탈황장치 성능의 향상에 기여한다.Since the recycled wastewater of the fluorine adsorption resin has an excess of alkali (NaOH), it has the effect of alleviating the acidity of the combustion exhaust gas, contributing to the improvement of the desulfurization apparatus performance.

Claims (9)

석탄 연소 배기가스중의 유황화합물을 흡수 제거하는 습식 배연 탈황장치로부터 배출된 배연탈황 배수의 처리방법에 있어서,In the method for treating flue gas desulfurization discharged from a wet flue gas desulfurization apparatus that absorbs and removes sulfur compounds in coal combustion exhaust gas, (a) 그 배수중에 산화제를 첨가하여, 배수중의 COD성분인 질소-유황화합물을 분해한 후, 환원제를 첨가하여, 과잉 산화제를 분해 제거하는 COD성분 분해공정과,(a) a COD component decomposition step of adding an oxidizing agent to the wastewater to decompose the nitrogen-sulfur compound as a COD component in the drainage, and then adding a reducing agent to decompose and remove the excess oxidizing agent; (b) 그 COD 성분 분해공정에서 처리된 배수에, 중금속 포집용 킬레이트제와 알루미늄화합물과, pH조정용 알칼리제를 첨가하여, 불소 및 중금속을 포함하는 고형물을 석출시켜 분리하는 응집침전공정 A와,(b) a coagulation sedimentation step A for depositing and separating solids containing fluorine and heavy metals by adding a chelating agent for heavy metal collection, an aluminum compound, and an alkaline compound for pH adjustment to the wastewater treated in the COD component decomposition step; (c) 그 응집침전공정 A에서 처리된 배수에, 탄산나트륨과 pH조정용 알칼리제를 첨가하고, 칼슘 및 불소를 포함하는 고형물을 석출시켜 분리하는 응집침전공정 B를 포함하는 것을 특징으로 하는 배연 탈황배수 처리방법.(c) Flue gas desulfurization and drainage treatment comprising a flocculation sedimentation step B which adds sodium carbonate and a pH-adjusting alkali agent to the waste water treated in the flocculation sedimentation step A, and precipitates and separates solids containing calcium and fluorine. Way. 제 1항에 있어서,The method of claim 1, (d) 상기 응집침전공정 B에서 처리된 배수를, 불소흡착수지와 접촉시켜, 유기성 COD 성분을 흡착 제거하는 활성탄 흡착공정과,(d) an activated carbon adsorption step of adsorbing and removing organic COD components by bringing the wastewater treated in the flocculation sedimentation step B into contact with a fluorine adsorption resin; (e) 그 활성탄 흡착공정에서 처리된 배수를, 불소 흡착수지와 접촉시켜, 잔존하는 불소를 흡착 제거한 후, 알칼리제에 의하여 pH 5.8 내지 8.6으로 조정하는 불소흡착공정을 추가적으로 포함하는 것을 특징으로 하는 배연 탈황 배수 처리방법.(e) further comprising a fluorine adsorption step in which the wastewater treated in the activated carbon adsorption step is brought into contact with the fluorine adsorption resin to adsorb and remove the remaining fluorine, and then adjusted to pH 5.8 to 8.6 with an alkaline agent. Desulfurization drainage method. 석탄 연소 배기가스 중의 유황화합물을 흡수 제거하는 습식배연 탈황장치로부터 배출되는 배연탈황 배수의 처리방법에 있어서,In the treatment method of flue gas desulfurization drainage discharged from a wet flue gas desulfurization apparatus that absorbs and removes sulfur compounds in coal combustion exhaust gas, (a) 그 배수중에 산화제를 첨가하여, 배수중의 COD 성분인 질소-유황화합물을 분해한 후, 환원제를 첨가하여, 과잉 산화제를 분해 제거하는 COD성분 분해 공정과,(a) a COD component decomposition step of adding an oxidant to the wastewater to decompose the nitrogen-sulfur compound as a COD component in the wastewater, and then adding a reducing agent to decompose and remove the excess oxidant; (b) 그 COD 성분분해공정에서 처리된 배수에, pH조정용 알칼리제를 첨가하고, 알칼리성 하에서 마그네슘 및 불소를 포함하는 고형물을 석출시켜 분리하는 응집침전공정 C와,(b) a coagulation sedimentation step C for adding a pH adjusting alkali agent to the wastewater treated in the COD component decomposition step and depositing and separating solids containing magnesium and fluorine under alkaline conditions; (c) 그 응집침전공정 C로 처리된 배수에, 중금속 포집용 킬레이트제와, 알루미늄화합물과 pH조정용 알칼리제를 첨가하고, 불소 및 중금속을 포함하는 고형물을 석출시켜 분리하는 응집침전공정 A를 포함하는 것을 특징으로 하는 배연탈황배수 처리방법.(c) a coagulation sedimentation step A for adding a heavy metal chelating agent, an aluminum compound and an pH adjusting alkali agent to precipitates separated from the wastewater treated by the coagulation sedimentation step C to separate solids containing fluorine and heavy metals; Flue gas desulfurization wastewater treatment method characterized in that. 제 1항에 있어서,The method of claim 1, (d) 상기 응집침전 공정 A에서 처리된 배수를, 활성탄과 접촉시켜, 유기성 COD성분을 흡착 제거하는 활성탄 흡착공정과,(d) an activated carbon adsorption step of bringing the wastewater treated in the flocculation sedimentation step A into contact with activated carbon to adsorb and remove organic COD components; (e) 그 활성탄 흡착공정으로 처리된 배수를, 불소흡착수지와 접촉시켜, 잔존하는 불소를 흡착 제거한 후, 알칼리제에 의하여 pH 5.8 내지 8.6으로 조정하는 불소흡착공정을 추가적으로 포함하는 것을 특징으로 하는 배연탈황 배수 처리방법.(e) further comprising a fluorine adsorption step in which the wastewater treated by the activated carbon adsorption step is brought into contact with a fluorine adsorption resin to adsorb and remove residual fluorine, and then adjusted to pH 5.8 to 8.6 with an alkaline agent. Desulfurization drainage method. 제 1항 내지 제 4항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4, 상기 COD 분해공정 중, 산화제가 차아염소산 나트륨이고, 염산에 의하여 배수를 pH4이하로 조정하여, 배수중의 질소-유황화합물을 분해제거하는 것을 특징으로 하는 배연 탈황 배수처리방법.The flue gas desulfurization wastewater treatment method characterized in that during the COD decomposition step, the oxidant is sodium hypochlorite, and the wastewater is adjusted to pH 4 or less by hydrochloric acid to decompose and remove the nitrogen-sulfur compound in the wastewater. 제 1항 내지 제 4항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4, 상기 중금속 포집용 킬레이트제가, 디티오카르바민산기 또는 티올기를 가지는 것을 특징으로 하는 배연 탈황 배수 처리방법.The method for treating flue gas desulfurization, wherein the chelating agent for collecting heavy metals has a dithiocarbamic acid group or a thiol group. 제 2항 또는 4항 중 어느 한 항에 있어서,The method according to claim 2 or 4, 상기 불소흡착공정이, 염산에 의하여 배수를 pH 2 내지 4로 조정한 후, 그 pH조정한 배수를 불소 흡착수지층 중에 통과시켜 불소를 흡착 제거하는 것을 특징으로 하는 배연 탈황배수 처리방법.And the fluorine adsorption step adjusts the wastewater to pH 2 to 4 by hydrochloric acid, and then passes the pH-adjusted wastewater through the fluorine adsorption resin layer to adsorb and remove fluorine. 제 2항 또는 4항 중 어느 한 항에 있어서,The method according to claim 2 or 4, 상기 불소 흡착수지가, 포스포메틸아미노기 킬레이트수지, 지르코늄 담지형 수지, 셀륨담지형 수지로부터 선택한 적어도 한 종류 이상인 것을 특징으로 하는 배연탈황 배수 처리방법.And said fluorine adsorption resin is at least one or more selected from phosphomethylamino group chelate resins, zirconium-supported resins, and cerium-supported resins. 제 2항 또는 4항 중 어느 한 항에 있어서,The method according to claim 2 or 4, 상기 불소 흡착공정에 있어서, 불소의 흡착 후, 불소 흡착수지의 재생 시에 생성되는 재생폐액을 상기 배연탈황장치로 반송하는 공정을 추가적으로 포함하는 것을 특징으로 하는 배연 탈황 배수 처리방법.In the fluorine adsorption step, further comprising the step of returning the regeneration waste liquid generated at the time of regeneration of the fluorine adsorption resin to the flue gas desulfurization apparatus after the adsorption of fluorine.
KR1019980023946A 1997-09-08 1998-06-24 Treatment of stack gas desulfurization waste water KR100262689B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP24230397 1997-09-08
JP242303/1997 1997-09-08

Publications (2)

Publication Number Publication Date
KR19990029232A KR19990029232A (en) 1999-04-26
KR100262689B1 true KR100262689B1 (en) 2000-08-01

Family

ID=17087228

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980023946A KR100262689B1 (en) 1997-09-08 1998-06-24 Treatment of stack gas desulfurization waste water

Country Status (2)

Country Link
KR (1) KR100262689B1 (en)
TW (1) TW412432B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100666429B1 (en) * 2006-06-22 2007-01-09 (주)제이오비앤피 A treatment apparatus for exhaust gas
CN109095731A (en) * 2018-10-30 2018-12-28 华北电力大学(保定) A kind of system based on magnesium processes desulfurization wastewater high-purity magnesium hydroxide

Also Published As

Publication number Publication date
KR19990029232A (en) 1999-04-26
TW412432B (en) 2000-11-21

Similar Documents

Publication Publication Date Title
EP1106237B1 (en) Method of treating waste waters from a flue gas desulphuriser
CA2700467A1 (en) Selective sulphate removal by exclusive anion exchange from hard water waste streams
KR100313221B1 (en) Treatment of flue gas desulfurization drainage
JP3600458B2 (en) Treatment of flue gas desulfurization wastewater
KR20020034205A (en) Method of treating combustion gas and treating appartus
JP3572223B2 (en) Absorbent slurry treatment method and flue gas desulfurization system
JP3572233B2 (en) Flue gas desulfurization method and flue gas desulfurization system
JP4972827B2 (en) Treatment method of flue gas desulfurization waste water
KR100262689B1 (en) Treatment of stack gas desulfurization waste water
US5762807A (en) Composition and process for treating water and gas streams containing heavy metals and other pollutants
JP4543478B2 (en) Method for treating boron-containing water
JP2001239273A (en) Method of treating water containing boron and fluorine
CN108698867B (en) Process for sulfide reduction from water and wastewater
JP3709156B2 (en) Treatment method for fluorine-containing wastewater
JPH0975925A (en) Treatment of flue gas desulfurization waste water
EP1493716A1 (en) Method of wastewater treatment
JP4347097B2 (en) Waste water treatment system and exhaust gas treatment system using the same
JP2737614B2 (en) Treatment of flue gas desulfurization wastewater
JP2737610B2 (en) Treatment of flue gas desulfurization wastewater
JP4169497B2 (en) Combustion exhaust gas treatment method and treatment apparatus
US5683666A (en) Method for the removal of sulfur dioxide and nitrogen oxides for a gaseous stream
KR20050072342A (en) Nitrogen removal system by physical and chemical treatment
JP3237347B2 (en) Treatment of flue gas desulfurization wastewater
JPH0716425A (en) Flue gas desulfurization process
PL235943B1 (en) Method for removing metals from wastes from wet-flue gas desulfurization systems

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130502

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20140418

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20150416

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20160418

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20170330

Year of fee payment: 18

FPAY Annual fee payment

Payment date: 20180418

Year of fee payment: 19

EXPY Expiration of term