JP4608868B2 - Treatment method for fluorine-containing wastewater - Google Patents
Treatment method for fluorine-containing wastewater Download PDFInfo
- Publication number
- JP4608868B2 JP4608868B2 JP2003370088A JP2003370088A JP4608868B2 JP 4608868 B2 JP4608868 B2 JP 4608868B2 JP 2003370088 A JP2003370088 A JP 2003370088A JP 2003370088 A JP2003370088 A JP 2003370088A JP 4608868 B2 JP4608868 B2 JP 4608868B2
- Authority
- JP
- Japan
- Prior art keywords
- fluorine
- liter
- containing wastewater
- zirconium
- wastewater
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Removal Of Specific Substances (AREA)
Description
本発明はフッ素含有排水の処理方法に係り、特に、該排水中に含まれるフッ素を処理してフッ素濃度の低い高水質の処理排水を得る方法に関する。 The present invention relates to a method for treating fluorine-containing wastewater, and more particularly, to a method for treating high-quality treated wastewater having a low fluorine concentration by treating fluorine contained in the wastewater.
フッ素含有排水は、金属表面処理業、ガラス工業、リン肥料製造業、半導体製造業などの種々の産業分野、ならびに各種ゴミを焼却する清掃工場からも排出されている。現在、水質汚濁防止法ではフッ素の排出基準が8mg/リットルに定められているが、さらに環境への負荷低減を目的として地方自治体などでは3mg/リットル以下とか水道水並の0.8mg/リットル(環境基準)以下を検討しているところもあり、フッ素の高度処理法の検討がなされている。 Fluorine-containing wastewater is discharged from various industrial fields such as the metal surface treatment industry, the glass industry, the phosphorus fertilizer manufacturing industry, and the semiconductor manufacturing industry, as well as from cleaning plants that incinerate various types of garbage. Currently, the water pollution control law sets the emission standard for fluorine at 8 mg / liter, but for the purpose of further reducing the environmental impact, local governments and others are 3 mg / liter or less, or 0.8 mg / liter (equal to tap water). (Environmental standards) Some of the following are being studied, and advanced treatment methods for fluorine are being studied.
従来、フッ素含有排水の処理方法としては、フッ素含有排水にカルシウム化合物を添加して、フッ素含有排水中のフッ素をフッ化カルシウム(CaF2)として沈殿させて固液分離する凝集沈殿法がある。この方法は、1937年にScottらが提案した方法(非特許文献1参照。)であるが、発生する汚泥量が多く、また、フッ化カルシウム(CaF2)の溶解度が比較的高いためにフッ素濃度として10ppm以下の低減がきわめて難しいという欠点がある。この方法を用いて排水基準値8mg/リットルまで低減するためには反応理論量の10〜100倍以上のカルシウム化合物の添加が必要となる。また、他の方法としては1934年C.S.Boruffが提案したアルミニウム塩を添加する方法(非特許文献2参照。)が知られている。しかし、この方法も、生成した懸濁物の沈降性が悪く、またフッ化カルシウム(CaF2)と同様にフッ化アルミニウム(AlF3)の溶解度が比較的高いためにフッ素濃度として10ppm以下の低減がきわめて難しいという欠点がある。この方法を用いても排水基準値8mg/リットルまで低減するためには反応理論量の10〜100倍以上のアルミニウム化合物の添加が必要である。 Conventionally, as a method for treating fluorine-containing wastewater, there is a coagulation sedimentation method in which a calcium compound is added to fluorine-containing wastewater, and fluorine in the fluorine-containing wastewater is precipitated as calcium fluoride (CaF 2 ) and solid-liquid separated. This method is a method proposed by Scott et al. In 1937 (see Non-Patent Document 1). However, the amount of generated sludge is large, and the solubility of calcium fluoride (CaF 2 ) is relatively high. There is a drawback that it is extremely difficult to reduce the concentration to 10 ppm or less. In order to reduce the wastewater standard value to 8 mg / liter using this method, it is necessary to add a calcium compound that is 10 to 100 times the theoretical reaction amount. As another method, as described in 1934 C.I. S. A method of adding an aluminum salt proposed by Boruff (see Non-Patent Document 2) is known. However, this method also has a poor sedimentation property of the generated suspension, and since the solubility of aluminum fluoride (AlF 3 ) is relatively high like calcium fluoride (CaF 2 ), the fluorine concentration is reduced to 10 ppm or less. Has the disadvantage of being extremely difficult. Even if this method is used, in order to reduce the wastewater standard value to 8 mg / liter, it is necessary to add an aluminum compound that is 10 to 100 times the theoretical reaction amount.
これらの問題を解決する方法として、フッ素含有排水に水溶性のジルコニウム塩を添加し、攪拌後、アルカリ剤を添加しpH6〜8の条件下でカルシウムイオンと反応させ除去する方法が提案されている(例えば、特許文献1参照。)。本方法はフッ化カルシウム(CaF2)やフッ化アルミニウム(AlF3)としての凝集沈殿法に比べると懸濁物の沈降性は改善され、フッ素濃度の低い処理排水を得ることはできるが、その低減値は数ppm程度に留まり、地方自治体で検討されているような3mg/リットル以下とか水道水並の0.8mg/リットル(環境基準)以下にまで処理することがきわめて難しいのが現状である。 As a method for solving these problems, a method is proposed in which a water-soluble zirconium salt is added to fluorine-containing wastewater, and after stirring, an alkaline agent is added to react with calcium ions under conditions of pH 6-8 to remove them. (For example, refer to Patent Document 1). Compared with the coagulation sedimentation method as calcium fluoride (CaF 2 ) or aluminum fluoride (AlF 3 ), this method can improve the sedimentation of the suspension and can obtain treated wastewater with a low fluorine concentration. The reduction value is only about a few ppm, and it is very difficult to treat it to 3 mg / liter or less as studied by local governments or 0.8 mg / liter (environmental standard) or less that is equivalent to tap water. .
以上述べたようにフッ素含有排水に対する従来の凝集沈殿による処理方法においては、フッ素濃度の低い高水質の処理排水を得る方法は未だ開発されておらず、将来の環境負荷低減に向けたフッ素処理技術が確立していないのが最大の課題である。 As described above, in the conventional coagulation-precipitation treatment method for fluorine-containing wastewater, a method for obtaining high-quality wastewater with a low fluorine concentration has not yet been developed, and fluorine treatment technology for reducing future environmental impacts. The biggest problem is that is not established.
本発明の目的は、フッ素含有排水を処理してフッ素を高度に除去した高水質処理排水を得る方法を提供するものである。 An object of the present invention is to provide a method for obtaining a high-quality treated wastewater from which fluorine has been removed by treating fluorine-containing wastewater.
本発明は、上記の目的を達成するために、フッ素含有排水のpHを4超6未満に維持しながら、アルカリ土類金属塩を該排水中に含まれるフッ素含有量の0.5〜2倍モル、ジルコニウム塩を該排水中に含まれるフッ素含有量50mg/リットルに対してジルコニウム塩がオキシ塩化ジルコニウムの場合に0.1〜4g/リットルに相当する量を添加することを特徴とするものである。 In order to achieve the above object, the present invention maintains the pH of fluorine-containing wastewater at more than 4 and less than 6, while the alkaline earth metal salt is 0.5 to 2 times the fluorine content contained in the wastewater. Mol, zirconium salt is added in an amount corresponding to 0.1 to 4 g / liter when the zirconium salt is zirconium oxychloride with respect to a fluorine content of 50 mg / liter contained in the waste water. is there.
以下に本発明について詳細に説明する。 The present invention is described in detail below.
本発明の処理ではpHの管理がきわめて重要である。pH4超6未満に維持する必要があり、そのため、必要に応じて、酸またはアルカリを添加してpH調整を行う。pH4以下ではフッ素とアルカリ土類金属塩およびジルコニウム塩との反応で生成される懸濁物が十分に形成されず沈降分離が不可能となる。一方、pH6以上ではジルコニウム塩の一部がフッ素と反応せずに自ら水酸化ジルコニウムとして沈殿するため、ジルコニウム塩がフッ素との反応において有効に働かなくなる。 In the treatment of the present invention, pH control is extremely important. It is necessary to maintain the pH at more than 4 and less than 6, and therefore, an acid or an alkali is added as necessary to adjust the pH. When the pH is 4 or less, a suspension formed by the reaction of fluorine with an alkaline earth metal salt and a zirconium salt is not sufficiently formed, and sedimentation separation is impossible. On the other hand, when the pH is 6 or more, a part of the zirconium salt does not react with fluorine and precipitates itself as zirconium hydroxide, so that the zirconium salt does not work effectively in the reaction with fluorine.
また、pH4超6未満に維持しながら処理すると理由は定かでないが、処理後の排水中のフッ素量が激減し、高水質処理排水を得ることができる。この現象はきわめて特異的であって、アルカリ土類金属塩およびジルコニウム塩とフッ素とがある限られたpH領域においてのみ相乗的に作用して特殊な懸濁物を形成し、沈降分離も格段に改善された結果と推定している。pHの維持範囲は、さらに好ましくは4.5〜5.5の範囲である。 Moreover, although it is unclear why the treatment is carried out while maintaining the pH at more than 4 and less than 6, the amount of fluorine in the wastewater after the treatment is drastically reduced, and high-quality treated wastewater can be obtained. This phenomenon is extremely specific, and the alkaline earth metal salt and zirconium salt and fluorine act synergistically only in a limited pH region to form a special suspension, and the sedimentation separation is also marked. Estimated as an improved result. The pH maintenance range is more preferably in the range of 4.5 to 5.5.
本発明おいてフッ素含有排水自体のpHが4以下、または6以上である場合は硫酸、塩酸、硝酸或いは水酸化ナトリウム、水酸化カリウム、水酸化カルシウムなどの無機アルカリを添加してpHを4超6未満に調整する必要がある。この内、特に水酸化カルシウムを用いて調整することが好ましい。水酸化カルシウムはアルカリ剤として作用するだけでなく、フッ素イオンと反応してフッ化カルシウム(CaF2)を形成しフッ素の不溶化除去にも寄与するためである。 In the present invention, when the pH of the fluorine-containing wastewater itself is 4 or less, or 6 or more, an inorganic alkali such as sulfuric acid, hydrochloric acid, nitric acid or sodium hydroxide, potassium hydroxide, calcium hydroxide is added to increase the pH to more than 4 It is necessary to adjust to less than 6. Of these, it is particularly preferable to adjust using calcium hydroxide. This is because calcium hydroxide not only acts as an alkali agent but also reacts with fluorine ions to form calcium fluoride (CaF 2 ), thereby contributing to insolubilization and removal of fluorine.
本発明で用いられるアルカリ土類金属塩としては、カルシウム、マグネシウム、バリウム、ストロンチウムの塩化物、硫酸塩、硝酸塩、炭酸塩、酢酸塩などが挙げられ、これらの一種または二種以上用いればよい。その中でも特に塩化カルシウムおよび塩化マグネシウムが好ましい。これは、溶解度が高く、また前記したようにフッ素イオンと反応してフッ化カルシウム(CaF2)やフッ化マグネシウム(MgF2)を形成しフッ素の不溶化除去に寄与するためである。アルカリ土類金属塩の添加量は、該排水中に含まれるフッ素含有量の0.5〜2倍モルである。0.5倍モル未満ではフッ素の低減効果に劣り、一方、2倍モルを超える量を添加しても、溶液中にカルシウムおよびマグネシウムが増えるばかりでフッ素の低減に有効に作用しなくなる。 Examples of the alkaline earth metal salt used in the present invention include calcium, magnesium, barium, and strontium chlorides, sulfates, nitrates, carbonates, and acetates, and these may be used singly or in combination. Of these, calcium chloride and magnesium chloride are particularly preferred. This is because the solubility is high and, as described above, it reacts with fluorine ions to form calcium fluoride (CaF 2 ) and magnesium fluoride (MgF 2 ), thereby contributing to insolubilization and removal of fluorine. The addition amount of the alkaline earth metal salt is 0.5 to 2 times the fluorine content contained in the waste water . If the amount is less than 0.5 times mol, the effect of reducing fluorine is inferior. On the other hand, even if an amount exceeding 2 times mol is added, not only calcium and magnesium are added to the solution, but also the fluorine is not effectively reduced .
本発明で用いるジルコニウム塩は、硫酸ジルコニウム、硝酸ジルコニウム、塩化ジルコニウム、オキシ塩化ジルコニウム、水酸化ジルコニウムなどが挙げられ、これらの一種または二種以上用いればよい。その中でも溶解度が高いオキシ塩化ジルコニウムが特に好ましく、オキシ塩化ジルコニウムを用いると、高濃度溶液として供給することが可能となる。使用に際しては、水に溶解させた液体として使用することが操作上取り扱い易く好ましいが、固体のまま使用することも可能である。 Examples of the zirconium salt used in the present invention include zirconium sulfate, zirconium nitrate, zirconium chloride, zirconium oxychloride, and zirconium hydroxide, and these may be used singly or in combination. Among them, zirconium oxychloride having high solubility is particularly preferable, and when zirconium oxychloride is used, it can be supplied as a high concentration solution. In use, it is preferable to use it as a liquid dissolved in water because it is easy to handle in operation, but it can also be used as a solid.
本発明で用いるジルコニウム塩の添加量は、該排水中に含まれるフッ素含有量が50mg/リットルの場合で、オキシ塩化ジルコニウムを添加する場合には、例えばオキシ塩化ジルコニウムを該排水に対して0.1〜4g/リットルになるように添加する。
The addition amount of the zirconium salt used in the present invention, when the fluorine content in the exhaust water is 50 mg / liter, in the case of adding zirconium oxychloride, for example a zirconium oxychloride with respect to drainage 0. Add to 1 to 4 g / liter .
本発明でフッ素含有排水を処理するには、必要に応じてフッ素含有排水に酸またはアルカリを添加しpHを4超6未満に調整する。そしてpHを4超6未満に維持しながら、アルカリ土類金属塩とジルコニウム塩を加えて排水中のフッ素イオンを不溶化させることが必須である。 In order to treat the fluorine-containing wastewater in the present invention, acid or alkali is added to the fluorine-containing wastewater as necessary to adjust the pH to more than 4 and less than 6. And it is essential to add the alkaline earth metal salt and the zirconium salt to insolubilize the fluorine ions in the waste water while maintaining the pH at more than 4 and less than 6.
そのためには、pHの調整維持がきわめて重要である。添加に使用されるアルカリ土類金属塩が塩化物、硫酸塩、硝酸塩、炭酸塩、酢酸塩の場合はpHの変動はあまり生じないが、水酸化物を加える際には塩酸、硫酸などの通常の酸性薬品を添加し上記のpH範囲に調整するとよい。また、ジルコニウム塩は一般に酸性塩であり、ジルコニウム塩を添加する際には、一般にpHが低下するため水酸化カルシウム、水酸化ナトリウムなどのアルカリ薬品を添加し、上記のpH範囲に調整するとよい。 For that purpose, it is very important to maintain and adjust the pH. When the alkaline earth metal salt used for addition is chloride, sulfate, nitrate, carbonate, acetate, the pH does not fluctuate very much, but when adding hydroxide, hydrochloric acid, sulfuric acid, etc. It is good to adjust to the above-mentioned pH range by adding acidic chemicals. Zirconium salts are generally acidic salts, and when adding a zirconium salt, the pH is generally lowered, so an alkaline chemical such as calcium hydroxide or sodium hydroxide may be added to adjust the pH range.
アルカリ土類金属塩およびジルコニウム塩の添加は、通常、攪拌しながらアルカリ土類金属塩を添加し、その後に、ジルコニウム塩を添加し、排水中のフッ素イオンを不溶化させる。アルカリ土類金属塩とジルコニウム塩の同時添加、あるいは、添加の順番を逆にしても本発明の目的は達成される。初期のフッ素含有量がきわめて高濃度の場合には、先にアルカリ土類金属塩を添加し、フッ素濃度がある濃度まで低減した後に、ジルコニウム塩を添加する方が、ジルコニウム塩の添加量を最小限に押えることができ、実施態様としてはより好ましい方法である。 Addition of the alkaline earth metal salt and the zirconium salt is usually performed by adding the alkaline earth metal salt with stirring, and then adding the zirconium salt to insolubilize fluorine ions in the waste water. Even if the alkaline earth metal salt and the zirconium salt are added simultaneously, or the order of addition is reversed, the object of the present invention can be achieved. If the initial fluorine content is very high, adding an alkaline earth metal salt first, reducing the fluorine concentration to a certain level, and then adding the zirconium salt minimizes the amount of zirconium salt added. This is a more preferable method as an embodiment.
さらに排水を処理する温度としては、例えば5〜60℃が適当である。 Furthermore, as a temperature which processes waste_water | drain, 5-60 degreeC is suitable, for example.
次に、上記で生成させた不溶化物を固液分離することが通常に行われる。そのためには、例えば、沈殿、浮上、脱水、濾過などで行えばよい。この際に、本発明の処理方法で得られた懸濁物は凝集してフロック状になっていて固液分離し易いものであるが、必要に応じて硫酸バンドや塩化第二鉄などの通常の無機凝集剤またはアクリル系ポリマーなどの高分子凝集剤を併用して固液分離する方法が適宜採用される。 Next, solid-liquid separation of the insolubilized product generated above is usually performed. For this purpose, for example, precipitation, levitation, dehydration, filtration and the like may be performed. At this time, the suspension obtained by the treatment method of the present invention is agglomerated to form a floc and is easy to separate into solid and liquid. A method of solid-liquid separation using an inorganic flocculant or a polymer flocculant such as an acrylic polymer in combination is appropriately employed.
また、本発明においては、他の石灰凝集法、硫酸バンド凝集法、フルオロアパタイト凝集法、イオン交換樹脂吸着法、キレート剤凝集法などと組み合わせて固液分離する方法も本発明の処理を行い上で適宜採用することが可能である。 Further, in the present invention, a method of solid-liquid separation in combination with other lime aggregation methods, sulfate band aggregation methods, fluoroapatite aggregation methods, ion exchange resin adsorption methods, chelating agent aggregation methods, etc. is also performed by performing the treatment of the present invention. It is possible to adopt as appropriate.
以上の説明から明らかなように、本発明のフッ素含有排水の処理方法によれば、フッ素を高度に除去した高水質処理排水を得ることができる。 As is clear from the above description, according to the method for treating fluorine-containing wastewater of the present invention, it is possible to obtain high-quality treated wastewater from which fluorine is highly removed.
次に、本発明を実施例によりさらに具体的に説明するが、本発明はこれらの実施例によって何等限定されるものではない。 EXAMPLES Next, although an Example demonstrates this invention further more concretely, this invention is not limited at all by these Examples.
実施例1〜5、比較例1〜8
フッ素として20mg/リットルを含むpH1.5の1リットル水溶液を試料とした。これに水酸化カルシウムを添加しpHを2〜11の範囲で一定のpHに維持しながらアルカリ土類金属塩として塩化カルシウムをフッ素量の1倍モル添加し、また、ジルコニウム塩として14%濃度のオキシ塩化ジルコニウムを2g添加し、20分攪拌後、懸濁物を濾過し、濾液中のフッ素の分析を行った。なお、水温は22〜24℃である。その結果を表1および図1に示す。
Examples 1-5, Comparative Examples 1-8
A 1 liter aqueous solution with a pH of 1.5 containing 20 mg / liter as fluorine was used as a sample. Calcium chloride is added as an alkaline earth metal salt in an amount of 1 times the amount of fluorine while adding calcium hydroxide to maintain a constant pH in the range of 2 to 11, and 14% concentration as a zirconium salt. After adding 2 g of zirconium oxychloride and stirring for 20 minutes, the suspension was filtered, and fluorine in the filtrate was analyzed. The water temperature is 22-24 ° C. The results are shown in Table 1 and FIG.
pHを4超6未満に維持した処理条件下において濾液中のフッ素濃度は0.8mg/リットル(環境基準)以下となり、高水質の処理が可能であることが分る。 Under the processing conditions in which the pH is maintained at more than 4 and less than 6, the fluorine concentration in the filtrate is 0.8 mg / liter (environmental standard) or less, indicating that high quality water treatment is possible.
実施例6〜17、比較例9
フッ素として20mg/リットルを含むpH1.5の1リットル水溶液を試料とした。これに水酸化ナトリウムを添加しpHを5に維持しながらアルカリ土類金属塩として塩化カルシウム、および/または塩化マグネシウムをフッ素量の0〜4倍モル添加し、また、ジルコニウム塩として14%濃度のオキシ塩化ジルコニウムを2g添加し、20分攪拌後、懸濁物を濾過し、濾液中のフッ素およびカルシウムまたはマグネシウムの分析を行った。なお、水温は22〜24℃である。その結果を表2に示す。
Examples 6 to 17 and Comparative Example 9
A 1 liter aqueous solution with a pH of 1.5 containing 20 mg / liter as fluorine was used as a sample. To this, sodium hydroxide is added and the pH is maintained at 5, while calcium chloride and / or magnesium chloride is added as an alkaline earth metal salt in an amount of 0 to 4 times the amount of fluorine. After adding 2 g of zirconium oxychloride and stirring for 20 minutes, the suspension was filtered, and fluorine and calcium or magnesium in the filtrate were analyzed. The water temperature is 22-24 ° C. The results are shown in Table 2.
塩化カルシウム、および/または塩化マグネシウムをフッ素量の0.5倍モル以上添加すると、濾液中のフッ素濃度は0.8mg/リットル(環境基準)以下となり、高水質の処理が可能であることが分る。ただし、2倍モルを超えて添加した処理条件では溶液中のカルシウムおよびマグネシウムイオンが増加するばかりで、フッ素の低減には有効に働かなくなる結果となった。 When calcium chloride and / or magnesium chloride is added in an amount of 0.5 mol or more of the fluorine amount, the fluorine concentration in the filtrate becomes 0.8 mg / liter (environmental standard) or less, indicating that high quality water treatment is possible. The However, under the treatment conditions added in excess of 2 moles, calcium and magnesium ions in the solution only increased, and the result was that it did not work effectively to reduce fluorine.
実施例18、比較例10
フッ素として100mg/リットルを含むpH3の工業フッ素含有排水の1リットルを試料として用いた。これに水酸化カルシウムを添加しpHを5に維持しながらアルカリ土類金属塩として塩化カルシウムをフッ素量の1倍モル添加し、また、ジルコニウム塩として14%濃度のオキシ塩化ジルコニウムを無添加及び10g添加し、20分攪拌後、懸濁物を濾過し、濾液中のフッ素の分析を行った。なお、水温は22〜24℃である。その結果を表3に示す。
Example 18 and Comparative Example 10
One liter of industrial fluorine-containing wastewater containing pH 3 containing 100 mg / liter as fluorine was used as a sample. Calcium chloride was added as an alkaline earth metal salt in an amount of 1 times the amount of fluorine while maintaining the pH at 5 by adding calcium hydroxide, and 14% concentration zirconium oxychloride was not added as a zirconium salt and 10 g. After addition and stirring for 20 minutes, the suspension was filtered and analyzed for fluorine in the filtrate. The water temperature is 22-24 ° C. The results are shown in Table 3.
オキシ塩化ジルコニウムを添加したものは濾液中のフッ素濃度が0.8mg/リットル(環境基準)以下となり、高水質の処理が可能であることが分る。しかし、オキシ塩化ジルコニウム無添加ではフッ素の不溶化処理できないことが分る。 When the zirconium oxychloride is added, the fluorine concentration in the filtrate is 0.8 mg / liter (environmental standard) or less, and it can be seen that high water quality treatment is possible. However, it can be seen that fluorine insolubilization treatment cannot be performed without addition of zirconium oxychloride.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003370088A JP4608868B2 (en) | 2003-10-30 | 2003-10-30 | Treatment method for fluorine-containing wastewater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003370088A JP4608868B2 (en) | 2003-10-30 | 2003-10-30 | Treatment method for fluorine-containing wastewater |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005131532A JP2005131532A (en) | 2005-05-26 |
JP4608868B2 true JP4608868B2 (en) | 2011-01-12 |
Family
ID=34647203
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003370088A Expired - Fee Related JP4608868B2 (en) | 2003-10-30 | 2003-10-30 | Treatment method for fluorine-containing wastewater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4608868B2 (en) |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS542995B2 (en) * | 1975-08-15 | 1979-02-16 | ||
JPS58196887A (en) * | 1982-04-28 | 1983-11-16 | Hitachi Plant Eng & Constr Co Ltd | Treatment of fluorine-containing waste water |
JPS60129185A (en) * | 1983-12-16 | 1985-07-10 | Miyoshi Oil & Fat Co Ltd | Treatment of water |
JPS627490A (en) * | 1985-07-05 | 1987-01-14 | Tokuyama Soda Co Ltd | Treatment of waste water |
JPH0857486A (en) * | 1994-06-16 | 1996-03-05 | Kankyo Eng Kk | Method for treating waste water containing fluorine |
JPH10314797A (en) * | 1997-05-16 | 1998-12-02 | Kurita Water Ind Ltd | Method for treating water containing fluoride ion and cod component |
JP2000301165A (en) * | 1999-04-21 | 2000-10-31 | Nippon Steel Corp | Treatment of fluorine-containing waste water |
JP2001239273A (en) * | 2000-03-01 | 2001-09-04 | Kurita Water Ind Ltd | Method of treating water containing boron and fluorine |
JP2004113983A (en) * | 2002-09-27 | 2004-04-15 | Japan Organo Co Ltd | Fluorine or phosphorus-containing water treatment method |
JP2004121948A (en) * | 2002-10-01 | 2004-04-22 | Japan Organo Co Ltd | Fluorine or phosphorus removing method |
JP2004148289A (en) * | 2002-09-04 | 2004-05-27 | Japan Organo Co Ltd | Fluorine or phosphorus-containing water treatment equipment |
JP2005052798A (en) * | 2003-08-07 | 2005-03-03 | Japan Organo Co Ltd | Method of treating fluorine-containing sludge |
-
2003
- 2003-10-30 JP JP2003370088A patent/JP4608868B2/en not_active Expired - Fee Related
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS542995B2 (en) * | 1975-08-15 | 1979-02-16 | ||
JPS58196887A (en) * | 1982-04-28 | 1983-11-16 | Hitachi Plant Eng & Constr Co Ltd | Treatment of fluorine-containing waste water |
JPS60129185A (en) * | 1983-12-16 | 1985-07-10 | Miyoshi Oil & Fat Co Ltd | Treatment of water |
JPS627490A (en) * | 1985-07-05 | 1987-01-14 | Tokuyama Soda Co Ltd | Treatment of waste water |
JPH0857486A (en) * | 1994-06-16 | 1996-03-05 | Kankyo Eng Kk | Method for treating waste water containing fluorine |
JPH10314797A (en) * | 1997-05-16 | 1998-12-02 | Kurita Water Ind Ltd | Method for treating water containing fluoride ion and cod component |
JP2000301165A (en) * | 1999-04-21 | 2000-10-31 | Nippon Steel Corp | Treatment of fluorine-containing waste water |
JP2001239273A (en) * | 2000-03-01 | 2001-09-04 | Kurita Water Ind Ltd | Method of treating water containing boron and fluorine |
JP2004148289A (en) * | 2002-09-04 | 2004-05-27 | Japan Organo Co Ltd | Fluorine or phosphorus-containing water treatment equipment |
JP2004113983A (en) * | 2002-09-27 | 2004-04-15 | Japan Organo Co Ltd | Fluorine or phosphorus-containing water treatment method |
JP2004121948A (en) * | 2002-10-01 | 2004-04-22 | Japan Organo Co Ltd | Fluorine or phosphorus removing method |
JP2005052798A (en) * | 2003-08-07 | 2005-03-03 | Japan Organo Co Ltd | Method of treating fluorine-containing sludge |
Also Published As
Publication number | Publication date |
---|---|
JP2005131532A (en) | 2005-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2004141799A (en) | Silica-containing waste water treatment method | |
JP4954131B2 (en) | Treatment method of water containing borofluoride | |
CN111302522A (en) | Method for efficiently removing fluorine in sewage | |
JP2006218354A (en) | Method for treating fluorine-containing waste water | |
JP4042169B2 (en) | Cement production equipment extraction dust processing method | |
JP4572812B2 (en) | Fluorine-containing water treatment method | |
JP2007175673A (en) | Treatment method of ammonia-containing drain | |
US6936177B2 (en) | Method for removing metal from wastewater | |
CN116444099A (en) | Method for ultralow emission of fluorine content of external drainage water in titanium white production | |
JP4608868B2 (en) | Treatment method for fluorine-containing wastewater | |
JP3642516B2 (en) | Method and apparatus for removing COD components in water | |
JP2001239273A (en) | Method of treating water containing boron and fluorine | |
KR100318661B1 (en) | Wastewater treatment agent and its treatment method | |
JPS59373A (en) | Treatment of fluorine-contg. waste water | |
JP4617637B2 (en) | Method for neutralizing acidic waste liquid containing metal ions | |
JP5306977B2 (en) | Method for treating boron-containing water and boron removing agent | |
JP2007283217A (en) | Boron-containing wastewater treatment method | |
KR100390159B1 (en) | Treatment agent and method for treating industrial waste-water including flourine | |
JPH11267662A (en) | Method of removing fluorine in waste water of flue gas desulfurization | |
JP2002143607A (en) | Water treating flocculant, method for producing the same and method for treating water | |
JP4716913B2 (en) | Recycling of used titanium compounds as fluorine scavengers | |
JP4752351B2 (en) | Method and apparatus for treating fluorine-containing water | |
JP2005087835A (en) | Fluorine-containing wastewater treatment method | |
JP2000334470A (en) | Treatment of fluorine containing waste water | |
JP2003047972A (en) | Method for treating fluorine-containing wastewater |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060823 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090629 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090714 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090827 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100209 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100319 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100914 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100927 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131022 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131022 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |