JPH0839066A - Treatment of water - Google Patents

Treatment of water

Info

Publication number
JPH0839066A
JPH0839066A JP18009794A JP18009794A JPH0839066A JP H0839066 A JPH0839066 A JP H0839066A JP 18009794 A JP18009794 A JP 18009794A JP 18009794 A JP18009794 A JP 18009794A JP H0839066 A JPH0839066 A JP H0839066A
Authority
JP
Japan
Prior art keywords
water
piping
acid
separation device
decarbonation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18009794A
Other languages
Japanese (ja)
Inventor
Yoshiteru Misumi
好輝 三角
Takeshi Tsurumi
武 鶴見
Masahiro Furukawa
征弘 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP18009794A priority Critical patent/JPH0839066A/en
Publication of JPH0839066A publication Critical patent/JPH0839066A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)

Abstract

PURPOSE:To markedly enhance the quality of treated water, in treating raw water by subjecting raw water to decarbonation treatment by adding an acid thereto and passing the treated water through reverse osmosis membrane separators arranged in two stages, by adding alkali to the water supplied to the reverse osmosis membrane separators to stagnate the water under an atmosphere cut-off condition. CONSTITUTION:At first, raw water obtained by applying pollutant and chlorine removing pretreatment to city water or recovered water is introduced into a decarbonation column 1 and subjected to decarbonation treatment by an acid added from piping 12. Next, the water is passed through a first RO membrane separator 2 from piping 13 equipped with a pump P and conc. water is drawn out of piping 14 while transmitted water drawn out of piping 15 is introduced into a stagnation tank 3 while alkali is added to the transmitted water to be stagnated for a predetermined time. Thereafter, the water is passed through a second RO membrane separator 4 and transmitted water is drawn out of piping 19 as treated water. As an acid to be added, sulfuric acid or hydrochloric acid is pref. and the addition amt. thereof is controlled so as to adjust the pH of water introduced into the decarbonation tower 1 to about 5.0-6.0.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は水の処理方法に係り、特
に原水に酸を加えて脱炭酸処理した後、二段に配置され
た逆浸透膜(RO膜)分離装置に順次通水して水を処理
する方法において、処理水水質の改善を図る方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating water, and in particular, after deoxidizing raw water by adding an acid, the water is sequentially passed through a reverse osmosis membrane (RO membrane) separation device arranged in two stages. The present invention relates to a method for treating treated water to improve the quality of treated water.

【0002】[0002]

【従来の技術】従来、市水、井水、工水、回収水その他
から純水を製造する方法として、これらの水を前処理
(除濁、除塩素)した後、酸を添加して脱炭酸塔にて脱
炭酸処理し、脱炭酸処理水を二段に配置されたRO膜分
離装置に順次通水処理し、更にRO膜分離処理水をイオ
ン交換装置で処理する方法がある。
2. Description of the Related Art Conventionally, as a method for producing pure water from city water, well water, industrial water, recovered water, and the like, after pretreatment (decontamination, dechlorination) of such water, acid is added to remove it. There is a method in which decarbonation treatment is carried out in a carbonic acid tower, decarbonation-treated water is successively passed through an RO membrane separation device arranged in two stages, and further RO membrane separation-treated water is treated by an ion exchange device.

【0003】また、このように二段に配置されたRO膜
分離装置による処理において、処理水質の改善を図るた
めに、前段のRO膜分離装置と後段のRO膜分離装置と
の間で水酸化ナトリウム(NaOH)を注入し、前段の
RO膜分離装置の透過水中の炭酸ガスを炭酸水素イオン
に変換して後段のRO膜分離装置で除去する方法が提案
されている(特開昭61−4591号公報)。
Further, in the treatment by the RO membrane separators arranged in two stages as described above, in order to improve the quality of treated water, a hydroxylation is performed between the RO membrane separator in the former stage and the RO membrane separator in the latter stage. A method has been proposed in which sodium (NaOH) is injected to convert carbon dioxide gas in the permeate of the RO membrane separator in the former stage into hydrogen carbonate ions and to remove it in the RO membrane separator in the latter stage (Japanese Patent Laid-Open No. 61-4591). Issue).

【0004】[0004]

【発明が解決ようとする課題】このような二段RO膜分
離装置を用いる処理において、後段のRO膜分離装置の
透過水の水質としては抵抗率2MΩ・cm以上のものが
望まれているが、従来法で得られる後段のRO膜分離装
置の透過水の水質は抵抗率0.5〜1MΩ・cm程度
と、期待値の1/2〜1/4程度である。
In the treatment using such a two-stage RO membrane separator, it is desired that the water quality of the permeate of the latter RO membrane separator has a resistivity of 2 MΩ · cm or more. The water quality of the permeated water of the RO membrane separator in the latter stage obtained by the conventional method has a resistivity of about 0.5 to 1 MΩ · cm, which is about ½ to ¼ of the expected value.

【0005】このように後段のRO膜分離装置の透過水
の水質が低いと、後工程のイオン交換装置の負荷が大き
くなり、特に、現場非再生型のイオン交換装置を用いた
場合には、その交換頻度が高くなり、作業面からもコス
ト面からも好ましくない。
When the quality of the permeated water of the RO membrane separator in the latter stage is low as described above, the load of the ion exchange device in the subsequent step becomes large, and particularly when the non-regeneration type ion exchange device in the field is used, The replacement frequency becomes high, which is not preferable from the viewpoint of work and cost.

【0006】本発明は上記従来の問題点を解決し、原水
に酸を加えて脱炭酸処理した後、二段に配置されたRO
膜分離装置に順次通水する水の処理方法において、得ら
れる処理水の水質を改善することを目的とする。
The present invention solves the above-mentioned problems of the prior art, and after adding acid to raw water for decarbonation, RO arranged in two stages
An object of the present invention is to improve the quality of treated water obtained in a method for treating water that is sequentially passed through a membrane separation device.

【0007】[0007]

【課題を解決するための手段】本発明の水の処理方法
は、原水に酸を加えて脱炭酸処理した後、二段に配置さ
れた逆浸透膜分離装置に順次通水して水を処理する方法
において、前段又は後段の逆浸透膜分離装置に供給する
水にアルカリを加えて大気遮断条件下で滞留させた後、
逆浸透膜分離装置に通水することを特徴とする。
The method of treating water according to the present invention is to treat water by adding acid to raw water to decarboxylate it and then sequentially passing the water through a reverse osmosis membrane separation device arranged in two stages. In the method described above, after adding alkali to the water supplied to the reverse osmosis membrane separation device in the first stage or the second stage and allowing the water to stay under the air-shielded condition,
Water is passed through the reverse osmosis membrane separation device.

【0008】以下、図面を参照して本発明を詳細に説明
する。
The present invention will be described in detail below with reference to the drawings.

【0009】図1、図2は各々本発明の水の処理方法の
一実施例方法を示す系統図であり、図1、2において、
1は脱炭酸塔、2は前段のRO膜分離装置(以下「第1
RO膜分離装置」と称す。)、3は滞留タンク、4は後
段のRO膜分離装置(以下「第2RO膜分離装置」と称
す。)であり、11〜19の各符号は配管を示す。Pは
ポンプである。
1 and 2 are system diagrams showing an embodiment of a method for treating water according to the present invention.
1 is a decarbonation tower, 2 is an RO membrane separator at the previous stage (hereinafter referred to as “first
It is referred to as "RO membrane separation device". ) 3 is a retention tank, 4 is an RO membrane separation device in the latter stage (hereinafter referred to as "second RO membrane separation device"), and each reference numeral 11 to 19 represents piping. P is a pump.

【0010】図1に示す方法は、第1RO膜分離装置2
と第2RO膜分離装置4との間でアルカリの添加と滞留
を行うものであって、市水、工水、井水、回収水等に必
要に応じて除濁、除塩素等の前処理を施して得られる原
水は、まず配管11より脱炭酸塔1に導入され、配管1
2より添加される酸の存在下脱炭酸処理される。なお、
ここで添加される酸としては硫酸、塩酸等が好適であ
り、その添加量は、脱炭酸塔1に導入される水のpHが
5.0〜6.0程度となる量とするのが好ましい。
In the method shown in FIG. 1, the first RO membrane separation device 2 is used.
Between the second RO membrane separator 4 and the second RO membrane separator, and retains the same. City water, industrial water, well water, recovered water, etc. may be subjected to pretreatment such as turbidity removal and chlorine removal as necessary. The raw water obtained by the treatment is first introduced into the decarbonation tower 1 through the pipe 11,
Decarboxylation treatment is carried out in the presence of the acid added from 2. In addition,
The acid added here is preferably sulfuric acid, hydrochloric acid or the like, and the addition amount thereof is preferably such that the pH of the water introduced into the decarbonation tower 1 is about 5.0 to 6.0. .

【0011】脱炭酸塔1の流出水は、次いで、ポンプP
を備える配管13より第1RO膜分離装置2に通水す
る。この第1RO膜分離装置2の濃縮水は配管14より
抜き出し、一方、配管15より抜き出した透過水は、配
管16よりアルカリを添加した後、滞留タンク3に導入
し、このタンク内で所定時間滞留させる。その後、配管
17より第2RO膜分離装置4に通水し、透過水は配管
19より処理水として抜き出す。一方、濃縮水は配管1
8より抜き出す。
The water discharged from the decarbonation tower 1 is then pumped to the pump P.
Water is passed to the first RO membrane separation device 2 through a pipe 13 provided with. The concentrated water of the first RO membrane separation device 2 is extracted from the pipe 14, while the permeated water extracted from the pipe 15 is introduced into the retention tank 3 after adding alkali from the pipe 16 and retained in this tank for a predetermined time. Let Then, the water is passed through the pipe 17 to the second RO membrane separation device 4, and the permeated water is extracted through the pipe 19 as treated water. On the other hand, concentrated water is pipe 1
Pull out from 8.

【0012】この方法によれば、第1RO膜分離装置2
の透過水は、アルカリ添加後、滞留タンク3内で滞留す
る間に、含有される炭酸成分が十分に炭酸水素イオンに
転換された後、第2RO膜分離装置4に導入されるた
め、第2RO膜分離装置4において、この炭酸水素イオ
ンを除去することにより、著しく高水質の処理水が得ら
れるようになる。
According to this method, the first RO membrane separation device 2
The permeated water of the second RO is introduced into the second RO membrane separation device 4 after the carbonic acid component contained in the permeated water is sufficiently converted into hydrogen carbonate ions while staying in the retention tank 3 after addition of the alkali. By removing the hydrogencarbonate ions in the membrane separation device 4, treated water of extremely high quality can be obtained.

【0013】図1に示す方法において、滞留タンク3は
外気と隔絶され、大気遮断条件下に維持されている。こ
の滞留タンク3としては、第1RO膜分離装置2からの
透過水圧(出口圧)即ち、第2RO膜分離装置4の入口
圧を保つことができる耐圧性を有するものが用いられ
る。ただし、第1RO膜分離装置2の入口に加えて、第
2RO膜分離装置4と滞留タンク3との間に別途ポンプ
を設ける場合には、滞留タンク3として、上記のような
耐圧性は必要としない。このため、所定の容量を有する
滞留タンクに窒素シールなどを施して外気と遮断したも
のも用いることができる。
In the method shown in FIG. 1, the retention tank 3 is isolated from the outside air and is maintained under an atmospheric shutoff condition. As the retention tank 3, one having pressure resistance capable of maintaining the permeated water pressure (outlet pressure) from the first RO membrane separation device 2, that is, the inlet pressure of the second RO membrane separation device 4 is used. However, when a separate pump is provided between the second RO membrane separation device 4 and the retention tank 3 in addition to the inlet of the first RO membrane separation device 2, the retention tank 3 is required to have the above pressure resistance. do not do. Therefore, it is also possible to use a retention tank having a predetermined capacity, which is sealed from the outside air by providing a nitrogen seal or the like.

【0014】図2に示す方法は、第1RO膜分離装置2
の前段に滞留タンク3を配置したものであり、脱炭酸塔
1の流出水は配管16よりアルカリが添加された後、滞
留タンク3内で所定時間滞留し、その後、配管17、第
1RO膜分離装置2、配管15、第2RO膜分離装置4
を経て処理され、処理水は配管19より取り出される。
この方法においても、脱炭酸塔1の流出水は、アルカリ
添加後、滞留タンク3内で滞留する間に、含有される炭
酸成分が十分に炭酸水素イオンに転換された後、第1R
O膜分離装置2に導入されるため、第1RO膜分離装置
2において、この炭酸水素イオンが効率的に除去され、
十分に高水質の処理水が得られる。
The method shown in FIG. 2 is applied to the first RO membrane separation device 2
The retention tank 3 is arranged in the preceding stage, and the outflow water of the decarbonation tower 1 stays in the retention tank 3 for a predetermined time after the alkali is added from the pipe 16, and then the pipe 17 and the first RO membrane separation Device 2, pipe 15, second RO membrane separation device 4
After being processed, the treated water is taken out from the pipe 19.
Also in this method, the effluent water of the decarbonation tower 1 is added to the alkali and, after it is retained in the retention tank 3, the carbonic acid components contained therein are sufficiently converted into hydrogen carbonate ions, and then the first R
Since it is introduced into the O membrane separator 2, the hydrogen carbonate ions are efficiently removed in the first RO membrane separator 2,
Sufficiently high quality treated water is obtained.

【0015】図1、2に示す方法は本発明の一実施例方
法であって、本発明はその要旨を超えない限り、何ら図
示の方法に制限されない。
The method shown in FIGS. 1 and 2 is an embodiment method of the present invention, and the present invention is not limited to the illustrated method as long as the gist thereof is not exceeded.

【0016】例えば、図1、2の方法において、アルカ
リは滞留タンク3に直接添加することも可能である。
For example, in the method shown in FIGS. 1 and 2, the alkali can be added directly to the retention tank 3.

【0017】また、第1RO膜分離装置の前でアルカリ
を添加する場合、アルカリは、脱炭酸塔1の下部水槽1
Aに添加することも可能である。この場合には、下部水
槽1Aの保有水量を適量に調整し、水面に浮きボールを
浮かべるなどして外気を遮断して、下部水槽1Aにアル
カリを注入すれば良く、この場合には、滞留タンクを別
途設ける必要はない。
When the alkali is added before the first RO membrane separator, the alkali is added to the lower water tank 1 of the decarbonation tower 1.
It is also possible to add to A. In this case, the amount of water held in the lower water tank 1A may be adjusted to an appropriate amount, the outside air may be shut off by floating balls on the water surface, and alkali may be injected into the lower water tank 1A. In this case, the retention tank Need not be provided separately.

【0018】また、脱炭酸塔で変換した炭酸ガスを水中
より追い出すのに通常使用する空気に代えて、窒素ガス
で排気し、外気を遮断してもよい。
Further, the carbon dioxide gas converted in the decarbonation tower may be exhausted with nitrogen gas instead of the air normally used to drive it out of water to shut off the outside air.

【0019】本発明において、アルカリとしてはNaO
H等を用いることができ、その添加量としては、アルカ
リ添加後の水のpHが7.8〜8.8程度となるような
量が好ましい。また、アルカリ添加後の滞留時間は、1
0秒以上、好ましくは10秒〜3分、より好ましくは1
2秒〜1分程度とするのが好適である。
In the present invention, the alkali is NaO.
H or the like can be used, and the addition amount thereof is preferably such that the pH of the water after addition of the alkali is about 7.8 to 8.8. The residence time after addition of alkali is 1
0 seconds or more, preferably 10 seconds to 3 minutes, more preferably 1
It is preferable that the time is about 2 seconds to 1 minute.

【0020】[0020]

【作用】本発明者らは、従来法において、十分な処理水
水質が達成されない原因を解明すべく、後段のRO膜分
離装置の透過水の水質を調査したところ、この透過水に
は多量の炭酸成分が含まれていることが判明した。
The present inventors investigated the water quality of the permeated water of the RO membrane separator in the latter stage in order to elucidate the reason why sufficient water quality of the treated water was not achieved in the conventional method. It was found to contain a carbonic acid component.

【0021】このことから、本発明者らは、従来法にお
いては、NaOHを前段のRO膜分離装置の透過水に注
入しても、これを直ちに後段のRO膜分離装置に通水す
るため、水中の炭酸成分が十分に炭酸水素イオンに転換
される前にRO膜分離処理されることとなり、この結
果、得られる処理水の炭酸成分濃度が高く、水質が低い
ものとなると推論し、十分な反応時間を確保すべく、大
気遮断条件下で滞留させる本発明の方法を見出した。
From the above, the inventors of the present invention, in the conventional method, inject NaOH into the permeate of the RO membrane separator of the preceding stage, but immediately pass this water to the RO membrane separator of the latter stage. It is assumed that the RO membrane separation treatment is performed before the carbonic acid components in the water are sufficiently converted to hydrogen carbonate ions, and as a result, the concentration of carbonic acid components in the resulting treated water is high and the water quality is low, which is sufficient. In order to secure the reaction time, the method of the present invention in which the reaction is carried out under an air-shielded condition was found.

【0022】本発明においては、アルカリを添加した水
を所定時間滞留させて、水中の炭酸成分をアルカリによ
り十分に炭酸水素イオンに転換させた後、RO膜分離処
理するため、炭酸成分濃度が著しく低く、高水質の処理
水を得ることができる。
In the present invention, the alkali-added water is allowed to stay for a predetermined period of time so that the carbonic acid component in the water is sufficiently converted to hydrogencarbonate ion by the alkali, and then the RO membrane separation treatment is performed, so that the carbonic acid component concentration is remarkably increased. It is possible to obtain low-quality treated water.

【0023】しかもこの滞留は、大気を遮断し、外気と
隔絶された条件下で行われるため、大気よりの炭酸成分
の混入を防止することができ、なおかつ、RO膜分離処
理水圧を十分に保持した状態で行える。
Moreover, since this retention is performed under the condition that the atmosphere is shut off and is isolated from the outside air, it is possible to prevent the mixture of carbonic acid components from the atmosphere, and yet to maintain the RO membrane separation treatment water pressure sufficiently. You can do it in the state you did.

【0024】本発明の方法によれば、従来、抵抗率0.
5〜1MΩ・cm程度の水質しか得ることができなかっ
た脱炭酸処理後、二段RO膜分離処理において、抵抗率
2〜3MΩ・cm或はそれ以上の高水質処理水を得るこ
とが可能である。
According to the method of the present invention, the resistivity of 0.
It is possible to obtain high-quality treated water having a resistivity of 2 to 3 MΩ · cm or higher in the two-stage RO membrane separation treatment after decarboxylation treatment that could only obtain water quality of about 5 to 1 MΩ · cm. is there.

【0025】[0025]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。
EXAMPLES The present invention will be described more specifically with reference to Examples and Comparative Examples below.

【0026】実施例1 図1に示す方法に従って、水の処理を行った。即ち、前
処理として活性炭濾過を行った厚木市水に硫酸を加えて
pH5.5に調整し、脱炭酸塔1にて脱炭酸処理した。
この脱炭酸処理水のpHは6.0を示した。この水を次
に第1RO膜分離装置2に供給した(運転圧30kg/
cm2 )。この第1RO膜分離装置の透過水にNaOH
を添加し、pHを調整し、この水を外気と隔絶した滞留
タンク3に送り、そこで1分間滞留させた後、第2RO
膜分離装置4に通水した。なお、第1RO膜分離装置2
及び第2RO膜分離装置4は、共に、RO膜分離装置と
して日東電工社製「NTR−759−HR」を装着した
ものを用いた。
Example 1 Water was treated according to the method shown in FIG. That is, sulfuric acid was added to the water of Atsugi City that had been subjected to activated carbon filtration as a pretreatment to adjust the pH to 5.5, and decarboxylation treatment was performed in the decarboxylation tower 1.
The decarbonated water had a pH of 6.0. This water was then supplied to the first RO membrane separator 2 (operating pressure 30 kg /
cm 2 ). The permeated water of this first RO membrane separator is NaOH
Was added, the pH was adjusted, and this water was sent to a retention tank 3 isolated from the outside air, where it was retained for 1 minute, and then the second RO
Water was passed through the membrane separator 4. The first RO membrane separation device 2
For both the second RO membrane separation device 4 and the RO membrane separation device, "NTR-759-HR" manufactured by Nitto Denko Corporation was used.

【0027】第2RO膜分離装置の給水(流入水)のp
Hと得られた処理水(第2RO膜分離装置の透過水)の
抵抗率との関係を図3に示す。
P of feed water (inflow water) of the second RO membrane separator
The relationship between H and the resistivity of the obtained treated water (permeate of the second RO membrane separator) is shown in FIG.

【0028】比較例1 滞留タンクを設けず、第1RO膜分離装置の透過水にN
aOHを添加後直ちに第2RO膜分離装置に通水したこ
と以外は実施例1と同様に処理した。
COMPARATIVE EXAMPLE 1 No permeated water of the first RO membrane separator was replaced with N without a retention tank.
The same treatment as in Example 1 was carried out except that water was passed through the second RO membrane separator immediately after the addition of aOH.

【0029】第2RO膜分離装置の給水(流入水)のp
Hと得られた処理水(第2RO膜分離装置の透過水)の
抵抗率との関係を図3に示す。
P of feed water (inflow water) of the second RO membrane separator
The relationship between H and the resistivity of the obtained treated water (permeate of the second RO membrane separator) is shown in FIG.

【0030】図3より、NaOH添加後、大気遮断条件
下で所定時間滞留させた後、RO膜分離装置に通水する
本発明の方法によれば、NaOH添加後、直ちにRO膜
分離装置に通水する場合に比べて、約3倍もの高い抵抗
率が得られ、処理水の水質は著しく改善されることが明
らかである。
From FIG. 3, after the addition of NaOH, the mixture is allowed to stay for a predetermined time under an atmosphere-shielded condition and then passed through an RO membrane separation device. According to the method of the present invention, the NaOH membrane is immediately passed through after the addition of NaOH. It is clear that a resistivity as high as about 3 times is obtained as compared with the case of using water and the quality of treated water is significantly improved.

【0031】[0031]

【発明の効果】以上詳述した通り、本発明の水の処理方
法によれば、原水に酸を加えて脱炭酸処理した後、二段
に配置されたRO膜分離装置に順次通水して処理する方
法において、得られる処理水の水質を著しく高いものと
することができ、後工程への負荷を軽減して、効率的な
処理を行うことが可能となる。
As described above in detail, according to the water treatment method of the present invention, acid is added to the raw water for decarbonation, and then the water is sequentially passed through the RO membrane separators arranged in two stages. In the treatment method, the quality of the treated water obtained can be made extremely high, the load on the subsequent steps can be reduced, and efficient treatment can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の水の処理方法の一実施例方法を説明す
る系統図である。
FIG. 1 is a system diagram illustrating a method of an embodiment of a water treatment method of the present invention.

【図2】本発明の水の処理方法の他の実施例方法を説明
する系統図である。
FIG. 2 is a system diagram illustrating another embodiment method of the water treatment method of the present invention.

【図3】実施例1及び比較例1の測定結果を示すグラフ
である。
FIG. 3 is a graph showing the measurement results of Example 1 and Comparative Example 1.

【符号の説明】[Explanation of symbols]

1 脱炭酸塔 2 第1RO膜分離装置 3 滞留タンク 4 第2RO膜分離装置 1 Decarbonation Tower 2 First RO Membrane Separation Device 3 Retention Tank 4 Second RO Membrane Separation Device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 原水に酸を加えて脱炭酸処理した後、二
段に配置された逆浸透膜分離装置に順次通水して水を処
理する方法において、前段又は後段の逆浸透膜分離装置
に供給する水にアルカリを加えて大気遮断条件下で滞留
させた後、該逆浸透膜分離装置に通水することを特徴と
する水の処理方法。
1. A method of treating water by adding acid to raw water for decarboxylation and then sequentially passing water to a reverse osmosis membrane separation device arranged in two stages to treat water. A method for treating water, characterized in that an alkali is added to the water to be supplied to the reactor, the mixture is allowed to stay under an air cutoff condition, and then the water is passed through the reverse osmosis membrane separation device.
JP18009794A 1994-08-01 1994-08-01 Treatment of water Pending JPH0839066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18009794A JPH0839066A (en) 1994-08-01 1994-08-01 Treatment of water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18009794A JPH0839066A (en) 1994-08-01 1994-08-01 Treatment of water

Publications (1)

Publication Number Publication Date
JPH0839066A true JPH0839066A (en) 1996-02-13

Family

ID=16077384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18009794A Pending JPH0839066A (en) 1994-08-01 1994-08-01 Treatment of water

Country Status (1)

Country Link
JP (1) JPH0839066A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007289887A (en) * 2006-04-26 2007-11-08 Kurita Water Ind Ltd Pure water production apparatus
US9073763B2 (en) 1996-08-12 2015-07-07 Debasish Mukhopadhyay Method for high efficiency reverse osmosis operation
WO2020195235A1 (en) * 2019-03-26 2020-10-01 栗田工業株式会社 Decarboxylation method, water treatment method, decarboxylation device, and water treatment device
KR20230023613A (en) 2020-06-10 2023-02-17 쿠리타 고교 가부시키가이샤 pure manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9073763B2 (en) 1996-08-12 2015-07-07 Debasish Mukhopadhyay Method for high efficiency reverse osmosis operation
US9428412B2 (en) 1996-08-12 2016-08-30 Debasish Mukhopadhyay Method for high efficiency reverse osmosis operation
JP2007289887A (en) * 2006-04-26 2007-11-08 Kurita Water Ind Ltd Pure water production apparatus
WO2020195235A1 (en) * 2019-03-26 2020-10-01 栗田工業株式会社 Decarboxylation method, water treatment method, decarboxylation device, and water treatment device
KR20230023613A (en) 2020-06-10 2023-02-17 쿠리타 고교 가부시키가이샤 pure manufacturing method

Similar Documents

Publication Publication Date Title
KR101563169B1 (en) Pure water production apparatus and pure water production method
JP3593932B2 (en) High-purity water production apparatus and high-purity water production method
JP3575271B2 (en) Pure water production method
JP2004000919A (en) Apparatus for producing desalted water
JP6085155B2 (en) Ammonia-containing wastewater treatment apparatus and ammonia-containing wastewater treatment method
JP2007307561A (en) High-purity water producing apparatus and method
JP2000015257A (en) Apparatus and method for making high purity water
JPH0839066A (en) Treatment of water
JP2004167423A (en) Apparatus and method for pure water production
JPH05269463A (en) Membrane separation apparatus
JPH11267645A (en) Production of pure water
JPH09253642A (en) Pure water making apparatus
JPH07962A (en) Production of pure water
JPH10202249A (en) Deionizing method
JP6368767B2 (en) Ammonia-containing wastewater treatment apparatus and ammonia-containing wastewater treatment method
JPH1119663A (en) Removing method for organic matter
JP2002001069A (en) Method for producing pure water
JPH10249340A (en) Production of pure water
JP2001198578A (en) Method and device for electrically desalting treatment
JPH0992315A (en) Pure water manufacturing device for phosphoric acid type fuel cell
JPH10272455A (en) Process for making pure water
JPH09234349A (en) Membrane separation apparatus
JP2000271569A (en) Production of pure water
KR101959103B1 (en) Ultrapure water production device
JP3227765B2 (en) Membrane separation device