JPH0698356B2 - Organic wastewater treatment method - Google Patents

Organic wastewater treatment method

Info

Publication number
JPH0698356B2
JPH0698356B2 JP1364790A JP1364790A JPH0698356B2 JP H0698356 B2 JPH0698356 B2 JP H0698356B2 JP 1364790 A JP1364790 A JP 1364790A JP 1364790 A JP1364790 A JP 1364790A JP H0698356 B2 JPH0698356 B2 JP H0698356B2
Authority
JP
Japan
Prior art keywords
treatment
liquid
methane fermentation
strip
immobilized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1364790A
Other languages
Japanese (ja)
Other versions
JPH03221200A (en
Inventor
克之 片岡
Original Assignee
荏原インフイルコ株式会社
株式会社荏原総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荏原インフイルコ株式会社, 株式会社荏原総合研究所 filed Critical 荏原インフイルコ株式会社
Priority to JP1364790A priority Critical patent/JPH0698356B2/en
Publication of JPH03221200A publication Critical patent/JPH03221200A/en
Publication of JPH0698356B2 publication Critical patent/JPH0698356B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Treatment Of Sludge (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Physical Water Treatments (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、し尿,浄化槽汚泥,下水,各種有機性産業廃
水などの有機性汚水を著しく省エネルギー的に処理する
ことができる新規な処理方法に関するものである。
TECHNICAL FIELD The present invention relates to a novel treatment method capable of treating organic wastewater such as human waste, septic tank sludge, sewage, and various organic industrial wastewater in a significantly energy-saving manner. It is a thing.

〔従来の技術〕[Conventional technology]

従来、有機性汚水の代表的なし尿を例にとれば、し尿を
嫌気性消化した脱離液に対し、Ca(OH)2などのアルカリ
剤を添加し、pHを11以上に上昇させてアンモニアストリ
ップ(NH3ストリップ)する方法が知られている。ま
た、し尿に直接アルカリ剤を添加して、高pH下でNH3
トリップしたのち、酸を加えてpHを下げ、生物学的硝化
脱窒素処理する方法も知られている。
Conventionally, taking a representative human waste of organic wastewater as an example, an alkaline agent such as Ca (OH) 2 is added to the desorbed liquid obtained by anaerobically digesting human waste to raise the pH to 11 or more to ammonia. A method of stripping (NH 3 strip) is known. Also known is a method in which an alkaline agent is directly added to human waste, NH 3 is stripped at a high pH, and then an acid is added to lower the pH to perform biological nitrification and denitrification treatment.

しかし、これらの従来法では、し尿又はし尿の嫌気性消
化脱離液のMアルカリ度が約10000mg/lと極めて高濃度
であるため、pH緩衝性が高く、その結果、アルカリ剤を
数万mg/lと多量に添加しないとpHをNH3ストリップに好
適なpH11以上に上昇させることができず、アルカリ剤の
ランニングコストが高額となり、到底実用化できなかっ
たのが現状である。このため、現在では、し尿処理は完
全に生物学的硝化脱窒素処理が主流となっている。
However, in these conventional methods, since the M alkalinity of human waste or the anaerobic digestion and desorption liquid of human waste is extremely high at about 10,000 mg / l, the pH buffering property is high, and as a result, tens of thousands of alkaline agents are added. Unless it is added in a large amount such as / l, the pH cannot be raised to pH 11 or higher, which is suitable for NH 3 strips, and the running cost of the alkaline agent becomes high, so that it cannot be put to practical use at all. Therefore, as for the human waste treatment, the biological main nitrification denitrification treatment is now the mainstream.

また、NH3ストリップを行うにしても、その工程はし尿
の嫌気性消化処理の直後、あるいはし尿の生物学的硝化
脱窒素処理の直前に限られており、それ以外の位置でNH
3ストリップを行うという概念は全くなかった。即ち、
従来のNH3ストリップ法のし尿処理への適用は、次の2
フローに限定されており、それら以外の試みは今まで存
在しなかった。
Even if NH 3 strip is performed, the process is limited to immediately after the anaerobic digestion treatment of human urine or just before the biological nitrification and denitrification treatment of human urine.
There was no concept of doing three strips. That is,
The application of the conventional NH 3 strip method to human waste treatment is as follows.
It was limited to flows, and no other attempts existed until now.

〔発明が解決しようとする課題〕 しかるに、前記フロー(a)、(b)共に、NH3ストリ
ップ用のアルカリ剤の所要コストが高額であるという欠
点があり、さらにフロー(b)ではNH3ストリップではB
ODが全く除去されないので、後続する生物学的硝化脱窒
素工程でのエアレーション動力が大きいという致命的な
欠点があるため、フロー(b)は実用化に値する技術で
はないと認識されており、実際実用化されていない。
[Problems to be Solved by the Invention] However, both of the above flows (a) and (b) have a drawback that the cost required for the alkaline agent for NH 3 strip is high, and further, in the flow (b), NH 3 strip is used. Then B
Since OD is not removed at all, there is a fatal drawback that the aeration power in the subsequent biological nitrification and denitrification step is large, so it is recognized that flow (b) is not a technique that is practically applicable. It has not been put to practical use.

また、前記フロー(a)では、嫌気性消化の反応速度が
著しく小さく、しかも加温に要するエネルギーも多大で
あるという欠点もある。
Further, the above-mentioned flow (a) has a drawback that the reaction rate of anaerobic digestion is extremely low and the energy required for heating is large.

本発明は、前記従来技術の欠点を完全に解決することを
課題とするもので、具体的には、NH3ストリップ用のア
ルカリ剤のランニングコストを大幅に節減し、しかも、
BODを極めて省エネルギー的に除去し、かつ、COD,色
度,PO4 3-も高度に除去可能な新プロセスを提供するこ
とを課題としている。
The present invention aims to completely solve the drawbacks of the prior art, specifically, significantly reduces the running cost of the alkaline agent for NH 3 strip, and,
BOD very energy saving removing, and, COD, chromaticity, and an object of the invention to provide a new process for PO 4 3- possible highly removed.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明は、固定化メタン生成菌によるメタン発酵処理の
前段に、脱炭酸処理とNH3ストリップ処理を直列結合し
て配列するという新概念に基づいている。
The present invention is based on the new concept of arranging decarboxylation treatment and NH 3 strip treatment in series connection before the methane fermentation treatment with immobilized methanogens.

固定化メタン生成菌によるメタン発酵処理とは、従来の
消化槽による嫌気性消化と異なり、微生物自身の凝集機
能を利用して、メタン生成菌の占める割合が高い嫌気性
菌体の粒状凝集体を生成させるか、ゼオライトなどの粒
状媒体の表面にメタン生成菌の生物膜を生育させ、これ
でブランケット層(流動層)を形成し、このブランケッ
ト層に通液して高効率に有機物の分解除去を行うことが
代表的な方法であり、内部に機械的設備を殆ど必要とせ
ず、維持管理容易なメタン発酵処理方法であり、例えば
UASB法と呼ばれる方法もその一例である。
Methane fermentation treatment with immobilized methanogens is different from conventional anaerobic digestion in a digester, and utilizes the flocculation function of the microorganisms themselves to generate granular aggregates of anaerobic cells in which the proportion of methanogens is high. A biofilm of methanogenic bacteria is grown on the surface of a granular medium such as zeolite, and a blanket layer (fluidized bed) is formed with this, and liquid is passed through this blanket layer to decompose and remove organic substances with high efficiency. It is a typical method to perform, a methane fermentation treatment method that requires almost no internal mechanical equipment and is easy to maintain and manage.
An example is the method called the UASB method.

即ち、本発明は、有機性汚水に水素イオン解離物質を添
加し、酸性条件下で脱炭酸処理し、該脱炭酸処理液にア
ルカリ剤を添加してアルカリ性条件下でアンモニアスト
リッピングを行ったのち、固定化メタン生成菌によって
メタン発酵処理することを特徴とする有機性汚水の処理
方法であり、さらに前記脱炭酸処理する前段又は後段で
固液分離を行うようにしたことも特徴とし、また、これ
らの処理において、前記固定メタン生成菌によってメタ
ン発酵処理したのち、生物学的硝化脱窒素処理すること
を特徴とする有機性汚水の処理方法である。
That is, in the present invention, a hydrogen ion dissociating substance is added to organic wastewater, decarboxylation treatment is performed under acidic conditions, an alkaline agent is added to the decarboxylation treatment liquid, and ammonia stripping is performed under alkaline conditions. The method for treating organic sewage is characterized by performing methane fermentation treatment with immobilized methanogens, and is characterized in that solid-liquid separation is further performed before or after the decarboxylation treatment. In these treatments, the organic sewage treatment method is characterized in that after the methane fermentation treatment with the fixed methanogen, biological nitrification denitrification treatment is performed.

〔作用〕[Action]

本発明の作用を、一実施態様を示す系統を説明する第1
図を参照しながら有機性汚水の代表的なものであるし尿
系汚水を例にとって以下に説明する。
First, the operation of the present invention will be described for a system showing one embodiment.
With reference to the drawings, the following description will be given by taking an example of a human waste water, which is a typical organic waste water.

し尿,浄化槽汚泥などのし尿系汚水1に、カチオン系ポ
リマ、又はカチオン系とアニオン系ポリマの両者のポリ
マ2を添加して、汚水中のSS,コロイドを凝集フロック
化し、スクリーンなどの任意の固液分離工程3により凝
集フロックを分離し、汚泥4と分離液5とに分ける。
To the human waste water 1 such as human waste and septic tank sludge, a cationic polymer or a polymer 2 of both cationic and anionic polymers is added to aggregate SS and colloid in the waste water to flocculate it, and to set it to an arbitrary solid such as a screen. The flocculation flocs are separated in the liquid separation step 3 and divided into sludge 4 and separated liquid 5.

分離液5は、汚水中の溶解性BODを除くSS,コロイド性の
BODが効果的に除去されているが、HCO3 -によるアルカリ
度,PO4 3-イオンなどのイオン類及び低分子量の溶解性B
ODは除去されていない。特に、HCO3 -イオンに基づくア
ルカリ度成分は、し尿の場合8000〜10000mg/lと極めて
多量に残留しているので、次に、FeCl3,AlCl3,HClなど
のH+イオン解離物質6を添加し、pHを3〜4に低下させ
(例えばFe3+イオンはFe3++3H2O→Fe(OH)3↓+3H+
により、またAl3+イオンはAl3++3H2O→Al(OH)3↓+
3H+によりH+イオンを加水分解反応によって解離す
る)、次の化学反応を進行させてHCO3 -イオンをCO2に移
行させる。
Separation liquid 5 is SS, colloidal except soluble BOD in wastewater.
Although BOD is effectively removed, HCO 3 - alkalinity by the solubility of ions and low molecular weight, such as PO 4 3- ions B
OD has not been removed. Especially, since the alkalinity component based on HCO 3 ion remains in an extremely large amount of 8000 to 10000 mg / l in the case of human waste, next, H + ion dissociation substance 6 such as FeCl 3 , AlCl 3 , HCl is added. Add to lower the pH to 3-4 (eg Fe 3+ ions are Fe 3+ + 3H 2 O → Fe (OH) 3 ↓ + 3H +
As a result, the Al 3+ ion becomes Al 3+ + 3H 2 O → Al (OH) 3 ↓ +
3H + dissociates the H + ion by a hydrolysis reaction), and the following chemical reaction proceeds to transfer the HCO 3 ion to CO 2 .

HCO3 -+H+→CO2↑+H2O…… (1) その後、気液接触などの脱炭酸工程7において気曝し、
CO2を放散する。8は脱炭酸工程7内に吹き込む気曝用
空気である。この時、汚水中のH2Sも同時に放散除去さ
れる。なお、H+イオン解離物質としてFe3+を使う場合
は、H2SはFeS↓として沈殿除去される。これは、後記す
るようにメタン発酵処理のうえで大きな効果をもたらす
ことになる。
HCO 3 - + H + → CO 2 ↑ + H 2 O ...... (1) Thereafter, exposed gas in the decarboxylation step 7, such gas-liquid contact,
Dissipates CO 2 . 8 is air for air exposure blown into the decarbonation step 7. At this time, H 2 S in the wastewater is also diffused and removed. When Fe 3+ is used as the H + ion dissociation substance, H 2 S is precipitated and removed as FeS ↓. This will bring about a great effect on the methane fermentation treatment as described later.

なお、H+イオン解離物質6として、H2SO4,Fe2(SO4)3,Al
2(SO4)3,ポリ硫酸第2鉄のようにSO4 3-イオンを含む化
合物はあまり好ましくない。なぜなら、SO4 3-イオンが
添加されると、後述するメタン発酵処理工程19で、SO4
3-イオンが硫酸還元菌の作用によって、嫌気性下でH2S
に還元されてしまい、メタン生成菌にとって毒性となる
ほか、発生するCH4ガスのなかに多量のH2Sガスが混入し
てしまい、CH4ガスの有効利用にとって障害を招くから
である。ポリ塩化アルミ(PAC)もpH低下力がFeCl3に比
べて著しく弱いのですすめられない。また、あらかじめ
ポリマにより汚水中のSSを凝集除去したのちにFe3+又は
Al3+を添加すると、SSの凝集にFe3+又はAl3+が消費され
なくなるので、より少ないFe3+又はAl3+でpH低下,COD,P
O4 3-,色度の除去が効果的に行えるという利点がある。
As the H + ion dissociation substance 6, H 2 SO 4 , Fe 2 (SO 4 ) 3 , Al
Compounds containing SO 4 3− ions such as 2 (SO 4 ) 3 and ferric polysulfate are not very preferable. This is because, when the SO 4 3- ions is added, in the methane fermentation step 19 to be described later, SO 4
The 3- ions are anaerobically transformed into H 2 S by the action of sulfate-reducing bacteria.
In addition to being toxic to methanogens, a large amount of H 2 S gas is mixed in the generated CH 4 gas, which hinders the effective use of CH 4 gas. Polyaluminum chloride (PAC) cannot be recommended because its pH lowering power is significantly weaker than that of FeCl 3 . In addition, after the SS in the wastewater is coagulated and removed by a polymer in advance, Fe 3+ or
When Al 3+ is added, Fe 3+ or Al 3+ is not consumed for SS agglomeration, so lower Fe 3+ or Al 3+ lowers pH, COD, P
O 4 3− has the advantage that chromaticity can be effectively removed.

しかるのち、Fe(OH)3,Al(OH)3などのフロックを主体
とするSSを沈殿などの任意の固液分離工程9で分離し、
HCO3 -(アルカリ度),PO4 3-,溶解性COD,色度が除去さ
れ、外観は清澄な清澄液10を得る。11は分離汚泥であ
る。清澄液10の外観は清澄であるが、汚水中のNH4 +,溶
解性BODがそのまま残留している。
After that, SS mainly composed of flocs such as Fe (OH) 3 and Al (OH) 3 is separated in any solid-liquid separation step 9 such as precipitation,
HCO 3 (alkalinity), PO 4 3− , soluble COD, and chromaticity are removed, and a clear liquid 10 having a clear appearance is obtained. 11 is separated sludge. The appearance of the clear liquid 10 is clear, but NH 4 + and soluble BOD in the wastewater remain as they are.

次に、清澄液10を30℃以上に加温し、NaOH,Ca(OH)2,M
g(OH)2などのアルカリ剤12を添加し、pHをアルカリ性
(好ましくはpH10〜11)に上昇させ、 NH4 ++OH-→NH3↑+H2O ……(2) の化学反応によって、NH4 +を遊離NH3に移行させ、充填
塔,棚段塔,もれ棚塔などの気液接触によるNH3ストリ
ップ工程13に供給する。
Next, the clarified liquid 10 is heated to 30 ° C or higher, and NaOH, Ca (OH) 2 , M is added.
adding an alkali agent 12, such as g (OH) 2, pH was raised to alkaline (preferably pH 10-11) a, NH 4 + + OH - by a chemical reaction → NH 3 ↑ + H 2 O ...... (2), NH 4 + is transferred to free NH 3 and supplied to the NH 3 strip process 13 by gas-liquid contact such as a packed tower, a plate tower, and a leak tower.

NH3ストリップ工程13に流入する清澄液10にアルカリ度
成分が多量に存在すると、 HCO3 -+OH-→CO3 2-+H2O ……(3) なる反応が進行してOH-イオンが消費されてしまうの
で、多量のアルカリ剤を添加しない限り、上記(2)式
の反応を進めることができないが、本発明では、前段で
独自の方法で脱炭酸処理を行ってHCO3 -を除去するの
で、上記(3)式の妨害反応が生じない。この結果、著
しく少量のアルカリ剤の添加によって、(2)式のNH3
遊離反応が効果的に進む。
If a large amount of alkalinity component is present in the clarified liquid 10 flowing into the NH 3 strip process 13, the reaction of HCO 3 + OH → CO 3 2 − + H 2 O (3) proceeds and OH ions are consumed. Therefore, unless a large amount of alkali agent is added, the reaction of the above formula (2) cannot proceed, but in the present invention, decarbonation is carried out by a unique method in the previous stage to remove HCO 3 . Therefore, the interference reaction of the above formula (3) does not occur. As a result, by adding a remarkably small amount of alkaline agent, NH 3
The liberation reaction proceeds effectively.

しかして、NH3ストリップ工程13では、空気14を供給
し、清澄液10と気液接触させ、NH3↑をストリップ(放
散)除去する。15は放散されたNH3ガスであり、触媒燃
焼によるN2への酸化16、あるいはH2SO4,H3PO4液への吸
収16′によって処分する。17は清浄ガスであり、大気中
へ排出される。
Then, in the NH 3 strip process 13, air 14 is supplied to bring the liquid 10 into gas-liquid contact with the clarifying liquid 10 to strip (dissipate) NH 3 ↑. Reference numeral 15 is the released NH 3 gas, which is disposed of by oxidation 16 to N 2 by catalytic combustion or absorption 16 ′ into H 2 SO 4 and H 3 PO 4 liquids. 17 is clean gas, which is discharged into the atmosphere.

次に、NH3ストリップ工程13でNH3が高度に除去され(除
去率90%以上)たNH3ストリップ流出液18を、固定化さ
れたメタン生成菌による中温のメタン発酵工程19へ供給
し(BOD負荷30〜50kgBOD/m3・日)、溶解性BODを極めて
高速にメタン発酵処理し、CH4とCO2ガスに分解して除去
する。この「固定化メタン生成菌」とは、メタノスリッ
クス系のメタン生成菌が自己を凝集体に造粒する現象を
利用したもの(自己固定化と呼ばれる)、ゼオライト,
砂,粒状セラミック,粒状活性炭,ハニカムチューブな
どの微生物付着媒体の表面にメタン生成菌を付着せしめ
たもの、及びアルギン酸カルシウム,ポリビニルアルコ
ール,ポリアクリルアミド,光硬化性樹脂などの有機高
分子ゲル内にメタン生成菌を包括固定化したものの総称
を意味する。図示例は、最も好適な一法の自己固定化メ
タン生成菌のブラケット層を用いる上昇流嫌気性スラッ
ジブランケット法(UASB法とも呼ばれる)である。
Next, the NH 3 strip effluent 18 from which NH 3 was highly removed (removal rate of 90% or more) in the NH 3 strip step 13 was supplied to the mesophilic methane fermentation step 19 by the immobilized methanogen ( With a BOD load of 30 to 50 kg BOD / m 3 · day), soluble BOD is subjected to methane fermentation treatment at extremely high speed, and decomposed and removed into CH 4 and CO 2 gas. This "immobilized methanogen" utilizes the phenomenon in which a methanothric methanogen granulates itself into aggregates (called self-immobilization), zeolite,
Methane-forming bacteria adhered to the surface of microbial adhesion media such as sand, granular ceramics, granular activated carbon, and honeycomb tubes, and methane in organic polymer gels such as calcium alginate, polyvinyl alcohol, polyacrylamide, and photocurable resins. It means the generic name of the ones that comprehensively immobilize the producing bacteria. The illustrated example is one of the most preferred upflow anaerobic sludge blanket method (also called UASB method) using a bracket layer of self-immobilized methanogen.

20はメタン発酵処理工程19内に形成された、粒径0.5〜2
mmの自己固定化メタン生成菌凝集体のブランケット層で
あり、メタン生成菌が極めて高濃度(50000〜100000mg/
lMLSS)に維持されている。21は発生したCH4を主成分と
するガスの捕集室、22は沈殿分離部、23は発生ガスをガ
ス捕集室21に導くためのバッフルである。
20 is a particle size of 0.5 to 2 formed in the methane fermentation treatment step 19.
mm is a blanket layer of self-immobilized methanogen aggregates, with extremely high concentrations of methanogens (5000-100000mg /
lMLSS) is maintained. Reference numeral 21 is a collection chamber for the generated gas containing CH 4 as a main component, 22 is a precipitation separation unit, and 23 is a baffle for guiding the generated gas to the gas collection chamber 21.

本発明者は実験の結果、次のような重要知見を得た。As a result of experiments, the present inventor has obtained the following important findings.

即ち、 固定化メタン生成菌による高速メタン発酵処理では、
流入液のSS,NH4 +が高濃度であるとメタン菌の固定化が
阻害される。
That is, in the high-speed methane fermentation treatment with immobilized methanogens,
High concentrations of SS and NH 4 + in the influent inhibit the immobilization of methane bacteria.

流入液中の硫化物も、メタン菌に対して有害作用をも
つ。
Sulfides in the influent also have a detrimental effect on methane bacteria.

しかるに、本発明では、固定化メタン生成菌による処理
の前段でSSの除去,脱炭酸部でのH2Sの同時除去および
改善されたNH3ストリップ法によるNH3除去を行っておく
ので、固定化メタン生成菌への阻害要因を充分解消する
ことができ、理想的状況のもとでUASBなどの固定化メタ
ン生成菌による高速処理が進行することが実験的に確認
された。これは、本発明のプロセス構成のうえで極めて
重要なポイントのひとつである。
However, in the present invention, removal of the SS in preceding processing by immobilized methanogens, because they are processed and NH 3 removal by simultaneous removal and improved NH 3 strip method of H 2 S in the decarbonation unit, the fixed It was experimentally confirmed that the inhibitory factors to the methanogenic bacterium can be sufficiently eliminated, and the high-speed treatment by the immobilized methanogen such as UASB progresses under the ideal situation. This is one of the extremely important points in the process configuration of the present invention.

しかして、発生したメタンガス24を回収し、NH3ストリ
ップ工程13へ流入する清澄液10の加温熱源,汚泥脱水ケ
ーキの乾燥,焼却用の補助燃料,ストリップされたNH3
ガス15の触媒燃焼用の補助燃料などに有効利用する。
Then, the generated methane gas 24 is recovered and the heating source for heating the clarified liquid 10 flowing into the NH 3 stripping step 13, the drying of the sludge dewatering cake, the auxiliary fuel for incineration, and the stripped NH 3
It is effectively used as auxiliary fuel for catalytic combustion of gas 15.

メタン発酵処理工程19からのメタン発酵流出液25は、既
にSS,BOD,PO4 3-,COD,NH4 +の大部分が除去されているの
で、公共用水域に放流可能な処理水質となっているが、
所望に応じてさらに高度処理する場合は、メタン発酵流
出液25を生物学的硝化脱窒素処理工程26、もしくは公知
の活性汚泥処理や好気性生物床(図示せず)に導き、
メタン発酵流出液25中に少量残留するBOD,窒素成分など
を生物学的に除去すればよい。
Methane fermentation effluent 25 from the methane fermentation step 19, is already SS, BOD, PO 4 3-, COD, because NH 4 + majority of has been removed, the discharge can be treated water in public water However,
In the case of further advanced treatment as desired, the methane fermentation effluent 25 is introduced into a biological nitrification denitrification treatment step 26, or a known activated sludge treatment or an aerobic biological bed (not shown),
A small amount of BOD, nitrogen components, etc. remaining in the methane fermentation effluent 25 may be biologically removed.

なお、27は活性汚泥を分離する限外過膜(UF膜)など
の固液分離手段であり、好気性生物床を適用する場合
は必要としない。28は返送汚泥、29は余剰汚泥、30は高
度処理水である。また、31は余剰メタン菌であり、余剰
汚泥29と同様にその発生量は著しく少ない。
Note that 27 is a solid-liquid separation means such as an ultrafiltration membrane (UF membrane) for separating activated sludge, and is not necessary when applying an aerobic biological bed. 28 is returned sludge, 29 is excess sludge, and 30 is highly treated water. Further, 31 is surplus methane bacteria, and the generation amount thereof is extremely small like the surplus sludge 29.

また、メタン発酵流出液25の非生物分解性COD,色度をき
わめて高度に除去することをねらう場合は、粉末活性炭
32を後続する活性汚泥処理工程の曝気槽に添加するか、
又はNH3ストリップ流出液18に添加することで発泡防止
を併せて効果的に目的を達成できる。
For the purpose of extremely highly removing the non-biodegradable COD and chromaticity of the methane fermentation effluent 25, activated carbon powder should be used.
32 is added to the aeration tank of the subsequent activated sludge treatment process,
Alternatively, by adding it to the NH 3 strip effluent 18, it is possible to effectively prevent foaming and achieve the purpose.

さらに、極めて興味深いことには、固定化メタン生成菌
によってメタン発酵処理を行う場合、粉末活性炭32をUA
SB法などのメタン発酵処理工程19内に供給すると、メタ
ン生成菌の自己固定化による凝集体形成が著しく促進さ
れることが認められた、これは今まで知られていなかっ
た知見である。
Furthermore, it is extremely interesting to note that when activated methane fermentation is performed by immobilized methanogens, activated carbon powder 32 is treated with UA.
It was confirmed that when it was supplied into the methane fermentation treatment step 19 such as the SB method, the formation of aggregates due to self-immobilization of methanogenic bacteria was significantly promoted, which is a finding that has not been known until now.

以上、本発明の作用を一実施態様について説明したが、
さらに本発明の他の実施態様を補足説明する。
The operation of the present invention has been described above with reference to one embodiment.
Further, another embodiment of the present invention will be supplementarily described.

即ち、 固液分離工程3の前段に、Fe3+などのH+イオン解離物
質6を添加することによって、第1図の固液分離工程9
を不要にする方法。
That is, by adding the H + ion dissociation substance 6 such as Fe 3+ to the solid-liquid separation step 3 in the preceding stage, the solid-liquid separation step 9 in FIG.
How to get rid of.

固液分離工程3の前段に、H+イオン解離物質6の添加
と脱炭酸工程7を設ける方法。
A method in which a H + ion dissociation substance 6 is added and a decarboxylation process 7 is provided in a stage preceding the solid-liquid separation process 3.

第1図のポリマ2の添加と固液分離工程3を省略し、
汚水1に直接H+イオン解離物質6を添加して脱炭酸処理
する方法。(この方法は汚水1のSSが下水のように高濃
度でないケースに適す) 第1図の脱炭酸工程7からの放散ガス中の悪臭(H2S
など)を、生物脱臭によって除去する方法。
Omitting the addition of polymer 2 and solid-liquid separation step 3 in FIG. 1,
A method of directly adding H + ion dissociation substance 6 to sewage 1 and performing decarboxylation treatment. (This method is suitable for the case where SS of sewage 1 is not high concentration like sewage.) Odor (H 2 S
Etc.) is removed by biological deodorization.

し尿と浄化槽汚泥を併合処理する場合、浄化槽汚泥の
脱水分離液を、メタン発酵処理工程19のあとの生物処理
工程へ加える方法。浄化槽汚泥の溶解性BODは、し尿に
比べて1/10程度にすぎないので、これをメタン発酵処理
工程19に流入させるのは不利となる。
A method of adding the dehydrated separated liquid of the septic tank sludge to the biological treatment step after the methane fermentation processing step 19 when the human waste and the septic tank sludge are treated in combination. Since the solubility BOD of septic tank sludge is only about 1/10 of that of human waste, it is disadvantageous to allow it to flow into the methane fermentation treatment step 19.

下水などのように原水SSが比較的少ない場合(SS数10
0mg/l)は、第1図の3と9の固液分離工程を省略し、
脱炭酸工程7後、直接NH3ストリップ工程13に流入させ
てもよい。ただし、H+イオン解離物質6として、Fe3+,A
l3+を用いる場合は、固液分離工程9を設けてフロック
を分離し、pH低下とともにCOD,PO4 3-を除去したほうが
はるかに好ましい。
When the raw water SS is relatively small such as sewage (SS number 10
0 mg / l) omits the solid-liquid separation steps of 3 and 9 in FIG.
After the decarboxylation step 7, the NH 3 strip step 13 may be directly introduced. However, as H + ion dissociation substance 6, Fe 3+ , A
In the case of using l 3+ , it is much more preferable to provide a solid-liquid separation step 9 to separate flocs and remove COD and PO 4 3− as the pH decreases.

などが、本発明の実施態様として推奨できる。Are recommended as an embodiment of the present invention.

〔実施例〕〔Example〕

第1図の実施態様に従って、本発明の実験を行った。 Experiments of the present invention were conducted according to the embodiment of FIG.

下記の表−1左欄の水質を有するし尿に、カチオンポリ
マを250mg/l〔エバグロースC104G(商品名)〕添加、1
分間攪拌したところ大粒径のフロックが生成したので、
これを目開き1mmのウェッジワイヤスクリーンで分離し
た。この分離液にFeCl3を4000mg/lとHClを1000mg/l添加
し、気泡筒で1時間エアレーションとして脱炭酸処理し
たのち、沈殿槽で0.5時間静置沈降させたところ、表−
1右欄の水質となり、し尿のアルカリ度,SS,COD,BOD,PO
4 3-,H2Sが大幅に除去された。
250 mg / l [Eva Gloss C104G (trade name)] of cationic polymer was added to human waste having water quality shown in the left column of Table 1 below.
After stirring for a minute, large-sized flocs were produced, so
This was separated with a 1 mm wedge wire screen. FeCl 3 (4000 mg / l) and HCl (1000 mg / l) were added to the separated liquid, and the mixture was decarbonated by aeration for 1 hour and then allowed to stand for 0.5 hour in a settling tank.
1 The right column shows the water quality, and the alkalinity of human waste, SS, COD, BOD, PO
4 3 ,, H 2 S was largely removed.

次に、表−1右欄の脱炭酸処理液を55℃に加温したの
ち、NaOHを添加したところ、わずか800mg/lでpHが容易
に10.5に上昇し、NH3ストリップに最適なpHに設定でき
た。このアルカリ添加率は従来のNH3ストリップ法の約1
/10であった。NH3ストリップには、テラレットを充填し
た高さ7mの充填塔を用い、気液向流によるエアストリッ
ピング法を採用した。気液比は(液量/空気量)=0.25
とした。
Next, after heating the decarboxylation solution in the right column of Table-1 to 55 ° C and adding NaOH, the pH easily rose to 10.5 at only 800 mg / l, and the optimum pH for NH 3 strip was reached. I was able to set it. This alkali addition rate is about 1 of the conventional NH 3 strip method.
It was / 10. For the NH 3 strip, a 7 m high packed column filled with terraret was used, and the air stripping method by gas-liquid countercurrent was adopted. Gas-liquid ratio is (liquid volume / air volume) = 0.25
And

この結果、NH3ストリップ工程から流出したNH3ストリッ
プ処理液は、下記の表−2の左欄の水質となった。この
液を、自己固定化メタン生成菌を用いたUASB法によっ
て、滞留時間0.7日でメタン発酵(温度30℃)処理した
ところ、極めて高速にBODが除去され、表−2右欄の水
質を示す処理液を得た。なお、UASB法流入液に、微量の
前記スクリーン分離液を添加し、UASB処理におけるPO4
3-不足を防いだ。
As a result, the NH 3 strip treatment liquid flowing out from the NH 3 strip step had the water quality shown in the left column of Table 2 below. When this solution was subjected to methane fermentation (temperature 30 ° C) with a residence time of 0.7 days by the UASB method using a self-immobilized methanogen, BOD was removed very rapidly and the water quality shown in the right column of Table-2 is shown. A treatment liquid was obtained. In addition, a small amount of the screen separation liquid was added to the UASB method inflow liquid to remove PO 4 in the UASB treatment.
3-Prevented shortage.

なお、温度52℃のNH3ストリップ処理液を脱炭酸処理水
と熱交換し、中温メタン発酵処理に適した30℃〜35℃に
冷却し、UASB処理槽に供給した。
The NH 3 strip treatment liquid at a temperature of 52 ° C. was heat-exchanged with decarbonated treatment water, cooled to 30 ° C. to 35 ° C. suitable for medium-temperature methane fermentation treatment, and supplied to a UASB treatment tank.

次に、表−2右欄のUASB処理液を、公知の生物学的硝化
脱窒素法により処理した。この硝化脱窒素法は、硝化液
循環型を用い、MLSS濃度10000〜12000mg/l、滞留時間0.
4日に設定し、活性汚泥の固液分離には限界過膜(分
画分子量10万)を使用した。なお、硝化脱窒素処理には
粉末活性炭を600mg/lと、FeCl3を300mg/lを添加した。
Next, the UASB treatment liquid in the right column of Table 2 was treated by a known biological nitrification denitrification method. This nitrification denitrification method uses a nitrification solution circulation type, MLSS concentration of 10,000 to 12000 mg / l, and residence time of 0.
It was set on 4 days and a limiting membrane (molecular weight cutoff of 100,000) was used for solid-liquid separation of activated sludge. For nitrification and denitrification, 600 mg / l of powdered activated carbon and 300 mg / l of FeCl 3 were added.

この結果、下記表−3の極めて良質の水質をもつ高度処
理水を得た。
As a result, highly-treated water having extremely good water quality shown in Table 3 below was obtained.

なお、エアレーションには、限外過膜への液の供給ポ
ンプの残圧を利用し、水面へのポンプ吐出液の落下によ
る滝効果によるエアレーションを行ったので、曝気ブロ
ワーは不要であった。
The aeration blower was not necessary because the residual pressure of the liquid supply pump to the ultra-supermembrane was used for the aeration and the aeration was performed by the waterfall effect by the drop of the pump discharge liquid to the water surface.

以上のような実験により、本発明の卓越した効果が実証
された。即ち、固定化メタン生成菌によるメタン発酵の
阻害要因(SSとNH4 +とH2S)がないため、極めて高速の
メタン発酵が行え、メタン発酵処理液中のBODとNH4-Nが
著しく少なくなるので、小容量の生物学的硝化脱窒素槽
で高度の硝化脱窒素が行われた。また、NH3ストリップ
用のアルカリコストと脱炭酸の酸コストも著しく安価に
できることが確認された。
The above-mentioned experiment proves the outstanding effect of the present invention. That is, because there are no factors that inhibit methane fermentation by immobilized methanogens (SS, NH 4 +, and H 2 S), extremely high-speed methane fermentation can be performed, and BOD and NH 4 -N in the methane fermentation treatment liquid are remarkably high. Due to the low volume, a high volume of nitrification and denitrification was performed in a small volume biological nitrification and denitrification tank. It was also confirmed that the alkali cost for NH 3 strip and the acid cost for decarboxylation can be significantly reduced.

〔発明の効果〕〔The invention's effect〕

以上述べたように、本発明は、従来法とは全く逆に、
『メタン発酵処理工程の前段でNH3ストリップを行い、
かつ、NH3ストリップの前段にアルカリ度除去工程(脱
炭酸による)を配置し、さらにメタン発酵処理として、
固定化メタン生成菌を適用する』新概念を採用したプロ
セスを構成しので、次のような重要な効果が得られる。
As described above, the present invention, contrary to the conventional method,
"We performed NH 3 strip before the methane fermentation process,
Also, an alkalinity removal step (by decarboxylation) is placed in front of the NH 3 strip, and as a methane fermentation treatment,
Applying immobilized methanogens ”As the process adopts the new concept, the following important effects are obtained.

UASB法などの固定化メタン生成菌によるメタン発酵処
理は、高濃度のNH4 +とSS,H2Sによって悪影響を受ける
が、本発明ではこのようなマイナス要因を完全に解消し
たため、固定化メタン生成菌にとって理想的環境のもと
で、高速のメタン発酵処理を行うことが可能である。
Methane fermentation treatment with immobilized methanogens such as the UASB method is adversely affected by high concentrations of NH 4 + and SS, H 2 S, but in the present invention, such a negative factor was completely eliminated, so immobilized methane It is possible to perform high-speed methane fermentation treatment under an ideal environment for producing bacteria.

その結果、従来技術として最先端の無希釈,高負荷型
の生物学的硝化脱窒素法の生物処理槽の所要容積の1/10
の槽で処理が可能となり、建設費とスペースの大幅削減
ができる。
As a result, 1/10 of the required volume of the biological treatment tank of the state-of-the-art state-of-the-art, undiluted, high-load biological nitrification and denitrification method
The treatment can be done in the tank, and the construction cost and space can be greatly reduced.

BOD除去にエアレーション動力が不要であり、省エネ
ルギー効果が大きい。
Aeration power is not required for BOD removal, resulting in a large energy saving effect.

NH3ストリップのためのpH上昇用のアルカリコストが
大幅に節減できる。
The alkali cost for pH increase for NH 3 strip can be significantly reduced.

脱炭酸のためのH+イオンとして、Fe3 +,Al3+の加水分
解反応を利用することができるので、pH低下と共にCOD,
PO4 3-,SS,コロイドの凝集除去が同時にできるという複
合効果があり、脱炭酸のための薬剤コストを大きく削減
できる。
As H + ions for decarboxylation, it is possible to utilize the hydrolysis reaction of Fe 3 + , Al 3+ , so that COD,
There is a combined effect that PO 4 3− , SS, and colloid can be removed at the same time, and the chemical cost for decarboxylation can be greatly reduced.

固定化メタン生成菌による高速メタン発酵処理(たと
えばUASB法)によって、処理槽が著しく小さくでき、こ
の結果、メタン発酵槽壁面からの放熱量による熱ロスが
減少する。従って、CH4ガスの余剰量が増加し、この余
剰分を汚泥の乾燥,焼却などに利用できるので、さらに
省エネルギー型のプロセスが実現できる。
High-speed methane fermentation treatment with immobilized methanogens (for example, UASB method) can significantly reduce the size of the treatment tank, and as a result, heat loss due to the amount of heat released from the walls of the methane fermentation tank is reduced. Therefore, the surplus amount of CH 4 gas increases, and the surplus amount can be used for drying and incineration of sludge, etc., so that a further energy-saving process can be realized.

固定化メタン生成菌によるメタン発酵工程からの余剰
汚泥発生量が著しく少ないので、汚泥処理を合理的に行
うことができる。
Since the amount of excess sludge generated from the methane fermentation process by the immobilized methanogen is extremely small, sludge treatment can be performed rationally.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施態様を示す系統説明図である。 1……し尿系汚水、2……ポリマ、3,9……固液分離工
程、4……汚泥、5……分離液、6……H+イオン解離物
質、7……脱炭酸工程、8……気爆用空気、10……清澄
液、11……分離汚泥、12……アルカリ剤、13……NH3
トリップ工程、14……空気、15……NH3ガス、16……酸
化、16′……吸収、17……清浄ガス、18……NH3ストリ
ップ流出液、19……メタン発酵処理工程、20……ブラン
ケット層、21……捕集室、22……沈殿分離部、23……バ
ッフル、24……メタンガス、25……メタン発酵流出液、
26……生物学的硝化脱窒素処理工程、27……固液分離手
段、28……返送汚泥、29……余剰汚泥、30……高度処理
水、31……余剰メタン菌、32……粉末活性炭。
FIG. 1 is a system diagram showing an embodiment of the present invention. 1 …… Shiria wastewater, 2 …… Polymer, 3,9 …… Solid-liquid separation process, 4 …… Sludge, 5 …… Separation liquid, 6 …… H + ion dissociation material, 7 …… Decarboxylation process, 8 …… Air for air explosion, 10 …… Clarification liquid, 11 …… Separation sludge, 12 …… Alkaline agent, 13 …… NH 3 strip process, 14 …… Air, 15 …… NH 3 gas, 16 …… Oxidation, 16 '... absorbent, 17 ... clean gas, 18 ... NH 3 strip effluent, 19 ...... methane fermentation step, 20 ... blanket layer, 21 ... collecting chamber, 22 ... sedimentation separation unit, 23 …… Baffle, 24 …… Methane gas, 25 …… Methane fermentation effluent,
26 …… Biological nitrification denitrification process, 27 …… Solid-liquid separation means, 28 …… Return sludge, 29 …… Excess sludge, 30 …… Highly treated water, 31 …… Excess methane bacteria, 32 …… Powder Activated carbon.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】有機性汚水に水素イオン解離物質を添加
し、酸性条件下で脱炭酸処理し、該脱炭酸処理液にアル
カリ剤を添加してアルカリ性条件下でアンモニアストリ
ッピングを行ったのち、固定化メタン生成菌によってメ
タン発酵処理することを特徴とする有機性汚水の処理方
法。
1. A hydrogen ion dissociating substance is added to organic wastewater, decarboxylation treatment is performed under acidic conditions, an alkaline agent is added to the decarboxylation treatment liquid, and ammonia stripping is performed under alkaline conditions. A method for treating organic sewage, which comprises performing methane fermentation treatment with immobilized methanogens.
【請求項2】前記脱炭酸処理する前段又は後段で固液分
離を行うようにした請求項1記載の有機性汚水の処理方
法。
2. The method for treating organic wastewater according to claim 1, wherein solid-liquid separation is performed before or after the decarboxylation treatment.
【請求項3】前記固定化メタン生成菌によってメタン発
酵処理したのち、生物学的硝化脱窒素処理するようにし
た請求項1又は2記載の有機性汚水の処理方法。
3. The method for treating organic wastewater according to claim 1 or 2, wherein after the methane fermentation treatment with the immobilized methanogen, a biological nitrification denitrification treatment is performed.
JP1364790A 1990-01-25 1990-01-25 Organic wastewater treatment method Expired - Fee Related JPH0698356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1364790A JPH0698356B2 (en) 1990-01-25 1990-01-25 Organic wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1364790A JPH0698356B2 (en) 1990-01-25 1990-01-25 Organic wastewater treatment method

Publications (2)

Publication Number Publication Date
JPH03221200A JPH03221200A (en) 1991-09-30
JPH0698356B2 true JPH0698356B2 (en) 1994-12-07

Family

ID=11839023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1364790A Expired - Fee Related JPH0698356B2 (en) 1990-01-25 1990-01-25 Organic wastewater treatment method

Country Status (1)

Country Link
JP (1) JPH0698356B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4863545B2 (en) * 2000-12-11 2012-01-25 メタウォーター株式会社 Method and apparatus for digesting organic sludge
JP4558231B2 (en) * 2001-03-21 2010-10-06 三菱重工環境・化学エンジニアリング株式会社 Method and system for treating liquid organic waste
KR100461759B1 (en) * 2002-07-16 2004-12-14 한국화학연구원 Hydrogen gas and methan gas production from highly concentrated wastewater
JP2007007620A (en) * 2005-07-04 2007-01-18 Fuji Electric Holdings Co Ltd Method for treating nitrogen-containing liquid waste
JP4902468B2 (en) * 2007-08-28 2012-03-21 三菱化工機株式会社 Organic waste processing apparatus and processing method
JP5160847B2 (en) * 2007-09-14 2013-03-13 三井造船株式会社 Biogas system
JP4902471B2 (en) * 2007-09-18 2012-03-21 三菱化工機株式会社 Ammonia removing apparatus and organic waste processing apparatus and processing method using the same
WO2021040499A1 (en) * 2019-08-30 2021-03-04 허관용 Ammonium removal apparatus and method using chemical treatment of wastewater generated by dehydrating digested sludge
FR3118062B1 (en) * 2020-12-21 2023-07-21 Leo Viridis Process and installation for treating waste containing metal compounds

Also Published As

Publication number Publication date
JPH03221200A (en) 1991-09-30

Similar Documents

Publication Publication Date Title
KR101665636B1 (en) Wastewater pretreatment method and sewage treatment method using the pretreatment method
CN103771650B (en) A kind for the treatment of process of coal gasification waste water
CN103402926A (en) Methods and systems for treating wastewater
WO2019169610A1 (en) Method for upgrading and expanding sewage biological treatment process
CN102603128A (en) Method for advanced treatment and recycling of landfill leachate
JP3122654B2 (en) Method and apparatus for treating highly concentrated wastewater
CN113321297A (en) Secondary biochemical effluent ferro-sulphur synergistic polyculture denitrification deep denitrification method
CN210825829U (en) Improvement type MBR sewage treatment device
CN110342750A (en) Sewage treatment device and process for synchronously realizing sludge in-situ reduction and nitrogen and phosphorus removal
JPH0698356B2 (en) Organic wastewater treatment method
CN109384306A (en) A kind of high calcium high-salt sewage denitrogenation takes off the treatment process of COD
CN107973488B (en) Method for denitrification treatment of ammonia nitrogen wastewater
JP2777984B2 (en) Organic slurry processing method and processing apparatus
CN110183066B (en) Blue algae deep dehydration wastewater treatment system and process
CN102775003A (en) Device and technology for treating low-concentration VC pharmaceutical wastewater
JPH0698358B2 (en) Treatment method for human waste
CN205295072U (en) Landfill leachate processing apparatus based on anaerobic ammonium oxidation
CN213357071U (en) System for realizing short-cut nitrification-anaerobic ammonia oxidation denitrification stable operation of low-ammonia-nitrogen wastewater
CN114314850A (en) Constructed wetland deep purification device and method for high-salt refractory organic wastewater
CN210340626U (en) Blue algae deep dehydration wastewater treatment system
KR100325722B1 (en) A treatment method of sewage and wastewater using ozone and oxygen
KR100513567B1 (en) Wastewater Purification Apparatus
JP3181521B2 (en) Water treatment method and water treatment device
CN105502811A (en) Anaerobic ammonia oxidation-based landfill leachate treatment device and use method thereof
CN219098912U (en) VAE emulsion effluent treatment plant

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees