WO2021040499A1 - Ammonium removal apparatus and method using chemical treatment of wastewater generated by dehydrating digested sludge - Google Patents

Ammonium removal apparatus and method using chemical treatment of wastewater generated by dehydrating digested sludge Download PDF

Info

Publication number
WO2021040499A1
WO2021040499A1 PCT/KR2020/011656 KR2020011656W WO2021040499A1 WO 2021040499 A1 WO2021040499 A1 WO 2021040499A1 KR 2020011656 W KR2020011656 W KR 2020011656W WO 2021040499 A1 WO2021040499 A1 WO 2021040499A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonium
bicarbonate
chemical treatment
dehydration
wastewater
Prior art date
Application number
PCT/KR2020/011656
Other languages
French (fr)
Korean (ko)
Inventor
허관용
Original Assignee
허관용
손영율
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 허관용, 손영율 filed Critical 허관용
Publication of WO2021040499A1 publication Critical patent/WO2021040499A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/586Treatment of water, waste water, or sewage by removing specified dissolved compounds by removing ammoniacal nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/24Treatment of water, waste water, or sewage by flotation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/006Regulation methods for biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage

Definitions

  • the present invention relates to an apparatus and method for treating dehydrated wastewater (dewatered filtrate) from digested sludge discharged from an anaerobic digestion facility for high-concentration organic wastewater such as food waste, drinking water, and manure, or waste (hereinafter,'organic waste'). And in particular to an apparatus and method for removing ammonium from said wastewater.
  • anaerobic digestion of organic matter containing a high concentration of nitrogen can be explained by the following formula (1). Based on the total molecular weight of organic matter containing moisture (MW 285.4), 70% is converted into biogas (CH 4 ,CO 2 ) by anaerobic microorganisms (methanogenic bacteria), and 8% of the total molecular weight is converted into microorganisms in this process. It grows, and only 2.8% of pure organic matter is used for microbial growth.
  • bicarbonate ions 17% are converted into the digester buffering capacity (buffer capacity) measure of bicarbonate alkalinity contributes to (bicarbonate alkalinity), was produced in the hydrolysis process, the nitrogen could be used to multiply the total molecular weight of the It accumulates in the digester in the form of a concentration of NH 4 + -N as 5%.
  • Formula (1) can be described as follows. As organic matter (C 10 H 19 O 3 N) is decomposed by microorganisms, 0.2M microorganisms (C 5 H 7 O 2 N) proliferate, and nitrogen (NH 4 + ) is involved in the proliferation of cells in this process. . Finally organic matter that decomposes longer decomposition inorganic form of bicarbonate (bicarbonate, HCO 3 -) in the water to be left as, nitrogen could not be used for microbiological synthesis include ammonium (NH 4 +) (NH 4 HCO 3) form Remains.
  • bicarbonate (bicarbonate, HCO 3 -) in the final step is to create there is markedly alkalinity (alkalinity), is known as the bicarbonate alkalinity (bicarbonate alkalinity).
  • alkalinity is known as the bicarbonate alkalinity (bicarbonate alkalinity).
  • the optimum condition for this bicarbonate alkalinity in an anaerobic digester is known to be in the range of 1,000 to 5,000 mg/L as CaCO 3 , and in the case of anaerobic digestion of high concentration organic waste such as food waste, the bicarbonate alkalinity is 15,000 to 15,000. when the range of 25,000mg / L as CaCO 3. This is because alkalinity depends on the amount of organic matter, as shown in this equation.
  • the range of alkalinity is different from that of sewage sludge due to the difference in the concentration of organic matter.
  • food is changed to a disposer and then flowed into the sewage, so there is a difference in the design standard of a sewage treatment plant from that of Korea, but it can be said that it is almost the same except for this.
  • the bicarbonate when present in an appropriate amount, it plays a beneficial role in mitigating the impact of the pH change in the digester due to overload of organic matter, but the bicarbonate HCO 3 - generated by continuous decomposition of organic matter is used in the digester. If it accumulates excessively in the anaerobic digestion process itself, the efficiency of treating wastewater at the rear stage may be lowered. That is, according to the International Study of ammonium produced in the anaerobic digestion process of organic matter (NH 4 +) and bicarbonate (bicarbonate, HCO 3 -) is the report that is strongly bound in the form of ammonium bicarbonate (NH 4 HCO 3) bar.
  • bicarbonate (bicarbonate, HCO 3 -) are Although not the role is clearly been shown the combination is at the same time as a buffer action due to inhibition to interfere with the increase of pH to 10.5 ⁇ 11.0, but rather to increase the pH in the waste water treatment purposes If necessary, it is difficult to increase the pH to the required pH even when a chemical is used, so it can be considered that there is a problem that the treatment efficiency for wastewater is lowered.
  • the process of removing ammonium (NH 4 + ) from wastewater is carried out by chemically treating it with chemicals while increasing the pH and discharging it as gaseous ammonia (NH 3 ).
  • NH 4 + ammonium
  • the bicarbonate alkalinity is excessive, it is difficult to increase the pH by caustic soda (NaOH), so the treatment efficiency decreases, and the amount of chemicals used increases exponentially as the pH increases.
  • NaOH caustic soda
  • the temperature of the bioreactor rises to 40°C or more, thereby lowering the oxygen transfer power.
  • microorganisms lose their function at high temperatures and decrease their sedimentation properties, ultimately deteriorating dehydration properties as well as poor treatment results, and further forcibly lowering the increased temperature of the bioreactor. It is clear that economic feasibility deteriorates.
  • the present invention was devised in consideration of the limitations of nitrogen concentration treatment in the wastewater treatment process at the rear end of the anaerobic digestion facility for conventional high-concentration organic waste, and provides an apparatus and method with improved efficiency in removing ammonium through chemical treatment. .
  • HCO bicarbonate
  • the dehydration solution is adjusted to pH 4.0 by adding an acidifying agent selected from sulfuric acid (H 2 SO 4) and hydrochloric acid (HCl). .
  • an acidifying agent selected from sulfuric acid (H 2 SO 4) and hydrochloric acid (HCl).
  • the dehydration solution is adjusted to pH 10.5 to 11.0 by adding an alkali chemical selected from sodium hydroxide (NaOH), calcium hydroxide (Ca(OH) 2) and slaked lime (CaO),
  • an alkali chemical selected from sodium hydroxide (NaOH), calcium hydroxide (Ca(OH) 2) and slaked lime (CaO)
  • NaOH sodium hydroxide
  • Ca(OH) 2 calcium hydroxide
  • CaO slaked lime
  • the dehydration solution is adjusted to pH 8 to 9 by adding a neutralizing agent selected from sulfuric acid (H 2 SO 4) and hydrochloric acid (HCl). How to remove.
  • a neutralizing agent selected from sulfuric acid (H 2 SO 4) and hydrochloric acid (HCl). How to remove.
  • a degassing system of a chemical treatment method including acidification, alkalinization and neutralization is applied.
  • ammonium bicarbonate (NH 4 HCO 3)
  • NH 4 HCO 3 which can destroy the strong coupling of the type to inhibit pH rise bicarbonate (bicarbonate, HCO 3 -) via the acidification process, by removing in advance, an appropriate amount of drug in the alkaline process
  • the pH can be controlled to 10.5 ⁇ 11.0 just by using, and at this pH state, nitrogen in the form of ammonium (NH 4 + ) is converted into ammonia (NH 3) by appropriate agitation and air injection.
  • High chemical treatment efficiency that is, ammonium removal efficiency can be achieved.
  • the bicarbonate in the waste water in such a chemical process for ammonium removal (bicarbonate, HCO 3 -) since the concentration of the substantially removed the other for the waste water formed in the rear end biological Treatment efficiency can also be greatly improved, and it can be applied to all facilities that apply anaerobic digestion system including food waste, drinking water, combined treatment of livestock manure and food waste, livestock manure, etc., livestock manure public treatment facilities, manure treatment It can also be applied to processes that treat high-concentration organic wastewater or wastes such as facilities.
  • 1 is a graph showing the relative concentration of ammonia (NH 3 ) to ammonium (NH 4 + ) according to changes in pH and temperature.
  • CO 2 is a graph showing the amount (%) of carbonic acid (H 2 CO 3 ) in total carbon dioxide (CO 2) according to pH change.
  • Figure 3 is a graph showing the concentration (mol %) of hydrogen sulfide (H 2 S) in the total sulfide according to the pH change.
  • FIG. 4 is a gas removal system of a chemical treatment method and a process diagram thereof according to an embodiment of the present invention.
  • Figure 5 is a structure and operation diagram of the reaction tank for the chemical treatment of Figure 4.
  • the present invention bicarbonate (bicarbonate, HCO 3 -) present in the over-the waste water chemicals involved in the degassing process by performing the after removing in advance through a kind of pre-processing step of oxidation (Acidification) process degassing (degassing) process It is a basic feature of maintaining an appropriate amount of input and at the same time improving its processing efficiency.
  • FIG. 1 is a graph showing the relative concentration of ammonia (NH 3 ) to ammonium (NH 4 + ) according to changes in pH and temperature.
  • ammonium in an ionic state (NH 4 + ) Represents the conversion to volatile gaseous ammonia (NH 3 (g) ).
  • NH 4 + ammonium in an ionic state
  • NH 3 NH 3 (g)
  • point (b) which is a pH of about 9.0.
  • NH 4 + and NH 3 are in equilibrium, so that the concentrations of each are approximately the same at 50% level.
  • the main purpose of the chemical treatment is to separate the NH 4 + as much as possible into the NH 3 gaseous form. It is possible to change the form of gas up to 95 ⁇ 98% at pH 10.5 ⁇ 11.0 that has passed the c point of pH 10. Of course, at pH 11.0, almost 100% is converted to NH 3 , but since it may be a condition where nutrients are insufficient in the later biological process, 95% treatment can be the most effective method for the subsequent wastewater treatment. On the other hand, since the difference between theory and practice may occur, it can be said that it is reasonable to maintain the proper pH range in the range of 10.5 to 11.0.
  • FIG. 2 is a graph showing the amount (%) of carbonic acid (H 2 CO 3 ) in the total carbon dioxide (CO 2 ) according to the pH change.
  • the chemical reaction according to the pH change is shown in the following formula ( It can be expressed as 2).
  • bicarbonate (HCO 3 - ) is the most ideal and effective in a state where wastewater is placed at the corresponding pH because most of the bicarbonate (HCO 3-) exists as H 2 CO 3 at the point a at pH 4. It can be seen that it can be removed.
  • the degassing system of the chemical treatment method according to the present invention (Fig. 4B) is related to treatment of wastewater (dewatered filtrate) dehydrated from digested sludge, and in particular, acidification, alkalinization and Performs the main unit process of neutralization.
  • FIG. 4 shows a gas removal system of a chemical treatment method and a process diagram thereof according to an embodiment of the present invention.
  • This Step is I bicarbonate (bicarbonate, HCO 3 -) of the dehydration filtrate (the waste water) is a step of removing converted to carbon dioxide (carbonic acid, H 2 CO 3 ).
  • a drug for acidification (acidification) in dehydrated filtrate (waste water) separated from the digested sludge for example, input of sulfuric acid (H 2 SO 4)
  • bicarbonate was combined with ammonium (NH 4 +) (bicarbonate, HCO 3 -) Is separated and converted into carbonic acid (H 2 CO 3 ) by bonding with hydrogen ions (H + ) released from H 2 SO 4 , and thus ammonium (NH 4 + ) and sulfate (SO 4 2- ) are It is put in a decomposed state according to formula (3) of In this case, as can be seen in FIG.
  • Step II ionic ammonium (NH 4 + ) in dehydration (wastewater) is converted into gaseous ammonia (NH 3 ) and discharged.
  • sodium hydroxide (NaOH) sodium hydroxide
  • NH 4 + sodium hydroxide
  • the relative concentration of (NH 3 ) is placed in an increased state, and by injecting air in this state, gaseous ammonia (NH 3 ) is discharged to the outside according to formula (4) below.
  • prior bicarbonate (bicarbonate, HCO 3 -) in Step 1 may be the pH is quickly guided to the high state while keeping the proper that amount because the input of sodium hydroxide (NaOH) in a pre-removed, before even As can be seen in 1, a high ammonium removal efficiency of 95% or more can be achieved in a high pH state of pH 10.5 to 11.0.
  • various good products including calcium hydroxide (Ca(OH) 2 ) and slaked lime (CaO) in addition to the exemplified sodium hydroxide (NaOH) may be used instead.
  • H 2 S hydrogen sulfide
  • oxygen O 2
  • CO 2 carbon dioxide
  • H 2 S hydrogen sulfide
  • ammonia among these exhaust gases
  • hydrogen sulfide (H 2 S) can be synthesized in the form of ammonium hydrogen sulfide ((NH 4 ) 2 SO 4 ), which is a raw material component of fertilizer.
  • 98 to 100% of total sulfur (sulfide) in the exhaust gas is present as H 2 S in the range of pH 10.5 to 11.0, as can be seen in FIG. 3, there is also a problem of odor in wastewater when treating exhaust gases. Can be solved.
  • This Step III is a step of neutralizing the alkaline wastewater filtrate (wastewater) in the range of pH 10.5 to 11.0 that has passed through Step II for later biological treatment.
  • a neutralizing agent for example, sulfuric acid (H 2 SO 4 ) may be used, and the wastewater is adjusted to a neutral pH (pH 8-9).
  • This is a neutralization reaction by the introduction of sulfuric acid (H 2 SO 4 ) and is represented by the following formula (5).
  • various chemicals including hydrochloric acid (HCl) in addition to the exemplified sulfuric acid (H 2 SO 4) may be used instead.
  • FIGS. 4 and 5 shows a schematic structural diagram of a reaction tank for chemical treatment of FIG. 4.
  • the reaction tank (Degassing Reactor) consists of four baffles (01), a motor and a stirrer (02) in each 90° direction for complete mixing and efficient chemical reaction, and the air supply system (05), the gas after the reaction It can be carried out through the gas discharge pipe 11 and sent to the exhaust gas treatment process 12 at a later stage for the manufacture of liquid fertilizers and the like.
  • the reaction tank (Degassing Reactor) consists of four baffles (01), a motor and a stirrer (02) in each 90° direction for complete mixing and efficient chemical reaction, and the air supply system (05), the gas after the reaction It can be carried out through the gas discharge pipe 11 and sent to the exhaust gas treatment process 12 at a later stage for the manufacture of liquid fertilizers and the like.
  • an acid storage tank (03) and an alkali storage tank (04) are required, and here, a chemical used to control the chemical reaction according to pH control.
  • the boiler 06 is used to control the temperature of the wastewater in order to prevent the temperature drop, which is concerned during the chemical reaction process, through air supply.
  • a wastewater discharge pipe (09), and a pressure control device (08), etc. are provided so that the pressure inside the reaction tank (degassing reactor) does not drop sharply when the wastewater is discharged.
  • the gas removal system (B) should be installed in an open space where there is a lot of ventilation, and should be inspected daily, avoiding the installation of closed rooms.
  • the reactor (degassing reactor) provided in the gas removal system (B) is composed of a single or bicarbonate present in the waste water (bicarbonate, HCO 3 - In order to a) and ammonium (NH 4 +), chemically continuous process in a two- Two or more reaction tanks (a, b) can be configured in parallel, or evenly distributed (50% of each of the two reaction tanks) and processed separately.
  • Each of the plurality of degassing reactors independently performs three steps of acidification, alkalinization and neutralization shown in FIG. 4.
  • a degassing system of a chemical treatment method including acidification, alkalinization and neutralization when applied to, ammonium bicarbonate (NH 4 +) and bicarbonate (HCO 3 -) via the acidification process of bicarbonate (bicarbonate, HCO 3 -) to inhibit the destruction of the pH rise to strong binding of the is removed in advance.
  • a pH of 10.5 to 11.0 may be controlled by using an appropriate amount of a chemical.
  • this chemical treatment bicarbonate (bicarbonate, HCO 3 -) in the waste water in the process for ammonium removal because the concentration of the most Removed another for waste water formed in the rear end biological Treatment efficiency can also be greatly improved, and it can be applied to all facilities that apply anaerobic digestion systems including food waste, drinking water, combined treatment of livestock manure and drinking water, livestock manure, etc., livestock manure public treatment facilities, manure treatment It can also be applied to processes that treat high-concentration organic wastewater or wastes such as facilities.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Sludge (AREA)

Abstract

Disclosed are: an ammonium removal method for removing ammonium, by means of a chemical treatment process, from a dehydrated filtrate of digested sludge discharged from an anaerobic digestion facility, which treats organic waste so as to convert same into sludge (microorganisms); and an apparatus to be used in the method, the method comprising: a) a first step of converting a bicarbonate (HCO3 -) in the dehydrated filtrate into carbonic acid (H2CO3) and removing same; b) a second step of converting an ammonium ion (NH4 +) in the dehydrated filtrate, having passed through the first step, into gaseous ammonia (NH3) and discharging same; and c) a third step of neutralizing the dehydrated filtrate having passed through the second step. When using chemical treatment comprising acidification, alkalinization and neutralization, high chemical treatment efficiency, that is, ammonium removal efficiency, can be implemented while optimizing the amount of chemicals to be consumed, and the efficiency of biological treatment of wastewater in the latter part thereof can also be greatly enhanced.

Description

소화슬러지로부터 탈수된 폐수의 화학적 처리를 통한 암모늄 제거 장치 및 방법Apparatus and method for removing ammonium through chemical treatment of wastewater dehydrated from digested sludge
본 발명은 음식물 쓰레기, 음폐수, 분뇨 등의 고농도 유기성 폐수 또는 폐기물(이하, '유기성 폐기물')에 대한 혐기성 소화 시설에서 배출된 소화슬러지로부터 탈수된 폐수(탈수여액)를 처리하는 장치 및 방법에 관련되며, 특히 상기 폐수에서 암모늄을 제거하는 장치 및 방법에 관련된다. The present invention relates to an apparatus and method for treating dehydrated wastewater (dewatered filtrate) from digested sludge discharged from an anaerobic digestion facility for high-concentration organic wastewater such as food waste, drinking water, and manure, or waste (hereinafter,'organic waste'). And in particular to an apparatus and method for removing ammonium from said wastewater.
일반적으로 고농도의 질소가 함유된 유기물에 대한 혐기성 소화는 아래의 화학식 (1)로 설명될 수 있다. 수분이 포함된 유기물 총분자량(MW 285.4)을 기준으로 70%는 혐기성 미생물(메탄생성 박테리아)에 의해 바이오 가스(CH 4,CO 2)로 전환되고, 이 과정에서 총분자량의 8%가 미생물로 증식되며, 순수한 유기물 중 2.8%에 해당되는 질소만이 미생물 증식에 이용된다. 17%는 중탄산염 이온(bicarbonate, HCO 3 -)로 전환되어 소화조 완충용량(buffer capacity)의 척도인 중탄산염 알칼리도(bicarbonate alkalinity)에 기여하며, 가수분해 과정에서 생성되었지만 증식에 이용되지 못한 질소는 총분자량의 5%로 NH 4 +-N 농도 형태로 소화조에서 축적된다.In general, anaerobic digestion of organic matter containing a high concentration of nitrogen can be explained by the following formula (1). Based on the total molecular weight of organic matter containing moisture (MW 285.4), 70% is converted into biogas (CH 4 ,CO 2 ) by anaerobic microorganisms (methanogenic bacteria), and 8% of the total molecular weight is converted into microorganisms in this process. It grows, and only 2.8% of pure organic matter is used for microbial growth. 17% bicarbonate ions (bicarbonate, HCO 3 -) are converted into the digester buffering capacity (buffer capacity) measure of bicarbonate alkalinity contributes to (bicarbonate alkalinity), was produced in the hydrolysis process, the nitrogen could be used to multiply the total molecular weight of the It accumulates in the digester in the form of a concentration of NH 4 + -N as 5%.
Figure PCTKR2020011656-appb-img-000001
Figure PCTKR2020011656-appb-img-000001
상기 화학식 (1)은 다음과 같이 설명될 수 있다. 미생물에 의해 유기물(C 10H 19O 3N)이 분해되면서 0.2M의 미생물(C 5H 7O 2N)이 증식되고, 이 과정에서 세포의 증식에 질소(NH 4 +)가 관여하게 된다. 최종적으로 유기물은 분해되어 더 이상 분해되지 않는 무기 형태인 중탄산염(bicarbonate, HCO 3 -)으로 남게 되며, 미생물 합성에 이용되지 못한 질소는 암모늄(NH 4 +)(NH 4HCO 3)형태로 물속에 잔존한다. 질소(N)가 미생물에 합성되지 못한 이유는 미생물 증식에 필요한 유기물이 부족하기 때문인데, 질소(N)의 농도에 비해서 유기물 농도가 낮은데 기인한다. 이를 C/N ratio가 낮다고 표현한다. 적정한 유기물의 양에 비하여 질소량이 과다한데서 오는 표현이다. 유기물의 분해과정에서는 부산물로 바이오 가스가 생성되는데, 5.74M의 메탄(CH 4)과 2.45M의 이산화탄소(CO 2)가 생성된다. 그리고 화학식 (1)에서 보는 바와 같이 유기물은 최종단계에서 중탄산염(bicarbonate, HCO 3 -)이 생성되어 알칼리도(alkalinity)를 띠게 되는데, 이를 중탄산염 알칼리도(bicarbonate alkalinity)라고 한다. 혐기성 소화조에서 이러한 중탄산염 알칼리도(bicarbonate alkalinity)의 최적 조건은 1,000 ~ 5,000 mg/L as CaCO 3의 범위로 알려져 있고, 음식물류 폐기물과 같은 고농도 유기성 폐기물을 혐기성 소화하는 경우 중탄산염 알칼리도(bicarbonate alkalinity)는 15,000 ~ 25,000mg/L as CaCO 3의 범위로 나타난다. 이 식에서 보듯이 알칼리도는 유기물의 양에 의존하기 때문이다. 하수슬러지와는 유기물의 농도 차이로 알칼리도의 범위가 다르게 나타나는 것이다. 미국의 경우 음식물을 disposer로 갈아서 하수로 흘려보내기 때문에 우리나라와는 하수처리장 설계기준에 차이가 있지만 이를 제외하면 거의 같다고 할 수 있다.Formula (1) can be described as follows. As organic matter (C 10 H 19 O 3 N) is decomposed by microorganisms, 0.2M microorganisms (C 5 H 7 O 2 N) proliferate, and nitrogen (NH 4 + ) is involved in the proliferation of cells in this process. . Finally organic matter that decomposes longer decomposition inorganic form of bicarbonate (bicarbonate, HCO 3 -) in the water to be left as, nitrogen could not be used for microbiological synthesis include ammonium (NH 4 +) (NH 4 HCO 3) form Remains. The reason why nitrogen (N) was not synthesized in microorganisms is because organic matters necessary for the growth of microorganisms are insufficient, because the concentration of organic matters is low compared to the concentration of nitrogen (N). This is expressed as a low C/N ratio. This expression comes from an excessive amount of nitrogen compared to the appropriate amount of organic matter. In the process of decomposition of organic matter, biogas is produced as a by-product, and 5.74M of methane (CH 4 ) and 2.45M of carbon dioxide (CO 2 ) are produced. And organic materials as shown in the formula (1) bicarbonate (bicarbonate, HCO 3 -) in the final step is to create there is markedly alkalinity (alkalinity), is known as the bicarbonate alkalinity (bicarbonate alkalinity). The optimum condition for this bicarbonate alkalinity in an anaerobic digester is known to be in the range of 1,000 to 5,000 mg/L as CaCO 3 , and in the case of anaerobic digestion of high concentration organic waste such as food waste, the bicarbonate alkalinity is 15,000 to 15,000. when the range of 25,000mg / L as CaCO 3. This is because alkalinity depends on the amount of organic matter, as shown in this equation. The range of alkalinity is different from that of sewage sludge due to the difference in the concentration of organic matter. In the case of the United States, food is changed to a disposer and then flowed into the sewage, so there is a difference in the design standard of a sewage treatment plant from that of Korea, but it can be said that it is almost the same except for this.
일반적으로 상기 중탄산염(bicarbonate)이 적정한 양으로 존재하는 경우 유기물 과부하 등으로 소화조 내의 pH 변화에 대하여 충격을 완화시키는 이로운 역할을 하지만, 지속적으로 유기물이 분해되면서 생성된 중탄산염(bicarbonate HCO 3 -)이 소화조에 과다하게 축적되면 오히려 혐기성 소화 과정 자체뿐만 아니라 후단에서 폐수에 대한 처리 효율성이 저하될 수 있다. 즉, 해외 연구에 따르면 유기물의 혐기성 소화 과정에서 생성된 암모늄(NH 4 +)과 중탄산염(bicarbonate, HCO 3 -)은 중탄산암모늄(NH 4HCO 3)형태로 강하게 결합되어 있다고 보고된 바 있다. 이 경우 중탄산염(bicarbonate, HCO 3 -)은 그 역할이 명확히 밝혀져 있지는 않지만 이 결합은 완충작용을 함과 동시에 pH 10.5~11.0까지의 증가를 억제 내지 방해하기 때문에, 오히려 폐수 처리 목적으로 pH를 증가시킬 필요가 있는 경우에는 약품을 사용하는 경우라도 요구되는 pH까지 증가시키기 어려워서 폐수에 대한 처리 효율성이 저하되는 문제가 있다고 볼 수 있다.In general, when the bicarbonate is present in an appropriate amount, it plays a beneficial role in mitigating the impact of the pH change in the digester due to overload of organic matter, but the bicarbonate HCO 3 - generated by continuous decomposition of organic matter is used in the digester. If it accumulates excessively in the anaerobic digestion process itself, the efficiency of treating wastewater at the rear stage may be lowered. That is, according to the International Study of ammonium produced in the anaerobic digestion process of organic matter (NH 4 +) and bicarbonate (bicarbonate, HCO 3 -) is the report that is strongly bound in the form of ammonium bicarbonate (NH 4 HCO 3) bar. In this case bicarbonate (bicarbonate, HCO 3 -) are Although not the role is clearly been shown the combination is at the same time as a buffer action due to inhibition to interfere with the increase of pH to 10.5 ~ 11.0, but rather to increase the pH in the waste water treatment purposes If necessary, it is difficult to increase the pH to the required pH even when a chemical is used, so it can be considered that there is a problem that the treatment efficiency for wastewater is lowered.
구체적으로, 폐수 즉 소화슬러지의 탈수여액으로부터 암모늄(NH 4 +)을 제거하는 과정은 pH를 증가시킨 상태에서 약품을 이용해 화학적으로 처리하여 가스 형태의 암모니아(NH 3)로 배출하는 방식으로 이루어지는데, 중탄산염알칼리도(bicarbonate alkalinity)가 과다하면 가성소다(NaOH)에 의한 pH 증가가 어려워 처리 효율성이 떨어지고 사용되는 약품량도 pH 증가에 따라서 기하급수적으로 증가된다. 뿐만 아니라, 후단의 높은 유기물과 알칼리도를 갖는 폐수의 호기성 생물학적 처리 과정에서는, 과다한 공기를 공급하게 되고 그 과정에서 생물반응조의 온도가 40℃ 이상으로 상승해 산소전달력마저 떨어뜨리게 된다. 이에 따라 미생물은 높은 온도에서 그 기능이 떨어지고 침전성도 저하되어 궁극적으로는 탈수성이 악화되는 것은 물론 처리 결과도 나빠지게 되고, 나아가 생물반응조의 증가된 온도를 강제로 낮추는 경우가 빈번하게 발생되고 있어서 경제성이 악화되는 것은 분명한 이치이다. Specifically, the process of removing ammonium (NH 4 + ) from wastewater, that is, the dehydration liquid of digested sludge, is carried out by chemically treating it with chemicals while increasing the pH and discharging it as gaseous ammonia (NH 3 ). If the bicarbonate alkalinity is excessive, it is difficult to increase the pH by caustic soda (NaOH), so the treatment efficiency decreases, and the amount of chemicals used increases exponentially as the pH increases. In addition, in the aerobic biological treatment of wastewater having high organic matter and alkalinity in the downstream, excessive air is supplied, and in the process, the temperature of the bioreactor rises to 40°C or more, thereby lowering the oxygen transfer power. As a result, microorganisms lose their function at high temperatures and decrease their sedimentation properties, ultimately deteriorating dehydration properties as well as poor treatment results, and further forcibly lowering the increased temperature of the bioreactor. It is clear that economic feasibility deteriorates.
따라서 혐기성 소화과정을 통해 배출되는 소화슬러지의 탈수여액에 대한 처리와 관련하여 화학적 처리를 통한 암모늄 {(암모니아성 질소, NH 3-N) 여기서, NH 3-N = [NH 4 +-N] + [NH 3]} 제거효율을 향상시키기 위해서는 화학적 반응을 방해하는 중탄산염(bicarbonate)에 대한 제거(다른 물질로 변환) 과정이 선행될 필요가 있고, 이 경우 화학적 처리를 통한 암모늄 제거효율 뿐만 아니라 후단의 생물학적 처리 효율에도 유리할 것으로 예상될 수 있으며, 본 발명은 이러한 배경을 바탕으로 이루어졌다.Therefore, in relation to the treatment of the dewatered filtrate of digested sludge discharged through the anaerobic digestion process, ammonium through chemical treatment {(ammonia nitrogen, NH 3 -N) where, NH 3 -N = [NH 4 + -N] + [NH 3 ]} In order to improve the removal efficiency, the removal (conversion to another substance) of bicarbonate, which interferes with the chemical reaction, needs to be preceded. In this case, not only the ammonium removal efficiency through chemical treatment but also the It can be expected to be advantageous also in biological treatment efficiency, and the present invention was made on the basis of this background.
본 발명은 종래 고농도 유기성 폐기물에 대한 혐기성 소화시설 후단의 폐수처리과정에서 질소 농도 처리의 한계점을 감안하여 안출된 것으로, 화학적 처리를 통한 암모늄 제거에 있어서 그 효율이 개선된 장치 및 방법을 제공하는 것이다.The present invention was devised in consideration of the limitations of nitrogen concentration treatment in the wastewater treatment process at the rear end of the anaerobic digestion facility for conventional high-concentration organic waste, and provides an apparatus and method with improved efficiency in removing ammonium through chemical treatment. .
상기 해결과제와 관련된 본 발명의 요지는 청구범위에 기재된 것과 동일한 아래의 내용이다.The subject matter of the present invention related to the above problem is the same as described in the claims below.
(1) 유기성 폐기물을 처리하여 슬러지(미생물)로 전환하는 혐기성 소화시설에서 배출된 소화슬러지의 탈수여액을 화학적 처리과정에 의해 암모늄을 제거하는 방법으로서, a) 상기 탈수여액 중 중탄산염(bicarbonate,HCO 3 -)을 탄산(carbonic acid, H 2CO 3)로 전환 제거하는 제1 단계; b) 상기 제1 단계를 거친 탈수여액 중 이온상태의 암모늄(NH 4 +)을 가스 상태의 암모니아(NH 3)로 전환 배출하는 제2 단계; 및 c) 상기 제2 단계를 거친 탈수여액을 중화하는 제3 단계;를 포함하는 암모늄 제거 방법.(1) A method of removing ammonium from the dewatered sludge discharged from an anaerobic digestion facility that treats organic waste and converts it into sludge (microorganism) by chemical treatment, a) bicarbonate (HCO) in the dewatered filtrate. 3) a first stage to remove converted to carbon dioxide (carbonic acid, H 2 CO 3 ); b) a second step of converting and discharging ionic ammonium (NH 4 + ) into gaseous ammonia (NH 3) in the dehydration liquid passed through the first step; And c) a third step of neutralizing the dehydration liquid passed through the second step.
(2) 상기 (a) 단계는 황산(H 2SO 4) 및 염산(HCl)으로부터 선택되는 산성화 약품을 첨가하여 상기 탈수여액을 pH 4.0으로 조절하는 것을 특징으로 하는 상기 (1)의 암모늄 제거 방법.(2) In the step (a), the dehydration solution is adjusted to pH 4.0 by adding an acidifying agent selected from sulfuric acid (H 2 SO 4) and hydrochloric acid (HCl). .
(3) 상기 (b) 단계는 수산화나트륨(NaOH), 수산화칼슘(Ca(OH) 2) 및 소석회(CaO)로부터 선택되는 알칼리 약품을 첨가하여 상기 탈수여액을 pH 10.5 ~ 11.0으로 조절한 상태에서, 공기를 주입하는 방식으로 수행되는 것을 특징으로 하는 상기 (1)의 암모늄 제거 방법.(3) In the step (b), the dehydration solution is adjusted to pH 10.5 to 11.0 by adding an alkali chemical selected from sodium hydroxide (NaOH), calcium hydroxide (Ca(OH) 2) and slaked lime (CaO), The ammonium removal method of (1), characterized in that it is carried out by injecting air.
(4) 상기 (c) 단계는 황산(H 2SO 4) 및 염산(HCl)으로부터 선택되는 중화 약품을 첨가하여 상기 탈수여액을 pH 8 ~ 9로 조절하는 것을 특징으로 하는 상기 (1)의 암모늄 제거 방법.(4) In the step (c), the dehydration solution is adjusted to pH 8 to 9 by adding a neutralizing agent selected from sulfuric acid (H 2 SO 4) and hydrochloric acid (HCl). How to remove.
본 발명에 따라 소화슬러지로부터 탈수된 폐수(탈수여액)를 처리하는 데 있어서 산성화(Acidification),알칼리화(Alkalinization) 및 중화(Neutralization)을 포함하는 화학적 처리 방식의 가스제거 시스템(Degassing System)을 적용하는 경우, 상기 산성화 과정을 통해 중탄산암모늄(NH 4HCO 3)형태의 강한 결합을 파괴하여 pH 상승을 저해할 수 있는 중탄산염(bicarbonate, HCO 3 -)를 미리 제거함으로써, 상기 알칼리화 과정에서 적정한 양의 약품을 사용하는 것만으로도 pH 10.5 ~ 11.0으로 제어할 수 있고, 이러한 pH 상태에서 적정한 교반과 공기의 주입으로 암모늄(NH 4 +)형태의 질소를 암모니아(NH 3)로 변환 배출하여 우 95% 이상의 높은 화학적 처리 효율 즉 암모늄 제거 효율을 구현할 수 있다. 또한 본 발명에 따른 화학적 처리 장치 및 방법의 경우, 암모늄 제거를 위한 이러한 화학적 처리 과정에서 폐수 중 중탄산염(bicarbonate, HCO 3 -)의 농도가 거의 제거된 상태이기 때문에 그 후단에서 이루어지는 폐수에 대한 다른 생물학적 처리 효율도 크게 향상될 수 있고, 음식물류 폐기물, 음폐수, 가축분뇨와 음폐수 병합처리, 가축분뇨 등을 포함한 혐기성 소화 시스템을 적용하는 시설에서 모두 적용이 가능하며, 가축분뇨 공공처리시설, 분뇨처리시설 등 고농도 유기성폐수나 폐기물을 처리하는 공정에도 적용이 가능하다.In the treatment of wastewater (dewatered filtrate) dehydrated from digested sludge according to the present invention, a degassing system of a chemical treatment method including acidification, alkalinization and neutralization is applied. If, ammonium bicarbonate (NH 4 HCO 3), which can destroy the strong coupling of the type to inhibit pH rise bicarbonate (bicarbonate, HCO 3 -) via the acidification process, by removing in advance, an appropriate amount of drug in the alkaline process The pH can be controlled to 10.5 ~ 11.0 just by using, and at this pH state, nitrogen in the form of ammonium (NH 4 + ) is converted into ammonia (NH 3) by appropriate agitation and air injection. High chemical treatment efficiency, that is, ammonium removal efficiency can be achieved. In the case of chemical processing apparatus and method according to the invention, the bicarbonate in the waste water in such a chemical process for ammonium removal (bicarbonate, HCO 3 -) since the concentration of the substantially removed the other for the waste water formed in the rear end biological Treatment efficiency can also be greatly improved, and it can be applied to all facilities that apply anaerobic digestion system including food waste, drinking water, combined treatment of livestock manure and food waste, livestock manure, etc., livestock manure public treatment facilities, manure treatment It can also be applied to processes that treat high-concentration organic wastewater or wastes such as facilities.
도 1은 pH 및 온도 변화에 따른 암모늄(NH 4 +)에 대한 암모니아(NH 3)의 상대농도(relative concentration)를 나타낸 그래프.1 is a graph showing the relative concentration of ammonia (NH 3 ) to ammonium (NH 4 + ) according to changes in pH and temperature.
도 2는 pH 변화에 따른 총 이산화탄소(CO 2) 중 탄산(H 2CO 3) 양(%)을 나타낸 그래프.2 is a graph showing the amount (%) of carbonic acid (H 2 CO 3 ) in total carbon dioxide (CO 2) according to pH change.
도 3은 pH 변화에 따른 총 황화물 중 황화수소(H 2S)의 농도(몰 %)를 나타낸 그래프.Figure 3 is a graph showing the concentration (mol %) of hydrogen sulfide (H 2 S) in the total sulfide according to the pH change.
도 4는 본 발명의 실시예에 따른 화학적 처리 방식의 가스제거 시스템 및 그 공정도.4 is a gas removal system of a chemical treatment method and a process diagram thereof according to an embodiment of the present invention.
도 5는 도 4의 화학적 처리를 위한 반응조의 구조 및 동작도.Figure 5 is a structure and operation diagram of the reaction tank for the chemical treatment of Figure 4;
이하, 실시예를 통하여 본 발명을 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예의 구성은 본 발명의 가장 바람직한 하나의 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 발명의 출원 시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있는 것으로 이해되어야 한다. 한편, 도면에서 동일 또는 균등물에 대해서는 동일 또는 유사한 참조번호를 부여하였으며, 또한 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한, 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Hereinafter, the present invention will be described in detail through examples. Prior to this, terms or words used in the present specification and claims should not be construed as limited to their usual or dictionary meanings, and the inventors appropriately explain the concept of terms in order to explain their own invention in the best way. Based on the principle that it can be defined, it should be interpreted as a meaning and concept consistent with the technical idea of the present invention. Therefore, the configuration of the embodiments described in the present specification is only one of the most preferred embodiments of the present invention, and does not represent all the technical spirit of the present invention, and various equivalents that can replace them at the time of filing of the present invention It should be understood that there may be variations and variations. On the other hand, in the drawings, the same or similar reference numbers are given to the same or equivalent material, and in the entire specification, when a certain part "includes" a certain component, this is another component unless otherwise stated. It does not exclude, but means that other components may be further included.
본 발명에서와 같이, 고농도 유기성 폐기물에 대한 혐기성 소화 시설에서 배출된 소화슬러지로부터 탈수된 폐수(탈수여액) 중 암모늄(NH 4 +) 농도를 처리하기 위한 대부분의 화학적인 방법은 약품을 투입해 소화조에서 배출된 폐수의 pH를 보통 10 이상으로 증가시킨 상태에서암모늄(NH 4 +)을 암모니아(NH 3)가스의 형태로 분리하는 방법이다. 이 경우 탈수여액 중 중탄산염(bicarbonate, HCO 3 -)농도가 과다하면 중성을 유지하려고 하는 bicarbonate의 성질 때문에 pH 증가가 어렵고, pH를 증가시키기 위해 많은 양의약품을 사용하여도 처리 효율이 좋지 않은 결과를 준다. 이에 본 발명은 폐수 중 과다하게 존재하는 중탄산염(bicarbonate,HCO 3 -)을 일종의 전처리 공정인 산화(Acidification) 공정을 통해 미리 제거한 후 가스제거(degassing) 공정을 수행함으로써 해당 가스제거 공정에 수반되는 약품 투입량을 적정하게 유지함과 동시에 그 처리 효율을 향상시키는 것을 기본적인 특징으로 한다. As in the present invention, most chemical methods for treating the concentration of ammonium (NH 4 + ) in the wastewater (dewatered filtrate) dehydrated from the digested sludge discharged from the anaerobic digestion facility for high-concentration organic waste This is a method of separating ammonium (NH 4 + ) in the form of ammonia (NH 3 ) gas in the state that the pH of the wastewater discharged from is usually increased to 10 or more. In this case, dehydrated filtrate of bicarbonate (bicarbonate, HCO 3 -) when the concentration is excessive it is difficult to pH increase due to the nature of the bicarbonate to try to maintain a neutral, using a large amount of drugs to increase the pH to Fig result that the process efficiency good give. The present invention bicarbonate (bicarbonate, HCO 3 -) present in the over-the waste water chemicals involved in the degassing process by performing the after removing in advance through a kind of pre-processing step of oxidation (Acidification) process degassing (degassing) process It is a basic feature of maintaining an appropriate amount of input and at the same time improving its processing efficiency.
이 경우 암모늄(NH 4 +)을 암모니아(NH 3)가스의 형태로 분리하는 화학적 처리 및 그 효율과 관련해서는, pH 및 온도 변화에 따른 암모늄(NH 4 +)과 암모니아(NH 3)간 상대농도(relative concentration)에 관련된 화학적 반응 특성에 대한 이해와 함께, 또한 중탄산염(bicarbonate, HCO 3 -) 제거 시 수반되는 화학적인 반응 특성에 대한 이해가 전제되어야 한다. 이하, 본 발명에 수반되는 주요 화학적 반응 특성에 대해 설명한 후, 이러한 반응 특성에 기초해 본 발명이 제시하고 있는 화학적 처리 방식의 가스제거 시스템(degassing system) 및 동작 예에 대해 순차적으로 상세히 설명한다. In this case, with respect to the chemical treatment that separates ammonium (NH 4 + ) into ammonia (NH 3 ) gas and its efficiency, the relative concentration between ammonium (NH 4 + ) and ammonia (NH 3) according to pH and temperature changes. with understanding of the characteristics relating to the chemical reaction (relative concentration), addition of bicarbonate (bicarbonate, HCO 3 -) is a prerequisite for the understanding of the chemical reaction accompanying removal properties. Hereinafter, after describing the main chemical reaction characteristics accompanying the present invention, a degassing system and an operation example of a chemical treatment method proposed by the present invention will be sequentially described in detail based on these reaction characteristics.
1. One. 화학적 처리시 고려되는 주요 반응 특성 (도 1, 도 2)Main reaction characteristics considered during chemical treatment (Fig. 1, Fig. 2)
먼저 도 1은 pH 및 온도 변화에 따른 암모늄(NH 4 +)에 대한 암모니아(NH 3)의 상대농도(relative concentration)를 나타낸 그래프로서, 온도 및 pH가 증가할수록 이온 상태의 암모늄(NH 4 +)은 휘발성 기체 상태의 암모니아(NH 3(g))로 변환되는 것을 나타낸다. 특히 pH에 따른 NH 4 +와 NH 3간 상대농도의 변화를 살펴보면, pH가 증가될수록 암모늄(NH 4 +)은 감소되고 암모니아(NH 3)는 증가되어 pH 약 9.0인 (b) 지점 부근에 도달해서는 NH 4 +와 NH 3가 평형을 이루게 되어 각각의 농도가 50% 수준으로 농도가 대략 같은 상태이다. 화학적 처리의 주된 목적은 NH 4 +를 가능한 한 많이 NH 3 가스 형태로 분리하는 것이다. pH 10인 ⓒ 지점을 지난 pH 10.5 ~ 11.0에서는 95 ~ 98%까지 가스의 형태로 변화시키는 것이 가능하다. 물론 pH 11.0에서는 거의 100%가 NH 3로 전환되긴 하지만 오히려 후단의 생물학적 공정에 영양물질이 부족한 조건이 될 수 있기 때문에 95% 정도의 처리가 후단 폐수처리를 위해서 가장 효과적인 방법이 될 수 있다. 한편 이론과 실제의 차이가 발생될 수 있기 때문에, 적정 pH 범위는 10.5 ~ 11.0범위로 유지하는 것이 합리적이라고 할 수 있다.First, FIG. 1 is a graph showing the relative concentration of ammonia (NH 3 ) to ammonium (NH 4 + ) according to changes in pH and temperature. As temperature and pH increase, ammonium in an ionic state (NH 4 + ) Represents the conversion to volatile gaseous ammonia (NH 3 (g) ). In particular, looking at the change in the relative concentration between NH 4 + and NH 3 depending on the pH , as the pH increases, ammonium (NH 4 + ) decreases and ammonia (NH 3 ) increases, reaching the vicinity of point (b), which is a pH of about 9.0. In this case, NH 4 + and NH 3 are in equilibrium, so that the concentrations of each are approximately the same at 50% level. The main purpose of the chemical treatment is to separate the NH 4 + as much as possible into the NH 3 gaseous form. It is possible to change the form of gas up to 95 ~ 98% at pH 10.5 ~ 11.0 that has passed the ⓒ point of pH 10. Of course, at pH 11.0, almost 100% is converted to NH 3 , but since it may be a condition where nutrients are insufficient in the later biological process, 95% treatment can be the most effective method for the subsequent wastewater treatment. On the other hand, since the difference between theory and practice may occur, it can be said that it is reasonable to maintain the proper pH range in the range of 10.5 to 11.0.
도 1로부터 pH 10.5 ~ 11.0의 이러한 적정한 범위에서 이론상으로는 95% 이상의 높은 암모늄 제거효율이 예상되지만, 실제 대부분의 화학적 처리 시설은 약 60 ~ 70% 초반 수준의 비교적 낮은 제거효율(약 50%)을 달성하는 것으로 알려져 있다. 그 이유는 과다한 농도의 중탄산염(bicarbonate, HCO 3 -),즉 중탄산염에 의한 알칼리도로 인해 pH 9.5 이상으로 증가시키는 것이 어렵기 때문이다. 결과적으로 폐수 중의 알칼리도를 띠는 중탄산염(bicarbonate, HCO 3 -)을 제거한다면 높은 암모늄 제거효율을 기대할 수 있다. From FIG. 1, in this appropriate range of pH 10.5 to 11.0, a high ammonium removal efficiency of 95% or more is theoretically expected, but in practice most chemical treatment facilities have a relatively low removal efficiency (about 50%) at the level of about 60 to 70%. It is known to achieve. The reason is that bicarbonate (bicarbonate, HCO 3 -) in excessive levels is because it is difficult to due to the alkalinity caused by, or bicarbonate increase the pH 9.5 or higher. As a result, the bicarbonate (bicarbonate, HCO 3 -) strip the alkalinity of the waste water if it can be expected to remove the high ammonium removal efficiency.
한편 도 2는 pH 변화에 따른 총 이산화탄소(CO 2) 중 탄산(H 2CO 3)양(%)을 나타낸 그래프이고, 도 2로부터 35℃ 폐수의 경우 pH 변화에 따른 화학적 반응은 아래의 화학식 (2)로 표현될 수 있다. 도 2 및 화학식 (2)를 참조할 때, 중탄산염(bicarbonate, HCO 3 -)은 pH 4인 ⓐ 지점에서 대부분이 H 2CO 3로 존재하기 때문에 폐수가 해당 pH 에 놓여진 상태에서 가장 이상적이고, 효과적으로 제거될 수 있음을 알 수 있다.Meanwhile, FIG. 2 is a graph showing the amount (%) of carbonic acid (H 2 CO 3 ) in the total carbon dioxide (CO 2 ) according to the pH change. In the case of wastewater at 35° C. from FIG. 2, the chemical reaction according to the pH change is shown in the following formula ( It can be expressed as 2). 2 and Formula (2), bicarbonate (HCO 3 - ) is the most ideal and effective in a state where wastewater is placed at the corresponding pH because most of the bicarbonate (HCO 3-) exists as H 2 CO 3 at the point ⓐ at pH 4. It can be seen that it can be removed.
Figure PCTKR2020011656-appb-img-000002
Figure PCTKR2020011656-appb-img-000002
2. 2. 화학적 처리 방식의 가스제거 시스템(Degassing System) 및 공정도 (도 4)Chemical treatment method degassing system and process chart (Fig. 4)
본 발명에 따른 화학적 처리 방식의 가스제거 시스템(Degassing System)(도 4의 B)은 소화슬러지로부터 탈수된 폐수(탈수여액)를 처리하는 데 관련되며, 특히 산성화(Acidification), 알칼리화(Alkalinization) 및 중화(Neutralization)의 주요 단위 공정을 수행한다. 도 4는 본 발명의 실시예에 따른 화학적 처리 방식의 가스제거 시스템 및 그 공정도를 나타낸다.The degassing system of the chemical treatment method according to the present invention (Fig. 4B) is related to treatment of wastewater (dewatered filtrate) dehydrated from digested sludge, and in particular, acidification, alkalinization and Performs the main unit process of neutralization. 4 shows a gas removal system of a chemical treatment method and a process diagram thereof according to an embodiment of the present invention.
[STEP I] 산성화(Acidification) - Carbonic acid generation step[STEP I] Acidification-Carbonic acid generation step
본 Step Ⅰ은 탈수여액(폐수) 중 중탄산염(bicarbonate, HCO 3 -)을 탄산(carbonic acid, H 2CO 3)로 전환 제거하는 단계이다. 소화슬러지로부터 분리된 탈수여액(폐수)에 산성화(acidification)를 위한 약품으로서 예컨대 황산(H 2SO 4)을 투입 첨가하면, 암모늄(NH 4 +)과 결합되어 있던 중탄산염(bicarbonate, HCO 3 -)이 분리되어 H 2SO 4에서 떨어져 나온 수소 이온(H +)과 결합하면서 탄산(carbonicacid, H 2CO 3)로 전환되며, 이에 따라 암모늄(NH 4 +)과 황산염(SO 4 2-)은 아래의 화학식 (3)에 따라 분해된 상태로 놓인다. 이 경우 도 2에서 확인될 수 있는 바와 같이 pH 4.0에서 중탄산염(bicarbonate)은 탄산(H 2CO 3)으로 모두 전환 제거된다. 상기 산성화를 위한 약품으로는 예시된 황산(H 2SO 4) 이외에 염산(HCl)을 비롯한 다양한 산성 약품으로 대체 사용될 수도 있다.This Step is Ⅰ bicarbonate (bicarbonate, HCO 3 -) of the dehydration filtrate (the waste water) is a step of removing converted to carbon dioxide (carbonic acid, H 2 CO 3 ). When a drug for acidification (acidification) in dehydrated filtrate (waste water) separated from the digested sludge, for example, input of sulfuric acid (H 2 SO 4), bicarbonate was combined with ammonium (NH 4 +) (bicarbonate, HCO 3 -) Is separated and converted into carbonic acid (H 2 CO 3 ) by bonding with hydrogen ions (H + ) released from H 2 SO 4 , and thus ammonium (NH 4 + ) and sulfate (SO 4 2- ) are It is put in a decomposed state according to formula (3) of In this case, as can be seen in FIG. 2, at pH 4.0, all bicarbonate is converted into carbonic acid (H 2 CO 3 ) and removed. As a chemical for the acidification, it may be substituted with various acidic chemicals including hydrochloric acid (HCl) in addition to the exemplified sulfuric acid (H 2 SO 4 ).
Figure PCTKR2020011656-appb-img-000003
Figure PCTKR2020011656-appb-img-000003
[STEP II] 알칼리화(Alkalinization) - Degassing step[STEP II] Alkalinization-Degassing step
본 Step Ⅱ에서는 탈수여액(폐수) 중 이온 상태의 암모늄(NH 4 +)을 가스 상태의 암모니아(NH 3)로 전환 배출하는 단계이다. 구체적으로 상기 Step I을 거친 탈수여액(폐수)에 알칼리화(alkalinization)를 위한 약품으로서 예컨대 수산화나트륨(NaOH)을 투입 첨가하여 pH 10.5 ~ 11.0의 범위로 조절하면, 암모늄(NH 4 +)에 대한 암모니아(NH 3)의 상대농도가 증가된 상태에 놓이게 되고, 이 상태에서 공기를 주입함으로써 아래의 화학식 (4)에 따라 가스 상태의 암모니아(NH 3)가 외부로 배출된다. 이 경우, 앞서 Step 1에서 중탄산염(bicarbonate, HCO 3 -)이 미리 제거된 상태에서 수산화나트륨(NaOH)을 투입하기 때문에 그 투입량을 적정하게 유지하면서 pH가 높은 상태로 신속히 유도할 수 있고, 앞서 도 1에서 확인할 수 있는 바와 같은 pH 10.5 ~ 11.0의 높은 pH 상태에서 95% 이상의 높은 암모늄 제거효율을 달성할 수 있다. 상기 알칼리화를 위한 약품으로는 예시된 수산화나트륨(NaOH) 이외에 수산화칼슘(Ca(OH) 2) 및 소석회(CaO)를 비롯한 다양한 양품이 대체 사용될 수도 있다.In this Step Ⅱ, ionic ammonium (NH 4 + ) in dehydration (wastewater) is converted into gaseous ammonia (NH 3 ) and discharged. Specifically, by adding sodium hydroxide (NaOH) as a chemical for alkalinization to the dehydration (wastewater) passed through Step I and adjusting the pH in the range of 10.5 to 11.0, ammonia for ammonium (NH 4 +) The relative concentration of (NH 3 ) is placed in an increased state, and by injecting air in this state, gaseous ammonia (NH 3 ) is discharged to the outside according to formula (4) below. In this case, prior bicarbonate (bicarbonate, HCO 3 -) in Step 1 may be the pH is quickly guided to the high state while keeping the proper that amount because the input of sodium hydroxide (NaOH) in a pre-removed, before even As can be seen in 1, a high ammonium removal efficiency of 95% or more can be achieved in a high pH state of pH 10.5 to 11.0. As the alkalizing agent, various good products including calcium hydroxide (Ca(OH) 2 ) and slaked lime (CaO) in addition to the exemplified sodium hydroxide (NaOH) may be used instead.
Figure PCTKR2020011656-appb-img-000004
Figure PCTKR2020011656-appb-img-000004
한편 상기 화학식 (4)에 따르면, 가스 상태의 암모니아(NH 3)외에 황화수소(H 2S), 산소(O 2) 및 이산화탄소(CO 2) 등의 여러 배출 가스가 수반되며, 이러한 배출 가스 중 암모니아(NH 3)외에 황화수소(H 2S)는 비료의 원료 성분인 황화수소암모늄((NH 4) 2SO 4)형태로 합성될 수 있다. 또한 배출 가스 중 총 황(sulfide)은 도 3에서 확인할 수 있는 바와 같이 pH 10.5 ~ 11.0의 범위에서 98 ~ 100%가 H 2S로 존재하기 때문에 배출 가스들에 대한 처리 시 폐수 중의 악취문제도 함께 해결될 수 있다.Meanwhile, according to Formula (4), in addition to gaseous ammonia (NH 3 ), various exhaust gases such as hydrogen sulfide (H 2 S), oxygen (O 2 ) and carbon dioxide (CO 2 ) are accompanied, and ammonia among these exhaust gases In addition to (NH 3 ), hydrogen sulfide (H 2 S) can be synthesized in the form of ammonium hydrogen sulfide ((NH 4 ) 2 SO 4 ), which is a raw material component of fertilizer. In addition, since 98 to 100% of total sulfur (sulfide) in the exhaust gas is present as H 2 S in the range of pH 10.5 to 11.0, as can be seen in FIG. 3, there is also a problem of odor in wastewater when treating exhaust gases. Can be solved.
[STEP III] 중화(Neutralization) - Neutralization step[STEP III] Neutralization-Neutralization step
본 Step Ⅲ는 상기 Step Ⅱ를 거친 pH 10.5 ~ 11.0의 범위의 알칼리성 폐수여액(폐수)를 후단의 생물학적 처리를 위해 중화하는 단계이다. 중화를 위한 약품으로는 예컨대 황산(H 2SO 4)이 사용될 수 있고, 이에 따라 폐수는 pH (pH 8~9)의 중성 부근으로 조절된다. 황산(H 2SO 4)투입에 의한 중화반응으로 다음 화학식 (5)로 표현된다. 마찬가지로, 중성화를 위한 약품으로는 예시된 황산(H 2SO 4) 이외에 염산(HCl)을 비롯한 다양한 약품이 대체 사용될 수도 있다.This Step Ⅲ is a step of neutralizing the alkaline wastewater filtrate (wastewater) in the range of pH 10.5 to 11.0 that has passed through Step Ⅱ for later biological treatment. As a neutralizing agent, for example, sulfuric acid (H 2 SO 4 ) may be used, and the wastewater is adjusted to a neutral pH (pH 8-9). This is a neutralization reaction by the introduction of sulfuric acid (H 2 SO 4 ) and is represented by the following formula (5). Likewise, as a chemical for neutralization, various chemicals including hydrochloric acid (HCl) in addition to the exemplified sulfuric acid (H 2 SO 4) may be used instead.
Figure PCTKR2020011656-appb-img-000005
Figure PCTKR2020011656-appb-img-000005
이상과 같이 도 4의 화학적 처리 방식의 가스제거 시스템(Degassing System)을 적용하여 소화슬러지 탈수여액(폐수)에 대해 산성화(acidification), 알칼리화(alkalinization) 및 중화(neutralization)의 3단계를 모두 거친다면, 과대한 양의 중탄산염을 제거하여 암모늄(암모니아성 질소)의 화학적 처리 효율을 향상될 수 있고 또한 이러한 방해물질이 제거되면 후단의 생물학적 처리 공정에서의 효율성의 향상도 기대될 수 있다.As described above, if all three steps of acidification, alkalinization, and neutralization are performed on the digested sludge dewatered liquid (wastewater) by applying the degassing system of the chemical treatment method of FIG. 4 In addition, by removing an excessive amount of bicarbonate, the chemical treatment efficiency of ammonium (ammonia nitrogen) can be improved, and when these interfering substances are removed, the efficiency in a later biological treatment process can be improved.
3. 3. 화학적 처리 방식의 가스제거 시스템(Degassing System)의 가동예 (도 4 및 도 5)Examples of operation of a degassing system of a chemical treatment method (FIGS. 4 and 5)
도 4 및 도 5에 기초해 본 발명의 실시예에 따른 화학적 처리 방식의 가스제거 시스템에 가공 과정에 대해 보다 구체적으로 설명한다. 도 5는 도 4의 화학적 처리를 위한 반응조의 개략적인 구조도를 나타낸다.Based on FIGS. 4 and 5, the processing process of the gas removal system of the chemical treatment method according to the embodiment of the present invention will be described in more detail. 5 shows a schematic structural diagram of a reaction tank for chemical treatment of FIG. 4.
a) 가스제거 시스템(B)을 가동하기 위해서는 고형물 제거가 선행되고, 균등조(A)로 이송되고 난 후, 가스제거 시스템(B)의 가동이 시작된다. 균등조(A)에 반입 및 저장된 폐수는 화학적 처리를 위해 펌프로 가스제거 시스템(B)으로 이송된다. a) In order to operate the gas removal system (B), solid matter removal is preceded, and after being transferred to the equalizing tank (A), the operation of the gas removal system (B) is started. The wastewater carried in and stored in the equalization tank (A) is pumped to the degassing system (B) for chemical treatment.
b) 가스제거 시스템(B)의 단위 공정을 수행하기 위한 반응조의 기구적 구성은 도 5에 도시되어 있고, 도면의 주요부분에 대한 기능은 다음과 같다. 상기 반응조(Degassing Reactor)는 완전혼합과 효율적인 화학반응을 위하여 각각 90°방향으로 4개의 배플(baffle, 01), 모터와 교반기(02)가 구성되고, 공기공급시스템(05), 반응 후의 가스는 가스배출배관(11)을 통해 반출되어 액체비료 등의 제조를 위한 후단의 배출가스 처리공정(12)으로 보내질 수 있다. 가스제거 시스템(B)의 단계적인 화학적 반응을 위해서는 산 저장조(03)와 알칼리 저장조(04)가 필요하며, 여기서는 pH 조절에 따른 화학반응을 제어하는데 사용되는 약품으로 산의 경우 황산(H 2SO 4) 및 염산(HCl)이, 알칼리의 경우 가성소다(NaOH), 수산화칼슘(Ca(OH) 2) 및 소석회(CaO) 등이 사용될 수 있다. 공기공급을 통해 화학반응과정에서 우려되는 온도 저하를 방지하기 위하여 폐수의 온도조절에 보일러(06)가 이용된다. 폐수배출배관(09), 그리고 폐수배출시 반응조(degassing reactor) 내부의 압력이 급격하게 저하되지 않도록 압력조절장치(08) 등이 구비된다.b) The mechanical configuration of the reaction tank for performing the unit process of the gas removal system B is shown in FIG. 5, and functions of main parts of the drawing are as follows. The reaction tank (Degassing Reactor) consists of four baffles (01), a motor and a stirrer (02) in each 90° direction for complete mixing and efficient chemical reaction, and the air supply system (05), the gas after the reaction It can be carried out through the gas discharge pipe 11 and sent to the exhaust gas treatment process 12 at a later stage for the manufacture of liquid fertilizers and the like. For the stepwise chemical reaction of the gas removal system (B), an acid storage tank (03) and an alkali storage tank (04) are required, and here, a chemical used to control the chemical reaction according to pH control. In the case of acid, sulfuric acid (H 2 SO 4 ) and hydrochloric acid (HCl), in the case of alkali, caustic soda (NaOH), calcium hydroxide (Ca(OH) 2 ) and slaked lime (CaO) may be used. The boiler 06 is used to control the temperature of the wastewater in order to prevent the temperature drop, which is concerned during the chemical reaction process, through air supply. A wastewater discharge pipe (09), and a pressure control device (08), etc. are provided so that the pressure inside the reaction tank (degassing reactor) does not drop sharply when the wastewater is discharged.
c) 가스제거 시스템(B)은 밀실의 설치는 지양하고 환기가 많이 이루어지는 가능하면 오픈된 공간에 설치하고 매일 점검이 필요하다. c) The gas removal system (B) should be installed in an open space where there is a lot of ventilation, and should be inspected daily, avoiding the installation of closed rooms.
d) 가스제거 시스템(B)에 구비되는 반응조(degassing reactor)는 단일로 구성되거나 또는 폐수에 존재하는 중탄산염(bicarbonate, HCO 3 -)과 암모늄(NH 4 +)을 화학적으로 연속성 있는 처리를 위하여 2개 또는 그 이상의 반응조(a, b)가 병렬로 구성될 수 있고 균등분배하여(2개의 반응조의 경오 각각 50%씩) 나누어 처리될 수도 있다. 복수의 반응조(degassing reactor) 각각은 도 4에 도시된 산성화(acidification), 알칼리화(Alkalinization) 및 중화(Neutralization) 의 세 단계를 독립적으로 수행한다.d) the reactor (degassing reactor) provided in the gas removal system (B) is composed of a single or bicarbonate present in the waste water (bicarbonate, HCO 3 - In order to a) and ammonium (NH 4 +), chemically continuous process in a two- Two or more reaction tanks (a, b) can be configured in parallel, or evenly distributed (50% of each of the two reaction tanks) and processed separately. Each of the plurality of degassing reactors independently performs three steps of acidification, alkalinization and neutralization shown in FIG. 4.
e) 먼저 도 4 및 도 5의 Step I에 따라 암모늄(NH 4 +)과 강하게 결합되어 있는 중탄산염 이온(bicarbonate ion, HCO 3 -)을 제거하기 위하여 산 저장조(03)로부터 pH4에 도달할 때까지 황산(H 2SO 4)이 투입되면, 중탄산염(bicarbonate, HCO 3 -)은 탄산(H 2CO 3)로 전환되면서 제거된다.e) first in accordance with the Step I of Figure 4 and 5 the ammonium (NH 4 +) and bicarbonate ion is strongly bonded (bicarbonate ion, HCO 3 -) until reaching a pH4 from acid storage tank (03) to remove the When the sulfuric acid (H 2 SO 4) is turned on, bicarbonates (bicarbonate, HCO 3 -) are removed as converted to acid (H 2 CO 3).
f) 다음으로 도 4 및 도 5의 Step Ⅱ에 따라 알칼리 저장조(04)로부터 pH 10.5 ~ 11.0에 도달할 때까지 수산화나트륨(NaOH)이 투입된다. 이 과정에서 공기공급시스템(05)을 통해 공기를 공급하면 이온 상태의 암모늄(NH 4 +)이 가스 상태의 암모니아(NH 3)로 전환되어 H 2S, O 2, CO 2 등의 다른 배출 가스 및 수분(H 2O)이 함께 배출된다. 이 경우, 전체적으로 pH 조절을 위해 모터와 교반설비(02)가 설치되어야 하고 탈기가 잘 이루어질 수 있도록 공기공급시스템(05)을 갖추어야 하며, 공기공급에도 35℃의 온도가 잘 유지될 수 있도록 보일러(06)를 설치하여 자동온도조절이 이루어지도록 한다. 이러한 Step Ⅱ의 가스제거 단계에서는 적정량의 암모늄(NH 4 +)이 제거될 수 있도록 최적의 반응시간과 적정량의 산 및 알칼리의 적정량을 도출하여 운전을 최적화한다.f) Next, sodium hydroxide (NaOH) is added from the alkali storage tank 04 until the pH reaches 10.5 to 11.0 according to Step II of FIGS. 4 and 5. In this process, when air is supplied through the air supply system (05), ionic ammonium (NH 4 + ) is converted into gaseous ammonia (NH 3 ), and other exhaust gases such as H 2 S, O 2 and CO 2 And moisture (H 2 O) is discharged together. In this case, a motor and agitation facility (02) should be installed for pH control as a whole, and an air supply system (05) should be provided so that degassing can be performed well, and a boiler ( 06) is installed to enable automatic temperature control. In the degassing step of Step Ⅱ, the operation is optimized by deriving an optimum reaction time and an appropriate amount of acid and alkali so that an appropriate amount of ammonium (NH 4 +) can be removed.
g) 최종적으로 도 4 및 도 5의 Step ²의 중화(neutralization) 단계에서는 생물학적 처리를 위해 폐수의 중성 부근의 pH 8 ~ 9에 도달할 때까지 산 저장조(03) 로부터 황산(H 2SO 4)이 투입된다. g) Finally, in the neutralization step of Step ² of FIGS. 4 and 5, sulfuric acid (H 2 SO 4 ) from the acid storage tank (03) until it reaches a pH of 8 to 9 near the neutral of the wastewater for biological treatment. Is put into it.
h) 도 4를 참조할 때, 가스제거 시스템(B)에 의한 상술한 Step I ~ Step ²의 모든 단계가 완료되어 중성으로 되면, 현탁된 상태가 개선되면서 미세한 고형물이 다시 보이기 시작한다. 이들은 고분자 응집제(07)를 공급하여 가압부상시스템(C)으로 농축하여 탈수기(10)로 이송될 수 있다. 탈수공정 이후에는 생물학적 처리를 위해 균등조(D)로 이송됨으로써, 상술한 가스제거 시스템(B)을 포함해 구성되는 전체 화학적 처리 공정이 완료된다.h) Referring to FIG. 4, when all the steps of Step I to Step ² described above by the gas removal system B are completed and become neutral, the suspended state is improved and fine solids begin to be seen again. These can be fed to the polymer flocculant (07), concentrated in the pressure flotation system (C), and transferred to the dehydrator (10). After the dehydration process, the entire chemical treatment process including the gas removal system B is completed by being transferred to the equalizing tank D for biological treatment.
이상과 같이 본 발명에 따라 소화슬러지로부터 탈수된 폐수(탈수여액)를 처리하는 데 있어서 산성화(acidification), 알칼리화(alkalinization) 및 중화(neutralization)를 포함하는 화학적 처리 방식의 가스제거 시스템(degassing system)을 적용하는 경우, 상기 산성화 과정을 통해 중탄산 암모늄(NH 4 +)과 중탄산염(HCO 3 -)의 강한 결합을 파괴하여 pH 상승을 저해하는 중탄산염(bicarbonate, HCO 3 -)을 미리 제거하게 된다. 상기 알칼리화 과정에서는 적정량의 약품을 사용하여 pH 10.5 ~ 11.0으로 제어할 수 있다. 이러한 pH 상태에서 공기를 주입해 암모니아(NH 3)로 배출하여 질소를 제거하는 경우 95% 이상의 높은 화학적 처리 효율 즉 암모늄 제거 효율을 구현할 수 있다. 또한 본 발명에 따른 화학적 처리 장치 및 방법의 경우, 암모늄 제거를 위한 이러한 화학적 처리 과정에서 폐수 중 중탄산염(bicarbonate, HCO 3 -)의 농도가 대부분 제거된 상태이기 때문에 그 후단에서 이루어지는 폐수에 대한 다른 생물학적 처리 효율도 크게 향상될 수 있고, 음식물류 폐기물, 음폐수, 가축분뇨와 음폐수 병합처리, 가축분뇨 등을 포함한 혐기성소화 시스템을 적용하는 시설에서 모두 적용이 가능하며, 가축분뇨 공공처리시설, 분뇨처리시설 등 고농도 유기성폐수나 폐기물을 처리하는 공정에도 적용이 가능하다.In the treatment of wastewater (dewatered filtrate) dehydrated from digested sludge according to the present invention as described above, a degassing system of a chemical treatment method including acidification, alkalinization and neutralization when applied to, ammonium bicarbonate (NH 4 +) and bicarbonate (HCO 3 -) via the acidification process of bicarbonate (bicarbonate, HCO 3 -) to inhibit the destruction of the pH rise to strong binding of the is removed in advance. In the alkalizing process, a pH of 10.5 to 11.0 may be controlled by using an appropriate amount of a chemical. When nitrogen is removed by injecting air in this pH state and discharging it as ammonia (NH 3 ), a high chemical treatment efficiency of 95% or more, that is, ammonium removal efficiency can be realized. In the case of chemical processing apparatus and method according to the invention, this chemical treatment bicarbonate (bicarbonate, HCO 3 -) in the waste water in the process for ammonium removal, because the concentration of the most Removed another for waste water formed in the rear end biological Treatment efficiency can also be greatly improved, and it can be applied to all facilities that apply anaerobic digestion systems including food waste, drinking water, combined treatment of livestock manure and drinking water, livestock manure, etc., livestock manure public treatment facilities, manure treatment It can also be applied to processes that treat high-concentration organic wastewater or wastes such as facilities.
이상의 설명은, 본 발명의 구체적인 실시예에 관한 것이다. 상술한 바와 같이, 본 발명에 따른 상기 실시예는 설명의 목적으로 개시된 사항으로서 본 발명의 범위를 제한하는 것으로 이해되지는 않으며, 해당 기술분야에서 통상의 지식을 가진 자라면 본 발명의 본질을 벗어나지 아니하고 다양한 변경 및 수정이 가능한 것으로 이해되어야 한다. 따라서 이러한 모든 수정과 변경은 특허청구범위에 개시된 발명의 범위 또는 이들의 균등물에 해당하는 것으로 이해될 수 있다.The above description relates to specific embodiments of the present invention. As described above, the above embodiments according to the present invention are disclosed for purposes of explanation and are not understood to limit the scope of the present invention, and those of ordinary skill in the art will not depart from the essence of the present invention. No, it should be understood that various changes and modifications are possible. Accordingly, all such modifications and changes can be understood as falling within the scope of the invention disclosed in the claims or their equivalents.

Claims (4)

  1. 유기성 폐기물을 처리하여 슬러지로 전환하는 혐기성 소화시설에서 배출된 소화슬러지의 탈수여액을 화학적 처리과정에 의해 암모늄을 제거하는 방법으로서, a) 상기 탈수여액 중 중탄산염(bicarbonate,HCO 3 -)을 탄산(carbonic acid, H 2CO 3)로 전환 제거하는 제1 단계; b) 상기 제1 단계를 거친 탈수여액 중 이온상태의 암모늄(NH 4 +)을 가스 상태의 암모니아(NH 3)로 전환 배출하는 제2 단계; 및 c) 상기 제2 단계를 거친 탈수여액을 중화하는 제3 단계;를 포함하는 암모늄 제거 방법.The dehydrated filtrate of the digested sludge discharged from the anaerobic digestion facility to switch to the sludge by treating the organic waste as a method of removing ammonium by a chemical process, a) bicarbonates (bicarbonate, HCO 3 of the dehydration filtrate - a) acid ( carbonic acid, H 2 CO 3 ) The first step of removing the conversion; b) a second step of converting and discharging ionic ammonium (NH 4 + ) into gaseous ammonia (NH 3) in the dehydration liquid passed through the first step; And c) a third step of neutralizing the dehydration liquid passed through the second step.
  2. 제1항에 있어서, 상기 (a) 단계는 황산(H 2SO 4) 및 염산(HCl)으로부터 선택되는 산성화 약품을 첨가하여 상기 탈수여액을 pH 4.0으로 조절하는 것을 특징으로 하는 암모늄 제거 방법.The method of claim 1, wherein in step (a), the dehydration solution is adjusted to pH 4.0 by adding an acidifying agent selected from sulfuric acid (H 2 SO 4) and hydrochloric acid (HCl).
  3. 제1항에 있어서, 상기 (b) 단계는 수산화나트륨(NaOH), 수산화칼슘(Ca(OH) 2) 및 소석회(CaO)로부터 선택되는 알칼리 약품을 첨가하여 상기 탈수여액을 pH 10.5 ~ 11.0으로 조절한 상태에서, 공기를 주입하는 방식으로 수행되는 것을 특징으로 하는 암모늄 제거 방법.The method of claim 1, wherein the step (b) comprises adding an alkali chemical selected from sodium hydroxide (NaOH), calcium hydroxide (Ca(OH) 2 ) and slaked lime (CaO) to adjust the dehydration solution to a pH of 10.5 to 11.0. In the state, ammonium removal method, characterized in that carried out by injecting air.
  4. 제1항에 있어서, 상기 (c) 단계는 황산(H 2SO 4) 및 염산(HCl)으로부터 선택되는 중화 약품을 첨가하여 상기 탈수여액을 pH 8 ~ 9로 조절하는 것을 특징으로 하는 암모늄 제거 방법.The method of claim 1, wherein in step (c), a neutralizing agent selected from sulfuric acid (H 2 SO 4 ) and hydrochloric acid (HCl) is added to adjust the dehydration filtrate to pH 8-9. .
PCT/KR2020/011656 2019-08-30 2020-08-31 Ammonium removal apparatus and method using chemical treatment of wastewater generated by dehydrating digested sludge WO2021040499A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0107405 2019-08-30
KR20190107405 2019-08-30

Publications (1)

Publication Number Publication Date
WO2021040499A1 true WO2021040499A1 (en) 2021-03-04

Family

ID=74684853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/011656 WO2021040499A1 (en) 2019-08-30 2020-08-31 Ammonium removal apparatus and method using chemical treatment of wastewater generated by dehydrating digested sludge

Country Status (2)

Country Link
KR (1) KR102315195B1 (en)
WO (1) WO2021040499A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006026542A (en) * 2004-07-16 2006-02-02 Ebara Corp Anaerobic digestion treatment method and apparatus for organic sludge
US20080053909A1 (en) * 2006-09-06 2008-03-06 Fassbender Alexander G Ammonia recovery process
JP2010012467A (en) * 2005-01-21 2010-01-21 Ebara Corp Apparatus for treating wastewater and sludge
KR101002191B1 (en) * 2010-11-02 2010-12-20 주식회사 이시엘 Method for reducing sludge and wastewater and for treating gas
JP2017517387A (en) * 2014-04-24 2017-06-29 ニュートリエント リカバリー アンド アップサイクリング,リミティド ライアビリティ カンパニー Electrodialysis stack, apparatus and method for recovering ammonia and monovalent salts from anaerobic digestion residues

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0698356B2 (en) * 1990-01-25 1994-12-07 荏原インフイルコ株式会社 Organic wastewater treatment method
JP6098356B2 (en) * 2013-05-20 2017-03-22 コニカミノルタ株式会社 Image reading apparatus, image forming system, and program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006026542A (en) * 2004-07-16 2006-02-02 Ebara Corp Anaerobic digestion treatment method and apparatus for organic sludge
JP2010012467A (en) * 2005-01-21 2010-01-21 Ebara Corp Apparatus for treating wastewater and sludge
US20080053909A1 (en) * 2006-09-06 2008-03-06 Fassbender Alexander G Ammonia recovery process
KR101002191B1 (en) * 2010-11-02 2010-12-20 주식회사 이시엘 Method for reducing sludge and wastewater and for treating gas
JP2017517387A (en) * 2014-04-24 2017-06-29 ニュートリエント リカバリー アンド アップサイクリング,リミティド ライアビリティ カンパニー Electrodialysis stack, apparatus and method for recovering ammonia and monovalent salts from anaerobic digestion residues

Also Published As

Publication number Publication date
KR20210027206A (en) 2021-03-10
KR102315195B1 (en) 2021-10-20

Similar Documents

Publication Publication Date Title
US7153427B2 (en) Nitrogen recovery system and method using heated air as stripping gas
KR102056559B1 (en) Recovery method of phosphate
KR100943315B1 (en) Apparatus and method for treating organic sludge using thermal hydrolysis and high-temperature anaerobic digestion
CA1231184A (en) Method at anaerobic wastewater treatment
KR930007806B1 (en) Method of treating active sludge in waste water
US3780471A (en) Water reclamation-algae production
CA2267690C (en) Process for reducing production of biomass during activated sludge treatment of pulp and paper mill effluents
CN102745868A (en) Method for removing carbon, nitrogen and sulfur in waste water
JP5211769B2 (en) Biological treatment method and treatment apparatus for organic waste liquid
WO2021040499A1 (en) Ammonium removal apparatus and method using chemical treatment of wastewater generated by dehydrating digested sludge
KR101122559B1 (en) Method for biological treatment of organic sludge using high temperature-medium temperature methane fermentation and apparatus used therefor
WO2021117980A1 (en) Process for biogasifying organic waste with high efficiency through denitrification of digestion wastewater by using digestion gas and preparation of char of digested sludge
CN113754220A (en) Process for preparing biogas from high-solid-content municipal sludge
WO2019245209A1 (en) Cow excreta treatment apparatus and method
CN208632354U (en) A kind of urban sludge efficiently processing unit
CN212864497U (en) Sludge reduction, harmless and recycling treatment device
WO2018221759A1 (en) Treatment apparatus and treatment method for high-concentration organic wastewater generated in biodiesel production process
WO2021040500A1 (en) Sludge aging apparatus and method for improving dewaterability of digested sludge
WO2010036039A2 (en) Continuous treatment apparatus for producing solid-liquid slurry from organic sludge, and method for producing solid-liquid slurry or methane gas using the continuous treatment apparatus
JPH06142685A (en) Method and device for treating waste fluid containing organic nitrogen
JP2003275788A (en) Method for anaerobic digestion of organic waste liquid and anaerobic treatment device
RU2121982C1 (en) Method of processing waste water sediments (versions)
EP0960860A1 (en) Biologically treating a contaminated aqueous waste stream
JP4570608B2 (en) Organic wastewater treatment method and apparatus
JP2018079438A (en) System and method for treating organic material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20857567

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20857567

Country of ref document: EP

Kind code of ref document: A1