JP4277114B2 - Engine-driven heat pump device - Google Patents

Engine-driven heat pump device Download PDF

Info

Publication number
JP4277114B2
JP4277114B2 JP2004138415A JP2004138415A JP4277114B2 JP 4277114 B2 JP4277114 B2 JP 4277114B2 JP 2004138415 A JP2004138415 A JP 2004138415A JP 2004138415 A JP2004138415 A JP 2004138415A JP 4277114 B2 JP4277114 B2 JP 4277114B2
Authority
JP
Japan
Prior art keywords
cooling water
refrigerant
line
heat exchanger
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004138415A
Other languages
Japanese (ja)
Other versions
JP2004226063A (en
Inventor
元保 加藤
正三 青島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP2004138415A priority Critical patent/JP4277114B2/en
Publication of JP2004226063A publication Critical patent/JP2004226063A/en
Application granted granted Critical
Publication of JP4277114B2 publication Critical patent/JP4277114B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

本発明は、エンジンの廃熱を回収するための冷媒加熱用熱交換器を備えるエンジン駆動式熱ポンプ装置に関する。   The present invention relates to an engine-driven heat pump apparatus including a refrigerant heating heat exchanger for recovering engine waste heat.

一般に、エンジン駆動式熱ポンプ装置においては、エンジンの廃熱を回収してこれを有効利用するために排気ガス熱交換器及び冷媒加熱用熱交換器が設けられている。   In general, in an engine-driven heat pump apparatus, an exhaust gas heat exchanger and a refrigerant heating heat exchanger are provided in order to recover waste heat of the engine and use it effectively.

上記冷媒加熱用交換器は、特に暖房運転時の室内熱交換器での放熱量(冷媒から放出される熱量)を効率良く増加させるために設けられるものであって、該冷媒加熱用熱交換器においては、前記排気ガス熱交換器で排気ガスから冷却水に回収された廃熱が冷媒に与えられ、結果的にエンジンから回収された廃熱が室内熱交換器の放熱量に上乗せされることとなる。   The refrigerant heating exchanger is provided in order to efficiently increase the amount of heat released from the indoor heat exchanger (heat quantity released from the refrigerant) particularly during heating operation, and the refrigerant heating heat exchanger , The waste heat recovered from the exhaust gas into the cooling water by the exhaust gas heat exchanger is given to the refrigerant, and as a result, the waste heat recovered from the engine is added to the heat dissipation amount of the indoor heat exchanger. It becomes.

ところが、室内熱交換器を複数台有する所謂マルチ運転が可能な熱ポンプ装置においては、暖房運転時に全室内熱交換器を運転しているときの必要性能に見合った熱授受バランスが保たれているため、例えば室内熱交換器を1台のみ運転しているときには、その室内熱交換器の要求性能(放熱量)以上に冷媒加熱用熱交換器での熱交換量(冷却水から冷媒に与えられる熱量)が過大となって、冷媒回路内での熱量バランスが崩れ、冷媒圧力が異常に上昇するという問題があった。   However, in a heat pump device capable of so-called multi-operation that has a plurality of indoor heat exchangers, a heat transfer balance is maintained that matches the required performance when operating all the indoor heat exchangers during heating operation. Therefore, for example, when only one indoor heat exchanger is operated, the heat exchange amount in the refrigerant heating heat exchanger (given from the cooling water to the refrigerant) exceeds the required performance (heat radiation amount) of the indoor heat exchanger. There is a problem that the amount of heat in the refrigerant circuit becomes excessive and the heat balance in the refrigerant circuit is lost, and the refrigerant pressure rises abnormally.

本発明は上記問題に鑑みてなされたもので、その目的とする処は、室内熱交換器の運転台数(冷媒流量)に見合った冷媒と冷却水との熱交換を実現して冷媒回路内を適切な熱授受バランスに保つことができるエンジン駆動式熱ポンプ装置を提供することにある。   The present invention has been made in view of the above problems, and the purpose of the present invention is to realize heat exchange between the refrigerant and the cooling water in accordance with the number of operating indoor heat exchangers (refrigerant flow rate), and the inside of the refrigerant circuit. An object of the present invention is to provide an engine-driven heat pump device that can maintain an appropriate heat transfer balance.

上記目的を達成するため、本発明は、エンジンによって駆動される圧縮機によって冷媒を循環させる冷媒回路と、エンジンを冷却する冷却水を循環させる冷却水回路を有し、前記冷媒回路には膨張弁と室内熱交換器及び室外熱交換器を設け、前記冷却水回路には排気ガス熱交換器、ラジエータ及びポンプを設けるとともに、前記ラジエータを通る冷却水ラインと前記ラジエータを迂回する冷却水ラインを設け、冷媒と冷却水の間で熱交換を行わせる冷媒加熱用熱交換器を、冷媒回路と冷却水回路の前記ラジエータを迂回する冷却水ラインとの間に設けて成るエンジン駆動式熱ポンプ装置において、前記ラジエータを迂回して前記冷媒加熱用熱交換器へ流れる冷却水の流量を制御するリニア三方弁と、制御条件に応じて前記リニア三方弁の開度をリニアに増減させる制御手段を設け、前記リニア三方弁は、暖房時、第1の冷却水温度以下では冷却水の全量を前記冷却水ラインに流し、第1の冷却水温度より大きく第2の冷却水温度より小さい範囲では前記冷却水ラインに流す冷却水量をリニアに増減し、第2の冷却水温度以上では冷却水の全量を前記ラジエータに流すよう設定されることを特徴とする。
To achieve the above object, the present invention has a refrigerant circuit for circulating a refrigerant by a compressor driven by an engine, and a cooling water circuit for circulating cooling water for cooling the engine, and the refrigerant circuit includes an expansion valve. And an indoor heat exchanger and an outdoor heat exchanger, and the cooling water circuit is provided with an exhaust gas heat exchanger, a radiator and a pump, and a cooling water line passing through the radiator and a cooling water line bypassing the radiator are provided. An engine-driven heat pump apparatus comprising a refrigerant heating heat exchanger that exchanges heat between refrigerant and cooling water between a refrigerant circuit and a cooling water line that bypasses the radiator of the cooling water circuit. A linear three-way valve that controls the flow rate of the cooling water that flows to the refrigerant heating heat exchanger by bypassing the radiator, and the opening degree of the linear three-way valve according to control conditions Control means for linearly increasing and decreasing is provided, and the linear three-way valve causes the entire amount of cooling water to flow through the cooling water line at a temperature equal to or lower than the first cooling water temperature during heating, and the second cooling is greater than the first cooling water temperature. The amount of cooling water flowing through the cooling water line is linearly increased / decreased in a range lower than the water temperature, and the entire amount of cooling water is set to flow through the radiator above the second cooling water temperature.

本発明によれば、例えば暖房運転時に冷却水温度が所定値以下の状態で室内熱交換器の運転台数が減ったために冷媒流量が減少し、冷媒の単位流量当たりの受熱量(二重管熱交換器において冷却水から受け取る熱量)が増えてその圧力が上昇した場合であっても、制御手段は制御条件である少なくとも冷却水温度、冷媒圧力及び室内熱交換器の運転台数等に応じて流量制御弁の開度を制御し、冷媒加熱用熱交換器への冷却水流量を制限するため、冷媒加熱用熱交換器においては、運転中の室内熱交換器に要求される放熱量に見合った熱量が冷却水から冷媒に与えられ、この結果、冷媒回路内の適切な熱授受バランスが実現し、冷媒の過熱に伴う種々の不具合が解消される。   According to the present invention, for example, during the heating operation, the number of indoor heat exchangers operating in a state where the coolant temperature is equal to or lower than a predetermined value reduces the refrigerant flow rate, and the amount of heat received per unit flow rate of refrigerant (double pipe heat Even when the pressure rises due to an increase in the amount of heat received from the cooling water in the exchanger, the control means controls the flow rate according to at least the cooling water temperature, the refrigerant pressure, the number of operating indoor heat exchangers, etc., which are the control conditions. In order to control the opening of the control valve and limit the flow rate of the cooling water to the refrigerant heating heat exchanger, the refrigerant heating heat exchanger is commensurate with the amount of heat release required for the indoor heat exchanger during operation. The amount of heat is given from the cooling water to the refrigerant. As a result, an appropriate heat transfer balance in the refrigerant circuit is realized, and various problems associated with overheating of the refrigerant are eliminated.

暖房運転時であって、凝縮器として作用する室内熱交換器の運転台数が少ないために冷媒流量が小さいときには、制御手段は制御条件である少なくとも冷却水温度、冷媒圧力及び室内熱交換器の運転台数等に応じて流量制御弁の開度を制御し、冷媒加熱用熱交換器への冷却水流量を制限するため、冷媒加熱用熱交換器においては、運転中の室内熱交換器に要求される放熱量に見合った熱量が冷却水から冷媒に与えられ、この結果、冷媒回路内での適切な熱授受バランスが実現し、冷媒の過熱に伴う種々の不具合が解消されるという効果が得られる。   When the refrigerant flow rate is small because the number of indoor heat exchangers operating as condensers is small during heating operation, the control means is at least the cooling water temperature, refrigerant pressure, and indoor heat exchanger operation as control conditions. In order to control the flow rate of the flow control valve according to the number of units and limit the flow rate of cooling water to the refrigerant heating heat exchanger, the refrigerant heating heat exchanger is required for the indoor heat exchanger in operation. The amount of heat commensurate with the amount of heat released is given to the refrigerant from the cooling water. As a result, an appropriate heat transfer balance in the refrigerant circuit is realized, and various problems associated with overheating of the refrigerant are eliminated. .

[参考例]以下に本発明の参考例を添付図面に基づいて説明する。 [Reference Example] A reference example of the present invention will be described below with reference to the accompanying drawings.

図1は参考例に係るエンジン駆動式熱ポンプ装置の基本構成を示す回路図、図2は冷却水温度による各冷却水ラインへ流れる冷却水量の変化(切換弁の特性)を示す図である。   FIG. 1 is a circuit diagram showing a basic configuration of an engine-driven heat pump device according to a reference example, and FIG.

図1において、1は水冷式ガスエンジン、2はガスエンジン1によって回転駆動される圧縮機であって、ガスエンジン1の出力軸3はプーリ4、ベルト5及びプーリ6を介して圧縮機2の入力軸7に連結されている。   In FIG. 1, 1 is a water-cooled gas engine, 2 is a compressor that is rotationally driven by the gas engine 1, and an output shaft 3 of the gas engine 1 is connected to the compressor 2 via a pulley 4, a belt 5, and a pulley 6. It is connected to the input shaft 7.

ところで、上記ガスエンジン1の吸気系には吸気管8が接続されており、該吸気管8の途中にはエアクリーナ9及びミキサー10が接続されている。そして、ミキサー10には、不図示の燃料ガス供給源に接続された燃料供給管11が接続されており、該燃料供給管11の途中には2つの燃料ガス電磁弁12とゼロガバナ13が接続されている。   Incidentally, an intake pipe 8 is connected to the intake system of the gas engine 1, and an air cleaner 9 and a mixer 10 are connected to the intake pipe 8. A fuel supply pipe 11 connected to a fuel gas supply source (not shown) is connected to the mixer 10. Two fuel gas solenoid valves 12 and a zero governor 13 are connected to the fuel supply pipe 11. ing.

又、ガスエンジン1のクランク室にはオイル供給管14を介してオイルタンク15が接続されている。更に、ガスエンジン1から導出するブリーザ管16にはオイルセパレータ17が接続されており、ガスエンジン1から排出されるブリーザガスはオイルセパレータ17によってオイル分を除去された後、ガスライン18を通って前記燃料供給管11のミキサー10の上流側に戻され、オイル分はオイルライン19を通ってガスエンジン1のクランク室に戻される。   An oil tank 15 is connected to the crank chamber of the gas engine 1 through an oil supply pipe 14. Further, an oil separator 17 is connected to the breather pipe 16 led out from the gas engine 1, and the breather gas discharged from the gas engine 1 is removed by the oil separator 17, and then passes through the gas line 18. The oil is returned to the upstream side of the mixer 10 in the fuel supply pipe 11, and the oil is returned to the crank chamber of the gas engine 1 through the oil line 19.

他方、ガスエンジン1の排気系からは排気管20が導出しており、該排気管20の途中には排気ガス熱交換器21が設けられている。   On the other hand, an exhaust pipe 20 is led out from the exhaust system of the gas engine 1, and an exhaust gas heat exchanger 21 is provided in the middle of the exhaust pipe 20.

ところで、本熱ポンプ装置には、前記圧縮機2を含んで閉ループを構成する冷媒回路22と前記ガスエンジン1を冷却する冷却水を循環させる冷却水回路23が設けられている。   By the way, the present heat pump device is provided with a refrigerant circuit 22 including the compressor 2 and constituting a closed loop, and a cooling water circuit 23 for circulating cooling water for cooling the gas engine 1.

上記冷媒回路22は圧縮機2によってフロン等の冷媒を循環させる回路であって、これは、圧縮機2の吐出側から導出してオイルセパレータ24に至る冷媒ライン22aと、オイルセパレータ24から導出して四方弁25に至る冷媒ライン22bと、四方弁25から後述の冷媒加熱用熱交換器である二重管熱交換器44を経て第1の室外熱交換器(以下、室外機と略称す)26−1に至る冷媒ライン22cと、冷媒ライン22cの途中から分岐して第2の室外機26−2に至る冷媒ライン22dと、第1の室外機26−1から液ガス熱交換器27、ドライヤ28、サイトグラス29及びストレーナ30を経て膨張弁31に至る冷媒ライン22eと、前記第2の室外機26−2と冷媒ライン22eとを接続する冷媒ライン22fと、前記膨張弁31から複数台(n台)の室内熱交換器(以下、室内機と略称す)32−1、…、32−nに至る冷媒ライン22gと、各室内機32−1、…32−nからストレーナ33を経て前記四方弁25に至る冷媒ライン22hと、四方弁25から前記液ガス熱交換器27及びサイレンサ34を経てアキュームレータ35に至る冷媒ライン22iと、アキュームレータ35から導出して圧縮機2の吸入側に接続される冷媒ライン22jとで構成されている。   The refrigerant circuit 22 is a circuit that circulates a refrigerant such as chlorofluorocarbon by the compressor 2, which is derived from the refrigerant line 22 a leading from the discharge side of the compressor 2 to the oil separator 24, and from the oil separator 24. The first outdoor heat exchanger (hereinafter abbreviated as an outdoor unit) through the refrigerant line 22b that reaches the four-way valve 25 and the double-tube heat exchanger 44 that is a heat exchanger for refrigerant heating described later from the four-way valve 25. A refrigerant line 22c leading to 26-1, a refrigerant line 22d branching from the middle of the refrigerant line 22c to reach the second outdoor unit 26-2, a liquid gas heat exchanger 27 from the first outdoor unit 26-1, A refrigerant line 22e that reaches the expansion valve 31 through the dryer 28, the sight glass 29, and the strainer 30, a refrigerant line 22f that connects the second outdoor unit 26-2 and the refrigerant line 22e, and the expansion valve From one to a plurality (n units) of indoor heat exchangers (hereinafter abbreviated as “indoor units”) 32-1,..., 32-n, and the refrigerant lines 22g, and the indoor units 32-1,. A refrigerant line 22h that reaches the four-way valve 25 through the strainer 33, a refrigerant line 22i that leads from the four-way valve 25 to the accumulator 35 via the liquid gas heat exchanger 27 and the silencer 34, and an accumulator 35 lead out the compressor 2 The refrigerant line 22j is connected to the suction side.

尚、前記オイルセパレータ24から導出するオイル戻りライン36は前記冷媒ライン22jに接続されている。又、前記冷媒ライン22bからはバイパスライン22kが分岐しており、該バイパスライン22kとこれから更に分岐するバイパスライン22mは前記サイレンサ34に接続されており、各バイパスライン22k、22mにはバイパス弁37、38がそれぞれ接続されている。   An oil return line 36 leading from the oil separator 24 is connected to the refrigerant line 22j. Further, a bypass line 22k is branched from the refrigerant line 22b, and the bypass line 22k and a bypass line 22m further branched therefrom are connected to the silencer 34, and a bypass valve 37 is provided to each of the bypass lines 22k and 22m. , 38 are connected to each other.

一方、前記冷却水ライン23は、水ポンプ39の吐出側から前記排気ガス熱交換器21を通ってガスエンジン1の冷却水入口に至る冷却水ライン23aと、ガスエンジン1の冷却水出口から導出してサーモスタットを有する切換弁40に至る冷却水ライン23bと、切換弁40から導出してラジエータ42の入口側に接続される冷却水ライン23cと、ラジエータ42の出口側から導出する冷却水ライン23dと、該冷却水ライン23dから前記水ポンプ39の吸入側に至る冷却水ライン23eと、冷却水ライン23dから水タンク43に至る冷却水補給ライン23fと、前記切換弁40から導出して二重管熱交換器44を通って前記冷却水ライン23eに接続される冷却水ライン23g等を含んで構成されている。尚、図1において、23hは空気抜き通路、23iは絞りである。   On the other hand, the cooling water line 23 is led out from the cooling water line 23 a that reaches the cooling water inlet of the gas engine 1 through the exhaust gas heat exchanger 21 from the discharge side of the water pump 39 and the cooling water outlet of the gas engine 1. Then, a cooling water line 23b reaching the switching valve 40 having a thermostat, a cooling water line 23c led out from the switching valve 40 and connected to the inlet side of the radiator 42, and a cooling water line 23d led out from the outlet side of the radiator 42 A cooling water line 23e extending from the cooling water line 23d to the suction side of the water pump 39; a cooling water supply line 23f extending from the cooling water line 23d to the water tank 43; A cooling water line 23g connected to the cooling water line 23e through the tube heat exchanger 44 is included. In FIG. 1, 23h is an air vent passage and 23i is a throttle.

ところで、本参考例においては、冷媒回路22と冷却水回路23の間に前記二重管熱交換器44が設けられており、この二重管熱交換器44においては冷媒ライン22cを流れる冷媒と冷却水ライン23gを流れる冷却水との間で熱交換が行われる。   By the way, in the present reference example, the double pipe heat exchanger 44 is provided between the refrigerant circuit 22 and the cooling water circuit 23. In the double pipe heat exchanger 44, the refrigerant flowing through the refrigerant line 22c and Heat exchange is performed with the cooling water flowing through the cooling water line 23g.

而して、本参考例では、冷却水ライン23gを流れる冷却水の一部を二重管熱交換器44をバイパスさせて流すためのバイパス回路45が設けられている。即ち、バイパス回路45は冷却水ライン23gの二重管熱交換器44の上流側から分岐して前記冷却水ライン23cの前記ラジエータ42の上流側に接続されており、該バイパス回路45の途中には水バイパス弁46が設けられている。   Thus, in the present reference example, a bypass circuit 45 is provided for allowing a part of the cooling water flowing through the cooling water line 23g to flow through the double pipe heat exchanger 44. That is, the bypass circuit 45 is branched from the upstream side of the double pipe heat exchanger 44 of the cooling water line 23g and connected to the upstream side of the radiator 42 of the cooling water line 23c. A water bypass valve 46 is provided.

尚、前記切換弁40は、これに設けられたサーモスタットの作用によって図2に示すように、冷却水温度が例えば78℃以下であるときには冷却水ライン23cを全閉とするとともに、冷却水ライン23gを全開として一方の冷却水ライン23gのみに冷却水を流し、冷却水温度が例えば78℃を超えると冷却水ライン23cを開き始める一方、冷却水ライン23gを閉じ始めて両冷却水ライン23c、23gに冷却水を流し、冷却水温度が86℃を超えると冷却水ライン23cを全開、冷却水ライン23gを全閉として一方の冷却水ライン23cのみに冷却水を流す。又、前記水バイパス弁46は、暖房運転時であって、且つ、室内機32−1、…、32nの運転台数に応じてその開度が制御される。   As shown in FIG. 2, the switching valve 40 fully closes the cooling water line 23c and the cooling water line 23g when the cooling water temperature is 78.degree. Is opened fully and only one cooling water line 23g is allowed to flow. When the cooling water temperature exceeds 78 ° C., for example, the cooling water line 23c starts to open, while the cooling water line 23g starts to close and the cooling water lines 23c and 23g When the cooling water is supplied and the cooling water temperature exceeds 86 ° C., the cooling water line 23c is fully opened and the cooling water line 23g is fully closed, and the cooling water is supplied only to one cooling water line 23c. Further, the opening degree of the water bypass valve 46 is controlled in accordance with the number of indoor units 32-1,.

次に、本参考例に係る熱ポンプ装置の作用を説明する。   Next, the operation of the heat pump device according to this reference example will be described.

先ず、暖房運転時の作用を説明すると、ガスエンジン1が駆動され、該ガスエンジン1によって圧縮機2が回転駆動されると、該圧縮機2によってガス状の冷媒が圧縮され、高温高圧のガス状冷媒は冷媒ライン22aを経てオイルセパレータ24に至る。オイルセパレータ24においては、冷媒に含まれるオイル分が除去され、オイル分が除去された冷媒は冷媒ライン22bを通って四方弁25に至り、冷媒から分離されたオイルは前記オイル戻りライン36を通って前記冷媒ライン22jに戻される。   First, the operation at the time of heating operation will be described. When the gas engine 1 is driven and the compressor 2 is driven to rotate by the gas engine 1, the gaseous refrigerant is compressed by the compressor 2, and the high-temperature and high-pressure gas is compressed. The refrigerant reaches the oil separator 24 through the refrigerant line 22a. In the oil separator 24, the oil contained in the refrigerant is removed, the refrigerant from which the oil has been removed passes through the refrigerant line 22b to the four-way valve 25, and the oil separated from the refrigerant passes through the oil return line 36. And returned to the refrigerant line 22j.

ところで、暖房運転時においては、図1に実線にて示すように、四方弁25のポートaとポートcとが連通されており、高温高圧のガス状冷媒は四方弁25を通って冷媒ライン22h側へ流れ、ストレーナ33を経て室内機32−1、…、32−nに至り、ここで凝縮熱を放出して液化し、このとき放出される凝縮熱によって室内の暖房が行われる。   By the way, during heating operation, as indicated by a solid line in FIG. 1, the port a and the port c of the four-way valve 25 are communicated, and the high-temperature and high-pressure gaseous refrigerant passes through the four-way valve 25 and is connected to the refrigerant line 22h. , To the indoor units 32-1,..., 32-n through the strainer 33, where condensation heat is discharged and liquefied, and indoor heating is performed by the condensation heat released at this time.

そして、上述のように室内機32−1、…、32−nにおいて凝縮熱を放出して液化した高圧の冷媒は、各膨張弁31に至り、該膨張弁31によって減圧された後、冷媒ライン22gに入り、ストレーナ30及びドライヤ28を通って冷媒ライン22eを流れ、前記液ガス熱交換器27を通過した後、第1及び第2の室外機26−1、26−2に至り、ここで外気から蒸発熱を奪って気化する。尚、液ガス熱交換器27は、主に冷房時に室外機26−1、26−2で凝縮熱を放出して液化した冷媒の残熱を、室内機32−1、…、32−nにおいて蒸発熱を吸収して気化した冷媒に吸収させることによって冷房効率を高めるためのものであって、暖房時には熱交換機能は低い。   As described above, the high-pressure refrigerant liquefied by releasing the condensation heat in the indoor units 32-1,..., 32-n reaches each expansion valve 31 and is decompressed by the expansion valve 31, and then the refrigerant line. 22g, flows through the strainer 30 and the dryer 28, flows through the refrigerant line 22e, passes through the liquid gas heat exchanger 27, and then reaches the first and second outdoor units 26-1 and 26-2. Evaporates heat from the outside air. In addition, the liquid gas heat exchanger 27 mainly discharges the residual heat of the refrigerant liquefied by releasing condensation heat in the outdoor units 26-1 and 26-2 during cooling in the indoor units 32-1, ..., 32-n. This is for increasing the cooling efficiency by absorbing the heat of evaporation and absorbing it in the vaporized refrigerant, and has a low heat exchange function during heating.

一方、水ポンプ39の駆動によって冷却回路23内を循環する冷却水は、水ポンプ39から吐出されて冷却水ライン23aを流れ、その途中で、排気ガス熱交換器21においてガスエンジン1から排気管20に排出される排気ガスの熱を回収して加熱された後、ガスエンジン1の不図示のウォータージャケットを流れて該ガスエンジン1を冷却する。そして、ガスエンジン1の冷却に供された冷却水は、冷却水ライン23bを流れて切換弁40に至る。   On the other hand, the cooling water circulating in the cooling circuit 23 by driving the water pump 39 is discharged from the water pump 39 and flows through the cooling water line 23a. In the middle of the cooling water, the exhaust gas from the gas engine 1 is discharged from the gas engine 1 to the exhaust pipe. After the heat of the exhaust gas discharged to 20 is recovered and heated, the gas engine 1 is cooled by flowing through a water jacket (not shown) of the gas engine 1. Then, the cooling water used for cooling the gas engine 1 flows through the cooling water line 23 b and reaches the switching valve 40.

ここで、切換弁40は、前述のように冷却水温度が78℃以下のときは一方の冷却水ラインを23c全閉して他方の冷却水ライン23gを全開するため、冷却水は冷却水ライン23gを流れる。   Here, as described above, when the cooling water temperature is 78 ° C. or lower, the switching valve 40 fully closes one of the cooling water lines 23c and fully opens the other cooling water line 23g. Runs 23g.

ところで、バイパス回路45に設けられた水バイパス弁46は前述のように室内機32−1、…、32−nの運転台数(熱負荷)によってその開度が制御され、前述のように全ての室内機32−1、…、32−nが運転されているときには閉じられており、冷却水の全ては前記二重管熱交換器44を流れ、暖房運転時に室外機26−1、26−2において蒸発したガス状の冷媒を加熱する。この結果、エンジン1の廃熱(排気ガスが有する熱の一部)が冷媒によって回収され、この廃熱を回収したガス状冷媒は冷媒ライン22cを流れて四方弁25に至る。尚、二重管熱交換器44を通過した冷却水は、冷却水ライン23eを通って水ポンプ39に吸引され、以後同様の作用を繰り返す。   By the way, the opening degree of the water bypass valve 46 provided in the bypass circuit 45 is controlled by the number of operating units (thermal loads) of the indoor units 32-1,..., 32-n as described above. When the indoor units 32-1,..., 32-n are operated, all the cooling water flows through the double pipe heat exchanger 44, and the outdoor units 26-1, 26-2 are operated during the heating operation. The gaseous refrigerant evaporated in is heated. As a result, the waste heat of the engine 1 (a part of the heat of the exhaust gas) is recovered by the refrigerant, and the gaseous refrigerant recovered from the waste heat flows through the refrigerant line 22c and reaches the four-way valve 25. The cooling water that has passed through the double-pipe heat exchanger 44 is sucked into the water pump 39 through the cooling water line 23e, and thereafter the same operation is repeated.

暖房運転時においては、四方弁25は、図1に実線にて示すようにそのポートbとポートdとが連通されているため、冷媒は冷媒ライン22iを流れ、液ガス熱交換器27及びサイレンサ34を通ってアキュームレータ35に至る。   During the heating operation, the four-way valve 25 has a port b and a port d communicating with each other as shown by a solid line in FIG. 1, so that the refrigerant flows through the refrigerant line 22i, and the liquid gas heat exchanger 27 and the silencer 34 to the accumulator 35.

上記アキュームレータ35においては冷媒の気液が分離され、ガス状の冷媒のみが冷媒ライン22jから圧縮機2の吸入口に吸引され、吸引された冷媒は圧縮機2によって再度圧縮されて前述と同様の作用を繰り返す。   In the accumulator 35, the gas-liquid refrigerant is separated, and only the gaseous refrigerant is sucked into the suction port of the compressor 2 from the refrigerant line 22j, and the sucked refrigerant is compressed again by the compressor 2 and is the same as described above. Repeat action.

而して、本参考例においては、冷却水温度が78℃以下で、且つ、全室内機32−1、…、32−nを運転しているときには、冷却水によって回収されたガスエンジン1の廃熱の全てが冷媒に与えられて各室内機32−1、…、32−nの放熱量に上乗せされるため、暖房効果が高められる。   Thus, in this reference example, when the cooling water temperature is 78 ° C. or lower and all the indoor units 32-1,..., 32-n are operated, the gas engine 1 recovered by the cooling water is used. Since all the waste heat is given to the refrigerant and added to the heat radiation amount of each indoor unit 32-1, ..., 32-n, the heating effect is enhanced.

他方、冷却水温度が78℃以下で、例えば1台の室内機32−1のみが運転されているために冷媒流量が小さいときには、バイパス回路45の水バイパス弁46が開かれる。このため、冷却水ライン23gを流れる冷却水の一部は二重管熱交換器44をバイパスしてバイパス回路45を流れ、冷媒ライン22cを流れる冷媒の加熱に供されず、冷却水ライン23cからラジエータ42に送られて冷却される。   On the other hand, when the coolant temperature is 78 ° C. or lower and only one indoor unit 32-1 is operated, for example, and the refrigerant flow rate is small, the water bypass valve 46 of the bypass circuit 45 is opened. For this reason, a part of the cooling water flowing through the cooling water line 23g bypasses the double pipe heat exchanger 44 and flows through the bypass circuit 45, and is not used for heating the refrigerant flowing through the refrigerant line 22c. It is sent to the radiator 42 and cooled.

上述のように要求される熱負荷(1台の室内機32−1の放熱量)が小さい場合には、冷却水の一部が二重管熱交換器44をバイパスするため、二重管熱交換器44においては、要求される熱負荷に見合った熱量が冷却水から冷媒に与えられ、この結果、冷媒回路22内での適切な熱授受バランスが実現され、冷媒の過熱に伴う種々の不具合が解消される。   When the required heat load (the amount of heat released from one indoor unit 32-1) is small as described above, a part of the cooling water bypasses the double pipe heat exchanger 44. In the exchanger 44, an amount of heat commensurate with the required heat load is given to the refrigerant from the cooling water. As a result, an appropriate heat transfer balance in the refrigerant circuit 22 is realized, and various problems associated with overheating of the refrigerant. Is resolved.

尚、本参考例においては、バイパス回路45はラジエータ42の入口側の冷却水ライン23cに接続したため、バイパス回路45を流れる冷却水はラジエータ42において冷却され、結果的に二重管熱交換器44での伝熱量が減少して目的を達成することができる。又、切換弁40から冷却水ライン22gに流れる冷却水の一部を冷却水ライン23cに流すようにしており、ラジエータ42に回る冷却水流量が増加するため、冷却水をより冷却することができる。尚、バイパス回路45をラジエータ42の出口側の冷却水ライン23dに接続しても良い。   In this reference example, since the bypass circuit 45 is connected to the cooling water line 23 c on the inlet side of the radiator 42, the cooling water flowing through the bypass circuit 45 is cooled by the radiator 42, and as a result, the double-tube heat exchanger 44. The amount of heat transfer at can be reduced and the purpose can be achieved. Further, a part of the cooling water flowing from the switching valve 40 to the cooling water line 22g is allowed to flow to the cooling water line 23c, and the cooling water flow amount to the radiator 42 is increased, so that the cooling water can be further cooled. . The bypass circuit 45 may be connected to the cooling water line 23d on the outlet side of the radiator 42.

他方、冷却水温度が78℃を超えると、前述のように(図2参照)切換弁40は一方の冷却水ライン23cを開き始める一方、他方の冷却水ライン23gを閉じ始めるため、両冷却水ライン23c、23gを冷却水が流れ、このときにおいても二重管熱交換器44においてガスエンジン1の廃熱の一部が冷却水から冷媒に与えられる。 On the other hand, when the cooling water temperature exceeds 78 ° C., as described above (see FIG. 2), the switching valve 40 starts to open one cooling water line 23c and closes the other cooling water line 23g. The cooling water flows through the lines 23c and 23g, and even at this time, a part of the waste heat of the gas engine 1 is given from the cooling water to the refrigerant in the double pipe heat exchanger 44.

そして、冷却水温度が86℃を超えると、前述のように(図2参照)、切換弁40は一方の冷却ライン23cを全開として他方の冷却ライン23gを全閉とするため、二重管熱交換器44における冷却水と冷媒間での熱交換は行われず、冷却水の全ては冷却ライン23cを通ってラジエータ42に送られて冷却される。   When the cooling water temperature exceeds 86 ° C., as described above (see FIG. 2), the switching valve 40 fully opens one cooling line 23c and fully closes the other cooling line 23g. Heat exchange between the cooling water and the refrigerant in the exchanger 44 is not performed, and all the cooling water is sent to the radiator 42 through the cooling line 23c and cooled.

次に、冷房運転時の作用を概説するが、冷房運転時においては冷却水温度は86℃以上となるため、切換弁40の作用によって冷却水は二重管熱交換器44を流れず、従って、ガスエンジン1の廃熱は冷媒に回収されず、冷却水の全ては冷却水ライン23cからラジエータ42に流れ、冷却水は十分冷却される。   Next, the operation during the cooling operation will be outlined. Since the cooling water temperature is 86 ° C. or higher during the cooling operation, the cooling water does not flow through the double-pipe heat exchanger 44 due to the operation of the switching valve 40, and accordingly. The waste heat of the gas engine 1 is not recovered by the refrigerant, and all the cooling water flows from the cooling water line 23c to the radiator 42, and the cooling water is sufficiently cooled.

而して、圧縮機2によって圧縮された高温高圧のガス状冷媒は、冷媒ライン22a、オイルセパレータ24及び冷媒ライン22bを通って四方弁25に至る。   Thus, the high-temperature and high-pressure gaseous refrigerant compressed by the compressor 2 reaches the four-way valve 25 through the refrigerant line 22a, the oil separator 24, and the refrigerant line 22b.

ところで、冷房運転時においては、図1に破線にて示すように四方弁25のポートaとポートb、ポートcとポートdがそれぞれ連通されているため、前記高温高圧のガス状冷媒は冷媒ライン22cを通って室外機26−1、26−2に至り、ここで外気によって冷却されて凝縮し、高圧の液状冷媒は冷却ライン22e、22fに沿って流れて液ガス熱交換器27、ドライヤ28及びストレーナ30を通過した後、膨張弁31に至り、該膨張弁31よって減圧される。   By the way, during the cooling operation, as indicated by broken lines in FIG. 1, the ports a and b and the ports c and d of the four-way valve 25 are in communication with each other. It passes through 22c to the outdoor units 26-1 and 26-2, where it is cooled and condensed by the outside air, and the high-pressure liquid refrigerant flows along the cooling lines 22e and 22f, and the liquid-gas heat exchanger 27 and the dryer 28 After passing through the strainer 30, it reaches the expansion valve 31 and is decompressed by the expansion valve 31.

そして、減圧された冷媒は室内機32−1、…、32−nにおいて室内の空気から蒸発潜熱を奪って蒸発するため、室内の空気が冷やされて室内が冷房される。蒸発によって気化した冷媒は冷媒ライン22c,22d、四方弁25を通って冷媒ライン22iを流れ、液ガス熱交換器27及びサイレンサ34を通過してアキュームレータ35に至り、ここで気液が分離され、ガス状の冷媒が冷媒ライン22jから圧縮機2に吸引され、圧縮機2に吸引された冷媒は再び圧縮さて前述の作用を繰り返す。   And since the decompressed refrigerant takes evaporative latent heat from the indoor air and evaporates in the indoor units 32-1,..., 32-n, the indoor air is cooled and the room is cooled. The refrigerant evaporated by evaporation flows through the refrigerant lines 22c and 22d and the four-way valve 25 through the refrigerant line 22i, passes through the liquid gas heat exchanger 27 and the silencer 34, reaches the accumulator 35, where the gas and liquid are separated, Gaseous refrigerant is sucked into the compressor 2 from the refrigerant line 22j, and the refrigerant sucked into the compressor 2 is compressed again to repeat the above-described operation.

[本発明]次に、本発明の実施例を図3乃至図9に基づいて説明する。尚、図3は本発明に係るエンジン駆動式熱ポンプ装置の基本構成を示す回路図、図4はリニア三方弁の制御系の構成を示すブロック図、図5はリニア三方弁の構成を示す断面図、図6はリニア三方弁の開度特性図、図7は冷却水温度tに対する開度係数αの制御特性図、図8は運転室内機容量Qに対する開度係数βの制御特性図、図9は冷媒の吐出側圧力Pに対する開度係数γの制御特性図である。 [Invention] Next, an embodiment of the invention will be described with reference to FIGS. 3 is a circuit diagram showing the basic configuration of the engine-driven heat pump device according to the present invention, FIG. 4 is a block diagram showing the configuration of the control system of the linear three-way valve, and FIG. 5 is a cross section showing the configuration of the linear three-way valve. FIG. 6 is an opening characteristic diagram of the linear three-way valve, FIG. 7 is a control characteristic diagram of the opening coefficient α with respect to the cooling water temperature t, FIG. 8 is a control characteristic diagram of the opening coefficient β with respect to the operating indoor unit capacity Q, FIG. 9 is a control characteristic diagram of the opening degree coefficient γ with respect to the refrigerant discharge-side pressure P.

本発明に係る熱ポンプ装置は、図3に示すように、前記参考例におけるバイパス回路45と水バイパス弁46を廃し、切換弁40(図1参照)に代えてリニア三方弁110を用い、該リニア三方弁110の上流側に、そこを流れる冷却水の温度tを検出するための冷却水温センサ111を設けるとともに、冷媒ライン22aの途中に、リニア三方弁110を制御するために冷媒の吐出側圧力Pを検出する圧力センサ112を設けたものであって、他の構成は参考例と同様であるため、図3においては図1に示したと同一要素には同一符号を付しており、以下、それらについての説明は省略する。   As shown in FIG. 3, the heat pump device according to the present invention eliminates the bypass circuit 45 and the water bypass valve 46 in the reference example, and uses a linear three-way valve 110 instead of the switching valve 40 (see FIG. 1). A cooling water temperature sensor 111 for detecting the temperature t of the cooling water flowing therethrough is provided on the upstream side of the linear three-way valve 110, and a refrigerant discharge side for controlling the linear three-way valve 110 in the middle of the refrigerant line 22a. Since the pressure sensor 112 for detecting the pressure P is provided and the other configuration is the same as that of the reference example, the same elements as those shown in FIG. The description about them is omitted.

ところで、上記リニア三方弁110、冷却水温センサ111及び圧力センサ112は図4に示す制御装置(以下、CPUと称す)120に接続されており、CPU120は、冷却水温センサ111によって検出された冷却水温度t、室内機32−1、32−2、…、32−nの運転台数(運転室内機容量Q、つまり、室内機32−1、32−2、…、32−nのうち運転されている室内機が設置されている各部屋毎の室内温度と設定温度との差の総和に比例する熱量)、圧力センサ112によって検出された冷媒の吐出側圧力P及び冷暖運転情報(冷房運転であるか暖房運転であるかの情報)の制御条件に基づいてリニア三方弁110の開度を制御する。   By the way, the linear three-way valve 110, the cooling water temperature sensor 111, and the pressure sensor 112 are connected to a control device (hereinafter referred to as CPU) 120 shown in FIG. 4, and the CPU 120 detects the cooling water detected by the cooling water temperature sensor 111. .., 32-n (the operating indoor unit capacity Q, that is, the indoor units 32-1, 32-2,..., 32-n are operated). The amount of heat proportional to the sum of the differences between the room temperature and the set temperature for each room in which the indoor unit is installed, the refrigerant discharge-side pressure P detected by the pressure sensor 112, and cooling / heating operation information (cooling operation). The degree of opening of the linear three-way valve 110 is controlled on the basis of the control condition (information on whether the operation is heating or heating).

ここで、リニア三方弁110の構成と開度特性を図5及び図6に基づいて説明する。   Here, the configuration and opening degree characteristics of the linear three-way valve 110 will be described with reference to FIGS. 5 and 6.

リニア三方弁110は、図5に示すように、ハウジング113内にロータリ式の弁体114を回動自在に組み込んで構成され、ハウジング113には冷却水ライン23gに連なる流路113gと冷却水ライン23cに連なる流路113cが相対向して形成されている。   As shown in FIG. 5, the linear three-way valve 110 is configured by rotatably incorporating a rotary valve body 114 in a housing 113. The housing 113 has a flow path 113g connected to the cooling water line 23g and a cooling water line. The flow paths 113c connected to 23c are formed to face each other.

又、上記弁体114の中央部には、冷却水ライン23bに連なる円孔状の冷却水入口114bが形成されており、該冷却水入口114bの両側には前記流路113g、113cにそれぞれ開口する流路114g、114cが形成されている。   A circular cooling water inlet 114b connected to the cooling water line 23b is formed at the center of the valve body 114, and the flow paths 113g and 113c are opened on both sides of the cooling water inlet 114b, respectively. The flow paths 114g and 114c are formed.

而して、弁体114の上記流路114g、114cの流路113g、113cへの開口面積をそれぞれA、Aとするとき、図6に示すように、開口面積Aは弁開度θ(弁体114の回動角(0°〜90°))の増加と共にリニアに減少し、逆に開口面積Aは弁開度θの増加と共にリニアに増加し、両者の和(A+A)は弁開度θに拘らず常に一定値A(=A+A)に保たれている。 Thus, when the opening areas of the valve body 114 to the flow paths 113g and 113c of the flow paths 114g and 114c are respectively A 1 and A 2 , the opening area A 1 is the valve opening degree as shown in FIG. theta decreases linearly with increasing (rotation angle of the valve body 114 (0 ° ~90 °)) , the opening area a 2 conversely increases linearly with increasing valve opening theta, both the sum of (a 1 + A 2 ) is always maintained at a constant value A 0 (= A 1 + A 2 ) regardless of the valve opening θ.

ところで、リニア三方弁110の開口面積A、Aを次式;
=(a/100)×A… (1)
=(a/100)×A… (2)
によって求めるとき、上記係数(以下、開度と称す)a、aはCPU120においてそれぞれ次式によって算出される。
By the way, the opening areas A 1 and A 2 of the linear three-way valve 110 are expressed by the following equation:
A 1 = (a 1/100 ) × A 0 ... (1)
A 2 = (a 2/100 ) × A 0 ... (2)
The coefficients (hereinafter referred to as opening degrees) a 1 and a 2 are calculated by the CPU 120 according to the following equations, respectively.

=α・β・γ・ε×100 … (3)
=100−a … (4)
上記(3)式におけるα、β、γ、εは開度係数であって、α(0≦α≦1)は冷却水温センサ111によって検出される冷却水温度tによって図7に示すように変化し、冷却水温度tがt(例えば、60℃)以下(t≦t)の領域ではα=1に保たれ、冷却水温度tがtを超えてt(例えば、80℃)未満の領域(t<t<t)では冷却水温度tの増加と共にリニアに減少し、冷却水温度tがt以上となる領域(t≧t)ではα=0に保たれる。
a 1 = α · β · γ · ε × 100 (3)
a 2 = 100−a 1 (4)
In the above equation (3), α, β, γ, and ε are opening coefficients, and α (0 ≦ α ≦ 1) changes as shown in FIG. 7 according to the cooling water temperature t detected by the cooling water temperature sensor 111. In the region where the cooling water temperature t is t L (for example, 60 ° C.) or less (t ≦ t L ), α = 1 is maintained, and the cooling water temperature t exceeds t L and t H (for example, 80 ° C.). In a region below (t L <t <t H ), the temperature decreases linearly as the cooling water temperature t increases, and α = 0 is maintained in a region where the cooling water temperature t is equal to or higher than t H (t ≧ t H ). .

又、開度係数β(0≦α≦1)は運転室内機容量Qに対して図8に示すように変化し、運転室内機容量Qの増加に比例して増大する。   Further, the opening coefficient β (0 ≦ α ≦ 1) changes as shown in FIG. 8 with respect to the operating indoor unit capacity Q, and increases in proportion to the increase in the operating indoor unit capacity Q.

更に、開度係数γ(0≦α≦1)は圧力センサ112によって検出される冷媒の吐出側圧力Pに対して図9に示すように変化し、圧力Pの増加と共にリニアに減少する。   Further, the opening coefficient γ (0 ≦ α ≦ 1) changes as shown in FIG. 9 with respect to the refrigerant discharge side pressure P detected by the pressure sensor 112, and decreases linearly as the pressure P increases.

又、開度係数εは冷房運転時にはε=0、暖房運転時にはε=1にそれぞれ設定される。   The opening coefficient ε is set to ε = 0 during the cooling operation and ε = 1 during the heating operation.

而して、(3)、(4)式にて開度a、aがそれぞれ算出され、この開度a、aに基づいて前記(1)、(2)式にてリニア三方弁110の開口面積A、Aが求められると、冷却水ライン23bを流れる流量Iの冷却水はリニア三方弁110によって冷却水ライン23g、23cに流量I、Iの割合で流されるが、流量I、Iはそれぞれ次式によって求められる。 Thus, the opening degrees a 1 and a 2 are calculated by the expressions (3) and (4), respectively, and the linear three-way is calculated by the expressions (1) and (2) based on the opening degrees a 1 and a 2. When the opening areas A 1 and A 2 of the valve 110 are obtained, the cooling water having the flow rate I 0 flowing through the cooling water line 23b is caused to flow into the cooling water lines 23g and 23c by the linear three-way valve 110 at a ratio of the flow rates I 1 and I 2. However, the flow rates I 1 and I 2 are obtained by the following equations.

=I×A/(A+A) … (5)
=I×A/(A+A
=I−I … (6)
以上において、冷房運転時には、二重管熱交換器44における冷媒と冷却水との熱交換を必要としないため、開度係数ε=0に設定され、この結果、(3)、(4)式よりa=0、a=100となり、(1)、(2)式よりA=0、A=Aとなる。従って、(5)、(6)式より冷却水ライン23g、23cに流れる冷却水の流量I、IはそれぞれI=0、I=Iとなり、冷却水の全ては冷却水ライン23cを流れ、冷却水は二重管熱交換器44における冷媒の加熱に供されない。
I 1 = I 0 × A 1 / (A 1 + A 2 ) (5)
I 2 = I 0 × A 2 / (A 1 + A 2 )
= I 0 -I 1 (6)
In the above, since the heat exchange between the refrigerant and the cooling water in the double pipe heat exchanger 44 is not required during the cooling operation, the opening degree coefficient ε = 0 is set. As a result, the expressions (3) and (4) Thus, a 1 = 0 and a 2 = 100, and A 1 = 0 and A 2 = A 0 from the expressions (1) and (2). Therefore, from the equations (5) and (6), the flow rates I 1 and I 2 of the cooling water flowing through the cooling water lines 23g and 23c are I 1 = 0 and I 2 = I 0 , respectively. The cooling water flows through 23 c and is not used for heating the refrigerant in the double-tube heat exchanger 44.

一方、暖房運転時においては、冷却水温度tが所定値t以下(t≦t )である通常運転時(全室内機32−1、32−2、…、32−nが運転されているとき)には、開度係数α、β、γ、εは全て1に設定されている(α=β=γ=ε=1)ため、(3)、(4)式よりa=100、a=0となり、(1)、(2)式よりA=A、A=0となる。従って、(5)、(6)式より冷却水ライン23g、23cに流れる冷却水の流量I、IはそれぞれI=I、I=0となり、冷却水の全ては冷却水ライン23gを流れ、冷却水によって回収されたガスエンジン1の廃熱の全てが二重管熱交換器44において冷媒に与えられて各室内機32−1、32−2、…、32−nの放熱量に上乗せされるため、暖房効果が高められる。 On the other hand, during the heating operation, all indoor units 32-1, 32-2,..., 32-n are operated during normal operation in which the cooling water temperature t is equal to or lower than a predetermined value t L (t ≦ t L ). ), The opening coefficients α, β, γ, and ε are all set to 1 (α = β = γ = ε = 1), so a 1 = 100 from the equations (3) and (4). , a 2 = 0, and the (1), and a 1 = a 0, a 2 = 0 equation (2). Therefore, from formulas (5) and (6), the flow rates I 1 and I 2 of the cooling water flowing through the cooling water lines 23g and 23c are I 1 = I 0 and I 2 = 0, respectively. All of the waste heat of the gas engine 1 flowing through 23 g and recovered by the cooling water is given to the refrigerant in the double pipe heat exchanger 44 to release the indoor units 32-1, 32-2, ..., 32-n. Since it is added to the amount of heat, the heating effect is enhanced.

他方、暖房運転時に室内機32−1、32−2、…、32−nの運転台数が減ったために運転室内機容量Qが減少し、これに伴って冷媒回路22を循環する冷媒の流量が減少し、冷媒の単位流量当たりの受熱量(二重管熱交換器44において冷却水から受け取る熱量)が増えてその吐出側圧力Pが上昇した場合には、図8に示すように開度係数β、γが共に小さく設定されるため、(3)式にて求められる開度aと(1)式にて求められる開口面積Aが小さくなり、(4)式にて求められる開度aと(2)式にて求められる開口面積がAが逆に大きくなる。従って、(5)式より求められる冷却水ライン23gを流れる冷却水の流量Iが減少し、二重管熱交換器44への冷却水流量が制限されるめ、二重管熱交換器44においては、室内機32−1、32−2、…、32−nの運転台数に要求される放熱量に見合った熱量が冷却水から冷媒に与えられ、この結果、参考例と同様に冷媒回路22内の適切な熱授受バランスが実現し、冷媒の過熱に伴う種々の不具合が解消される。この場合、冷却水ライン23cを流れる流量Iの冷却水は冷媒の加熱に供されず、ラジエータ42に送られて冷却されるため、冷却水温センサ111にて検出される冷却水温度tが下がり、冷媒回路22内の適切な熱授受バランスが実現される。 On the other hand, the operating indoor unit capacity Q decreases because the number of indoor units 32-1, 32-2,..., 32-n is reduced during the heating operation, and accordingly, the flow rate of the refrigerant circulating in the refrigerant circuit 22 is reduced. When the amount of heat received per unit flow rate of the refrigerant decreases (the amount of heat received from the cooling water in the double pipe heat exchanger 44) and the discharge side pressure P rises, the opening coefficient is as shown in FIG. Since both β and γ are set to be small, the opening degree a 1 obtained by the expression (3) and the opening area A 1 obtained by the expression (1) are reduced, and the opening degree obtained by the expression (4). the opening area obtained at a 2 and (2) formula a 2 increases conversely. Thus, (5) flow I 1 of the cooling water flowing through the cooling water line 23g is decreased obtained from the equation, because the cooling water flow rate is limited to the double-pipe heat exchanger 44, double pipe heat exchanger 44 , The amount of heat corresponding to the amount of heat required for the number of operating indoor units 32-1, 32-2,..., 32-n is given from the cooling water to the refrigerant, and as a result, the refrigerant circuit as in the reference example. Appropriate heat transfer balance in the inner space 22 is realized, and various problems associated with refrigerant overheating are eliminated. In this case, the cooling water flow rate I 2 flowing through the cooling water line 23c are not subjected to heat of the refrigerant, to be cooled is sent to the radiator 42, the cooling water temperature t decreases detected by the coolant temperature sensor 111 An appropriate heat transfer balance in the refrigerant circuit 22 is realized.

尚、冷却水温度tがt<t<tである領域においても、初期状態において冷却水ライン23g、23cの双方に冷却水が流れるという点が異なるのみであって、その他の作動原理はt≦tの場合(α=1)における上述の作動原理と同様である。 Even in the region where the cooling water temperature t is t L <t <t H , the only difference is that the cooling water flows in both the cooling water lines 23g and 23c in the initial state. It is the same as the above-mentioned operation principle in the case of t ≦ t L (α = 1).

以上のように、本発明においても前記参考例と同様な効果が得られるが、特に本発明においては、リニア三方弁110を用いることによって参考例におけるバイパス回路45と水バイパス弁46(図1参照)を省略することができるため、冷却水回路23を簡略化することができるという特有の効果が得られる。   As described above, in the present invention, the same effect as in the reference example can be obtained. In particular, in the present invention, by using the linear three-way valve 110, the bypass circuit 45 and the water bypass valve 46 in the reference example (see FIG. 1). Since the cooling water circuit 23 can be simplified, a special effect can be obtained.

参考例に係るエンジン駆動式熱ポンプ装置の基本構成を示す回路図である。It is a circuit diagram which shows the basic composition of the engine drive type heat pump apparatus which concerns on a reference example. 冷却水温度による各冷却水ラインへ流れる冷却水量の変化(切換弁の特性)を示す図である。It is a figure which shows the change (characteristic of a switching valve) of the amount of cooling water which flows into each cooling water line by cooling water temperature. 本発明に係るエンジン駆動式熱ポンプ装置の基本構成を示す回路図である。It is a circuit diagram which shows the basic composition of the engine drive type heat pump apparatus which concerns on this invention. リニア三方弁の制御系の構成を示すブロック図である。It is a block diagram which shows the structure of the control system of a linear three-way valve. リニア三方弁の構成を示す断面図である。It is sectional drawing which shows the structure of a linear three-way valve. リニア三方弁の開度特性図である。It is an opening characteristic diagram of a linear three-way valve. 冷却水温度tに対する開度係数αの制御特性図である。It is a control characteristic figure of opening degree coefficient alpha to cooling water temperature t. 運転室内機容量Qに対する開度係数βの制御特性図である。FIG. 5 is a control characteristic diagram of an opening coefficient β with respect to the operating indoor unit capacity Q. 冷媒の吐出側圧力Pに対する開度係数γの制御特性図である。It is a control characteristic figure of opening degree coefficient γ to discharge side pressure P of a refrigerant.

符号の説明Explanation of symbols

1 ガスエンジン(エンジン)
2 圧縮機
21 排気ガス熱交換器
22 冷媒回路
23 冷却水回路
26−1,26−2 室外機(室外熱交換器)
31 膨張弁
32−1,32−n 室内機(室内熱交換器)
42 ラジエータ
44 二重管熱交換器
45 バイパス回路
46 水バイパス弁
110 リニア三方弁(流量制御弁)
111 冷却水温センサ
112 圧力センサ
120 CPU(制御手段)
1 Gas engine (engine)
2 Compressor 21 Exhaust gas heat exchanger 22 Refrigerant circuit 23 Cooling water circuit 26-1, 26-2 Outdoor unit (outdoor heat exchanger)
31 Expansion valve 32-1, 32-n Indoor unit (indoor heat exchanger)
42 Radiator 44 Double pipe heat exchanger 45 Bypass circuit 46 Water bypass valve 110 Linear three-way valve (flow control valve)
111 Cooling water temperature sensor 112 Pressure sensor 120 CPU (control means)

Claims (1)

エンジンによって駆動される圧縮機によって冷媒を循環させる冷媒回路と、エンジンを冷却する冷却水を循環させる冷却水回路を有し、前記冷媒回路には膨張弁と室内熱交換器及び室外熱交換器を設け、前記冷却水回路には排気ガス熱交換器、ラジエータ及びポンプを設けるとともに、前記ラジエータを通る冷却水ラインと前記ラジエータを迂回する冷却水ラインを設け、冷媒と冷却水の間で熱交換を行わせる冷媒加熱用熱交換器を、冷媒回路と冷却水回路の前記ラジエータを迂回する冷却水ラインとの間に設けて成るエンジン駆動式熱ポンプ装置において、
前記ラジエータを迂回して前記冷媒加熱用熱交換器へ流れる冷却水の流量を制御するリニア三方弁と、制御条件に応じて前記リニア三方弁の開度をリニアに増減させる制御手段を設け、
前記リニア三方弁は、暖房時、第1の冷却水温度以下では冷却水の全量を前記冷却水ラインに流し、第1の冷却水温度より大きく第2の冷却水温度より小さい範囲では前記冷却水ラインに流す冷却水量をリニアに増減し、第2の冷却水温度以上では冷却水の全量を前記ラジエータに流すよう設定されることを特徴とするエンジン駆動式熱ポンプ装置。
A refrigerant circuit that circulates refrigerant by a compressor driven by the engine; and a cooling water circuit that circulates cooling water that cools the engine. The refrigerant circuit includes an expansion valve, an indoor heat exchanger, and an outdoor heat exchanger. The cooling water circuit is provided with an exhaust gas heat exchanger, a radiator and a pump, and a cooling water line passing through the radiator and a cooling water line bypassing the radiator are provided to exchange heat between the refrigerant and the cooling water. In the engine-driven heat pump device, wherein the refrigerant heating heat exchanger is provided between a refrigerant circuit and a cooling water line that bypasses the radiator of the cooling water circuit.
A linear three-way valve that controls the flow rate of cooling water that flows to the refrigerant heating heat exchanger by bypassing the radiator, and a control unit that linearly increases or decreases the opening degree of the linear three-way valve according to control conditions;
The linear three-way valve causes the entire amount of the cooling water to flow through the cooling water line at a temperature equal to or lower than the first cooling water temperature during heating, and the cooling water in a range larger than the first cooling water temperature and smaller than the second cooling water temperature. An engine-driven heat pump device, wherein the amount of cooling water flowing through the line is linearly increased and decreased so as to flow the entire amount of cooling water to the radiator above the second cooling water temperature.
JP2004138415A 1994-08-02 2004-05-07 Engine-driven heat pump device Expired - Fee Related JP4277114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004138415A JP4277114B2 (en) 1994-08-02 2004-05-07 Engine-driven heat pump device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP18167294 1994-08-02
JP2004138415A JP4277114B2 (en) 1994-08-02 2004-05-07 Engine-driven heat pump device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP28017394A Division JP3672109B2 (en) 1994-08-02 1994-11-15 Engine-driven heat pump device

Publications (2)

Publication Number Publication Date
JP2004226063A JP2004226063A (en) 2004-08-12
JP4277114B2 true JP4277114B2 (en) 2009-06-10

Family

ID=32910590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004138415A Expired - Fee Related JP4277114B2 (en) 1994-08-02 2004-05-07 Engine-driven heat pump device

Country Status (1)

Country Link
JP (1) JP4277114B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5818014B2 (en) * 2012-04-04 2015-11-18 トヨタ自動車株式会社 Fuel cell system

Also Published As

Publication number Publication date
JP2004226063A (en) 2004-08-12

Similar Documents

Publication Publication Date Title
JP5030344B2 (en) Gas heat pump type air conditioner, engine cooling water heating device, and operation method of gas heat pump type air conditioner
US6883342B2 (en) Multiform gas heat pump type air conditioning system
KR100196528B1 (en) Air conditioning equipment
US4510762A (en) Heat recovery method
JP2007225141A (en) Gas heat pump type air conditioner and its starting method
US5370307A (en) Air conditioner having high heating capacity
JP4696634B2 (en) Engine driven air conditioner
JP2007107859A (en) Gas heat pump type air conditioner
KR100511242B1 (en) Air conditioner
JP2007107860A (en) Air conditioner
JP4898025B2 (en) Multi-type gas heat pump type air conditioner
KR100612808B1 (en) Air conditioner
JP4045914B2 (en) Waste heat recovery heat pump
JP4277114B2 (en) Engine-driven heat pump device
JP3672109B2 (en) Engine-driven heat pump device
KR100199325B1 (en) Engine driven heat pump apparatus
JP2001330341A (en) Air conditioner
JP5372473B2 (en) Air conditioner
JP3295716B2 (en) Engine driven heat pump device
JP2003232577A (en) Air conditioner
JP2004044817A (en) Air conditioner of engine driving heat pump type having hot-water supply heating unit, and its operation control method
JP2002286304A (en) Refrigerator
JPH10238891A (en) Engine driven type heat pump apparatus
JPH0933115A (en) Heat pump device
JP2706068B2 (en) Exhaust heat recovery device for engine driven heat pump device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060721

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090107

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees