JP2000097512A - Method for increasing heating capacity of absorption- water cooled/warmer and increasing load absorption water cooler/warmer - Google Patents

Method for increasing heating capacity of absorption- water cooled/warmer and increasing load absorption water cooler/warmer

Info

Publication number
JP2000097512A
JP2000097512A JP10271730A JP27173098A JP2000097512A JP 2000097512 A JP2000097512 A JP 2000097512A JP 10271730 A JP10271730 A JP 10271730A JP 27173098 A JP27173098 A JP 27173098A JP 2000097512 A JP2000097512 A JP 2000097512A
Authority
JP
Japan
Prior art keywords
temperature regenerator
low
refrigerant
refrigerant vapor
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10271730A
Other languages
Japanese (ja)
Inventor
Kenji Machizawa
健司 町澤
Shunsuke Tamura
俊介 田村
Yukio Enouchi
幸雄 榎内
Keiji Tachibana
慶二 立花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Building Systems Co Ltd
Original Assignee
Hitachi Building Equipment Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Building Equipment Engineering Co Ltd filed Critical Hitachi Building Equipment Engineering Co Ltd
Priority to JP10271730A priority Critical patent/JP2000097512A/en
Publication of JP2000097512A publication Critical patent/JP2000097512A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To maintain the pressure of refrigerant steam in a high-temperature regenerator to atmospheric pressure or less by bypassing the refrigerant steam from the drain chamber of the low-temperature regenerator to an evaporator using a bypass pipeline with a gate valve. SOLUTION: A bypass pipeline 31 with a gate valve 32 as a valve means for closing down is provided between a drain chamber 2d of a low-temperature regenerator 2 and an evaporator 4. Refrigerant steam is bypassed from the drain chamber 2d to the evaporator 4 by the bypass pipeline 31, thus reducing the amount of generated refrigerant liquid in the low-temperature regenerator 2, hence suppressing the increase in refrigerant steam pressure in a high- temperature regenerator 1, and maintaining atmospheric pressure or less in heating increase operation for throwing an amount of heat that is at a rated value or higher in cooling operation for the high-temperature regenerator 1, without interrupting a function that is peculiar to an absorption water cooler/ warmer with a U-shaped sealing pipe 11 and a bubble pump 30.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は空気調和設備などに
用いられる吸収式冷温水機に係り、特に、冷房運転する
場合よりも暖房運転する場合の方が大量の原動エネルギ
ーを与える、いわゆる暖房増加型吸収式冷温水機に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption type chiller / heater used in an air conditioner and the like. The present invention relates to an absorption type chiller / heater.

【0002】[0002]

【従来の技術】吸収式冷温水機は一般に、再生器に熱を
与えつつ、吸収器に冷却水を送給してエネルギーを供給
することにより、冷水を発生させて冷房に使用したり、
温水を発生させて暖房に使用したりすることができる。
温水取出し方法としては、(a) 再生器で発生した冷
媒蒸気を、弁を介して蒸発器もしくは吸収器に導入し、
蒸発器管群内を流通する水と熱交換させて流通水を加熱
し、温水を取り出す方法も有り(例えば特開昭58−9
6963号公報)、(b) 再生器の蒸気配管を分岐し
て、別個に設けた温水用熱交換器に導入し、この温水用
熱交換器により通水を加熱して温水を取り出す方法も有
り(特開昭49−78251号)、(c) 暖房時に再
生器の溶液濃度をきわめて薄くして、沸点上昇を抑制
し、再生器で発生した冷媒蒸気を直接に凝縮器へ導入、
もしくは、低温再生器を経て導入し、凝縮器管群内の通
水を熱交換させて温水を取り出す方法も有る(例えば特
開昭57−136066号)。しかし、上記(a)の方
法を実施するには大口径かつ高耐久性の切換弁を必要と
し、設備コストが高価になり、(b)の方法を実施する
には別段の熱交換器を必要とするので、設備コストが高
価になるのみでなく、設置所要スペースが大きく、
(c)の方法によると、冷房作動時と暖房作動時との間
に負荷の配管接続を切り換えねばならないので、冷,暖
房切換操作が複雑である。
2. Description of the Related Art In general, an absorption type chiller / heater is configured to supply chilled water to an absorber while supplying heat to a regenerator to supply energy, thereby generating chilled water for use in cooling.
Hot water can be generated and used for heating.
As a method for removing hot water, (a) refrigerant vapor generated in a regenerator is introduced into an evaporator or an absorber through a valve,
There is also a method in which the flowing water is heated by exchanging heat with the water flowing in the evaporator tube group and hot water is taken out (for example, Japanese Patent Application Laid-Open No. 58-9 / 1983).
6963), (b) There is also a method in which a steam pipe of a regenerator is branched and introduced into a separately provided hot water heat exchanger, and the hot water is heated by the hot water heat exchanger to take out hot water. (Japanese Patent Laid-Open No. 49-78251), (c) The solution concentration of the regenerator during heating is extremely reduced to suppress the rise in boiling point, and refrigerant vapor generated in the regenerator is directly introduced into the condenser.
Alternatively, there is also a method in which the water is introduced through a low-temperature regenerator and the water in the condenser tube group is heat-exchanged to take out hot water (for example, JP-A-57-136066). However, the method (a) requires a large-diameter and highly durable switching valve, which increases the equipment cost, and the method (b) requires a separate heat exchanger. Therefore, not only is the equipment cost expensive, but the installation space is large,
According to the method (c), the pipe connection of the load must be switched between the time of the cooling operation and the time of the heating operation, so that the switching operation between the cooling and the heating is complicated.

【0003】上述の各方法における欠点を防止するため
の最新技術として、U字シール管を用いた吸収式冷温水
機(特公平4−14262号)、および、気泡ポンプを
用いた吸収式冷温水機(特公平4−29951)が公知
である。図4は、U字シール管を設けた吸収式温水機の
1例を模式的に描いたサイクルフロー図であって、付記
した構成機器の名称は当該吸収式冷温水機が冷房運転さ
れる場合の機能に基づいた呼称である。符号1を付して
示した部材は高温再生器、同じく2は低温再生器、3は
凝縮器、4は蒸発器、5は吸収器、6は低温熱交換器、
7は高温熱交換器、8は溶液循環ポンプ、9は冷媒スプ
レポンプである。凝縮器3の中で液化した冷媒液が溜ま
る底部と、蒸発器4との間は、絞り19を設けた冷媒液
導管10で接続され、かつ、凝縮器3の気相部(上記空
間)と蒸発器4との間がU字シール管11で接続されて
いる。符号12は、冷媒スプレポンプ9の吐出冷媒液を
スプレヘッダ22に導く冷媒スプレ導管であって、その
途中にフロート弁13が介挿接続されている。14は蒸
発器の冷媒タンク、15は前記冷媒スプレ導管12から
分岐して低温の冷媒液をU字シール管11に導く分岐
管、16は冷媒スプレポンプ9から吐出された冷媒液の
一部を吸収器5に排出する冷媒ブロー管、17は上記冷
媒液の排出を制御する冷媒ブロー弁である。
[0003] As the latest technology for preventing the drawbacks of the above-mentioned methods, an absorption type chiller / heater using a U-shaped seal tube (Japanese Patent Publication No. 414262/1992) and an absorption type chiller / heater using a bubble pump are known. A machine (Japanese Patent Publication No. 4-29951) is known. FIG. 4 is a cycle flow diagram schematically illustrating an example of an absorption type water heater provided with a U-shaped sealing pipe. This is a name based on the function of. Reference numeral 1 denotes a high-temperature regenerator, 2 denotes a low-temperature regenerator, 3 denotes a condenser, 4 denotes an evaporator, 5 denotes an absorber, 6 denotes a low-temperature heat exchanger,
7 is a high-temperature heat exchanger, 8 is a solution circulation pump, and 9 is a refrigerant spray pump. The bottom of the condenser 3 where the liquefied refrigerant liquid accumulates is connected to the evaporator 4 by the refrigerant liquid conduit 10 provided with the throttle 19 and is connected to the gas phase part (the above space) of the condenser 3. The evaporator 4 is connected to the evaporator 4 by a U-shaped seal tube 11. Reference numeral 12 denotes a refrigerant spray conduit for guiding the refrigerant liquid discharged from the refrigerant spray pump 9 to the spray header 22, and a float valve 13 is inserted and connected in the middle thereof. 14 is a refrigerant tank of the evaporator, 15 is a branch pipe which branches from the refrigerant spray pipe 12 and guides a low-temperature refrigerant liquid to the U-shaped seal pipe 11, and 16 absorbs a part of the refrigerant liquid discharged from the refrigerant spray pump 9. A refrigerant blow pipe 17 for discharging the refrigerant to the vessel 5 is a refrigerant blow valve for controlling the discharge of the refrigerant liquid.

【0004】以上のように構成された図4の吸収式冷温
水機の作用について、冷房作動と暖房作動とに区分し
て、以下に説明すると、冷房作動させる場合はブロー弁
17を閉止し、冷媒液をU字シール管11に送り込みな
がら運転する。高温再生器1で発生した冷媒蒸気は低温
再生器2の伝熱管2a内に導かれ、該伝熱管2aの外周
面を流下する溶液を熱交換して凝縮液化し、絞り18を
経て凝縮器3に流入する。上記低温再生器2の中で熱交
換して発生した冷媒蒸気は、ミストセパレータ21を通
って凝縮器3に流入し、伝熱管群の中を流通する冷却水
3aにより冷却されて凝縮液化する。上述のようにして
凝縮器3に流入した冷媒液は、冷媒液導管10により、
絞り19を経て蒸発器4に導かれる。蒸発器4に流入し
た冷媒液は、冷媒スプレポンプ9によって吸入,圧送さ
れ、スプレヘッダ22から噴出して雨下し、管群内を流
通する冷水4aと熱交換して蒸発し、該冷水4aから蒸
発潜熱を奪って冷凍作用が得られる(注・上記の符号4
aは、後に説明するように、暖房作動する際は温水を表
すことになる)。蒸発して生成された冷媒蒸気はミスト
セパレータ20を通って吸収器5の中へ流動し、冷却水
5aで冷却された吸収液(再生器で冷媒の一部を蒸発さ
せて稀薄になった溶液)に吸収され、蒸発前と同様の溶
液に復元する。上記の復元された溶液は、溶液循環ポン
プ8に吸入,圧送され、一部は低温再生器2へ送られ、
残りは低温熱交換器6,高温熱交換器7を経て高温再生
器1に送られる。
[0004] The operation of the absorption chiller / heater of FIG. 4 configured as described above is divided into a cooling operation and a heating operation. The following describes the operation. When the cooling operation is performed, the blow valve 17 is closed. It operates while sending the refrigerant liquid into the U-shaped seal tube 11. The refrigerant vapor generated in the high-temperature regenerator 1 is guided into the heat transfer tube 2a of the low-temperature regenerator 2, and the solution flowing down the outer peripheral surface of the heat transfer tube 2a undergoes heat exchange to be condensed and liquefied. Flows into. Refrigerant vapor generated by heat exchange in the low-temperature regenerator 2 flows into the condenser 3 through the mist separator 21, and is cooled and condensed and liquefied by the cooling water 3a flowing through the heat transfer tube group. The refrigerant liquid flowing into the condenser 3 as described above is supplied to the refrigerant liquid conduit 10 by the refrigerant liquid conduit 10.
It is guided to the evaporator 4 through the throttle 19. The refrigerant liquid flowing into the evaporator 4 is sucked and pumped by the refrigerant spray pump 9, ejects from the spray header 22, rains, evaporates by exchanging heat with the cold water 4a flowing through the tube group, and evaporates from the cold water 4a. The refrigeration effect is obtained by removing latent heat.
a represents hot water when the heating operation is performed, as described later). The refrigerant vapor generated by evaporation flows into the absorber 5 through the mist separator 20, and the absorption liquid cooled by the cooling water 5a (a solution diluted by evaporating a part of the refrigerant in the regenerator). ) And is restored to the same solution as before evaporation. The reconstituted solution is sucked into the solution circulation pump 8 and sent under pressure, and a part is sent to the low-temperature regenerator 2.
The remainder is sent to the high-temperature regenerator 1 via the low-temperature heat exchanger 6 and the high-temperature heat exchanger 7.

【0005】上述した冷房サイクルを行なわせるために
は、凝縮器3内冷媒蒸気がU字シール管11を通って蒸
発器4へ流通することを抑止する必要が有るので、該U
字シール管11に冷媒液を満たして封止される。しか
し、単に冷媒液で満たしただけでは、凝縮器3内の冷媒
蒸気の一部がU字シール管11内の冷媒液に接触して液
面で凝縮液化し、液化潜熱を放出してU字シール管11
内の冷媒液を昇温させる。このため、該冷媒液が蒸発器
4側で再沸騰してシール機能を喪失するに至る虞れが有
る。本図4の例では、冷媒スプレポンプ9の吐出冷媒液
の一部が分岐管15を経てU字シール管11の底部付近
に圧送されているので、再沸騰を生じることなく液柱ヘ
ッドによる差圧維持機能を保持することができ、凝縮器
3内の冷媒蒸気がU字シール管を通って蒸発器4に流動
することが無く、本図4について先に述べた冷房サイク
ルを遂行することができる。
In order to perform the above-described cooling cycle, it is necessary to prevent the refrigerant vapor in the condenser 3 from flowing through the U-shaped seal tube 11 to the evaporator 4.
The seal tube 11 is filled with a refrigerant liquid and sealed. However, when the refrigerant is simply filled with the refrigerant liquid, a part of the refrigerant vapor in the condenser 3 comes into contact with the refrigerant liquid in the U-shaped sealing pipe 11 and condenses and liquefies on the liquid surface, thereby releasing latent heat of liquefaction to form a U-shaped liquid. Seal tube 11
The temperature of the refrigerant liquid inside is raised. For this reason, there is a possibility that the refrigerant liquid may reboil on the side of the evaporator 4 and lose the sealing function. In the example of FIG. 4, a part of the refrigerant liquid discharged from the refrigerant spray pump 9 is pressure-fed to the vicinity of the bottom of the U-shaped seal pipe 11 via the branch pipe 15, so that the pressure difference due to the liquid column head does not occur again. The maintenance function can be maintained, and the refrigerant cycle in the condenser 3 does not flow to the evaporator 4 through the U-shaped seal pipe, and the cooling cycle described above with reference to FIG. 4 can be performed. .

【0006】次に、本図4に例示したU字シール管つき
吸収式冷温水機の暖房作動について述べると、凝縮器3
の冷却水3a、および吸収器5の冷却水5aの送給を止
め、冷媒ブロー弁17を開いて運転する。すると、冷媒
スプレポンプが冷媒タンク14の底部に溜まっている冷
媒液を吐出したとき、吐出された冷媒液は冷媒ブロー管
16および冷媒ブロー弁17を通って吸収器5に排出さ
れ、該吸収器5内の吸収溶液中の冷媒濃度を高める。一
方、冷媒ブロー管16および冷媒ブロー弁17よりも高
い箇所から分岐した分岐管15には冷媒液が到達しなく
なって、U字シール管11に対して冷媒液が送給されな
くなる。高温再生器1で発生した冷媒蒸気は低温再生器
の伝熱管2a内に導かれ、該伝熱管2aの外周面に接触
しつつ流下する溶液と熱交換し、冷却されて凝縮液化
し、絞り18を経て凝縮器3に流入する。低温再生器2
で発生した冷媒蒸気はミストセパレータ21を通って凝
縮器3に導かれるが、該凝縮器3の伝熱管群に冷却水3
aが通水されていないので凝縮液化されず、気体状でU
字シール管11に流入する。上記U字シール管の、蒸発
器4側の配管高さを適宜(例えば約1メートル、もしく
はそれ以下)に設定しておくと、凝縮器3内の冷媒蒸気
の圧力によって該U字シール管11に形成される液柱ヘ
ッドによる差圧維持機能が破壊され、冷媒蒸気がU字シ
ール管11を吹き抜いて蒸発器4内に流入する。蒸発器
4内に流入した冷媒蒸気は、該蒸発器4の伝熱管群の表
面に接触して凝縮し、管群内を流通する温水4aに凝縮
潜熱を与えて加熱して、暖房作用を発揮する。
Next, the heating operation of the absorption type chiller / heater with a U-shaped seal tube illustrated in FIG. 4 will be described.
The supply of the cooling water 3a and the cooling water 5a of the absorber 5 is stopped, and the refrigerant blow valve 17 is opened to operate. Then, when the refrigerant spray pump discharges the refrigerant liquid stored in the bottom of the refrigerant tank 14, the discharged refrigerant liquid is discharged to the absorber 5 through the refrigerant blow pipe 16 and the refrigerant blow valve 17, and is discharged to the absorber 5. Increase the refrigerant concentration in the absorbing solution inside. On the other hand, the refrigerant liquid does not reach the branch pipe 15 branched from a position higher than the refrigerant blow pipe 16 and the refrigerant blow valve 17, and the refrigerant liquid is not supplied to the U-shaped seal pipe 11. The refrigerant vapor generated in the high-temperature regenerator 1 is guided into the heat transfer tube 2a of the low-temperature regenerator, exchanges heat with the solution flowing down while contacting the outer peripheral surface of the heat transfer tube 2a, and is cooled and condensed and liquefied. , And flows into the condenser 3. Low temperature regenerator 2
The refrigerant vapor generated in the above is guided to the condenser 3 through the mist separator 21, and the cooling water 3
a is not condensed and liquefied because water is not passed through,
Into the U-shaped seal tube 11. If the pipe height of the U-shaped seal pipe on the side of the evaporator 4 is appropriately set (for example, about 1 meter or less), the pressure of the refrigerant vapor in the condenser 3 causes the U-shaped seal pipe 11 The function of maintaining the pressure difference by the liquid column head formed in the evaporator 4 is destroyed, and the refrigerant vapor blows through the U-shaped seal tube 11 and flows into the evaporator 4. The refrigerant vapor that has flowed into the evaporator 4 contacts the surface of the heat transfer tube group of the evaporator 4 and condenses, giving condensing latent heat to the warm water 4a flowing through the tube group and heating it to exhibit a heating effect. I do.

【0007】図5は、気泡ポンプを備えた公知の吸収式
冷温水機の1例を示すサイクルフロー図である。ただ
し、構造機能の理解を便なるごとく模式化して描いてあ
るので実体図とは異なっており、付記した構成部材の名
称は、この吸収式冷温水機が冷房運転される場合の機能
に基づく呼称である。本図5において、前掲の図4と同
一の符号および名称を付した構成部分は前記U字シール
管方式の吸収式冷温水機(図4)と同様ないし類似の構
成部分であるから説明を省略し、該図4に比して異なっ
ている構成部分を抽出して概要を述べると、U字シール
管11′は前述のU字シール管11と類似の構成部材で
あるが、本例のU字シール11′は、その蒸発器4側が
直接的に蒸発器4に接続連通されておらず、冷媒蒸気導
管26、気泡ポンプ30、気液分離器25、および冷媒
蒸気導管28を順次に介して蒸発器4に接続されてい
て、前記U字シール管11′と冷媒蒸気導管26との接
続部にガス抜き孔bが設けられている。前記の気泡ポン
プ30は、U字シール管11′を流通した冷媒蒸気を駆
動源として、蒸発器4の底部に溜まった冷媒液を揚液す
るように構成されている。揚液された泡まじり液は気液
分離器25内に流入し、分離された気体成分は冷媒蒸気
導管28によって蒸発器4に導かれ、分離された液体成
分は吸収器5内に流入せしめられるようになっている。
FIG. 5 is a cycle flow diagram showing an example of a known absorption chiller / heater equipped with a bubble pump. However, since the understanding of the structural function is drawn as a schematic for convenience, it differs from the actual diagram, and the names of the added components are names based on the function when the absorption type chiller / heater is operated for cooling. It is. In FIG. 5, components having the same reference numerals and names as those in FIG. 4 described above are the same or similar to those of the absorption-type water heater / heater (FIG. 4) of the U-shaped sealed tube system, and therefore the description thereof is omitted. Then, the components different from those in FIG. 4 are extracted and the outline will be described. The U-shaped seal tube 11 ′ is similar to the U-shaped seal tube 11 described above, The character seal 11 ′ is not directly connected to and connected to the evaporator 4 on the side of the evaporator 4, but sequentially through a refrigerant vapor conduit 26, a bubble pump 30, a gas-liquid separator 25, and a refrigerant vapor conduit 28. A gas vent hole b is provided at the connection between the U-shaped seal pipe 11 'and the refrigerant vapor conduit 26, which is connected to the evaporator 4. The bubble pump 30 is configured to pump the refrigerant liquid accumulated at the bottom of the evaporator 4 using the refrigerant vapor flowing through the U-shaped seal tube 11 'as a driving source. The pumped foam mixture flows into the gas-liquid separator 25, the separated gas component is guided to the evaporator 4 by the refrigerant vapor conduit 28, and the separated liquid component flows into the absorber 5. It has become.

【0008】以上のように構成された気泡ポンプ付き吸
収式冷温水機の冷房作動と暖房作動とについて述べる
と、冷房時における作動は、前掲の図4の公知例と類似
であるから省略する。暖房作動の場合は、冷媒スプレポ
ンプ9を停止させて当該吸収式冷温水機を運転する。こ
れにより、U字シール管11′の液シールが破れ、冷媒
蒸気の一部はガス抜き孔bから冷媒蒸気導管28を経て
蒸発器4に流入するが、その他は冷媒蒸気導管26を通
って気泡ポンプ30に流入する。気泡ポンプ30に流入
した冷媒蒸気は、冷媒液導管27を経由した蒸発器4か
らの冷媒液を二相流となってこれを揚液し、気液分離器
25内に導く。気液分離器25内で分離された冷媒ガス
は、前記のガス抜き孔bを通った冷媒蒸気と合流して冷
媒蒸気導管28を通り、蒸発器4に流入する。そして、
前記気液分離器25で分離された冷媒液は吸収器5に流
入する。吸収器5内に流入した冷媒液は、該吸収器5内
の溶液と混合して、サイクル循環溶液の濃度を薄くす
る。従って、暖房時に低温再生器2における蒸発圧力が
高くなっても、沸点を100℃以下に保つことができ、
高温再生器1内の圧力が大気圧以上にならない。低温再
生器2で発生した冷媒蒸気はU字シール管11′、冷媒
蒸気導管26、気泡ポンプ30、気液分離器25、およ
び冷媒蒸気導管28を順次に経由して蒸発器4に流動
し、該蒸発器4内で「蒸発器管群内を流通する温水4
a」と熱交換して凝縮して凝縮潜熱を発生する。この凝
縮潜熱は上記の温水4aを加熱し、これによって暖房作
用が得られる。
[0008] The cooling operation and the heating operation of the absorption type chiller / heater with the bubble pump configured as described above will be described. The operation at the time of cooling is similar to that of the known example of FIG. In the case of the heating operation, the refrigerant spray pump 9 is stopped to operate the absorption type chiller / heater. As a result, the liquid seal of the U-shaped seal tube 11 'is broken, and a part of the refrigerant vapor flows into the evaporator 4 from the gas vent hole b through the refrigerant vapor conduit 28, while the other vapor bubbles pass through the refrigerant vapor conduit 26. It flows into the pump 30. The refrigerant vapor flowing into the bubble pump 30 forms a two-phase flow of the refrigerant liquid from the evaporator 4 via the refrigerant liquid conduit 27, pumps it up, and guides it into the gas-liquid separator 25. The refrigerant gas separated in the gas-liquid separator 25 merges with the refrigerant vapor passing through the gas vent hole b and flows into the evaporator 4 through the refrigerant vapor conduit 28. And
The refrigerant liquid separated by the gas-liquid separator 25 flows into the absorber 5. The refrigerant liquid flowing into the absorber 5 is mixed with the solution in the absorber 5 to reduce the concentration of the cycle circulation solution. Therefore, even if the evaporation pressure in the low-temperature regenerator 2 increases during heating, the boiling point can be kept at 100 ° C. or less,
The pressure in the high-temperature regenerator 1 does not exceed the atmospheric pressure. Refrigerant vapor generated in the low-temperature regenerator 2 flows to the evaporator 4 through the U-shaped seal pipe 11 ', the refrigerant vapor conduit 26, the bubble pump 30, the gas-liquid separator 25, and the refrigerant vapor conduit 28 in order, In the evaporator 4, the "hot water 4 flowing through the evaporator tube group"
a) and condenses to generate latent heat of condensation. This condensation latent heat heats the hot water 4a, thereby providing a heating effect.

【0009】[0009]

【発明が解決しようとする課題】前掲の図4に例示した
U字シール管を備えた吸収式冷温水機、および、図5に
例示した気泡ポンプを備えた吸収式冷温水機は、それぞ
れ所期の目的を達成した優れた発明であって、単独で適
用することもでき、併せて適用することもでき、吸収式
冷温水機の技術的進歩に貢献するところ多大であった。
本発明は、これら公知発明の不具合を解消しようとする
ものではなく、暖房増加機能を付加して実用価値を一層
増加させたものである。次に、吸収式冷温水機における
暖房増加機能について略述すると、(図4参照)吸収式
冷温水機の基本的な構造機能は〔従来の技術〕の項で説
明したように、高温再生器に熱を与えることによって冷
房作動と暖房作動とを任意に行なわせることができる。
上記の熱を与える手段は、高温再生器1の発熱部hに燃
料を燃焼させた高温のガスを導入しても良く、電力によ
るジュール熱を投入しても良い。上記の発熱部hに与え
る熱量を定格値にすると定格の冷,暖房能力が得られ、
上記の熱量を少なくして部分負荷運転すると冷,暖房能
力はほぼ熱量に比例して減少する。ここで検討の余地が
有るのは、冷房作動時と暖房作動時との比較において、
高温再生器に与える熱量の定格値を同じにするか、定格
値に差をつけるかという問題である。吸収式冷温水機の
構成を簡単にして、設計,製作を容易ならしめるととも
に運転操作を容易にするといった観点のみから考察する
と、高温再生器に与える熱量の定格値が夏,冬同じであ
ることが望ましい。しかし、吸収式冷温水機の実用価値
に及ぼす影響を優先して考えなければならない。実情を
概略を要約すると、関東,東海以西の、我国における温
暖地方においては、冷房時に投入熱量(特に断らない限
り定格値の意)と暖房時の投入熱量とを同じレベルに設
定しておけば、夏期にも冬期にも概ねユーザーの満足を
得ることができる。これに比して、東北,北海道といっ
た我国における寒冷地方においては、冷房作動時の定格
熱量値と暖房作動時の定格熱量値とを同一に設定してお
くと、冬期において暖房能力が不足気味になる。
The absorption chiller / heater equipped with a U-shaped seal tube illustrated in FIG. 4 and the absorption chiller / heater equipped with a bubble pump illustrated in FIG. It is an excellent invention that has achieved the objectives of the present invention, and can be applied alone or in combination, and has greatly contributed to the technological progress of the absorption-type chiller / heater.
The present invention is not intended to eliminate the disadvantages of the known invention, but to further increase the practical value by adding a heating increasing function. Next, the heating increasing function in the absorption chiller / heater will be briefly described (see FIG. 4). The basic structural function of the absorption chiller / heater is, as described in [Prior Art], a high temperature regenerator. The cooling operation and the heating operation can be arbitrarily performed by applying heat to the air conditioner.
As the means for applying heat, a high-temperature gas obtained by burning fuel may be introduced into the heat generating portion h of the high-temperature regenerator 1 or Joule heat by electric power may be supplied. When the amount of heat given to the heat generating portion h is set to a rated value, rated cooling and heating capabilities can be obtained.
When the above-mentioned heat quantity is reduced and the partial load operation is performed, the cooling and heating capacity decreases substantially in proportion to the heat quantity. There is room for consideration here in comparison between cooling operation and heating operation.
The problem is whether to make the rated value of the amount of heat given to the high-temperature regenerator the same or to make a difference in the rated value. Considering only from the viewpoints of simplifying the configuration of the absorption type water heater and cooling system, facilitating design and manufacture and facilitating operation, the rated value of the amount of heat given to the high-temperature regenerator is the same in summer and winter. Is desirable. However, the impact on the practical value of the absorption chiller / heater must be given priority. In summary, in the warm regions of Japan in the Kanto region and the west of the Tokai region, if the heat input during cooling (meaning the rated value unless otherwise specified) and the heat input during heating are set to the same level. In general, user satisfaction can be obtained in both summer and winter. On the other hand, in cold regions such as Tohoku and Hokkaido, where the rated heat value during cooling operation and the rated heat value during heating operation are set to the same value, the heating capacity tends to be insufficient in winter. Become.

【0010】こうした実情に対応して、暖房作動時にお
いても冷房作動時に等しい投入熱量とした吸収式冷温水
機を標準とし、暖房作動時には冷房作動時におけるより
も大きい投入熱量を設定した暖房増加型の吸収式冷温水
機が寒冷地向け仕様として供給されている。この場合、
工業的生産の見地から望まれるのは、温暖地向けの暖房
標準型吸収型冷温水機と、寒冷地向けの暖房増加型吸収
式冷温水機との間で、構成機器および構成部品の互換性
をなるべく大きくすることである。例えば、いま仮に、
温暖地向け仕様の吸収式冷温水機と寒冷地向け仕様の吸
収式冷温水機とが全く同様の構成機器から成っていて、
制御系統の調節だけで仕向先の仕様に適合せしめ得れば
最も望ましい。それが無理であるとしても、暖房標準型
吸収式冷温水機に対して、数点の管路部材や弁を取り付
けることによって暖房増加型吸収式冷温水機に改造する
ことができるようになっていることが望ましい。上述の
説明から理解されるように、本発明における「改造」は
広義であって、一旦製品として完成された暖房標準型吸
収式冷温水機を加工して暖房増加型吸収式冷温水機なら
しめることに限られず、製品として完成される以前の暖
房標準型冷温水機半製品に対して生産ラインの途中で追
加部品を取り付けるなどして暖房増加型吸収式冷温水機
として完成させることも、本発明における「改造」に含
まれる。
In response to this situation, an absorption-type water heater / heater having an input heat quantity equal to the cooling operation during the heating operation is standardized, and a heating increase type in which the heating input is set to a larger input heat quantity than during the cooling operation. Are supplied as specifications for cold regions. in this case,
From an industrial production standpoint, the compatibility of components and components between a heating standard absorption chiller / heater for warm climates and an increased heating absorption chiller / heater for cold climates is desirable Is to be as large as possible. For example, temporarily
Absorption type chiller / heater for warm regions and absorption type chiller / heater for cold regions consist of exactly the same components,
It is most desirable if the specifications of the destination can be met only by adjusting the control system. Even if that is not possible, the standard heating type absorption chiller / heater can be remodeled into an increased heating type absorption chiller / heater by installing several pipe members and valves. Is desirable. As will be understood from the above description, "remodeling" in the present invention is in a broad sense, and a heating standard type absorption chiller / heater once completed as a product is processed to become an increased heating type absorption chiller / heater. Not limited to this, it is also possible to install additional parts in the middle of the production line for semi-finished heating standard type chiller / heater before it was completed as a product to complete it as an increased heating type absorption chiller / heater. It is included in "remodeling" in the invention.

【0011】次に、図4および図5に示された吸収式冷
温水機のそれぞれについて、暖房増加のための改造を行
なう場合の技術的問題について述べるが、図4および図
5は詳細に過ぎて却って問題点が分かりにくいので、図
6および図7を参照して説明する。図6は、U字シール
管および気泡ポンプを備えた最新の公知技術に係る吸収
式冷温水機を模式化して、暖房標準時における気体成分
の流動方向を太い矢印で表すとともに液体成分の流動方
向を細い矢印で表し、かつ、暖房標準時における流量数
値を長方形枠で囲み圧力数値を長円形枠で囲んで付記し
た流量−圧力バランス説明図である。本図6に示した暖
房標準運転においては高温再生器(略記号HG)1から
発生する冷媒蒸気流量は88.5kg/hであり、この
冷媒蒸気が低温再生器(略記号LG)2および凝縮器
(略記号C)3を通って88.5kg/hの冷媒液と冷
媒蒸気とになって蒸発器(略記号E)4に送られる。こ
の蒸発器4で冷媒液が冷媒液となり、合計177kg/
hの冷媒液が気泡ポンプ30によって吸収器(略記号
A)5に送られる。このとき高圧再生器1内の冷媒蒸気
圧力は538mmHg(abs)であり、大気圧に比し
て負圧状態で運転される。図7は、前掲の図6に示した
吸収式冷温水機の高温再生器に与える熱量を増加させて
暖房増加状態で運転した場合の流量−圧力バランス説明
図であって、付記した構成部材の名称は当該吸収式冷温
水機が冷房運転されている状態における機能に基づく呼
称である。この図7の例では高温発生器1に与える熱量
を暖房標準(図6)の状態に比して約1.35倍とし
た。このため、該高温再生器1から発生する冷媒蒸気の
流量は入熱量に伴って(ほぼ比例して)増加し、120
kg/hになっている。このため、配管内の圧力損失が
増加して、高温再生器1内の冷媒蒸気圧力が874mm
Hgになっており、大気圧に比して正圧である。
Next, a technical problem in the case of modifying each of the absorption chiller / heater shown in FIGS. 4 and 5 to increase the heating will be described. FIGS. 4 and 5 are only detailed. On the contrary, since the problem is difficult to understand, a description will be given with reference to FIGS. FIG. 6 schematically illustrates an absorption type chiller / heater equipped with a U-shaped seal tube and a bubble pump according to the latest known technology, in which a flow direction of a gas component in a heating standard time is indicated by a thick arrow and a flow direction of a liquid component is indicated. It is a flow-pressure balance explanatory diagram represented by a thin arrow, and a flow rate value in a heating standard time is enclosed by a rectangular frame, and a pressure value is enclosed by an oval frame. In the standard heating operation shown in FIG. 6, the flow rate of the refrigerant vapor generated from the high-temperature regenerator (abbreviated symbol HG) 1 is 88.5 kg / h, and this refrigerant vapor is condensed with the low-temperature regenerator (abbreviated symbol LG) 2 After passing through an evaporator (abbreviated symbol C) 3, a refrigerant liquid and a refrigerant vapor of 88.5 kg / h are sent to an evaporator (abbreviated symbol E) 4. In the evaporator 4, the refrigerant liquid becomes a refrigerant liquid, and a total of 177 kg /
The refrigerant liquid of h is sent to the absorber (abbreviation A) 5 by the bubble pump 30. At this time, the refrigerant vapor pressure in the high-pressure regenerator 1 is 538 mmHg (abs), and the operation is performed in a negative pressure state compared to the atmospheric pressure. FIG. 7 is an explanatory diagram of a flow-pressure balance in a case where the amount of heat given to the high-temperature regenerator of the absorption chiller / heater shown in FIG. The name is a name based on the function in a state where the absorption type water heater / cooler is in a cooling operation. In the example of FIG. 7, the amount of heat given to the high-temperature generator 1 is about 1.35 times that of the heating standard (FIG. 6). For this reason, the flow rate of the refrigerant vapor generated from the high-temperature regenerator 1 increases (substantially in proportion) with the amount of heat input, and increases by 120
kg / h. For this reason, the pressure loss in the pipe increases, and the refrigerant vapor pressure in the high-temperature regenerator 1 becomes 874 mm.
Hg, which is a positive pressure compared to the atmospheric pressure.

【0012】図7に示した流量−圧力バランスは実験的
に行なって得られたデータに基づくものであって、高温
再生器1の内圧が異常に上昇したときに作動する非常停
止装置が作動しないようにしてあったので図示の流量・
圧力データを得ることができた。しかし、実用機の場合
であれば高温再生器の異常昇圧(大気圧以上)が検出さ
れて安全装置が作動し、運転を継続できなくなる。高温
再生器1内が正圧になることを禁忌する理由は、高温再
生器の内圧が正圧になると圧力容器としての法的規制が
適用されて、避け得べきコスト上昇を生じたり、大形大
重量化したりするからである。本発明は上述の事情に鑑
みて為されたものであって、暖房標準型吸収式冷温水機
の基本的な性能に悪影響を及ぼすことなく、かつ、該吸
収式冷温水機の形状寸法,重量,製造コストを著しく増
大せしめることなく、簡単な操作で暖房増加運転が可能
なように改造する方法、および暖房増加型吸収式冷温水
機を提供することを目的とする。
The flow rate-pressure balance shown in FIG. 7 is based on data obtained experimentally, and the emergency stop device which operates when the internal pressure of the high-temperature regenerator 1 rises abnormally does not operate. Flow rate
Pressure data could be obtained. However, in the case of a practical machine, an abnormally high pressure (above atmospheric pressure) of the high-temperature regenerator is detected, the safety device operates, and the operation cannot be continued. The reason why the positive pressure inside the high-temperature regenerator 1 is contraindicated is that when the internal pressure of the high-temperature regenerator becomes a positive pressure, legal regulations as a pressure vessel are applied, resulting in unavoidable cost increases or large This is because the weight increases. The present invention has been made in view of the above circumstances, and has no adverse effect on the basic performance of a standard heating-type absorption chiller / heater, and has the shape, dimensions, and weight of the absorption-type absorption chiller / heater. It is an object of the present invention to provide a method of remodeling so that the heating operation can be increased by a simple operation without significantly increasing the manufacturing cost, and an absorption heating water heater / heater of an increased heating type.

【0013】[0013]

【課題を解決するための手段】上記の目的を達成するた
めに構成した本発明の基本的な原理について、その1実
施形態に対応する図1を参照して略述すると次のごとく
である。
The basic principle of the present invention configured to achieve the above object will be briefly described below with reference to FIG. 1 corresponding to one embodiment.

【0014】図は、高温再生器1に与える熱量を増加し
た暖房増加運転状態における流量と圧力とのバランス状
態を示しているが、本発明を適用して改造する以前にお
いて高温再生器1に与える熱量を増加して流量120k
g/hの冷媒蒸気を発生させると、該高温再生器1内が
大気圧に比して正圧になった。このような吸収式冷温水
器に簡単な改造を加えて、暖房増加運転時における高温
再生器1内の冷媒蒸気圧力を大気圧以下ならしめるた
め、低温再生器2のドレン室2aから蒸発器4へ、仕切
弁32を設けたバイパス管路31によって冷媒蒸気をバ
イパスさせる。これにより、高温再生器1内の冷媒蒸気
の圧力は大気圧以下(本例では557mmHg)に保た
れる。
FIG. 1 shows the balance between the flow rate and the pressure in the heating increasing operation state in which the amount of heat applied to the high-temperature regenerator 1 is increased. Increase heat quantity and flow rate 120k
When g / h of refrigerant vapor was generated, the inside of the high-temperature regenerator 1 became a positive pressure compared to the atmospheric pressure. In order to make the refrigerant vapor pressure in the high-temperature regenerator 1 equal to or lower than the atmospheric pressure during the heating-increase operation by adding a simple modification to such an absorption-type water heater / heater, the evaporator 4 is removed from the drain chamber 2a of the low-temperature regenerator 2. The refrigerant vapor is bypassed by a bypass pipe 31 provided with a gate valve 32. As a result, the pressure of the refrigerant vapor in the high-temperature regenerator 1 is kept at or below the atmospheric pressure (557 mmHg in this example).

【0015】以上に説明した原理に基いて、請求項1に
係る発明方法の構成は、高温再生器と、低温再生器と、
凝縮器と、蒸発器と、吸収器と、熱交換器と、溶液循環
ポンプと、冷媒スプレポンプとを具備し、かつ、前記凝
縮器の気相部と蒸発器とをU字シール管を介して接続す
るとともに、前記冷媒スプレポンプの吐出側から分岐さ
れた分岐管を前記U字シール管に接続して成る吸収式冷
温水機を運転して暖房作動を行なわせる場合、当該吸収
式冷温水機に冷房作動せしめる場合に比して、高温再生
器に与える熱量を増加させ、該高温再生器から発生する
冷媒蒸気の流量を増加せしめて暖房能力を増加する方法
において、低温再生器のドレン室から蒸発器に冷媒蒸気
をバイパスさせて該低温再生器内の冷媒液発生量を減少
せしめることにより、低温再生器ドレン室と凝縮器との
間の圧力損失を「暖房運転時に高温再生器に与える単位
時間当たり熱量を、冷房運転時に比して増加せしめない
暖房標準の状態」における「低温再生器ドレン室と凝縮
器との間の圧力損失」とほぼ同レベルに減少せしめ、高
温再生器内の圧力を大気圧以下に維持しつつ、高温再生
器に与える熱量を冷房運転状態における定格値よりも増
加し、高温再生器内の異常昇圧を防止しつつ該高温再生
器から発生する冷媒蒸気流量を増加させて暖房増加運転
することを特徴とする。以上に説明した請求項1の発明
方法によると、U字シール管を備えた吸収式冷温水機の
長所であるところの「サイクルフロー系統に関して配管
を切り換えたり流路開閉のための弁類を設置したりする
ことなく、冷房運転と暖房運転とを切り換えることがで
きる」という効果を損なうことなく、「低温再生器から
蒸発器に冷媒蒸気をバイパスさせる」という簡単な操作
によって低温再生器ドレン室と凝縮器との間の圧力損失
を減少せしめることができる。これにより、凝縮器を基
準として考えたとき低温再生器内の冷媒蒸気圧力が低下
し、従って高温再生器内の冷媒蒸気圧力が低下する。す
なわち、暖房増加運転のために高温再生器に投入する熱
量を増加して該高温再生器から発生する冷媒蒸気の流量
を増加させても、前記圧力損失の減少分だけ高温再生器
内圧の上昇を抑制することができる。吸収式冷温水器の
サイクルフロー内における流量・圧力の分布は流体力学
および熱力学的なバランスによって定まるので、本請求
項を適用した場合、必ずしも暖房能力を無制限に増加せ
しめ得るものではないが、本発明者らの実験により、暖
房標準の仕様を中部日本〜西日本向けに設定した場合、
北海道向け寒冷地仕様の暖房増加による高温再生器発生
冷媒蒸気流量の増加に対応して本請求項の発明を適用す
ると、高温再生器内の冷媒蒸気圧力を大気圧に比して負
圧に維持せしめて得ることが確認された。
[0015] Based on the principle described above, the method according to the first aspect of the present invention comprises a high-temperature regenerator, a low-temperature regenerator,
A condenser, an evaporator, an absorber, a heat exchanger, a solution circulation pump, a refrigerant spray pump, and a gas phase part of the condenser and an evaporator via a U-shaped seal tube. When connecting and branching a branch pipe branched from the discharge side of the refrigerant spray pump to the U-shaped seal pipe to operate an absorption chiller / heater to perform a heating operation, the absorption chiller / heater is connected to the absorption chiller / heater. In the method of increasing the amount of heat given to the high-temperature regenerator and increasing the flow rate of the refrigerant vapor generated from the high-temperature regenerator to increase the heating capacity as compared with the case of performing the cooling operation, the evaporation from the drain chamber of the low-temperature regenerator is performed. By reducing the amount of refrigerant liquid generated in the low-temperature regenerator by bypassing the refrigerant vapor in the low-temperature regenerator, the pressure loss between the low-temperature regenerator drain chamber and the condenser can be reduced by the "unit time for applying to the high-temperature regenerator during the heating operation. Heat per hit Reduce the pressure inside the high-temperature regenerator to below atmospheric pressure by reducing it to almost the same level as the "pressure loss between the low-temperature regenerator drain chamber and the condenser" in the "heating standard condition that does not increase compared to cooling operation". While maintaining, the amount of heat given to the high-temperature regenerator is increased from the rated value in the cooling operation state, and the heating increase operation is performed by increasing the refrigerant vapor flow rate generated from the high-temperature regenerator while preventing abnormal pressure rise in the high-temperature regenerator. It is characterized by doing. According to the method of the first aspect of the present invention described above, a valve for switching piping and opening / closing a flow path in a cycle flow system, which is an advantage of an absorption chiller / heater equipped with a U-shaped sealing pipe, is installed. Without losing the effect of `` being able to switch between cooling operation and heating operation '' without losing the effect of `` bypassing the refrigerant vapor from the low-temperature regenerator to the evaporator '' with the low-temperature regenerator drain chamber. The pressure loss to and from the condenser can be reduced. As a result, the refrigerant vapor pressure in the low-temperature regenerator decreases when considered on the basis of the condenser, and accordingly, the refrigerant vapor pressure in the high-temperature regenerator decreases. That is, even if the amount of heat input to the high-temperature regenerator for the heating increasing operation is increased to increase the flow rate of the refrigerant vapor generated from the high-temperature regenerator, the internal pressure of the high-temperature regenerator is increased by the reduced pressure loss. Can be suppressed. Since the distribution of flow rate and pressure in the cycle flow of the absorption type water heater / cooler is determined by the hydrodynamic and thermodynamic balances, applying this claim does not necessarily increase the heating capacity without limit, According to experiments by the inventors, when the specification of the heating standard is set for Central Japan to West Japan,
When the invention of this claim is applied in response to the increase in the refrigerant vapor flow rate generated by the high-temperature regenerator due to the increase in heating in the cold district specifications for Hokkaido, the refrigerant vapor pressure in the high-temperature regenerator is maintained at a negative pressure compared to the atmospheric pressure It was confirmed that it would be obtained at least.

【0016】請求項2に係る発明方法の構成は、高温再
生器と、低温再生器と、凝縮器と、蒸発器と、吸収器
と、熱交換器と、溶液循環ポンプと、冷媒スプレポンプ
とを具備し、かつ、前記凝縮器の気相部と蒸発器とをU
字シール管を介して接続するとともに、前記冷媒スプレ
ポンプの吐出側から分岐された分岐管を前記U字シール
管に接続して成る吸収式冷温水機を運転して暖房作動を
行なわせる場合、当該吸収式冷温水機に冷房作動せしめ
る場合に比して、高温再生器に与える熱量を増加させ、
該高温再生器から発生する冷媒蒸気の流量を増加せしめ
て暖房能力を増加する方法において、低温再生器のドレ
ン室から凝縮器に冷媒蒸気をバイパスさせて該低温再生
器内の熱交換量を減らし、低温再生器内の冷媒液発生量
を減少させることにより、低温再生器ドレン室と凝縮器
との間の圧力損失を「暖房運転時に高温再生器に与える
単位時間当たり熱量を、冷房運転時に比して増加せしめ
ない暖房標準の状態」における「低温再生器ドレン室と
凝縮器との間の圧力損失」とほぼ同レベルに減少せし
め、高温再生器内の圧力を大気圧以下に維持しつつ、高
温再生器に与える熱量を冷房運転状態における定格値よ
りも増加し、高温再生器内の異常昇圧を防止しつつ該高
圧再生器から発生する冷媒蒸気流量を増加させて暖房増
加運転することを特徴とする。以上に説明した請求項2
の発明方法によると、U字シール管を備えた吸収式冷温
水機の長所であるところの「サイクルフロー系統に関し
て配管を切り換えたり流路開閉のための弁類を設置した
りすることなく、冷房運転と暖房運転とを切り換えるこ
とができる」という効果を損なうことなく、「低温再生
器から凝縮器に冷媒蒸気をバイパスさせる」という簡単
な操作によって低温再生器ドレン室と凝縮器との間の圧
力損失を減少せしめることができる。これにより、凝縮
器を基準として考えたとき低温再生器内の冷媒蒸気圧力
が低下し、従って高温再生器内の冷媒蒸気圧力が低下す
る。すなわち、暖房増加運転のために高温再生器に投入
する熱量を増加して該高温再生器から発生する冷媒蒸気
の流量を増加させても、前記圧力損失の減少分だけ高温
再生器内圧の上昇を抑制することができる。吸収式冷温
水器のサイクルフロー内における流量・圧力の分布は流
体力学および熱力学的なバランスによって定まるので、
本請求項を適用した場合、必ずしも暖房能力を無制限に
増加せしめ得るものではないが、本発明者らの実験によ
り、暖房標準の仕様を中部日本〜西日本向けに設定した
場合、北海道向け寒冷地仕様の暖房増加による高温再生
器発生冷媒蒸気流量の増加に対応して本請求項の発明を
適用すると、高温再生器内の冷媒蒸気圧力を大気圧に比
して負圧に維持せしめ得ることが確認された。
According to a second aspect of the present invention, a high-temperature regenerator, a low-temperature regenerator, a condenser, an evaporator, an absorber, a heat exchanger, a solution circulation pump, and a refrigerant spray pump are provided. And the gas phase part of the condenser and the evaporator are U
When the heating and cooling operation is performed by operating an absorption type chiller / heater configured by connecting the branch pipe branched from the discharge side of the refrigerant spray pump to the U-shaped seal pipe while connecting through the U-shaped seal pipe, The amount of heat given to the high-temperature regenerator is increased compared to the case where the absorption-type water heater is used for cooling operation.
In the method of increasing the heating capacity by increasing the flow rate of the refrigerant vapor generated from the high-temperature regenerator, the refrigerant vapor is bypassed from the drain chamber of the low-temperature regenerator to the condenser to reduce the amount of heat exchange in the low-temperature regenerator. By reducing the amount of refrigerant liquid generated in the low-temperature regenerator, the pressure loss between the low-temperature regenerator drain chamber and the condenser can be reduced by comparing the amount of heat per unit time given to the high-temperature regenerator in the heating operation with the heat loss in the cooling operation. In the heating standard condition that cannot be increased by reducing the pressure loss between the low-temperature regenerator drain chamber and the condenser to almost the same level, while maintaining the pressure in the high-temperature regenerator below atmospheric pressure, The amount of heat given to the high-temperature regenerator is increased from the rated value in the cooling operation state, and the heating increase operation is performed by increasing the flow rate of the refrigerant vapor generated from the high-pressure regenerator while preventing abnormal pressure rise in the high-temperature regenerator. To. Claim 2 described above
According to the method of the invention, the advantage of the absorption type chiller / heater equipped with a U-shaped seal pipe is that "cooling is performed without switching piping for the cycle flow system or installing valves for opening and closing the flow path. The pressure between the low-temperature regenerator drain chamber and the condenser can be reduced by a simple operation of "bypassing the refrigerant vapor from the low-temperature regenerator to the condenser" without impairing the effect that "the operation and the heating operation can be switched." Loss can be reduced. As a result, the refrigerant vapor pressure in the low-temperature regenerator decreases when considered on the basis of the condenser, and accordingly, the refrigerant vapor pressure in the high-temperature regenerator decreases. That is, even if the amount of heat input to the high-temperature regenerator for the heating increasing operation is increased to increase the flow rate of the refrigerant vapor generated from the high-temperature regenerator, the internal pressure of the high-temperature regenerator is increased by the reduced pressure loss. Can be suppressed. Since the distribution of flow rate and pressure in the cycle flow of the absorption type water heater / cooler is determined by the hydrodynamic and thermodynamic balance,
When applying this claim, it is not always possible to increase the heating capacity indefinitely, but by experiments of the present inventors, if the specification of the heating standard is set for Central Japan-West Japan, cold district specifications for Hokkaido It has been confirmed that applying the present invention in response to an increase in the flow rate of the refrigerant vapor generated by the high-temperature regenerator due to an increase in heating of the refrigerant makes it possible to maintain the refrigerant vapor pressure in the high-temperature regenerator at a negative pressure compared to the atmospheric pressure. Was done.

【0017】請求項3に係る発明方法の構成は、高温再
生器と、低温再生器と、凝縮器と、蒸発器と、吸収器
と、熱交換器と、溶液循環ポンプと、冷媒スプレポンプ
とを具備し、かつ、前記凝縮器の気相部と蒸発器とをU
字シール管を介して接続するとともに、前記冷媒スプレ
ポンプの吐出側から分岐された分岐管を前記U字シール
管に接続して成る吸収式冷水温機を運転して暖房作動を
行なわせる場合、当該吸収式冷温水機に冷房作動せしめ
る場合に比して、高温再生器に与える熱量を増加させ、
該高温再生器から発生する冷媒蒸気の流量を増加せしめ
て暖房能力を増加する方法において、低温再生器のドレ
ン室から冷媒液を低温再生器の本体部分へ還流せしめ
て、凝縮器へ送る冷媒液の流量を減少せしめることによ
り、低温再生器ドレン室と凝縮器との間の圧力損失を、
「暖房運転時に高温再生器に与える単位時間当たり熱量
を、冷房運転時に比して増加せしめない暖房標準の状
態」における「低温再生器ドレン室と凝縮器との間の圧
力損失」とほぼ同レベルに減少せしめ、高温再生器内の
圧力を大気圧以下に維持しつつ、高温再生器に与える熱
量を冷房運転状態における定格値よりも増加し、高温再
生器内の異常昇圧を防止しつつ該高温再生器から発生す
る冷媒蒸気流量を増加させて暖房増加運転することを特
徴とする。以上に説明した請求項3の発明方法による
と、U字シール管を備えた吸収式冷温水機の長所である
ところの「サイクルフロー系統に関して配管を切り換え
たり流路開閉のための弁類を設置したりすることなく、
冷房運転と暖房運転とを切り換えることができる」とい
う効果を損なうことなく「低温再生器のドレン室から冷
媒液を低温再生器の本体部分へ還流させる」という簡単
な操作によって低温再生器ドレン室と凝縮器との間の圧
力損失を減少せしめることができる。これにより、凝縮
器を基準として考えたとき低温再生器内の冷媒蒸気圧力
が低下し、従って高温再生器内の冷媒蒸気圧力が低下す
る。すなわち、暖房増加運転のために高温再生器に投入
する熱量を増加して該高温再生器から発生する冷媒蒸気
の流量を増加させても、前記圧力損失の減少分だけ高温
再生器内圧の上昇を抑制することができる。吸収式冷温
水機のサイクルフロー内における流量・圧力の分布は流
体力学および熱力学的なバランスによって定まるので、
本請求項を適用した場合、必ずしも暖房能力を無制限に
増加せしめ得るものではないが、本発明者らの実験によ
り、暖房標準の仕様を中部日本〜西日本向けに設定した
場合、北海道向け寒冷地仕様の暖房増加による高温再生
器発生冷媒蒸気流量の増加に対応して本請求項の発明を
適用すると、高温再生器内の冷媒蒸気圧力を大気圧に比
して負圧に維持せしめ得ることが確認された。
According to a third aspect of the present invention, a high-temperature regenerator, a low-temperature regenerator, a condenser, an evaporator, an absorber, a heat exchanger, a solution circulation pump, and a refrigerant spray pump are provided. And the vapor phase part of the condenser and the evaporator are U
Connected via a U-shaped seal pipe, and when operating an absorption type cold water heater configured by connecting a branch pipe branched from the discharge side of the refrigerant spray pump to the U-shaped seal pipe to perform a heating operation, The amount of heat given to the high-temperature regenerator is increased compared to the case where the absorption-type water heater is used for cooling operation.
In the method of increasing the heating capacity by increasing the flow rate of the refrigerant vapor generated from the high-temperature regenerator, the refrigerant liquid is returned from the drain chamber of the low-temperature regenerator to the main body of the low-temperature regenerator and sent to the condenser. The pressure loss between the cold regenerator drain chamber and the condenser is reduced by reducing the flow rate of
Approximately the same level as the "pressure loss between the low-temperature regenerator drain chamber and the condenser" in "the heating standard state where the amount of heat given to the high-temperature regenerator during the heating operation per unit time cannot be increased compared to the cooling operation" While maintaining the pressure in the high-temperature regenerator below the atmospheric pressure, increasing the amount of heat given to the high-temperature regenerator from the rated value in the cooling operation state, and preventing the abnormal high pressure in the high-temperature regenerator while maintaining the high-temperature regenerator. A heating increase operation is performed by increasing the flow rate of refrigerant vapor generated from the regenerator. According to the above-described method of the third aspect of the present invention, the advantage of the absorption type water chiller / heater equipped with the U-shaped sealing pipe is that "the valves for switching the piping and opening / closing the flow path in the cycle flow system are installed. Without doing
The cooling operation can be switched between the cooling operation and the heating operation '' without compromising the effect of `` recirculating the refrigerant liquid from the drain chamber of the low-temperature regenerator to the main body of the low-temperature regenerator '' by a simple operation of The pressure loss to and from the condenser can be reduced. As a result, the refrigerant vapor pressure in the low-temperature regenerator decreases when considered on the basis of the condenser, and accordingly, the refrigerant vapor pressure in the high-temperature regenerator decreases. That is, even if the amount of heat input to the high-temperature regenerator for the heating increasing operation is increased to increase the flow rate of the refrigerant vapor generated from the high-temperature regenerator, the internal pressure of the high-temperature regenerator is increased by the reduced pressure loss. Can be suppressed. Since the distribution of flow rate and pressure in the cycle flow of the absorption chiller / heater is determined by the hydrodynamic and thermodynamic balance,
When applying this claim, it is not always possible to increase the heating capacity indefinitely, but by experiments of the present inventors, if the specification of the heating standard is set for Central Japan-West Japan, cold district specifications for Hokkaido It has been confirmed that applying the present invention in response to an increase in the flow rate of the refrigerant vapor generated by the high-temperature regenerator due to an increase in heating of the refrigerant makes it possible to maintain the refrigerant vapor pressure in the high-temperature regenerator at a negative pressure compared to the atmospheric pressure. Was done.

【0018】請求項4に係る発明方法の構成は、高温再
生器と、低温再生器と、凝縮器と、蒸発器と、吸収器
と、熱交換器と、溶液循環ポンプと、冷媒スプレポンプ
とを具備し、かつ、前記蒸発器の底部に溜まっている冷
媒液を揚液して吸収器に導く「冷媒蒸気を駆動源とする
気泡ポンプ」を設けて成る吸収式冷温水機を運転して暖
房作動を行なわせる場合、当該吸収式冷温水機に冷房作
動せしめる場合に比して、高温再生器に与える熱量を増
加させ、該高温再生器から発生する冷媒蒸気の流量を増
加せしめて暖房能力を増加する方法において、低温再生
器のドレン室から蒸発器に冷媒蒸気をバイパスさせて該
低温再生器内の冷媒液発生量を減少せしめることによ
り、低温再生器ドレン室と凝縮器との間の圧力損失を
「暖房運転時に高温再生器に与える単位時間当たり熱量
を、冷房運転時に比して増加せしめない暖房標準の状
態」における「低温再生器ドレン室と凝縮器との間の圧
力損失」とほぼ同レベルに減少せしめ、高温再生器内の
圧力を大気圧以下に維持しつつ、高温再生器に与える熱
量を冷房運転状態における定格値よりも増加し、高温再
生器内の異常昇圧を防止しつつ該高温再生器から発生す
る冷媒蒸気流量を増加させて暖房増加運転することを特
徴とする。以上に説明した請求項4の発明方法による
と、冷媒蒸気を駆動源とする気泡ポンプによって蒸発器
底部の冷媒液を揚液する方式の吸収式冷温水機の長所で
あるところの「サイクルフロー系統に関して配管を切り
換えたり流路開閉のための弁類を設置したりすることな
く、冷房運転と暖房運転とを切り換えることができる」
という効果を損なうことなく、「低温再生器から蒸発器
に冷媒蒸気をバイパスさせるという簡単な操作によって
低温再生器ドレン室と凝縮器との間の圧力損失を減少せ
しめることができる。これにより、凝縮器を基準として
考えたとき低温再生器内の冷媒蒸気圧力が低下し、従っ
て高温再生器内の冷媒蒸気圧力が低下する。すなわち、
暖房増加運転のために高温再生器に投入する熱量を増加
して該高温再生器から発生する冷媒蒸気の流量を増加さ
せても、前記圧力損失の減少分だけ高温再生器内圧力の
上昇を抑制することができる。吸収式冷温水器のサイク
ルフロー内における流量・圧力の分布は流体力学および
熱力学的なバランスによって定まるので、本請求項を適
用した場合、必ずしも暖房能力を無制限に増加せしめ得
るものではないが、本発明者らの実験により、暖房標準
の仕様を中部日本〜西日本向けに設定した場合、北海道
向け寒冷地仕様の暖房増加による高温再生器発生冷媒蒸
気流量の増加に対応して本請求項の発明を適用すると、
高温再生器内の冷媒蒸気圧力を大気圧に比して負圧に維
持せしめ得ることが確認された。
According to a fourth aspect of the present invention, the high-temperature regenerator, the low-temperature regenerator, the condenser, the evaporator, the absorber, the heat exchanger, the solution circulation pump, and the refrigerant spray pump are provided. Heating by operating an absorption type chiller / heater provided with a “bubble pump driven by refrigerant vapor as a driving source” that pumps a refrigerant liquid accumulated at the bottom of the evaporator and guides the refrigerant to the absorber When performing the operation, the amount of heat given to the high-temperature regenerator is increased, and the flow rate of the refrigerant vapor generated from the high-temperature regenerator is increased as compared with the case where the absorption type chiller / heater is operated for cooling, thereby increasing the heating capacity. In an increasing method, the pressure between the cold regenerator drain chamber and the condenser is reduced by bypassing refrigerant vapor from the drain chamber of the low temperature regenerator to the evaporator to reduce the amount of refrigerant liquid generated in the low temperature regenerator. Loss is "high temperature regeneration during heating operation The amount of heat per unit time given to the heating unit is reduced to almost the same level as the "pressure loss between the low-temperature regenerator drain chamber and the condenser" in the "heating standard condition that does not increase compared to the cooling operation". While maintaining the internal pressure at or below atmospheric pressure, the amount of heat given to the high-temperature regenerator is increased from the rated value in the cooling operation state, and refrigerant vapor generated from the high-temperature regenerator while preventing abnormal pressure rise in the high-temperature regenerator It is characterized in that a heating increase operation is performed by increasing a flow rate. According to the method of the fourth aspect described above, the "cycle flow system" which is an advantage of the absorption type chiller / heater of the type in which the refrigerant liquid at the bottom of the evaporator is pumped by the bubble pump driven by the refrigerant vapor. It is possible to switch between cooling operation and heating operation without switching piping or installing valves for opening and closing the flow path.
The pressure loss between the drain chamber of the low-temperature regenerator and the condenser can be reduced by a simple operation of bypassing the refrigerant vapor from the low-temperature regenerator to the evaporator. When considered on the basis of the regenerator, the refrigerant vapor pressure in the low-temperature regenerator decreases, and therefore the refrigerant vapor pressure in the high-temperature regenerator decreases.
Even if the amount of heat input to the high-temperature regenerator for the heating increasing operation is increased to increase the flow rate of the refrigerant vapor generated from the high-temperature regenerator, the increase in the internal pressure of the high-temperature regenerator is suppressed by the reduced pressure loss. can do. Since the distribution of flow rate and pressure in the cycle flow of the absorption type water heater / cooler is determined by the hydrodynamic and thermodynamic balances, applying this claim does not necessarily increase the heating capacity without limit, According to the experiments of the present inventors, when the specification of the heating standard is set for central Japan to western Japan, the invention of the present invention corresponds to the increase in the flow rate of the high-temperature regenerator-generated refrigerant vapor due to the increase in heating of the cold district specification for Hokkaido. Apply
It has been confirmed that the refrigerant vapor pressure in the high-temperature regenerator can be maintained at a negative pressure compared to the atmospheric pressure.

【0019】請求項5に係る発明方法の構成は、高温再
生器と、低温再生器と、凝縮器と、蒸発器と、吸収器
と、熱交換器と、溶液循環ポンプと、冷媒スプレポンプ
とを具備し、かつ、前記蒸発器の底部に溜まっている冷
媒液を揚液して吸収器に導く「冷媒蒸気を駆動源とする
気泡ポンプ」を設けて成る吸収式冷温水機を運転して暖
房作動を行なわせる場合、当該吸収式冷温水機に冷房作
動せしめる場合に比して、高温再生器に与える熱量を増
加させ、該高温再生器から発生する冷媒蒸気の流量を増
加せしめて暖房能力を増加する方法において、低温再生
器のドレン室から凝縮器に冷媒蒸気をバイパスさせて該
低温再生器内の熱交換量を減らし、低温再生器内の冷媒
液発生量を減少させることにより、低温再生器ドレン室
と凝縮器との間の圧力損失を「暖房運転時に高温再生器
に与える単位時間当たり熱量を、冷房運転時に比して増
加せしめない暖房標準の状態」における「低温再生器ド
レン室と凝縮器との間の圧力損失」とほぼ同レベルに減
少せしめ、高温再生器内の圧力を大気圧以下に維持しつ
つ、高温再生器に与える熱量を冷房運転状態における定
格値よりも増加し、高温再生器内の異常昇圧を防止しつ
つ該高温再生器から発生する冷媒蒸気流量を増加させて
暖房増加運転することを特徴とする。以上に説明した請
求項5の発明方法によると、気泡ポンプを備えた吸収式
冷温水器の長所であるところの「サイクルフロー系統に
関して配管を切り換えたり流路開閉のための弁類を設置
したりすることなく、冷房運転と暖房運転とを切り換え
ることができる」という効果を損なうことなく、「低温
再生器から凝縮器に冷媒蒸気をバイパスさせる」という
簡単な操作によって低温再生器ドレン室と凝縮器との間
の圧力損失を減少せしめることができる。これにより、
凝縮器を基準として考えたとき低温再生器内の冷媒蒸気
圧力が低下し、従って高温再生器内の冷媒蒸気圧力が低
下する。すなわち、暖房増加運転のために高温再生器に
投入する熱量を増加して該高温再生器から発生する冷媒
蒸気の流量を増加させても、前記圧力損失の減少分だけ
高温再生器内圧の上昇を抑制することができる。吸収式
冷温水機のサイクルフロー内における流量・圧力の分布
は流体力学および熱力学的なバランスによって定まるの
で、本請求項を適用した場合、必ずしも暖房能力を無制
限に増加せしめ得るものではないが、本発明者らの実験
により、暖房標準の仕様を中部日本〜西日本向けに設定
した場合、北海道向け寒冷地仕様の暖房増加による高温
再生器発生冷媒蒸気流量の増加に対応して本請求項の発
明を適用すると、高温再生器内の冷媒蒸気圧力を大気圧
に比して負圧に維持せしめ得ることが確認された。
The method according to the fifth aspect of the present invention comprises a high-temperature regenerator, a low-temperature regenerator, a condenser, an evaporator, an absorber, a heat exchanger, a solution circulation pump, and a refrigerant spray pump. Heating by operating an absorption type chiller / heater provided with a “bubble pump driven by refrigerant vapor as a driving source” that pumps a refrigerant liquid accumulated at the bottom of the evaporator and guides the refrigerant to the absorber When performing the operation, the amount of heat given to the high-temperature regenerator is increased, and the flow rate of the refrigerant vapor generated from the high-temperature regenerator is increased as compared with the case where the absorption type chiller / heater is operated for cooling, thereby increasing the heating capacity. In the increasing method, the refrigerant vapor is bypassed from the drain chamber of the low-temperature regenerator to the condenser to reduce the amount of heat exchange in the low-temperature regenerator and to reduce the amount of refrigerant liquid generated in the low-temperature regenerator, thereby enabling low-temperature regeneration. Pressure between the drain chamber and the condenser The loss is almost the same as the "pressure loss between the low-temperature regenerator drain chamber and the condenser" in "the heating standard state where the amount of heat per unit time given to the high-temperature regenerator during the heating operation is not increased compared to the cooling operation". While keeping the pressure inside the high-temperature regenerator below the atmospheric pressure while increasing the amount of heat given to the high-temperature regenerator above the rated value in the cooling operation state, preventing abnormal pressure rise in the high-temperature regenerator A heating increase operation is performed by increasing a refrigerant vapor flow rate generated from the high-temperature regenerator. According to the method of the invention described in claim 5 described above, the advantage of the absorption-type water heater / heater equipped with the bubble pump is that "switching of piping and installation of valves for opening and closing the flow path in the cycle flow system" Without losing the effect of being able to switch between the cooling operation and the heating operation without performing `` cooling operation and heating operation '', by a simple operation of `` bypassing refrigerant vapor from the low-temperature regenerator to the condenser '' and the low-temperature regenerator drain chamber and condenser And the pressure loss between them can be reduced. This allows
Considering the condenser as a reference, the refrigerant vapor pressure in the low-temperature regenerator decreases, and thus the refrigerant vapor pressure in the high-temperature regenerator decreases. That is, even if the amount of heat input to the high-temperature regenerator for the heating increasing operation is increased to increase the flow rate of the refrigerant vapor generated from the high-temperature regenerator, the internal pressure of the high-temperature regenerator is increased by the reduced pressure loss. Can be suppressed. Since the distribution of flow rate and pressure in the cycle flow of the absorption chiller / heater is determined by the hydrodynamic and thermodynamic balances, applying this claim does not necessarily increase the heating capacity indefinitely, According to experiments by the present inventors, when the specification of the heating standard is set for Central Japan to West Japan, the invention of the present invention corresponds to the increase in the flow rate of the high-temperature regenerator-generated refrigerant vapor due to the increase in heating of the cold district specification for Hokkaido. It has been confirmed that the application of the formula allows the refrigerant vapor pressure in the high-temperature regenerator to be maintained at a negative pressure compared to the atmospheric pressure.

【0020】請求項6に係る発明方法の構成は、高温再
生器と、低温再生器と、凝縮器と、蒸発器と、吸収器
と、熱交換器と、溶液循環ポンプと、冷媒スプレポンプ
とを具備し、かつ、前記蒸発器の底部に溜まっている冷
媒液を揚液して吸収器に導く「冷媒蒸気を駆動源とする
気泡ポンプ」を設けて成る吸収式冷温水機を運転して暖
房作動を行なわせる場合、当該吸収式冷温水機に冷房作
動せしめる場合に比して、高温再生器に与える熱量を増
加させ、該高温再生器から発生する冷媒蒸気の流量を増
加せしめて暖房能力を増加する方法において低温再生器
のドレン室から冷媒液を低温再生器の本体部分へ還流せ
しめて、凝縮器ほ送る冷媒液の流量を減少せしめること
により、低温再生器ドレン室と凝縮器との間の圧力損失
を、「暖房運転時に高温再生器に与える単位時間当たり
熱量を、冷房運転時に比して増加せしめない暖房標準の
状態」における「低温再生器ドレン室と凝縮との間の圧
力損失」とほぼ同レベルに減少せしめ、高温再生器内の
圧力を大気圧以下に維持しつつ、高温再生器に与える熱
量を冷房運転時における定格値よりも増加し、高温発生
器内の異常昇圧を防止しつつ該高温発生器から発生する
冷媒蒸気流量を増加させて暖房増加運転することを特徴
とする。以上に説明した請求項6の発明方法によると、
気泡ポンプを備えた吸収式冷温水機の長所であるところ
の「サイクルフロー系統に関して配管を切り換えたり流
路開閉のための弁類を設置したりすることなく、冷房運
転と暖房運転とを切り換えることができる」という効果
を損なうことなく、「低温再生器のドレン室から、冷媒
液を低温再生器の本体部分へ還流させる」という簡単な
操作によって低温再生器ドレン室と凝縮器との間の圧力
損失を減少せしめることができる。これにより、凝縮器
を基準として考えたとき低温再生器内の冷媒蒸気圧力が
低下し、従って高温再生器内の冷媒蒸気圧力が低下す
る。すなわち、暖房増加運転のために高温再生器に投入
する熱量を増加して該高温再生器から発生する冷媒蒸気
の流量を増加させても、前記圧力損失の減少分だけ高温
再生器内圧の上昇を抑制することができる。吸収式冷温
水機のサイクルフロー内における流量・圧力の分布は流
体力学および熱力学的なバランスによって定まるので、
本請求項を適用した場合、必ずしも暖房能力を無制限に
増加せしめ得るものではないが、本発明者らの実験によ
り、暖房標準の仕様を中部日本〜西日本向けに設定した
場合、北海道向け寒冷地仕様の暖房増加による高温再生
器発生冷媒蒸気流量の増加に対応して本請求項の発明を
適用すると、高温再生器内の冷媒蒸気圧力を大気圧に比
して負圧に維持せしめ得ることが確認された。
According to a sixth aspect of the present invention, a high-temperature regenerator, a low-temperature regenerator, a condenser, an evaporator, an absorber, a heat exchanger, a solution circulation pump, and a refrigerant spray pump are provided. Heating by operating an absorption type chiller / heater provided with a “bubble pump driven by refrigerant vapor as a driving source” that pumps a refrigerant liquid accumulated at the bottom of the evaporator and guides the refrigerant to the absorber When performing the operation, the amount of heat given to the high-temperature regenerator is increased, and the flow rate of the refrigerant vapor generated from the high-temperature regenerator is increased as compared with the case where the absorption type chiller / heater is operated for cooling, thereby increasing the heating capacity. In the increasing method, the refrigerant liquid is recirculated from the drain chamber of the low-temperature regenerator to the main part of the low-temperature regenerator, and the flow rate of the refrigerant liquid sent to the condenser is reduced, so that the space between the low-temperature regenerator drain chamber and the condenser is reduced. Pressure loss during heating operation The amount of heat given to the regenerator per unit time is reduced to almost the same level as the "pressure loss between the low-temperature regenerator drain chamber and the condensate" in the "heating standard condition that does not increase compared to the cooling operation". While maintaining the pressure in the regenerator below atmospheric pressure, the amount of heat given to the high-temperature regenerator is increased from the rated value during the cooling operation, and is generated from the high-temperature generator while preventing abnormal pressure rise in the high-temperature generator. The heating increase operation is performed by increasing the refrigerant vapor flow rate. According to the invention method of claim 6 described above,
Advantages of absorption type water heaters with bubble pumps: "Switching between cooling operation and heating operation without switching pipes and installing valves for opening and closing the flow path in the cycle flow system. Pressure between the low-temperature regenerator drain chamber and the condenser by a simple operation of `` recirculating the refrigerant liquid from the low-temperature regenerator drain chamber to the main part of the low-temperature regenerator '' without impairing the effect of Loss can be reduced. As a result, the refrigerant vapor pressure in the low-temperature regenerator decreases when considered on the basis of the condenser, and accordingly, the refrigerant vapor pressure in the high-temperature regenerator decreases. That is, even if the amount of heat input to the high-temperature regenerator for the heating increasing operation is increased to increase the flow rate of the refrigerant vapor generated from the high-temperature regenerator, the internal pressure of the high-temperature regenerator is increased by the reduced pressure loss. Can be suppressed. Since the distribution of flow rate and pressure in the cycle flow of the absorption chiller / heater is determined by the hydrodynamic and thermodynamic balance,
When applying this claim, it is not always possible to increase the heating capacity indefinitely, but by experiments of the present inventors, if the specification of the heating standard is set for Central Japan-West Japan, cold district specifications for Hokkaido It has been confirmed that applying the present invention in response to an increase in the flow rate of the refrigerant vapor generated by the high-temperature regenerator due to an increase in heating of the refrigerant makes it possible to maintain the refrigerant vapor pressure in the high-temperature regenerator at a negative pressure compared to the atmospheric pressure. Was done.

【0021】請求項7に係る発明装置の構成は、高温再
生器と、低温再生器と、凝縮器と、蒸発器と、吸収器
と、熱交換器と、溶液循環ポンプと、冷媒スプレポンプ
とを具備し、かつ、前記凝縮器の気相部と蒸発器とをU
字シール管を介して接続するとともに、前記冷媒スプレ
ポンプの吐出側から分岐された分岐管を前記U字シール
管に接続して成る吸収式冷温水機であって、当該吸収式
冷温水機に冷房作動せしめる場合に比して、高温再生器
に与える熱量を増加させ、該高温再生器から発生する冷
媒蒸気の流量を増加せしめて暖房能力を増加するように
構成された暖房増加型吸収式冷温水機において、前記低
温再生器のドレン室と蒸発器との間に、閉止可能な弁手
段を備えたバイパス管路が設けられていて、上記の弁手
段を開いて低温再生器から蒸発器に冷媒蒸気をバイパス
せしめ得るようになっており、上記の弁手段を開くこと
により、低温再生器ドレン室と凝縮器との間の圧力損失
が低下して、高温再生器に与える熱量を増加せしめて該
高温再生器から発生する冷媒蒸気の流量を増加させても
該高温再生器内の冷媒蒸気圧力の上昇が抑制されて、大
気圧以下に維持される構造であることを特徴とする。以
上に説明した請求項7の発明装置によると、低温再生器
のドレン室と蒸発器との間に、閉止可能な弁手段を有す
るバイパス管路が設けられているので、冷房運転時には
この弁手段を閉弁し暖房運転時にはこの弁手段を開弁す
ることによって、高温再生器内の冷媒蒸気圧力を大気圧
に対して負圧に保ちつつ、暖房増加運転することができ
る。
According to a seventh aspect of the present invention, a high-temperature regenerator, a low-temperature regenerator, a condenser, an evaporator, an absorber, a heat exchanger, a solution circulation pump, and a refrigerant spray pump are provided. And the gas phase part of the condenser and the evaporator are U
An absorption chiller / heater connected by a U-shaped seal pipe and connected to a branch pipe branched from the discharge side of the refrigerant spray pump to the U-shaped seal pipe. As compared with the case of operating, the heating amount given to the high-temperature regenerator is increased, the flow rate of the refrigerant vapor generated from the high-temperature regenerator is increased, and the heating capacity is increased to increase the heating capacity. A bypass line provided with a valve means that can be closed is provided between the drain chamber of the low-temperature regenerator and the evaporator, and the valve means is opened to allow the refrigerant to flow from the low-temperature regenerator to the evaporator. By opening the valve means, the pressure loss between the low temperature regenerator drain chamber and the condenser is reduced, and the amount of heat given to the high temperature regenerator is increased. From high temperature regenerator Rise of the refrigerant vapor pressure in said high temperature regenerator increases the flow rate of the refrigerant vapor is suppressed, characterized in that it is a structure that is maintained at or below atmospheric pressure. According to the above-described apparatus of the present invention, since the bypass pipe having the closable valve means is provided between the drain chamber of the low-temperature regenerator and the evaporator, the valve means is provided during the cooling operation. By opening the valve means during the heating operation, the heating operation can be increased while maintaining the refrigerant vapor pressure in the high-temperature regenerator at a negative pressure with respect to the atmospheric pressure.

【0022】請求項8に係る発明装置の構成は、高温再
生器と、低温再生器と、凝縮器と、蒸発器と、吸収器
と、熱交換器と、溶液循環ポンプと、冷媒スプレポンプ
とを具備し、かつ、前記凝縮器の気相部と蒸発器とをU
字シール管を介して接続するとともに、前記冷媒スプレ
ポンプの吐出側から分岐された分岐管を前記U字シール
管に接続して成る吸収式冷温水機であって、当該吸収式
冷温水機に冷房作動せしめる場合に比して、高温再生器
に与える熱量を増加させ、該高温再生器から発生する冷
媒蒸気の流量を増加せしめて暖房能力を増加するように
構成された暖房増加型吸収式冷温水機において、前記低
温再生器のドレン室と凝縮器との間に、閉止可能な弁手
段を備えたバイパス管路が設けられていて、上記の弁手
段を開いて低温再生器から凝縮器に冷媒蒸気をバイパス
せしめ得るようになっており、上記の弁手段を開くこと
により、低温再生器ドレン室と凝縮器との間の圧力損失
が低下して、高温再生器に与える熱量を増加せしめて該
高温再生器から発生する冷媒蒸気の流量を増加させても
該高温再生器内の冷媒蒸気圧力の上昇が抑制されて、大
気圧以下に維持される構造であることを特徴とする。以
上に説明した請求項8の発明装置によると、低温再生器
のドレン室と凝縮器との間に、閉止可能な弁手段を有す
るバイパス管路が設けられているので、冷房運転時には
この弁手段を閉弁し暖房運転時にはこの弁手段を開弁す
ることによって、高温再生器内の冷媒蒸気圧力を大気圧
に対して負圧に保ちつつ、暖房増加運転することができ
る。
[0022] The structure of the apparatus according to claim 8 is that a high temperature regenerator, a low temperature regenerator, a condenser, an evaporator, an absorber, a heat exchanger, a solution circulation pump, and a refrigerant spray pump are provided. And the gas phase part of the condenser and the evaporator are U
An absorption chiller / heater connected by a U-shaped seal pipe and connected to a branch pipe branched from the discharge side of the refrigerant spray pump to the U-shaped seal pipe. As compared with the case of operating, the heating amount given to the high-temperature regenerator is increased, the flow rate of the refrigerant vapor generated from the high-temperature regenerator is increased, and the heating capacity is increased to increase the heating capacity. In the apparatus, a bypass line having a valve means that can be closed is provided between the drain chamber of the low-temperature regenerator and the condenser, and the valve means is opened to open the refrigerant from the low-temperature regenerator to the condenser. By opening the valve means, the pressure loss between the low temperature regenerator drain chamber and the condenser is reduced, and the amount of heat given to the high temperature regenerator is increased. From high temperature regenerator Rise of the refrigerant vapor pressure in said high temperature regenerator increases the flow rate of the refrigerant vapor is suppressed, characterized in that it is a structure that is maintained at or below atmospheric pressure. According to the apparatus of the eighth aspect described above, the bypass pipe having the valve means that can be closed is provided between the drain chamber of the low-temperature regenerator and the condenser. By opening the valve means during the heating operation, the heating operation can be increased while maintaining the refrigerant vapor pressure in the high-temperature regenerator at a negative pressure with respect to the atmospheric pressure.

【0023】請求項9に係る発明装置の構成は、高温再
生器と、低温再生器と、凝縮器と、蒸発器と、吸収器
と、熱交換器と、溶液循環ポンプと、冷媒スプレポンプ
とを具備し、かつ、前記凝縮器の気相部と蒸発器とをU
字シール管を介して接続するとともに、前記冷媒スプレ
ポンプの吐出側から分岐された分岐管を前記U字シール
管に接続して成る吸収式冷温水器であって、当該吸収式
冷温水機に冷房作動せしめる場合に比して、高温再生器
に与える熱量を増加させ、該高温再生器から発生する冷
媒蒸気の流量を増加せしめて暖房能力を増加するように
構成された暖房増加型吸収式冷温水機において、前記低
温再生器のドレン室と該低温再生器の本体部との間に、
閉止可能な弁手段を備えたリターン管路が設けられてい
て、上記の弁手段を開いて低温再生器のドレン室から本
体部に冷媒液を還流せしめ得るようになっており、上記
の弁手段を開くことにより、低温再生器ドレン室と凝縮
器との間の圧力損失が低下して、高温再生器に与える熱
量を増加せしめて該高温再生器から発生する冷媒蒸気の
流量を増加させても該高温再生器内の冷媒蒸気圧力の上
昇が抑制されて、大気圧以下に維持される構造であるこ
とを特徴とする。以上に説明した請求項9の発明装置に
よると、低温再生器のドレン室と本体部との間に、閉止
可能な弁手段を有するリターン管路が設けられているの
で、冷房運転時にはこの弁手段を閉弁し暖房運転時には
この弁手段を開弁することによって、高温再生器内の冷
媒蒸気圧力を大気圧に対して負圧に保ちつつ、暖房増加
運転することができる。
According to a ninth aspect of the present invention, a high-temperature regenerator, a low-temperature regenerator, a condenser, an evaporator, an absorber, a heat exchanger, a solution circulation pump, and a refrigerant spray pump are provided. And the vapor phase part of the condenser and the evaporator are U
An absorption chiller / heater connected by a U-shaped seal pipe and connected to a branch pipe branched from the discharge side of the refrigerant spray pump to the U-shaped seal pipe. As compared with the case of operating, the heating amount given to the high-temperature regenerator is increased, the flow rate of the refrigerant vapor generated from the high-temperature regenerator is increased, and the heating capacity is increased to increase the heating capacity. In the machine, between the drain chamber of the low-temperature regenerator and the main body of the low-temperature regenerator,
A return line provided with a closable valve means is provided so that the valve means can be opened to allow the refrigerant liquid to flow back from the drain chamber of the low-temperature regenerator to the main body. To reduce the pressure loss between the low-temperature regenerator drain chamber and the condenser, increase the amount of heat applied to the high-temperature regenerator and increase the flow rate of the refrigerant vapor generated from the high-temperature regenerator. The structure is characterized in that a rise in refrigerant vapor pressure in the high-temperature regenerator is suppressed and the pressure is maintained at or below the atmospheric pressure. According to the apparatus of the ninth aspect described above, the return pipe having the valve means that can be closed is provided between the drain chamber of the low-temperature regenerator and the main body. By opening the valve means during the heating operation, the heating operation can be increased while maintaining the refrigerant vapor pressure in the high-temperature regenerator at a negative pressure with respect to the atmospheric pressure.

【0024】請求項10に係る発明装置の構成は、高温
再生器と、低温再生器と、凝縮器と、蒸発器と、吸収器
と、熱交換器と、溶液循環ポンプと、冷媒スプレポンプ
とを具備し、かつ、前記蒸発器の底部に溜まっている冷
媒液を揚液して吸収器に導く「冷媒蒸気を駆動源とする
気泡ポンプ」を設けて成る吸収式冷温水機であって、当
該吸収式冷温水機に冷房作動せしめる場合に比して、高
温再生器に与える熱量を増加させ、該高温再生器から発
生する冷媒蒸気の流量を増加せしめて暖房能力を増加す
るように構成された暖房増加型吸収式冷温水機におい
て、前記低温再生器のドレン室と蒸発器との間に、閉止
可能な弁手段を備えたバイパス管路が設けられていて、
上記の弁手段を開いて低温再生器から蒸発器に冷媒蒸気
をバイパスせしめ得るようになっており、上記の弁手段
を開くことにより、低温再生器ドレン室と凝縮器との間
の圧力損失が低下して、高温再生器に与える熱量を増加
せしめて該高温再生器から発生する冷媒蒸気の流量を増
加させても該高温再生器内の冷媒蒸気圧力の上昇が抑制
されて、大気圧以下に維持される構造であることを特徴
とする。以上に説明した請求項10の発明装置による
と、低温再生器のドレン室と蒸発器との間に、閉止可能
な弁手段を有するバイパス管路が設けられているので、
冷房運転時にはこの弁手段を閉弁し暖房運転時にはこの
弁手段を開弁することによって、高温再生器内の冷媒蒸
気圧力を大気圧に対して負圧に保ちつつ、暖房増加運転
することができる。
According to a tenth aspect of the present invention, a high-temperature regenerator, a low-temperature regenerator, a condenser, an evaporator, an absorber, a heat exchanger, a solution circulation pump, and a refrigerant spray pump are provided. An absorption type chiller / heater provided with a `` bubble pump driven by refrigerant vapor as a driving source '' for pumping a refrigerant liquid accumulated at the bottom of the evaporator and guiding the refrigerant to an absorber. Compared to the case where the absorption type chiller / heater is operated for cooling, the amount of heat given to the high temperature regenerator is increased, and the flow rate of the refrigerant vapor generated from the high temperature regenerator is increased to increase the heating capacity. In the heating-increase type absorption chiller / heater, a bypass pipe having valve means that can be closed is provided between a drain chamber and an evaporator of the low-temperature regenerator,
By opening the above valve means, refrigerant vapor can be bypassed from the low temperature regenerator to the evaporator, and by opening the above valve means, pressure loss between the low temperature regenerator drain chamber and the condenser is reduced. Even if the amount of heat given to the high-temperature regenerator is increased and the flow rate of the refrigerant vapor generated from the high-temperature regenerator is increased, the increase in the refrigerant vapor pressure in the high-temperature regenerator is suppressed, and the pressure becomes lower than the atmospheric pressure. It is a structure that is maintained. According to the apparatus of the tenth aspect described above, since the bypass pipe having the valve means that can be closed is provided between the drain chamber of the low-temperature regenerator and the evaporator,
By closing this valve means during the cooling operation and opening this valve means during the heating operation, the heating increase operation can be performed while maintaining the refrigerant vapor pressure in the high-temperature regenerator at a negative pressure with respect to the atmospheric pressure. .

【0025】請求項11に係る発明装置の構成は、高温
再生器と、低温再生器と、凝縮器と、蒸発器と、吸収器
と、熱交換器と、溶液循環ポンプと、冷媒スプレポンプ
とを具備し、かつ、前記蒸発器の底部に溜まっている冷
媒液を揚液して吸収器に導く「冷媒蒸気を駆動源とする
気泡ポンプ」を設けて成る吸収式冷温水機であって、当
該吸収式冷温水機に冷房作動せしめる場合に比して、高
温再生器に与える熱量を増加させ、該高温再生器から発
生する冷媒蒸気の流量を増加せしめて暖房能力を増加す
るように構成された暖房増加型吸収式冷温水機におい
て、前記低温再生器のドレン室と凝縮器との間に、閉止
可能な弁手段を備えたバイパス管路が設けられていて、
上記の弁手段を開いて低温再生器から凝縮器に冷媒蒸気
をバイパスせしめ得るようになっており、上記の弁手段
を開くことにより、低温再生器ドレン室と凝縮器との間
の圧力損失が低下して、高温再生器に与える熱量を増加
せしめて該高温再生器から発生する冷媒蒸気の流量を増
加させても該高温再生器内の冷媒蒸気圧力の上昇が制限
されて、大気圧以下に維持される構造であることを特徴
とする。以上に説明した請求項11の発明装置による
と、低温再生器のドレン室と凝縮器との間に、閉止可能
な弁手段を有するバイパス管路が設けられているので、
冷房運転時にはこの弁手段を閉弁し暖房運転時にはこの
弁手段を開弁することによって、高温再生器内の冷媒蒸
気圧力を大気圧に対して負圧に保ちつつ、暖房増加運転
することができる。
An eleventh aspect of the present invention is directed to a device comprising a high-temperature regenerator, a low-temperature regenerator, a condenser, an evaporator, an absorber, a heat exchanger, a solution circulation pump, and a refrigerant spray pump. An absorption type chiller / heater provided with a `` bubble pump driven by refrigerant vapor as a driving source '' for pumping a refrigerant liquid accumulated at the bottom of the evaporator and guiding the refrigerant to an absorber. Compared to the case where the absorption type chiller / heater is operated for cooling, the amount of heat given to the high temperature regenerator is increased, and the flow rate of the refrigerant vapor generated from the high temperature regenerator is increased to increase the heating capacity. In the heating-increase type absorption chiller / heater, a bypass pipe provided with a closable valve means is provided between a drain chamber of the low-temperature regenerator and a condenser,
By opening the above valve means, refrigerant vapor can be bypassed from the low temperature regenerator to the condenser, and by opening the above valve means, the pressure loss between the low temperature regenerator drain chamber and the condenser is reduced. Even if the amount of heat given to the high-temperature regenerator is increased and the flow rate of the refrigerant vapor generated from the high-temperature regenerator is increased, the increase in the refrigerant vapor pressure in the high-temperature regenerator is limited, and the pressure becomes lower than the atmospheric pressure. It is a structure that is maintained. According to the apparatus of the eleventh aspect described above, since the bypass conduit having the valve means that can be closed is provided between the drain chamber of the low-temperature regenerator and the condenser,
By closing this valve means during the cooling operation and opening this valve means during the heating operation, the heating increase operation can be performed while maintaining the refrigerant vapor pressure in the high-temperature regenerator at a negative pressure with respect to the atmospheric pressure. .

【0026】請求項12に係る発明装置の構成は、高温
再生器と、低温再生器と、凝縮器と、蒸発器と、吸収器
と、熱交換器と、溶液循環ポンプと、冷媒スプレポンプ
とを具備し、かつ、前記蒸発器の底部に溜まっている冷
媒液を揚液して吸収器に導く「冷媒蒸気を駆動源とする
気泡ポンプ」を設けて成る吸収式冷温水機であって、当
該吸収式冷温水機に冷房作動せしめる場合に比して、高
温再生器に与える熱量を増加させ、該高温再生器から発
生する冷媒蒸気の流量を増加せしめて暖房能力を増加す
るように構成された暖房増加型吸収式冷温水機におい
て、前記低温再生器のドレン室と該低温再生器の本体部
との間に、閉止可能な弁手段を備えたリターン管路が設
けられていて、上記の弁手段を開いて低温再生器のドレ
ン室から本体部に冷媒液を還流せしめ得るようになって
おり、上記の弁手段を開くことにより、低温再生器ドレ
ン室と凝縮器との間の圧力損失が低下して、高温再生器
に与える熱量を増加せしめて該高温再生器から発生する
冷媒蒸気の流量を増加させても該高温再生器内の冷媒蒸
気圧力の上昇が制抑されて、大気圧以下に維持される構
造であることを特徴とする。以上に説明した請求項12
の発明装置によると、低温再生器のドレン室と本体部と
の間に、閉止可能な弁手段を有するリターン管路が設け
られているので、冷房運転時にはこの弁手段を閉弁し暖
房運転時にはこの弁手段を開弁することによって、高温
再生器内の冷媒蒸気圧力を大気圧に対して負圧に保ちつ
つ、暖房増加運転することができる。
According to a twelfth aspect of the present invention, a high-temperature regenerator, a low-temperature regenerator, a condenser, an evaporator, an absorber, a heat exchanger, a solution circulation pump, and a refrigerant spray pump are provided. An absorption type chiller / heater provided with a `` bubble pump using refrigerant vapor as a driving source '' for pumping a refrigerant liquid accumulated at the bottom of the evaporator and guiding the refrigerant to the absorber, Compared to the case where the absorption type chiller / heater is operated for cooling, the amount of heat given to the high-temperature regenerator is increased, and the flow rate of the refrigerant vapor generated from the high-temperature regenerator is increased to increase the heating capacity. In the heating-increase type absorption chiller / heater, a return pipe having valve means that can be closed is provided between a drain chamber of the low-temperature regenerator and a main body of the low-temperature regenerator. Open the means to cool the body from the drain chamber of the low-temperature regenerator The liquid can be refluxed, and by opening the valve means, the pressure loss between the low-temperature regenerator drain chamber and the condenser is reduced, and the amount of heat given to the high-temperature regenerator is increased. Even when the flow rate of the refrigerant vapor generated from the high-temperature regenerator is increased, the refrigerant vapor pressure in the high-temperature regenerator is suppressed from increasing, and the pressure is maintained at or below the atmospheric pressure. Claim 12 described above.
According to the apparatus of the present invention, since the return line having the closable valve means is provided between the drain chamber of the low-temperature regenerator and the main body, the valve means is closed during the cooling operation and during the heating operation. By opening this valve means, the heating increase operation can be performed while maintaining the refrigerant vapor pressure in the high-temperature regenerator at a negative pressure with respect to the atmospheric pressure.

【0027】[0027]

【発明の実施の形態】図1は本発明に係る暖房増加型吸
収式冷温水機の1実施形態における暖房増加運転時のサ
イクルフローを模式的に表した系統図であって、気体成
分の流動方向を太い矢印で描くとともに液体成分の流動
方向を細い矢的で描き、かつ、流量数値を長方形の枠で
囲むとともに圧力数値を長円形の枠で囲んで付記してあ
り、流量−圧力のバランスを表している。この例(図
1)は、前掲の図6および図7し示した公知の吸収式冷
温水機に本発明を適用して改良したものであって、本図
は暖房増加運転しているときの圧力、および流量を付記
してある。すなわち、公知例における暖房増加状態を描
いた図7に対応する図であって、該図7におけると同様
の記号・名称を付した構成部分は前掲の図7に示した構
成部分と同様ないし類似である。図6,図7、および本
図1に示した低温再生器ドレン室2dは、説明の便宜上
模式的に表したものであって、具体的には(図4,図5
参照)低温再生器2の中に冷媒蒸気を流通させるために
設けられている伝熱管の内部空間を意味している。ただ
し、該伝熱管2aの中間部にバイパス管を接続すること
は困難であり、かつ不利であるから、実用上は「低温再
生器2に対する伝熱管2aの入口部付近、もしくは出口
付近」に該当する。上記低温再生器ドレン室2dと蒸発
器4との間に、仕切弁32を有するバイパス管路31を
設ける。本発明を実施する際、上記の仕切弁32に代え
て適宜の弁手段(図示せず)を用いることができる。た
だし、例えば減圧弁などのように閉止操作不可能な弁手
段ではなく、閉止可能な弁手段を用いる。上記の仕切弁
32を開弁するとバイパス管路31内を流体が流通しな
い。このため、冷房作動時に前記仕切弁32を閉弁して
おくと、本発明の適用は公知例の吸収式冷暖房装置に影
響を及ぼさない。すなわち、U字シール管11および/
または気泡ポンプ30を設けたことによる取扱い操作容
易という効果を損うことがない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a system diagram schematically showing a cycle flow during an increased heating operation in an embodiment of an increased heating absorption type chiller / heater according to the present invention, in which the flow of gas components is shown. The direction is drawn with a thick arrow and the flow direction of the liquid component is drawn with a thin arrow, and the flow rate value is enclosed in a rectangular frame and the pressure value is enclosed in an oval frame, and the flow rate-pressure balance is indicated. Is represented. This example (FIG. 1) is an improvement obtained by applying the present invention to the known absorption type chiller / heater shown in FIGS. 6 and 7 described above. Pressure and flow rate are added. That is, FIG. 7 is a diagram corresponding to FIG. 7 illustrating a heating increase state in a known example, and components having the same symbols and names as those in FIG. 7 are similar to or similar to the components illustrated in FIG. It is. The low-temperature regenerator drain chamber 2d shown in FIGS. 6, 7 and FIG. 1 is schematically shown for convenience of explanation, and is specifically shown in FIGS.
(Refer to) refers to the internal space of the heat transfer tube provided for flowing the refrigerant vapor in the low-temperature regenerator 2. However, it is difficult and disadvantageous to connect a bypass pipe to the intermediate portion of the heat transfer tube 2a, and therefore, practically, it corresponds to "near the inlet portion of the heat transfer tube 2a with respect to the low-temperature regenerator 2 or near the outlet". I do. A bypass line 31 having a gate valve 32 is provided between the low-temperature regenerator drain chamber 2 d and the evaporator 4. In practicing the present invention, appropriate valve means (not shown) can be used in place of the gate valve 32. However, for example, a valve that can be closed is used instead of a valve that cannot be closed, such as a pressure reducing valve. When the gate valve 32 is opened, no fluid flows in the bypass conduit 31. For this reason, if the gate valve 32 is closed during the cooling operation, the application of the present invention does not affect the absorption type air conditioner of the known example. That is, the U-shaped seal tube 11 and / or
Alternatively, the effect of easy handling operation due to the provision of the bubble pump 30 is not impaired.

【0028】本実施形態(図1)は暖房増加運転中であ
って、高温再生器1に対して「冷房運転時における定格
熱量よりも大きい熱量」で与えられていて、公知例にお
ける暖房増加運転(図7)におけると同様に、高温再生
器1から120kg/hの冷媒蒸気が発生している。公
知例(図7)においては、大量の冷媒蒸気発生のため、
低温再生器2から凝縮器3の中へ120kg/hの冷媒
液が流動し、これによって、844−238=606
(mmHg)の圧力損失が発生した。すなわち、凝縮器
3を基準として考察すると低温再生器2内の蒸気圧が上
昇し、これに伴って高温再生器1内の圧力は874mm
Hgとなり、大気圧以上になった。
In the present embodiment (FIG. 1), the heating increase operation is performed, and the high-temperature regenerator 1 is given a "heat amount larger than the rated heat amount during the cooling operation". As in FIG. 7, 120 kg / h of refrigerant vapor is generated from the high-temperature regenerator 1. In the known example (FIG. 7), since a large amount of refrigerant vapor is generated,
120 kg / h of the refrigerant liquid flows from the low-temperature regenerator 2 into the condenser 3, whereby 844-238 = 606
(MmHg) pressure loss. That is, considering the condenser 3 as a reference, the vapor pressure in the low-temperature regenerator 2 increases, and accordingly, the pressure in the high-temperature regenerator 1 becomes 874 mm.
Hg and became higher than atmospheric pressure.

【0029】これに比して本実施形態(図1)では、暖
房増加運転時に仕切弁32を開いて、低温再生器2内の
冷媒蒸気の一部(31.5kg/h)を蒸発器4にバイ
パスさせたので、低温再生器ドレン室2dから凝縮器3
に流動する冷媒液の流量が88.5kg/hに減少し、
両者間の圧力損失が減少して、低温再生器2内の蒸気圧
は527mmHgに、高温再生器1内の蒸気圧は557
mmHgに低下した。この状態における高温再生器1の
内圧は、充分の余裕をもって大気圧に対して負圧であ
る。以上のようにして本図1に示した実施形態は、低温
再生器2のドレン室2dと蒸発器4との間に、閉止可能
な弁手段としての仕切弁32を備えたバイパス管路31
を設けるという簡単で安価な構造によって、U字シール
管11および/または気泡ポンプ30を設けた吸収式冷
温水機に特有の機能を妨げることなく、「高温再生器に
対して、冷房運転時の定格値以上の熱量を投入する暖房
増加運転」に際して、高温再生器1内の冷媒蒸気圧力の
上昇を抑制して大気圧以下(法的に圧力容器としての規
制を受けない状態)に保つことができる。
In contrast, in the present embodiment (FIG. 1), the gate valve 32 is opened during the heating-up operation, and a part (31.5 kg / h) of the refrigerant vapor in the low-temperature regenerator 2 is removed from the evaporator 4. To the condenser 3 from the low-temperature regenerator drain chamber 2d.
The flow rate of the refrigerant liquid flowing to is reduced to 88.5 kg / h,
The pressure loss between the two is reduced, the steam pressure in the low temperature regenerator 2 becomes 527 mmHg, and the steam pressure in the high temperature regenerator 1 becomes 557 mmHg.
mmHg. The internal pressure of the high-temperature regenerator 1 in this state is negative with respect to the atmospheric pressure with a sufficient margin. As described above, the embodiment shown in FIG. 1 is a bypass pipe 31 provided with a gate valve 32 as a valve means that can be closed between the drain chamber 2 d of the low-temperature regenerator 2 and the evaporator 4.
The simple and inexpensive structure of providing the U-shaped seal tube 11 and / or the bubble pump 30 does not hinder the function specific to the absorption-type water heater / cooler, and the “high-temperature regenerator can be used during the cooling operation. In the "heating increasing operation in which the heat amount exceeding the rated value is input," it is possible to suppress the increase in the refrigerant vapor pressure in the high-temperature regenerator 1 and keep the refrigerant vapor pressure at or below the atmospheric pressure (in a state not legally regulated as a pressure vessel). it can.

【0030】図1を参照して以上に説明した作用・効果
から容易に理解できるように、本実施形態を方法の発明
として見ると、目的達成のため欠くことのできない事項
は、低温再生器のドレン室から蒸発器に冷媒蒸気をバイ
パスさせて該低温再生器内の冷媒液発生量を減少せしめ
ることにより、低温再生器ドレン室と凝縮器との間の圧
力損失を「暖房運転時に高温再生器に与える単位時間当
たり熱量を、冷房運転時に比して増加せしめない暖房標
準状態」における「低温再生器ドレン室と凝縮器との間
の圧力損失」とほぼ同レベルに減少せしめ、高温再生器
内の圧力を大気圧以下に維持しつつ、高温再生器に与え
る熱量を冷房運転状態における定格値よりも増加し、高
温再生器内の異常昇圧を防止しつつ該高温再生器から発
生する冷媒蒸気流量を増加させて暖房増加運転すること
である。
As can be easily understood from the operation and effects described above with reference to FIG. 1, when this embodiment is viewed as a method invention, the essential items for achieving the object are the low temperature regenerator. By reducing the amount of refrigerant liquid generated in the low-temperature regenerator by bypassing the refrigerant vapor from the drain chamber to the evaporator, the pressure loss between the low-temperature regenerator drain chamber and the condenser is reduced by the “high-temperature regenerator during the heating operation. The amount of heat per unit time given to the cooling unit is reduced to almost the same level as the "pressure loss between the low-temperature regenerator drain chamber and the condenser" in the heating standard state, which does not increase compared to the cooling operation. While maintaining the pressure at or below atmospheric pressure, the amount of heat given to the high-temperature regenerator is increased from the rated value in the cooling operation state, and the refrigerant vapor flow generated from the high-temperature regenerator while preventing abnormal pressure rise in the high-temperature regenerator It is to increase operating heating to increase the.

【0031】図2は、前記と異なる実施形態における暖
房増加型吸収式冷温水機のサイクルフローの要部を示
し、冷媒蒸気流動を太い矢印で描くとともに冷媒液の流
動を細い矢印で描き、かつ、流量数値を長方形の枠で囲
んで付記するとともに圧力数値を長円形で枠で囲んで付
記してあり、圧力−流量バランスを説明するための模式
図である。この実施形態においては、低温再生器ドレン
室2dと凝縮器3との間をバイパス管路33によって接
続するとともに、該バイパス管路33に閉止可能な弁手
段としての仕切弁34を介挿接続してある。高温再生器
1に与える熱量を増加して、図1の実施形態と同様に発
生冷媒蒸気の流量120kg/hの暖房運転状態とした
とき、前記低温再生器ドレン室2d内の冷媒蒸気の一部
を、バイパス管路33および仕切弁34を介して流量3
1.5kg/hで凝縮器3にバイパスさせる。これによ
り、低温再生器2から凝縮器3に流動する冷媒液の流量
は、120−31.5=88.5(kg/h)に減少す
る。これに伴って両者の間の圧力損失が減少して高温再
生器1内の冷媒蒸気圧力が579mmHgに低下し、大
気圧以下となる。このような効果を奏し得た理由の要点
を抽出して、発明方法として要約すると、低温再生器の
ドレン室から凝縮器に冷媒蒸気をバイパスさせて該低温
再生器内の熱交換量を減らし、低温再生器内の冷媒液発
生量を減少させることにより、低温再生器ドレン室から
凝縮器に向かう冷媒液の流量を減少させて、両者の間の
圧力損失を減少せしめたからである。
FIG. 2 shows a main part of the cycle flow of the heating-increase type absorption chiller / heater in an embodiment different from the above, in which the refrigerant vapor flow is drawn by thick arrows and the flow of refrigerant liquid is drawn by thin arrows. FIG. 3 is a schematic diagram for explaining a pressure-flow rate balance, in which a flow rate value is enclosed in a rectangular frame and a pressure value is additionally enclosed in an oval frame. In this embodiment, the low-temperature regenerator drain chamber 2d and the condenser 3 are connected by a bypass line 33, and a gate valve 34 as valve means that can be closed is connected to the bypass line 33. It is. When the amount of heat given to the high-temperature regenerator 1 is increased and the heating operation is performed at a flow rate of the generated refrigerant vapor of 120 kg / h as in the embodiment of FIG. 1, a part of the refrigerant vapor in the low-temperature regenerator drain chamber 2d Through the bypass line 33 and the gate valve 34
The condenser 3 is bypassed at 1.5 kg / h. Thereby, the flow rate of the refrigerant liquid flowing from the low-temperature regenerator 2 to the condenser 3 is reduced to 120-31.5 = 88.5 (kg / h). Along with this, the pressure loss between the two decreases, and the refrigerant vapor pressure in the high-temperature regenerator 1 decreases to 579 mmHg, and becomes lower than the atmospheric pressure. Extracting the main points of the reason why such an effect could be obtained, and summarizing the invention method, the refrigerant vapor is bypassed from the drain chamber of the low-temperature regenerator to the condenser to reduce the amount of heat exchange in the low-temperature regenerator, This is because by reducing the amount of refrigerant liquid generated in the low-temperature regenerator, the flow rate of the refrigerant liquid from the low-temperature regenerator drain chamber to the condenser is reduced, and the pressure loss between the two is reduced.

【0032】図3は、前記とさらに異なる実施形態を示
し、暖房増加型吸収式冷温水機におけるサイクルフロー
の要部模式図であり、冷媒蒸気の流動を太い矢印で描く
とともに、冷媒液の流動方向を細い矢印で描き、かつ、
流量数値を長方形の枠で囲んで付記するとともに圧力数
値を長円形の枠で囲んで付記して、圧力−流量のバラン
スを表している。前掲の図1,図2の実施形態において
は低温再生器ドレン室2d内の冷媒蒸気を下流側へバイ
パスさせたのに比して、本図3の実施形態においては、
仕切弁35を有するリターン管路35を、低温再生器ド
レン室2dと低温再生器2の本体部との間に接続し、低
温再生器ドレン室2d内の冷媒液の一部を、流量88.
5kg/hで還流させる。これにより、高温再生器1内
で発生した冷媒蒸気流量120kg/hの内で、低温再
生器ドレン部2dを経て直接的に凝縮器に流動する冷媒
液流量は、120−88.5=31.5(kg/h)に
減少し、これに伴って両者間の圧力損失も減少する。上
記圧力損失の減少により、低温再生器内圧が低下し、こ
れに伴って高温再生器1内の冷媒蒸気圧力は557mm
Hgとなり、大気圧に対して充分な余裕を以って負圧と
なる。本図3の実施形態において上述の効果を奏し得た
理由の要点を抽出して要約すると、低温再生器ドレン室
内の冷媒液を該低温再生器の本体部分へ還流せしめて、
凝縮器へ送る冷媒液の流量を減少せしめたことによる。
FIG. 3 is a schematic diagram showing a main part of a cycle flow in an increased heating absorption type chiller / heater according to an embodiment different from the above. In FIG. 3, the flow of refrigerant vapor is drawn by thick arrows and the flow of refrigerant liquid is shown. Draw the direction with a thin arrow, and
The numerical values of the flow rate are indicated by enclosing them in a rectangular frame, and the numerical values of the pressure are indicated by enclosing them in an oval frame to represent the pressure-flow rate balance. In the embodiment of FIGS. 1 and 2 described above, the refrigerant vapor in the low temperature regenerator drain chamber 2d is bypassed to the downstream side.
A return line 35 having a gate valve 35 is connected between the low-temperature regenerator drain chamber 2d and the main body of the low-temperature regenerator 2 so that a part of the refrigerant liquid in the low-temperature regenerator drain chamber 2d has a flow rate of 88.
Reflux at 5 kg / h. As a result, of the refrigerant vapor flow rate of 120 kg / h generated in the high-temperature regenerator 1, the flow rate of the refrigerant liquid flowing directly to the condenser via the low-temperature regenerator drain section 2d is 120-88.5 = 31. 5 (kg / h), and the pressure loss between the two decreases accordingly. Due to the decrease in the pressure loss, the internal pressure of the low-temperature regenerator decreases, and accordingly, the refrigerant vapor pressure in the high-temperature regenerator 1 becomes 557 mm.
Hg, and becomes a negative pressure with a sufficient margin to the atmospheric pressure. In the embodiment of FIG. 3, the main points of the reason why the above-described effect was obtained can be extracted and summarized.To summarize, the refrigerant liquid in the low-temperature regenerator drain chamber is returned to the main body of the low-temperature regenerator,
This is because the flow rate of the refrigerant liquid sent to the condenser was reduced.

【0033】[0033]

【発明の効果】以上に本発明の実施形態を挙げてその構
成・機能を明らかならしめたように、請求項1の発明方
法によると、U字シール管を備えた吸収式冷温水機の長
所であるところの「サイクルフロー系統に関して配管を
切り換えたり流路開閉のための弁類を設置したりするこ
となく、冷房運転と暖房運転とを切り換えることができ
る」という効果を損なうことなく、「低温再生器から蒸
発器に冷媒蒸気をバイパスさせる」という簡単な操作に
よって低温再生器ドレン室と凝縮器との間の圧力損失を
減少せしめることができる。これにより、凝縮器を基準
として考えたとき低温再生器内の冷媒蒸気圧力が低下
し、従って高温再生器内の冷媒蒸気圧力が低下する。す
なわち、暖房増加運転のために高温再生器に投入する熱
量を増加して該高温再生器から発生する冷媒蒸気の流量
を増加させても、前記圧力損失の減少分だけ高温再生器
内圧の上昇を抑制することができる。吸収式冷温水機の
サイクルフロー内における流量・圧力の分布は流体力学
および熱力学的なバランスによって定まるので、本請求
項を適用した場合、必ずしも暖房能力を無制限に増加せ
しめ得るものではないが、本発明者らの実験により、暖
房標準の仕様を中部日本〜西日本向けに設定した場合、
北海道向け寒冷地仕様の暖房増加による高温再生器発生
冷媒蒸気流量の増加に対応して本請求項の発明を適用す
ると、高温再生器内の冷媒蒸気圧力を大気圧に比して負
圧に維持せしめ得ることが確認された。
As described above, the configuration and function of the embodiment of the present invention are clarified. According to the method of the first aspect of the present invention, the advantages of the absorption chiller / heater equipped with the U-shaped sealing pipe are provided. Without losing the effect of being able to switch between cooling operation and heating operation without switching piping for the cycle flow system or installing valves for opening and closing the flow path, The simple operation of "bypassing the refrigerant vapor from the regenerator to the evaporator" can reduce the pressure loss between the low-temperature regenerator drain chamber and the condenser. As a result, the refrigerant vapor pressure in the low-temperature regenerator decreases when considered on the basis of the condenser, and accordingly, the refrigerant vapor pressure in the high-temperature regenerator decreases. That is, even if the amount of heat input to the high-temperature regenerator for the heating increasing operation is increased to increase the flow rate of the refrigerant vapor generated from the high-temperature regenerator, the internal pressure of the high-temperature regenerator is increased by the reduced pressure loss. Can be suppressed. Since the distribution of flow rate and pressure in the cycle flow of the absorption chiller / heater is determined by the balance between fluid dynamics and thermodynamics, applying this claim does not necessarily increase the heating capacity indefinitely. According to experiments by the inventors, when the specification of the heating standard is set for Central Japan to West Japan,
When the invention of this claim is applied in response to the increase in the refrigerant vapor flow rate generated by the high-temperature regenerator due to the increase in heating in the cold district specifications for Hokkaido, the refrigerant vapor pressure in the high-temperature regenerator is maintained at a negative pressure compared to the atmospheric pressure It was confirmed that it was possible.

【0034】請求項2の発明方法によると、U字シール
管を備えた吸収式冷温水機の長所であるところの「サイ
クルフロー系統に関して配管を切り換えたり流路開閉の
ための弁類を設置したりすることなく、冷房運転と暖房
運転とを切り換えることができる」という効果を損なう
ことなく、「低温再生器から凝縮器に冷媒蒸気をバイパ
スさせる」という簡単な操作によって低温再生器ドレン
室と凝縮器との間の圧力損失を減少せしめることができ
る。これにより、凝縮器を基準として考えたとき低温再
生器内の冷媒蒸気圧力が低下し、従って高温再生器内の
冷媒蒸気圧力が低下する。すなわち、暖房増加運転のた
めに高温再生器に投入する熱量を増加して該高温再生器
から発生する冷媒蒸気の流量を増加させても、前記圧力
損失の減少分だけ高温再生器内圧の上昇を抑制すること
ができる。吸収式冷温水器のサイクルフロー内における
流量・圧力の分布は流体力学および熱力学的なバランス
によって定まるので、本請求項を適用した場合、必ずし
も暖房能力を無制限に増加せしめ得るものではないが、
本発明者らの実験により、暖房標準の仕様を中部日本〜
西日本向けに設定した場合、北海道向け寒冷地仕様の暖
房増加による高温再生器発生冷媒蒸気流量の増加に対応
して本請求項の発明を適用すると、高温再生器内の冷媒
蒸気圧力を大気圧に比して負圧に維持せしめ得ることが
確認された。
According to the method of the second aspect of the present invention, there is provided an advantage of an absorption type water chiller / heater having a U-shaped seal pipe. The cooling operation can be switched between heating operation and cooling operation without the need to perform a simple operation of `` bypassing refrigerant vapor from the low-temperature regenerator to the condenser '' without deteriorating the effect The pressure loss between the vessel and the vessel can be reduced. As a result, the refrigerant vapor pressure in the low-temperature regenerator decreases when considered on the basis of the condenser, and accordingly, the refrigerant vapor pressure in the high-temperature regenerator decreases. That is, even if the amount of heat input to the high-temperature regenerator for the heating increasing operation is increased to increase the flow rate of the refrigerant vapor generated from the high-temperature regenerator, the internal pressure of the high-temperature regenerator is increased by the reduced pressure loss. Can be suppressed. Since the distribution of flow rate and pressure in the cycle flow of the absorption type water heater / cooler is determined by the hydrodynamic and thermodynamic balances, applying this claim does not necessarily increase the heating capacity indefinitely.
According to experiments by the present inventors, the specifications of the heating standard were
When set for western Japan, applying the invention of this claim in response to the increase in the high-temperature regenerator-generated refrigerant vapor flow rate due to increased heating in the cold district specifications for Hokkaido, the refrigerant vapor pressure in the high-temperature regenerator is reduced to atmospheric pressure. It was confirmed that a negative pressure could be maintained in comparison.

【0035】請求項3の発明方法によると、U字シール
管を備えた吸収式冷温水機の長所であるところの「サイ
クルフロー系統に関して配管を切り換えたり流路開閉の
ための弁類を設置したりすることなく、冷房運転と暖房
運転とを切り換えることができる」という効果を損なう
ことなく「低温再生器のドレン室から冷媒液を低温再生
器の本体部分へ還流させる」という簡単な操作によって
低温再生器ドレン室と凝縮器との間の圧力損失を減少せ
しめることができる。これにより、凝縮器を基準として
考えたとき低温再生器内の冷媒蒸気圧力が低下し、従っ
て高温再生器内の冷媒蒸気圧力が低下する。すなわち、
暖房増加運転のために高温再生器に投入する熱量を増加
して該高温再生器から発生する冷媒蒸気の流量を増加さ
せても、前記圧力損失の減少分だけ高温再生器内圧の上
昇を抑制することができる。吸収式冷温水機のサイクル
フロー内における流量・圧力の分布は流体力学および熱
力学的なバランスによって定まるので、本請求項を適用
した場合、必ずしも暖房能力を無制限に増加せしめ得る
ものではないが、本発明者らの実験により、暖房標準の
仕様を中部日本〜西日本向けに設定した場合、北海道向
け寒冷地仕様の暖房増加による高温再生器発生冷媒蒸気
流量の増加に対応して本請求項2の発明を適用すると、
高温再生器内の冷媒蒸気圧力を大気圧に比して負圧に維
持せしめ得ることが確認された。
According to the method of the third aspect of the present invention, there is provided an advantage of an absorption type water chiller / heater equipped with a U-shaped seal pipe. The cooling operation can be switched between the cooling operation and the heating operation without the need for cooling '' and the simple operation of `` recirculating the refrigerant liquid from the drain chamber of the low-temperature regenerator to the main body of the low-temperature regenerator '' without impairing the effect. The pressure loss between the regenerator drain chamber and the condenser can be reduced. As a result, the refrigerant vapor pressure in the low-temperature regenerator decreases when considered on the basis of the condenser, and accordingly, the refrigerant vapor pressure in the high-temperature regenerator decreases. That is,
Even if the amount of heat input to the high-temperature regenerator for the heating increasing operation is increased to increase the flow rate of the refrigerant vapor generated from the high-temperature regenerator, the increase in the internal pressure of the high-temperature regenerator is suppressed by the reduced pressure loss. be able to. Since the distribution of flow rate and pressure in the cycle flow of the absorption chiller / heater is determined by the balance between fluid dynamics and thermodynamics, applying this claim does not necessarily increase the heating capacity indefinitely. According to experiments by the present inventors, when the specification of the heating standard is set for central Japan to western Japan, in response to an increase in the flow rate of the high-temperature regenerator-generated refrigerant vapor due to an increase in heating in the cold district specification for Hokkaido, the claim 2 Applying the invention,
It has been confirmed that the refrigerant vapor pressure in the high-temperature regenerator can be maintained at a negative pressure compared to the atmospheric pressure.

【0036】請求項4の発明方法によると、冷媒蒸気を
駆動源とする気泡ポンプによって蒸発器底部の冷媒液を
揚液する方式の吸収式冷温水機の長所であるところの
「サイクルフロー系統に関して配管を切り換えたり流路
開閉のための弁類を設置したりすることなく、冷房運転
と暖房運転とを切り換えることができる」という効果を
損なうことなく、「低温再生器から蒸発器に冷媒蒸気を
バイパスさせるという簡単な操作によって低温再生器ド
レン室と凝縮器との間の圧力損失を減少せしめることが
できる。これにより、凝縮器を基準として考えたとき低
温再生器内の冷媒蒸気圧力が低下し、従って高温再生器
内の冷媒蒸気圧力が低下する。すなわち、暖房増加運転
のために高温再生器に投入する熱量を増加して該高温再
生器から発生する冷媒蒸気の流量を増加させたも、前記
圧力損失の減少分だけ高温再生器内圧の上昇を抑制する
ことができる。吸収式冷温水器のサイクルフロー内にお
ける流量・圧力の分布は流体力学および熱力学的なバラ
ンスによって定まるので、本請求項を適用した場合、必
ずしも暖房能力を無制限に増加せしめ得るものではない
が、本発明者らの実験により、暖房標準の仕様を中部日
本〜西日本向けに設定した場合、北海道向け寒冷地仕様
の暖房増加による高温再生器発生冷媒蒸気流量の増加に
対応して本請求項の発明を適用すると、高温再生器内の
冷媒蒸気圧力を大気圧に比して負圧に維持せしめ得るこ
とが確認された。
According to the fourth aspect of the present invention, the "cycle flow system" which is an advantage of the absorption type chiller / heater of the type in which the refrigerant liquid at the bottom of the evaporator is pumped by the bubble pump driven by the refrigerant vapor. It is possible to switch between the cooling operation and the heating operation without switching the piping or installing valves for opening and closing the flow path. The simple operation of bypassing can reduce the pressure loss between the cryogenic regenerator drain chamber and the condenser, which reduces the refrigerant vapor pressure in the cryogenic regenerator when considered with respect to the condenser. Therefore, the refrigerant vapor pressure in the high-temperature regenerator decreases, that is, the amount of heat input to the high-temperature regenerator for the heating increasing operation increases, and the cooling generated from the high-temperature regenerator increases. Even if the flow rate of steam is increased, it is possible to suppress an increase in the internal pressure of the high-temperature regenerator by the reduced amount of the pressure loss. Since it is determined by the natural balance, when applying the present claim, it is not always possible to increase the heating capacity indefinitely, but by the experiments of the present inventors, the specification of the heating standard was set for Central Japan-West Japan In this case, when the invention of the present invention is applied in response to an increase in the flow rate of the refrigerant vapor generated by the high-temperature regenerator due to an increase in heating in a cold district specification for Hokkaido, the refrigerant vapor pressure in the high-temperature regenerator becomes a negative pressure compared to the atmospheric pressure. It was confirmed that it could be maintained.

【0037】請求項5の発明方法によると、気泡ポンプ
を備えた吸収式冷温水機の長所であるところの「サイク
ルフロー系統に関して配管を切り換えたり流路開閉のた
めの弁類を設置したりすることなく、冷房運転と暖房運
転とを切り換えることができる」という効果を損なうこ
となく、「低温再生器から凝縮器に冷媒蒸気をバイパス
させる」という簡単な操作によって低温再生器ドレン室
と凝縮器との間の圧力損失を減少せしめることができ
る。これにより、凝縮器を基準として考えたとき低温再
生器内の冷媒蒸気圧力が低下し、従って高温再生器内の
冷媒蒸気圧力が低下する。すなわち、暖房増加運転のた
めに高温再生器に投入する熱量を増加して該高温再生器
から発生する冷媒蒸気の流量を増加させても、前記圧力
損失の減少分だけ高温再生器内圧の上昇を抑制すること
ができる。吸収式冷温水機のサイクルフロー内における
流量・圧力の分布は流体力学および熱力学的なバランス
によって定まるので、本請求項を適用した場合、必ずし
も暖房能力を無制限に増加せしめ得るものではないが、
本発明者らの実験により、暖房標準の仕様を中部日本〜
西日本向けに設定した場合、北海道向け寒冷地仕様の暖
房増加による高温再生器発生冷媒蒸気流量の増加に対応
して本請求項の発明を適用すると、高温再生器内の冷媒
蒸気圧力を大気圧に比して負圧に維持せしめ得ることが
確認された。
According to the fifth aspect of the present invention, there is provided an advantage of an absorption type chiller / heater equipped with a bubble pump. Without losing the effect of `` being able to switch between cooling operation and heating operation without '', the simple operation of `` bypassing refrigerant vapor from the low-temperature regenerator to the condenser '' and the low-temperature regenerator drain chamber and condenser Can be reduced. As a result, the refrigerant vapor pressure in the low-temperature regenerator decreases when considered on the basis of the condenser, and accordingly, the refrigerant vapor pressure in the high-temperature regenerator decreases. That is, even if the amount of heat input to the high-temperature regenerator for the heating increasing operation is increased to increase the flow rate of the refrigerant vapor generated from the high-temperature regenerator, the internal pressure of the high-temperature regenerator is increased by the reduced pressure loss. Can be suppressed. Since the distribution of flow rate and pressure in the cycle flow of the absorption chiller / heater is determined by the balance between fluid dynamics and thermodynamics, applying this claim does not necessarily increase the heating capacity indefinitely.
According to experiments by the present inventors, the specifications of the heating standard were
When set for western Japan, applying the invention of this claim in response to the increase in the high-temperature regenerator-generated refrigerant vapor flow rate due to increased heating in the cold district specifications for Hokkaido, the refrigerant vapor pressure in the high-temperature regenerator is reduced to atmospheric pressure. It was confirmed that a negative pressure could be maintained in comparison.

【0038】請求項6の発明方法によると、気泡ポンプ
を備えた吸収式冷温水機の長所であるところの「サイク
ルフロー系統に関して配管を切り換えたり流路開閉のた
めの弁類を設置したりすることなく、冷房運転と暖房運
転とを切り換えることができる」という効果を損なうこ
となく「低温再生器のドレン室から冷媒液を低温再生器
の本体部分へ還流させる」という簡単な操作によって低
温再生器ドレン室と凝縮器との間の圧力損失を減少せし
めることができる。これにより、凝縮器を基準として考
えたとき低温再生器内の冷媒蒸気圧力が低下し、従って
高温再生器内の冷媒蒸気圧力が低下する。すなわち、暖
房増加運転のために高温再生器に投入する熱量を増加し
て該高温再生器から発生する冷媒蒸気の流量を増加させ
ても、前記圧力損失の減少分だけ高温再生器内圧の上昇
を抑制することができる。吸収式冷温水機のサイクルフ
ロー内における流量・圧力の分布は流体力学および熱力
学的なバランスによって定まるので、本請求項を適用し
た場合、必ずとも暖房能力を無制限に増加せしめ得るも
のではないが、本発明者らの実験により、暖房標準の仕
様を中部日本〜西日本向けに設定した場合、北海道向け
寒冷地仕様の暖房増加による高温再生器発生冷媒蒸気流
量の増加に対応して本請求項の発明を適用すると、高温
再生器内の冷媒蒸気圧力を大気圧に比して負圧に維持せ
しめ得ることが確認された。
According to the method of the present invention, the advantage of the absorption type chiller / heater equipped with the bubble pump is that "the piping is switched with respect to the cycle flow system and valves for opening and closing the flow path are installed." The low-temperature regenerator can be switched between the cooling operation and the heating operation without loss of the effect by simply operating the "refrigerant liquid from the drain chamber of the low-temperature regenerator to the main body of the low-temperature regenerator" The pressure loss between the drain chamber and the condenser can be reduced. As a result, the refrigerant vapor pressure in the low-temperature regenerator decreases when considered on the basis of the condenser, and accordingly, the refrigerant vapor pressure in the high-temperature regenerator decreases. That is, even if the amount of heat input to the high-temperature regenerator for the heating increasing operation is increased to increase the flow rate of the refrigerant vapor generated from the high-temperature regenerator, the internal pressure of the high-temperature regenerator is increased by the reduced pressure loss. Can be suppressed. Since the distribution of flow rate and pressure in the cycle flow of the absorption chiller / heater is determined by the balance between the fluid dynamics and the thermodynamics, it is not always possible to increase the heating capacity indefinitely by applying this claim. According to the experiments of the present inventors, when the heating standard specification is set for Central Japan to West Japan, in response to the increase in the high-temperature regenerator-generated refrigerant vapor flow rate due to the increase in heating for cold district specifications for Hokkaido, the claims of the present invention. It has been confirmed that when the invention is applied, the refrigerant vapor pressure in the high-temperature regenerator can be maintained at a negative pressure as compared with the atmospheric pressure.

【0039】請求項7の発明装置によると、低温再生器
のドレン室と蒸発器との間に、閉止可能な弁手段を有す
るバイパス管路が設けられているので、冷房運転時には
この弁手段を閉弁し暖房運転時にはこの手段を開弁する
ことによって、高温再生器内の冷媒蒸気圧力を大気圧に
対して負圧に保ちつつ、暖房増加運転することができ
る。請求項8の発明装置によると、低温再生器のドレン
室と凝縮器との間に、閉止可能な弁手段を有するバイパ
ス管路が設けられているので、冷房運転時にはこの弁手
段を閉弁し暖房運転時にはこの弁手段を開弁することに
よって、高温再生器内の冷媒蒸気の圧力を大気圧に対し
て負圧に保ちつつ、暖房増加運転することができる。請
求項9の発明装置によると、低温再生器のドレン室と本
体部との間に、閉止可能な弁手段を有するリターン管路
が設けられているので、冷房運転時にはこの弁手段を閉
弁し暖房運転時にはこの弁手段を開弁することによっ
て、高温再生器内の冷媒蒸気圧力を大気圧に対して負圧
に保ちつつ、暖房増加運転することができる。請求項1
0の発明装置によると、低温再生器のドレン室と蒸発器
との間に、閉止可能な弁手段を有するバイパス管路が設
けられているので、冷房運転時にはこの弁手段を閉弁し
暖房運転時にはこの弁手段を開弁することによって、高
温再生器内の冷媒蒸気圧力を大気圧に対して負圧に保ち
つつ、暖房増加運転することができる。請求項11の発
明装置によると、低温再生器のドレン室と凝縮器との間
に、閉止可能な弁手段を有するバイパス管路が設けられ
ているので、冷房運転時にはこの弁手段を閉弁し暖房運
転時にはこの弁手段を開弁することによって、高温再生
器内の冷媒蒸気圧力を大気圧に対して負圧に保ちつつ、
暖房増加運転することができる。請求項12の発明装置
によると、低温再生器のドレン室と本体部との間に、閉
止可能な弁手段を有するリターン管路が設けられている
ので、冷房運転時にはこの弁手段を閉弁し暖房運転時に
はこの弁手段を開弁することによって、高温再生器内の
冷媒蒸気圧力を大気圧に対して負圧に保ちつつ、暖房増
加運転することができる。
According to the seventh aspect of the present invention, the bypass line having the valve means which can be closed is provided between the drain chamber of the low temperature regenerator and the evaporator. By opening this means during the valve closing and heating operation, the heating increase operation can be performed while maintaining the refrigerant vapor pressure in the high temperature regenerator at a negative pressure with respect to the atmospheric pressure. According to the present invention, since the bypass line having the valve means which can be closed is provided between the drain chamber of the low-temperature regenerator and the condenser, the valve means is closed during the cooling operation. By opening the valve means during the heating operation, the heating increase operation can be performed while maintaining the pressure of the refrigerant vapor in the high-temperature regenerator at a negative pressure with respect to the atmospheric pressure. According to the ninth aspect of the present invention, since the return line having the valve means that can be closed is provided between the drain chamber of the low-temperature regenerator and the main body, the valve means is closed during the cooling operation. By opening the valve means during the heating operation, the heating increase operation can be performed while maintaining the refrigerant vapor pressure in the high-temperature regenerator at a negative pressure with respect to the atmospheric pressure. Claim 1
According to the apparatus of the present invention, since the bypass pipe having the closable valve means is provided between the drain chamber of the low-temperature regenerator and the evaporator, the valve means is closed during the cooling operation to perform the heating operation. At times, by opening this valve means, the heating increase operation can be performed while maintaining the refrigerant vapor pressure in the high-temperature regenerator at a negative pressure with respect to the atmospheric pressure. According to the eleventh aspect of the present invention, since the bypass line having the valve means that can be closed is provided between the drain chamber of the low-temperature regenerator and the condenser, the valve means is closed during the cooling operation. By opening this valve means during the heating operation, while maintaining the refrigerant vapor pressure in the high-temperature regenerator at a negative pressure with respect to the atmospheric pressure,
Heating can be increased. According to the twelfth aspect of the present invention, since the return line having the closable valve means is provided between the drain chamber of the low-temperature regenerator and the main body, the valve means is closed during the cooling operation. By opening the valve means during the heating operation, the heating increase operation can be performed while maintaining the refrigerant vapor pressure in the high-temperature regenerator at a negative pressure with respect to the atmospheric pressure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る暖房増加型吸収式冷温水機の1実
施形態における暖房増加運転時のサイクルフローを模式
的に表した系統図であって、気体成分の流動方向を太い
矢印で描くとともに液体成分の流動方向を細い矢印で描
き、かつ、流量数値を長方形の枠で囲むとともに圧力数
値を長円形の枠で囲んで付記してあり、流量−圧力を表
している。
FIG. 1 is a system diagram schematically showing a cycle flow during an increased heating operation in an embodiment of an increased heating absorption type water cooler / heater according to the present invention, in which the flow direction of gas components is drawn by thick arrows. At the same time, the flow direction of the liquid component is drawn by a thin arrow, and the numerical value of the flow rate is enclosed by a rectangular frame and the numerical value of the pressure is enclosed by an oval frame, and represents the flow rate-pressure.

【図2】前記と異なる実施形態における暖房増加型吸収
式冷温水機のサイクルフローの要部を示し、冷媒蒸気の
流動を太い矢印で描くとともに冷媒液の流動を細い矢印
で描き、かつ、流量数値を長方形の枠で囲んで付記する
とともに圧力数値を長円形の枠で囲んで付記してあり、
圧力−流量バランスを説明するための模式図である。
FIG. 2 shows a main part of a cycle flow of the heating-increase type absorption chiller / heater in an embodiment different from the above, in which the flow of refrigerant vapor is drawn by thick arrows, the flow of refrigerant liquid is drawn by thin arrows, and the flow rate is Numerical values are enclosed in a rectangular frame, and pressure values are enclosed in an oval frame.
It is a schematic diagram for demonstrating pressure-flow balance.

【図3】前記とさらに異なる実施形態を示し、暖房増加
型吸収式冷温水機におけるサイクルフローの要部模式図
であり、冷媒蒸気の流動方向を太い矢印で描くととも
に、冷媒液の流動方向を細い矢印で描き、かつ、流量数
値を長方形の枠で囲んで付記するとともに圧力数値を長
円形の枠で囲んで付記して、圧力−流量のバランスを表
している。
FIG. 3 is a schematic diagram of a main part of a cycle flow in the heating-increase type absorption chiller / heater, showing a further different embodiment from the above. In FIG. Drawing a thin arrow, and adding a flow rate numerical value by enclosing it in a rectangular frame and adding a pressure numerical value by enclosing it in an oval frame, indicates the pressure-flow rate balance.

【図4】U字シール管を設けた吸収式冷温水機の1例を
模式的に描いたサイクルフロー図であって、付記した構
成機器の名称は当該吸収式冷温水機が冷房運転される場
合の機能に基づいた呼称である。
FIG. 4 is a cycle flow diagram schematically illustrating an example of an absorption chiller / heater provided with a U-shaped seal tube, and the names of the added components are used for cooling operation of the absorption chiller / heater. The name is based on the function of the case.

【図5】気泡ポンプを備えた公知の吸収式冷温水機の1
例を示すサイクルフロー図である。ただし、構造機能の
理解に便なるごとく模式化して描いてあるので実体図と
は異なっており、付記した構成機器の名称は、この吸収
式冷温水機が冷房運転される場合の機能に基づく呼称で
ある。
FIG. 5 shows a known absorption chiller / heater equipped with a bubble pump.
It is a cycle flow figure which shows an example. However, it is different from the actual diagram because it is drawn schematically to make it easier to understand the structure and functions. It is.

【図6】U字シール管および気泡ポンプを備えた最新の
公知技術に係る吸収式冷温水機を模式化して、暖房標準
時における気体成分の流動方向を太い矢印で表すととも
の液体成分の流動方向を細い矢印で表し、かつ、暖房標
準時における流量数値を長方形枠で囲み圧力数値を長円
形枠で囲んで付記した流量−圧力バランス説明図であ
る。
FIG. 6 schematically illustrates an absorption type chiller / heater having a U-shaped seal tube and a bubble pump according to the latest known technology, in which a flow direction of a gas component in a heating standard time is indicated by a thick arrow and a flow of a liquid component is shown. It is a flow-pressure balance explanatory diagram in which the direction is represented by a thin arrow, and the flow rate value in heating standard time is enclosed by a rectangular frame, and the pressure value is enclosed by an oval frame.

【図7】前掲の図6に示した吸収式冷温水機の高温再生
器に与える熱量を増加させて暖房増加状態で運転した場
合の流量−圧力バランス説明図であって、付記した構成
部材の名称は当該吸収式冷温水機が冷房運転されている
状態における機能に基づく呼称である。
FIG. 7 is an explanatory diagram of a flow-pressure balance in a case where the amount of heat given to the high-temperature regenerator of the absorption chiller / heater shown in FIG. The name is a name based on the function in a state where the absorption type water heater / cooler is in a cooling operation.

【符号の説明】[Explanation of symbols]

1…高温再生器、2、…低温再生器、2a…伝熱管、2
d…ドレン室、3…凝縮器、3a…冷水、4…蒸発器、
4a…温水、5…吸収器、6…低温熱交換器、7…高温
熱交換器、8…溶液循環ポンプ、9…冷媒スプレポン
プ、10…冷媒液導管、11…U字シール管、12…冷
媒スプレ導管、13…フロート弁、14…冷媒タンク、
15…分岐管、16…冷媒ブロー管、17…冷媒ブロー
弁、18,19…絞り、20,21…ミストセパレー
タ、22,23,24…スプレヘッダ、25…気液分離
器、26…冷媒蒸気導管、27…冷媒液導管、28…冷
媒蒸気導管、30…気泡ポンプ、31…バイパス管路、
32…仕切弁、33…バイパス管路、34…仕切弁、3
5…リターン管路、36…仕切弁。
1 high temperature regenerator, 2 low temperature regenerator, 2a heat transfer tube, 2
d: drain chamber, 3: condenser, 3a: cold water, 4: evaporator,
4a: hot water, 5: absorber, 6: low temperature heat exchanger, 7: high temperature heat exchanger, 8: solution circulation pump, 9: refrigerant spray pump, 10: refrigerant liquid conduit, 11: U-shaped seal tube, 12: refrigerant Spray conduit, 13: float valve, 14: refrigerant tank,
15 branch pipe, 16 refrigerant blow pipe, 17 refrigerant blow valve, 18, 19 throttle, 20, 21 mist separator, 22, 23, 24 spray header, 25 gas-liquid separator, 26 refrigerant refrigerant conduit , 27 ... refrigerant liquid conduit, 28 ... refrigerant vapor conduit, 30 ... bubble pump, 31 ... bypass line,
32: gate valve, 33: bypass line, 34: gate valve, 3
5 ... return line, 36 ... gate valve.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 榎内 幸雄 茨城県土浦市木田余東台1−9−1 日立 ビル施設エンジニアリング株式会社開発設 計部内 (72)発明者 立花 慶二 東京都千代田区神田和泉町1番地 日立ビ ル施設エンジニアリング株式会社内 Fターム(参考) 3L093 AA05 BB11 BB29 BB31 BB37 BB42 BB47 DD10 EE08 EE09 HH07 HH08 JJ04 KK05 LL03 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yukio Enouchi 1-9-1 Kida Yotodai, Tsuchiura-shi, Ibaraki Hitachi Building Facilities Engineering Co., Ltd. (72) Inventor Keiji Tachibana Kazuyoshi Kanda, Chiyoda-ku, Tokyo 1 Izumicho F-term in Hitachi Building Facilities Engineering Co., Ltd. (Reference) 3L093 AA05 BB11 BB29 BB31 BB37 BB42 BB47 DD10 EE08 EE09 HH07 HH08 JJ04 KK05 LL03

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 高温再生器と、低温再生器と、凝縮器
と、蒸発器と、吸収器と、熱交換器と、溶液循環ポンプ
と、冷媒スプレポンプとを具備し、かつ、前記凝縮器の
気相部と蒸発器とをU字シール管を介して接続するとと
もに、前記冷媒スプレポンプの吐出側から分岐された分
岐管を前記U字シール管に接続して成る吸収式冷温水機
を運転して暖房作動を行なわせる場合、 当該吸収式冷温水機に冷房作動せしめる場合に比して、
高温再生器に与える熱量を増加させ、該高温再生器から
発生する冷媒蒸気の流量を増加せしめて暖房能力を増加
する方法において、 低温再生器のドレン室から蒸発器に冷媒蒸気をバイパス
させて該低温再生器内の冷媒液発生量を減少せしめるこ
とにより、 低温再生器ドレン室と凝縮器との間の圧力損失を「暖房
運転時に高温再生器に与える単位時間当たり熱量を、冷
房運転時に比して増加せしめない暖房標準の状態」にお
ける「低温再生器ドレン室と凝縮器との間の圧力損失」
とほぼ同レベルに減少せしめ、 高温再生器内の圧力を大気圧以下に維持しつつ、高温再
生器に与える熱量を冷房運転状態における定格値よりも
増加し、 高温再生器内の異常昇圧を防止しつつ該高温再生器から
発生する冷媒蒸気流量を増加させて暖房増加運転するこ
とを特徴とする、吸収式冷温水機の暖房能力増加方法。
1. A high-temperature regenerator, a low-temperature regenerator, a condenser, an evaporator, an absorber, a heat exchanger, a solution circulation pump, and a refrigerant spray pump. The absorption type chiller / heater comprising connecting the gas phase part and the evaporator via a U-shaped seal pipe and connecting a branch pipe branched from the discharge side of the refrigerant spray pump to the U-shaped seal pipe is operated. When the heating operation is performed by using the absorption type chiller / heater, cooling operation is performed,
In a method of increasing the amount of heat given to the high-temperature regenerator and increasing the flow rate of the refrigerant vapor generated from the high-temperature regenerator to increase the heating capacity, the refrigerant vapor is bypassed from the drain chamber of the low-temperature regenerator to the evaporator. By reducing the amount of refrigerant liquid generated in the low-temperature regenerator, the pressure loss between the low-temperature regenerator drain chamber and the condenser is reduced by comparing the amount of heat per unit time given to the high-temperature regenerator during heating operation to that during cooling operation. "Pressure loss between the low-temperature regenerator drain chamber and the condenser" under the condition of the heating standard that cannot be increased
While maintaining the pressure inside the high-temperature regenerator below the atmospheric pressure, the amount of heat given to the high-temperature regenerator increases from the rated value in the cooling operation state, preventing abnormal pressure rise in the high-temperature regenerator And increasing the flow rate of the refrigerant vapor generated from the high-temperature regenerator while increasing the heating operation.
【請求項2】 高温再生器と、低温再生器と、凝縮器
と、蒸発器と、吸収器と、熱交換器と、溶液循環ポンプ
と、冷媒スプレポンプとを具備し、かつ、前記凝縮器の
気相部と蒸発器とをU字シール管を介して接続するとと
もに、前記冷媒スプレポンプの吐出側から分岐された分
岐管を前記U字シール管に接続して成る吸収式冷温水機
を運転して暖房作動を行なわせる場合、 当該吸収式冷温水機に冷房作動せしめる場合に比して、
高温再生器に与える熱量を増加させ、該高温再生器から
発生する冷媒蒸気の流量を増加せしめて暖房能力を増加
する方法において、 低温再生器のドレン室から凝縮器に冷媒蒸気をバイパス
させて該低温再生器内の熱交換量を減らし、低温再生器
内の冷媒液発生量を減少させることにより、 低温再生器ドレン室と凝縮器との間の圧力損失を「暖房
運転時に高温再生器に与える単位時間当たり熱量を、冷
房運転時に比して増加せしめない暖房標準の状態」にお
ける「低温再生器ドレン室と凝縮器との間の圧力損失」
とほぼ同レベルに減少せしめ、 高温再生器内の圧力を大気圧力以下に維持しつつ、高温
再生器に与える熱量を冷房運転状態における定格値より
も増加し、 高温再生器内の異常昇圧を防止しつつ該高温再生器から
発生する冷媒蒸気流量を増加させて暖房増加運転するこ
とを特徴とする、吸収式冷温水機の暖房能力増加方法。
2. A high-temperature regenerator, a low-temperature regenerator, a condenser, an evaporator, an absorber, a heat exchanger, a solution circulation pump, and a refrigerant spray pump. The absorption type chiller / heater comprising connecting the gas phase part and the evaporator via a U-shaped seal pipe and connecting a branch pipe branched from the discharge side of the refrigerant spray pump to the U-shaped seal pipe is operated. When the heating operation is performed by using the absorption type chiller / heater,
In a method of increasing the amount of heat applied to the high-temperature regenerator and increasing the flow rate of the refrigerant vapor generated from the high-temperature regenerator to increase the heating capacity, the refrigerant vapor is bypassed from the drain chamber of the low-temperature regenerator to the condenser. By reducing the amount of heat exchange in the low-temperature regenerator and the amount of refrigerant liquid generated in the low-temperature regenerator, the pressure loss between the low-temperature regenerator drain chamber and the condenser is given to the high-temperature regenerator during the heating operation. "Pressure loss between the low-temperature regenerator drain chamber and the condenser" in the "heating standard state where the amount of heat per unit time is not increased compared to the cooling operation"
While maintaining the pressure inside the high-temperature regenerator below atmospheric pressure, the amount of heat given to the high-temperature regenerator increases from the rated value in the cooling operation state, preventing abnormal pressure rise in the high-temperature regenerator And increasing the flow rate of the refrigerant vapor generated from the high-temperature regenerator while increasing the heating operation.
【請求項3】 高温再生器と、低温再生器と、凝縮機
と、蒸発器と、吸収器と、熱交換器と、溶液循環ポンプ
と、冷媒スプレポンプとを具備し、かつ、前記凝縮器の
気相部と蒸発器とをU字シール管を介して接続するとと
もに、前記冷媒スプレポンプの吐出側から分岐された分
岐管を前記U字シール管に接続して成る吸収式冷温水機
を運転して暖房作動を行なわせる場合、 当該吸収式冷温水機に冷房作動せしめる場合に比して、
高温再生器に与える熱量を増加させ、該高温再生器から
発生する冷媒蒸気の流量を増加せしめて暖房能力を増加
する方法において、 低温再生器のドレン室から冷媒液を低温再生器の本体部
分へ還流せしめて、凝縮器へ送る冷媒液の流量を減少せ
しめることにより、 低温再生器ドレン室と凝縮器との間の圧力損失を、「暖
房運転時に高温再生器に与える単位時間当たり熱量を、
冷房運転時に比して増加せしめない暖房標準の状態」に
おける「低温再生器ドレン室と凝縮器との間の圧力損
失」とほぼ同レベルに減少せしめ、 高温再生器内の圧力を大気圧以下に維持しつつ、高温再
生器に与える熱量を冷房運転状態における定格値よりも
増加し、 高温再生器内の異常昇圧を防止しつつ該高温再生器から
発生する冷媒蒸気流量を増加させて暖房増加運転するこ
とを特徴とする、吸収式冷温水機の暖房能力増加方法。
3. A high-temperature regenerator, a low-temperature regenerator, a condenser, an evaporator, an absorber, a heat exchanger, a solution circulation pump, and a refrigerant spray pump. The absorption type chiller / heater comprising connecting the gas phase part and the evaporator via a U-shaped seal pipe and connecting a branch pipe branched from the discharge side of the refrigerant spray pump to the U-shaped seal pipe is operated. When performing the heating operation by using the absorption type chiller / heater,
In a method of increasing the amount of heat given to the high-temperature regenerator and increasing the heating capacity by increasing the flow rate of the refrigerant vapor generated from the high-temperature regenerator, the refrigerant liquid is transferred from the drain chamber of the low-temperature regenerator to the main body of the low-temperature regenerator. By refluxing and reducing the flow rate of the refrigerant liquid sent to the condenser, the pressure loss between the low-temperature regenerator drain chamber and the condenser can be reduced to `` the amount of heat per unit time given to the high-temperature regenerator during heating operation,
Reduce the pressure in the high-temperature regenerator to below atmospheric pressure by reducing it to almost the same level as the "pressure loss between the low-temperature regenerator drain chamber and the condenser" in "Heating standard condition that does not increase compared to cooling operation". While maintaining, the amount of heat given to the high-temperature regenerator is increased from the rated value in the cooling operation state, and the heating increase operation is performed by increasing the refrigerant vapor flow generated from the high-temperature regenerator while preventing abnormal pressure rise in the high-temperature regenerator. A method for increasing the heating capacity of an absorption chiller / heater, comprising:
【請求項4】 高温再生器と、低温再生器と、凝縮機
と、蒸発器と、吸収器と、熱交換器と、溶液循環ポンプ
と、冷媒スプレポンプとを具備し、かつ、前記蒸発器の
底部に溜まっている冷媒液を揚液して吸収器に導く「冷
媒蒸気を駆動源とする気泡ポンプ」を設けて成る吸収式
冷温水機を運転して暖房作動を行なわせる場合、 当該吸収式冷温水機に冷房作動せしめる場合に比して、
高温再生器に与える熱量を増加させ、該高温再生器から
発生する冷媒蒸気の流量を増加せしめて暖房能力を増加
する方法において、 低温再生器のドレン室から蒸発器に冷媒蒸気をバイパス
させて該低温再生器内の冷媒液発生量を減少せしめるこ
とにより、 低温再生器ドレン室と凝縮器との間の圧力損失を「暖房
運転時に高温再生器に与える単位時間当たり熱量を、冷
房運転時に比して増加せしめない暖房標準の状態」にお
ける「低温再生器ドレン室と凝縮器との間の圧力損失」
とほぼ同レベルに減少せしめ、 高温再生器内の圧力を大気圧以下に維持しつつ、高温再
生器に与える熱量を冷房運転状態における定格値よりも
増加し、 高温再生器内の異常昇圧を防止しつつ該高温再生器から
発生する冷媒蒸気流量を増加させて暖房増加運転するこ
とを特徴とする、吸収式冷温水機の暖房能力増加方法。
4. A high-temperature regenerator, a low-temperature regenerator, a condenser, an evaporator, an absorber, a heat exchanger, a solution circulation pump, and a refrigerant spray pump. When operating an absorption type chiller / heater equipped with a “bubble pump driven by refrigerant vapor as a driving source” for pumping the refrigerant liquid accumulated at the bottom and guiding it to an absorber, the heating operation is performed by the absorption type Compared to the case where the water heater is operated for cooling,
In a method of increasing the amount of heat given to the high-temperature regenerator and increasing the flow rate of the refrigerant vapor generated from the high-temperature regenerator to increase the heating capacity, the refrigerant vapor is bypassed from the drain chamber of the low-temperature regenerator to the evaporator. By reducing the amount of refrigerant liquid generated in the low-temperature regenerator, the pressure loss between the low-temperature regenerator drain chamber and the condenser is reduced by comparing the amount of heat per unit time given to the high-temperature regenerator during heating operation to that during cooling operation. "Pressure loss between the low-temperature regenerator drain chamber and the condenser" under the condition of the heating standard that cannot be increased
While maintaining the pressure inside the high-temperature regenerator below the atmospheric pressure, the amount of heat given to the high-temperature regenerator increases from the rated value in the cooling operation state, preventing abnormal pressure rise in the high-temperature regenerator And increasing the flow rate of the refrigerant vapor generated from the high-temperature regenerator while increasing the heating operation.
【請求項5】 高温再生器と、低温再生器と、凝縮機
と、蒸発器と、吸収器と、熱交換器と、溶液循環ポンプ
と、冷媒スプレポンプとを具備し、かつ、前記蒸発器の
底部に溜まっている冷媒液を揚液して吸収器に導く「冷
媒蒸気を駆動源とする気泡ポンプ」を設けて成る吸収式
冷温水機を運転して暖房作動を行なわせる場合、 当該吸収式冷温水機に冷房作動せしめる場合に比して、
高温再生器に与える熱量を増加させ、該高温再生器から
発生する冷媒蒸気の流量を増加せしめて暖房能力を増加
する方法において、 低温再生器のドレン室から凝縮器に冷媒蒸気をバイパス
させて該低温再生器内の熱交換量を減らし、低温再生器
内の冷媒液発生量を減少させることにより、 低温再生器ドレン室と凝縮器との間の圧力損失を「暖房
運転時に高温再生器に与える単位時間当たり熱量を、冷
房運転時に比して増加せしめない暖房標準の状態」にお
ける「低温再生器ドレン室と凝縮器との間の圧力損失」
とほぼ同レベルに減少せしめ、 高温再生器内の圧力を大気圧以下に維持しつつ、高温再
生器に与える熱量を冷房運転状態における定格値よりも
増加し、 高温再生器内の異常昇圧を防止しつつ該高温再生器から
発生する冷媒蒸気流量を増加させて暖房増加運転するこ
とを特徴とする、吸収式冷温水機の暖房能力増加方法。
5. A high-temperature regenerator, a low-temperature regenerator, a condenser, an evaporator, an absorber, a heat exchanger, a solution circulation pump, and a refrigerant spray pump. When operating an absorption type chiller / heater equipped with a “bubble pump driven by refrigerant vapor” as a driving source for pumping the refrigerant liquid accumulated at the bottom and guiding the refrigerant to the absorber, the absorption type Compared to the case where the water heater is operated for cooling,
In a method of increasing the amount of heat applied to the high-temperature regenerator and increasing the flow rate of the refrigerant vapor generated from the high-temperature regenerator to increase the heating capacity, the refrigerant vapor is bypassed from the drain chamber of the low-temperature regenerator to the condenser. By reducing the amount of heat exchange in the low-temperature regenerator and the amount of refrigerant liquid generated in the low-temperature regenerator, the pressure loss between the low-temperature regenerator drain chamber and the condenser is given to the high-temperature regenerator during the heating operation. "Pressure loss between the low-temperature regenerator drain chamber and the condenser" in the "heating standard state where the amount of heat per unit time is not increased compared to the cooling operation"
While maintaining the pressure inside the high-temperature regenerator below the atmospheric pressure, the amount of heat given to the high-temperature regenerator increases from the rated value in the cooling operation state, preventing abnormal pressure rise in the high-temperature regenerator And increasing the flow rate of the refrigerant vapor generated from the high-temperature regenerator while increasing the heating operation.
【請求項6】 高温再生器と、低温再生器と、凝縮機
と、蒸発器と、吸収器と、熱交換器と、溶液循環ポンプ
と、冷媒スプレポンプとを具備し、かつ、前記蒸発器の
底部に溜まっている冷媒液を揚液して吸収器に導く「冷
媒蒸気を駆動源とする気泡ポンプ」を設けて成る吸収式
冷温水機を運転して暖房作動を行なわせる場合、 当該吸収式冷温水機に冷房作動せしめる場合に比して、
高温再生器に与える熱量を増加させ、該高温再生器から
発生する冷媒蒸気の流量を増加せしめて暖房能力を増加
する方法において、 低温再生器のドレン室から冷媒液を低温再生器の本体部
分へ還流せしめて、凝縮器へ送る冷媒液の流量を減少せ
しめることにより、 低温再生器ドレン室と凝縮器との間の圧力損失を、「暖
房運転時に高温再生器に与える単位時間当たり熱量を、
冷房運転時に比して増加せしめない暖房標準の状態」に
おける「低温再生器ドレン室と凝縮器との間の圧力損
失」とほぼ同レベルに減少せしめ、 高温再生器内の圧力を大気圧以下に維持しつつ、高温再
生器に与える熱量を冷房運転状態における定格値よりも
増加し、 高温再生器内の異常昇圧を防止しつつ該高温再生器から
発生する冷媒蒸気流量を増加させて暖房増加運転するこ
とを特徴とする、吸収式冷温水機の暖房能力増加方法。
6. A high-temperature regenerator, a low-temperature regenerator, a condenser, an evaporator, an absorber, a heat exchanger, a solution circulation pump, and a refrigerant spray pump. When operating an absorption type chiller / heater equipped with a “bubble pump driven by refrigerant vapor as a driving source” for pumping the refrigerant liquid accumulated at the bottom and guiding it to an absorber, the heating operation is performed by the absorption type Compared to the case where the water heater is operated for cooling,
In a method of increasing the amount of heat given to the high-temperature regenerator and increasing the heating capacity by increasing the flow rate of the refrigerant vapor generated from the high-temperature regenerator, the refrigerant liquid is transferred from the drain chamber of the low-temperature regenerator to the main body of the low-temperature regenerator. By refluxing and reducing the flow rate of the refrigerant liquid sent to the condenser, the pressure loss between the low-temperature regenerator drain chamber and the condenser can be reduced to `` the amount of heat per unit time given to the high-temperature regenerator during heating operation,
Reduce the pressure in the high-temperature regenerator to below atmospheric pressure by reducing it to almost the same level as the "pressure loss between the low-temperature regenerator drain chamber and the condenser" in "Heating standard condition that does not increase compared to cooling operation". While maintaining, the amount of heat given to the high-temperature regenerator is increased from the rated value in the cooling operation state, and the heating increase operation is performed by increasing the refrigerant vapor flow generated from the high-temperature regenerator while preventing abnormal pressure rise in the high-temperature regenerator. A method for increasing the heating capacity of an absorption chiller / heater, comprising:
【請求項7】 高温再生器と、低温再生器と、凝縮機
と、蒸発器と、吸収器と、熱交換器と、溶液循環ポンプ
と、冷媒スプレポンプとを具備し、かつ、前記凝縮器の
気相部と蒸発器とをU字シール管を介して接続するとと
もに、前記冷媒スプレポンプの吐出側から分岐された分
岐管を前記U字シール管に接続して成る吸収式冷温水機
であって、 当該吸収式冷温水機に冷房作動せしめる場合に比して、
高温再生器に与える熱量を増加させ、該高温再生機から
発生する冷媒蒸気の流量を増加せしめて暖房能力を増加
するように構成された暖房増加型吸収式冷温水機におい
て、 前記低温再生器のドレン室と蒸発器との間に、閉止可能
な弁手段を備えたバイパス管路が設けられていて、上記
の弁手段を開いて低温再生器から蒸発器に冷媒蒸気をバ
イパスせしめ得るようになっており、 上記の弁手段を開くことにより、低温再生器ドレン室と
凝縮器との間の圧力損失が低下して、高温再生器に与え
る熱量を増加せしめて該高温再生器から発生する冷媒蒸
気の流量を増加させても該高温再生器内の冷媒蒸気圧力
の上昇が抑制されて、大気圧以下に維持される構造であ
ることを特徴とする、暖房増加型吸収式冷温水機。
7. A high-temperature regenerator, a low-temperature regenerator, a condenser, an evaporator, an absorber, a heat exchanger, a solution circulation pump, and a refrigerant spray pump. An absorption chiller / heater comprising a gas-phase part and an evaporator connected via a U-shaped seal pipe, and a branch pipe branched from a discharge side of the refrigerant spray pump connected to the U-shaped seal pipe. , Compared to the case where the absorption type chiller / heater is operated for cooling,
In the heating-increase-type absorption chiller / heater configured to increase the amount of heat given to the high-temperature regenerator and increase the heating capacity by increasing the flow rate of the refrigerant vapor generated from the high-temperature regenerator, Between the drain chamber and the evaporator, there is provided a bypass pipe provided with a closable valve means, and the valve means can be opened to allow the refrigerant vapor to be bypassed from the low-temperature regenerator to the evaporator. By opening the valve means, the pressure loss between the drain chamber of the low-temperature regenerator and the condenser is reduced, the amount of heat given to the high-temperature regenerator is increased, and the refrigerant vapor generated from the high-temperature regenerator Characterized by a structure in which an increase in refrigerant vapor pressure in the high-temperature regenerator is suppressed even when the flow rate of the high-temperature regenerator is increased, and is maintained at or below atmospheric pressure.
【請求項8】 高温再生器と、低温再生器と、凝縮機
と、蒸発器と、吸収器と、熱交換器と、溶液循環ポンプ
と、冷媒スプレポンプとを具備し、かつ、前記凝縮器の
気相部と蒸発器とをU字シール管を介して接続するとと
もに、前記冷媒スプレポンプの吐出側から分岐された分
岐管を前記U字シール管に接続して成る吸収式冷温水機
であって、 当該吸収式冷温水機に冷房作動せしめる場合に比して、
高温再生器に与える熱量を増加させ、該高温再生器から
発生する冷媒蒸気の流量を増加せしめて暖房能力を増加
するように構成された暖房増加型吸収式冷温水機におい
て、 前記低温再生器のドレン室と凝縮器との間に、閉止可能
な弁手段を備えたバイパス管路が設けられていて、上記
の弁手段を開いて低温再生器から凝縮器に冷媒蒸気をバ
イパスせしめ得るようになっており、 上記の弁手段を開くことにより、低温再生器ドレン室と
凝縮器との間の圧力損失が低下して、高温再生器に与え
る熱量を増加せしめて該高温再生器から発生する冷媒蒸
気の流量を増加させても該高温再生器内の冷媒蒸気圧力
の上昇が抑制されて、大気圧以下に維持される構造であ
ることを特徴とする、暖房増加型吸収式冷温水機。
8. A high-temperature regenerator, a low-temperature regenerator, a condenser, an evaporator, an absorber, a heat exchanger, a solution circulation pump, and a refrigerant spray pump. An absorption chiller / heater comprising a gas-phase part and an evaporator connected via a U-shaped seal pipe, and a branch pipe branched from a discharge side of the refrigerant spray pump connected to the U-shaped seal pipe. , As compared to the case where the absorption type chiller / heater is operated for cooling,
In the heating-increase type absorption chiller / heater configured to increase the amount of heat given to the high-temperature regenerator and increase the heating capacity by increasing the flow rate of the refrigerant vapor generated from the high-temperature regenerator, A bypass line provided with a closable valve means is provided between the drain chamber and the condenser, and the valve means can be opened to allow refrigerant vapor to be bypassed from the low-temperature regenerator to the condenser. By opening the valve means, the pressure loss between the drain chamber of the low-temperature regenerator and the condenser is reduced, the amount of heat given to the high-temperature regenerator is increased, and the refrigerant vapor generated from the high-temperature regenerator Characterized by a structure in which an increase in refrigerant vapor pressure in the high-temperature regenerator is suppressed even when the flow rate of the high-temperature regenerator is increased, and is maintained at or below atmospheric pressure.
【請求項9】 高温再生器と、低温再生器と、凝縮機
と、蒸発器と、吸収器と、熱交換器と、溶液循環ポンプ
と、冷媒スプレポンプとを具備し、かつ、前記凝縮器の
気相部と蒸発器とをU字シール管を介して接続するとと
もに、前記冷媒スプレポンプの吐出側から分岐された分
岐管を前記U字シール管に接続して成る吸収式冷温水機
であって、 当該吸収式冷温水機に冷房作動せしめる場合に比して、
高温再生器に与える熱量を増加させ、該高温再生器から
発生する冷媒蒸気の流量を増加せしめて暖房能力を増加
するように構成された暖房増加型吸収式冷温水機におい
て、 前記低温再生器のドレン室と該低温再生器の本体部との
間に、閉止可能な弁手段を備えたリターン管路が設けら
れていて、上記の弁手段を開いて低温再生器のドレン室
から本体部に冷媒液を還流せしめ得るようになってお
り、 上記の弁手段を開くことにより、低温再生器ドレン室と
凝縮器との間の圧力損失が低下して、高温再生器に与え
る熱量を増加せしめて該高温再生器から発生する冷媒蒸
気の流量を増加させても該高温再生器内の冷媒蒸気圧力
の上昇が抑制されて、大気圧以下に維持される構造であ
ることを特徴とする、暖房増加型吸収式冷温水機。
9. A high-temperature regenerator, a low-temperature regenerator, a condenser, an evaporator, an absorber, a heat exchanger, a solution circulation pump, and a refrigerant spray pump; An absorption chiller / heater comprising a gas-phase part and an evaporator connected via a U-shaped seal pipe, and a branch pipe branched from a discharge side of the refrigerant spray pump connected to the U-shaped seal pipe. , As compared to the case where the absorption type chiller / heater is operated for cooling,
In the heating-increase type absorption chiller / heater configured to increase the amount of heat given to the high-temperature regenerator and increase the heating capacity by increasing the flow rate of the refrigerant vapor generated from the high-temperature regenerator, A return line provided with a closable valve means is provided between the drain chamber and the main body of the low-temperature regenerator, and the valve means is opened to allow the refrigerant to flow from the drain chamber of the low-temperature regenerator to the main body. By opening the valve means, the pressure loss between the low-temperature regenerator drain chamber and the condenser is reduced, and the amount of heat given to the high-temperature regenerator is increased. Even if the flow rate of the refrigerant vapor generated from the high-temperature regenerator is increased, the increase in the refrigerant vapor pressure in the high-temperature regenerator is suppressed, and the structure is maintained at or below the atmospheric pressure. Absorption chiller / heater.
【請求項10】 高温再生器と、低温再生器と、凝縮機
と、蒸発器と、吸収器と、熱交換器と、溶液循環ポンプ
と、冷媒スプレポンプとを具備し、かつ、前記蒸発器の
底部に溜まっている冷媒液を揚液して吸収管に導く「冷
媒蒸気を駆動源とする気泡ポンプ」を設けて成る吸収式
冷温水機であって、 当該吸収式冷温水機に冷房作動せしめる場合に比して、
高温再生器に与える熱量を増加させ、該高温再生器から
発生する冷媒蒸気の流量を増加せしめて暖房能力を増加
するように構成された暖房増加型吸収式冷温水機におい
て、 前記低温再生器のドレン室と蒸発器との間に、閉止可能
な弁手段を備えたバイパス管路が設けられていて、上記
の弁手段を開いて低温再生器から蒸発器に冷媒蒸気をバ
イパスせしめ得るようになっており、 上記の弁手段を開くことにより、低温再生器ドレン室と
凝縮器との間の圧力損失が低下して、高温再生器に与え
る熱量を増加せしめて該高温再生器から発生する冷媒蒸
気の流量を増加させても該高温再生器内の冷媒蒸気圧力
の上昇が抑制されて、大気圧以下に維持される構造であ
ることを特徴とする、暖房増加型吸収式冷温水機。
10. A high-temperature regenerator, a low-temperature regenerator, a condenser, an evaporator, an absorber, a heat exchanger, a solution circulation pump, and a refrigerant spray pump. An absorption type chiller / heater provided with a “bubble pump driven by refrigerant vapor as a driving source” for pumping the refrigerant liquid accumulated at the bottom and guiding the refrigerant to the absorption pipe, and the absorption chiller / heater is operated for cooling. In comparison to the case,
In the heating-increase type absorption chiller / heater configured to increase the amount of heat given to the high-temperature regenerator and increase the heating capacity by increasing the flow rate of the refrigerant vapor generated from the high-temperature regenerator, Between the drain chamber and the evaporator, there is provided a bypass pipe provided with a closable valve means, and the valve means can be opened to allow the refrigerant vapor to be bypassed from the low-temperature regenerator to the evaporator. By opening the valve means, the pressure loss between the drain chamber of the low-temperature regenerator and the condenser is reduced, the amount of heat given to the high-temperature regenerator is increased, and the refrigerant vapor generated from the high-temperature regenerator Characterized by a structure in which an increase in refrigerant vapor pressure in the high-temperature regenerator is suppressed even when the flow rate of the high-temperature regenerator is increased, and is maintained at or below atmospheric pressure.
【請求項11】 高温再生器と、低温再生器と、凝縮機
と、蒸発器と、吸収器と、熱交換器と、溶液循環ポンプ
と、冷媒スプレポンプとを具備し、かつ、前記蒸発器の
底部に溜まっている冷媒液を揚液して吸収器に導く「冷
媒蒸気を駆動源とする気泡ポンプ」を設けて成る吸収式
冷温水機であって、 当該吸収式冷温水機に冷房作動せしめる場合に比して、
高温再生器に与える熱量を増加させ、該高温再生器から
発生する冷媒蒸気の流量を増加せしめて暖房能力を増加
するように構成された暖房増加型吸収式冷温水機におい
て、 前記低温再生器のドレン室と凝縮器との間に、閉止可能
な弁手段を備えたバイパス管路が設けられていて、上記
の弁手段を開いて低温再生器から凝縮器に冷媒蒸気をバ
イパスせしめ得るようになっており、 上記の弁手段を開くことにより、低温再生器ドレン室と
凝縮器との間の圧力損失が低下して、高温再生器に与え
る熱量を増加せしめて該高温再生器から発生する冷媒蒸
気の流量を増加させても該高温再生器内の冷媒蒸気圧力
の上昇が抑制されて、大気圧以下に維持される構造であ
ることを特徴とする、暖房増加型吸収式冷温水機。
11. A high-temperature regenerator, a low-temperature regenerator, a condenser, an evaporator, an absorber, a heat exchanger, a solution circulation pump, and a refrigerant spray pump. An absorption chiller / heater provided with a “bubble pump driven by refrigerant vapor as a drive source” for pumping the refrigerant liquid accumulated at the bottom and guiding the liquid to the absorber, and the cooling chiller / heater is operated for cooling. Compared to the case
In the heating-increase type absorption chiller / heater configured to increase the amount of heat given to the high-temperature regenerator and increase the heating capacity by increasing the flow rate of the refrigerant vapor generated from the high-temperature regenerator, A bypass line provided with a closable valve means is provided between the drain chamber and the condenser, and the valve means can be opened to allow refrigerant vapor to be bypassed from the low-temperature regenerator to the condenser. By opening the valve means, the pressure loss between the drain chamber of the low-temperature regenerator and the condenser is reduced, the amount of heat given to the high-temperature regenerator is increased, and the refrigerant vapor generated from the high-temperature regenerator Characterized by a structure in which an increase in refrigerant vapor pressure in the high-temperature regenerator is suppressed even when the flow rate of the high-temperature regenerator is increased, and is maintained at or below atmospheric pressure.
【請求項12】 高温再生器と、低温再生器と、凝縮機
と、蒸発器と、吸収器と、熱交換器と、溶液循環ポンプ
と、冷媒スプレポンプとを具備し、かつ、前記蒸発器の
底部に溜まっている冷媒液を揚液して吸収器に導く「冷
媒蒸気を駆動源とする気泡ポンプ」を設けて成る吸収式
冷温水機であって、 当該吸収式冷温水機に冷房作動せしめる場合に比して、
高温再生器に与える熱量を増加させ、該高温再生器から
発生する冷媒蒸気の流量を増加せしめて暖房能力を増加
するように構成された暖房増加型吸収式冷温水機におい
て、 前記低温再生器のドレン室と該低温再生器の本体部との
間に、閉止可能な弁手段を備えたリターン管路が設けら
れていて、上記の弁手段を開いて低温再生器のドレン室
から本体部に冷媒液を還流せしめ得るようになってお
り、 上記の弁手段を開くことにより、低温再生器ドレン室と
凝縮器との間の圧力損失が低下して、高温再生器に与え
る熱量を増加せしめて該高温再生器から発生する冷媒蒸
気の流量を増加させても該高温再生器内の冷媒蒸気圧力
の上昇が抑制されて、大気圧以下に維持される構造であ
ることを特徴とする、暖房増加型吸収式冷温水機。
12. A high-temperature regenerator, a low-temperature regenerator, a condenser, an evaporator, an absorber, a heat exchanger, a solution circulation pump, and a refrigerant spray pump. An absorption chiller / heater provided with a “bubble pump driven by refrigerant vapor as a drive source” for pumping the refrigerant liquid accumulated at the bottom and guiding the liquid to the absorber, and the cooling chiller / heater is operated for cooling. Compared to the case
In the heating-increase type absorption chiller / heater configured to increase the amount of heat given to the high-temperature regenerator and increase the heating capacity by increasing the flow rate of the refrigerant vapor generated from the high-temperature regenerator, A return line provided with a closable valve means is provided between the drain chamber and the main body of the low-temperature regenerator, and the valve means is opened to allow the refrigerant to flow from the drain chamber of the low-temperature regenerator to the main body. By opening the valve means, the pressure loss between the low-temperature regenerator drain chamber and the condenser is reduced, and the amount of heat given to the high-temperature regenerator is increased. Even if the flow rate of the refrigerant vapor generated from the high-temperature regenerator is increased, the increase in the refrigerant vapor pressure in the high-temperature regenerator is suppressed, and the structure is maintained at or below the atmospheric pressure. Absorption chiller / heater.
JP10271730A 1998-09-25 1998-09-25 Method for increasing heating capacity of absorption- water cooled/warmer and increasing load absorption water cooler/warmer Pending JP2000097512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10271730A JP2000097512A (en) 1998-09-25 1998-09-25 Method for increasing heating capacity of absorption- water cooled/warmer and increasing load absorption water cooler/warmer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10271730A JP2000097512A (en) 1998-09-25 1998-09-25 Method for increasing heating capacity of absorption- water cooled/warmer and increasing load absorption water cooler/warmer

Publications (1)

Publication Number Publication Date
JP2000097512A true JP2000097512A (en) 2000-04-04

Family

ID=17504045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10271730A Pending JP2000097512A (en) 1998-09-25 1998-09-25 Method for increasing heating capacity of absorption- water cooled/warmer and increasing load absorption water cooler/warmer

Country Status (1)

Country Link
JP (1) JP2000097512A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002177994A (en) * 2000-12-11 2002-06-25 Ngk Insulators Ltd Digestive treatment method and equipment for organic sludge
WO2022124162A1 (en) * 2020-12-11 2022-06-16 住友重機械工業株式会社 Cryogenic refrigerator and heat flow meter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002177994A (en) * 2000-12-11 2002-06-25 Ngk Insulators Ltd Digestive treatment method and equipment for organic sludge
WO2022124162A1 (en) * 2020-12-11 2022-06-16 住友重機械工業株式会社 Cryogenic refrigerator and heat flow meter

Similar Documents

Publication Publication Date Title
KR101280381B1 (en) Heat pump
JP2002213835A (en) Refrigerant storage apparatus
CN112384479B (en) Reverse osmosis treatment method and system
JP2000097512A (en) Method for increasing heating capacity of absorption- water cooled/warmer and increasing load absorption water cooler/warmer
JP2007024488A (en) Cooler
JP3492913B2 (en) Oil recovery device
TWI522582B (en) Hybrid heat pump for heating and cooling
JP4073219B2 (en) Absorption chiller / heater
JP4007541B2 (en) Operation method for preventing flue wall corrosion at partial load in multi-effect absorption refrigerator / cooling / heating machine
JP3139099B2 (en) Heat transfer device
JP2004044817A (en) Air conditioner of engine driving heat pump type having hot-water supply heating unit, and its operation control method
JP3434283B2 (en) Absorption refrigerator and how to start it
JP3416289B2 (en) Pressure difference sealing device for absorption refrigerators and water heaters
JP4277114B2 (en) Engine-driven heat pump device
JP4064199B2 (en) Triple effect absorption refrigerator
JP3434279B2 (en) Absorption refrigerator and how to start it
JP3407182B2 (en) Absorption type cold heat generator
JPH0658651A (en) Automatic cooling or heating changing-over operating method for gas absorption type cold water/hot water feeding equipment
JP2000234822A (en) Engine driven heat pump apparatus
JPH0627589B2 (en) Heat pump refrigeration system
JPH08100960A (en) Engine driven type heat pump apparatus
JPH10232064A (en) Cooling operation control method of absorption cooling and heating device
CN107860152A (en) A kind of heat pump
JP2003262363A (en) Engine-driven air conditioning system
JPH08210741A (en) Safety device of cooling apparatus

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040120