JP4860175B2 - 配線の作製方法、半導体装置の作製方法 - Google Patents

配線の作製方法、半導体装置の作製方法 Download PDF

Info

Publication number
JP4860175B2
JP4860175B2 JP2005130163A JP2005130163A JP4860175B2 JP 4860175 B2 JP4860175 B2 JP 4860175B2 JP 2005130163 A JP2005130163 A JP 2005130163A JP 2005130163 A JP2005130163 A JP 2005130163A JP 4860175 B2 JP4860175 B2 JP 4860175B2
Authority
JP
Japan
Prior art keywords
conductive layer
mask pattern
etching
layer
condition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005130163A
Other languages
English (en)
Other versions
JP2005340800A (ja
JP2005340800A5 (ja
Inventor
慎也 笹川
悟 岡本
滋春 物江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2005130163A priority Critical patent/JP4860175B2/ja
Publication of JP2005340800A publication Critical patent/JP2005340800A/ja
Publication of JP2005340800A5 publication Critical patent/JP2005340800A5/ja
Application granted granted Critical
Publication of JP4860175B2 publication Critical patent/JP4860175B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Thin Film Transistor (AREA)

Description

本発明は、配線基板、及び多層構造を有する半導体装置の作製方法に関する。
近年、配線基板及び半導体装置は、半導体素子の集積度が向上し、高集積化されている。このため、配線幅がより微細化されていると共に、配線の本数が増大している。更には、配線の多層化により半導体装置の面積の縮小化が図られている。
しかしながら、配線本数の増加により配線の間隔が狭くなるため、粒子状の汚染物であるパーティクルによる配線の断線や短絡といった問題がある。
また、多層構造の半導体装置において、配線の微細化及び高密度化により配線間のアスペクト比が大きくなり(凹凸差が大きくなり)、多層配線間に設けられる絶縁層の被覆性(カバレッジ)が低減し、下層配線と上層配線とで短絡が生じるという問題がある。
また、配線上に塗布法により絶縁層を形成する場合、絶縁材料の焼成時に絶縁材料が収縮し配線の端部において応力が集中し、この結果絶縁層にクラック(ひび割れ)が生じるという問題がある。絶縁層にクラックが生じると、絶縁層の表面に凹凸が形成されるという問題、該クラックから水分が浸入し、下層配線が腐食されるという問題、更には該クラックにおいて上層配線と下層配線とが短絡してしまうという問題を引き起こす。
また、配線間に残留したパーティクルも同様にクラックの原因となり、絶縁層の表面に凹凸が形成されるという問題がある。この絶縁層上に発光素子を形成する場合、凹凸により発光素子の陽極と陰極が短絡してしまい、発光素子の不良の原因となる。
また、絶縁層の一箇所にクラックが生じると他の領域でもクラックが生じやすくなる。即ち連鎖的にクラックが発生する。この結果、該配線を有する配線基板又は半導体装置の歩留まりが低下する。
そこで本発明は、配線間のパーティクルを低減することが可能な配線基板及びその作製方法を提供する。また、配線間の凹凸差に起因する配線間の短絡を防止することが可能な、配線基板及びその作製方法を提供する。また、配線の端部の応力又はパーティクルに起因する絶縁層のクラックの発生を防止することが可能な配線基板及びその作製方法を提供する。さらには、配線構造及び多層構造の半導体装置の歩留まり高い作製方法を提供する。
本発明は、絶縁層上に第1の導電層を形成し、第1の導電層上に第1のマスクパターンを形成した後、第1の条件で第1の導電層をエッチングして第2の導電層を形成し、第2の導電層を第2の条件でエッチングして第3の導電層を形成することを要旨とする。ここで、第1の条件とは、第1のマスクパターンと第1の導電層の選択比が小さい条件であり、第2の条件とは、第1のマスクパターンと第2の導電層の選択比が大きい条件である。
また、本発明の一は、絶縁表面上に第1の形状の導電層を形成し、第1の形状の導電層上に第1の形状のマスクパターンを形成した後、第1の条件で第1の形状の導電層をエッチングして第2の形状の導電層を形成し、第2の形状の導電層及び第1の形状のマスクパターンを第2の条件でエッチングして第3の形状の導電層及び第2の形状を有するマスクパターンを形成する配線基板の作製方法である。さらには、第2の形状のマスクパターンを除去した後、絶縁層を形成する半導体装置の作製方法である。このとき、第1の条件は第1の形状のマスクパターンと第1の導電層の選択比が小さい気体を用いる条件であり、第2の条件は第1の形状のマスクパターンと第2の導電層の選択比が大きい気体を用いる条件である。
また、本発明の一は、絶縁表面上に第1の形状の導電層を形成し、第1の形状の導電層上に第1のマスクパターンを形成した後、第1の条件で第1の形状の導電層及び第1の形状のマスクパターンをエッチングして第2の形状の導電層及び第2の形状のマスクパターンを形成し、第2の形状の導電層及び第2の形状のマスクパターンを第2の条件でエッチングして第3の形状の導電層及び第3の形状のマスクパターンを形成することを配線基板の作製方法である。さらには、第3の形状のマスクパターンを除去した後、絶縁層を形成する半導体装置の作製方法である。このとき、第1の条件は第1の形状のマスクパターンと第1の形状の導電層の選択比が小さい気体を用いる条件であり、第2の条件は第2の形状のマスクパターンと第2の形状の導電層の選択比が大きい気体を用いる条件である。
また、本発明の一は、絶縁表面上に第1の形状の導電層を形成し、第1の形状の導電層上に第1の形状のマスクパターンを形成した後、第1の条件で第1の形状の導電層をエッチングして第2の形状の導電層を形成し、第2の導電層形状の及び第1のマスクパターンを第2の条件でエッチングして第3の形状の導電層及び第2の形状のマスクパターンを形成する配線基板の作製方法である。さらには、第2の形状のマスクパターンを除去した後、絶縁層を形成する半導体装置の作製方法である。第1の条件は異方性エッチングが可能な条件であり、第2の条件は第1のマスクパターンと第2の導電層の選択比が大きい気体を用いる条件である。
また、本発明の一は、絶縁表面上に第1の形状の導電層を形成し、第1の形状の導電層上に第1の形状のマスクパターンを形成した後、第1の条件で第1の形状の導電層及記第1の形状のマスクパターンをエッチングして第2の形状の導電層及び第2の形状のマスクパターンを形成し、第2の形状の導電層の表面を酸化した後、第2の形状の導電層及び第2の形状のマスクパターンを第2の条件でエッチングして第3の形状の導電層及び第3の形状のマスクパターンを形成する配線基板の作製方法である。さらには、第3の形状のマスクパターンを除去した後、絶縁層を形成する半導体装置の作製方法である。第1の条件は第1の形状のマスクパターンと第1の形状の導電層の選択比が小さい気体を用いる条件であり、第2の条件は第2の形状のマスクパターンと第2の導電層の選択比が大きい気体を用いる条件である。
また、本発明の一は、絶縁表面上に第1の形状の導電層を形成し、第1の形状の導電層上に第1の形状のマスクパターンを形成した後、第1の条件で第1の形状の導電層をエッチングして第2の形状の導電層を形成し、第2の形状の導電層の表面を酸化した後、第2の形状の導電層及び第1の形状のマスクパターンを第2の条件でエッチングして第3の形状の導電層及び第2の形状のマスクパターンを形成する配線基板の作製方法である。さらには、第2の形状のマスクパターンを除去した後、絶縁層を形成する半導体装置の作製方法である。第1の条件は異方性エッチングが可能な条件であり、第2の条件は第1の形状のマスクパターンと第2の形状の導電層の選択比が大きい気体を用いる条件である。
また、本発明の一は、絶縁表面上に第1の導電層を形成し、第1の導電層上に第1のマスクパターンを形成した後、第1の条件で第1のマスクパターンをエッチングして第2のマスクパターンを形成すると共に、第1の導電層をエッチングして側面の断面が傾斜角度を有する第2の導電層を形成し、第2の導電層及び第2のマスクパターンを第2の条件でエッチングして第3の導電層及び第3のマスクパターンを形成する配線基板の作製方法である。さらには、第3のマスクパターンを除去した後、絶縁層を形成する半導体装置の作製方法である。第1の条件において、第1の導電層に対する第1のマスクパターンの選択比が0.25〜4のいずれかであり、第2の条件においては、第1の条件より、第2の導電層に対する第2のマスクパターンの選択比が大きいことを特徴とする。
また、本発明の一は、絶縁表面上に第1の導電層を形成し、第1の導電層上に第1のマスクパターンを形成した後、第1の条件で第1のマスクパターンをエッチングして第2のマスクパターンを形成すると共に、第1の導電層をエッチングして側面の一部の断面が傾斜角度を有する第2の導電層を形成し、第2の導電層の表面を酸化した後、第2の導電層及び第2のマスクパターンを第2の条件でエッチングして第3の導電層及び第3のマスクパターンを形成する線基板の作製方法である。さらには、第3のマスクパターンを除去した後、絶縁層を形成する半導体装置の作製方法である。第1の条件において、第1の導電層に対する第1のマスクパターンの選択比が0.25〜4のいずれかであり、第2の条件において、第1の条件より、第2の導電層に対する第2のマスクパターンの選択比が大きいことを特徴とする。
なお、傾斜角度は、51度以上68度以下である。
また、本発明の一は、絶縁表面上に第1の導電層を形成し、第1の導電層上に第1のマスクパターンを形成した後、第1の条件で第1の導電層をエッチングして、側面の断面の一部が85〜90度である第2の導電層を形成し、第2の導電層及び第1のマスクパターンを第2の条件でエッチングして第3の導電層及び第2のマスクパターンを形成する配線基板の作製方法である。さらには、第2のマスクパターン除去した後、絶縁層を形成する半導体装置の作製方法である。第2の条件において、第2の導電層に対する第1のマスクパターンの選択比は、第1の条件より大きいことを特徴とする。
また、本発明の一は、絶縁表面上に第1の導電層を形成し、第1の導電層上に第1のマスクパターンを形成した後、第1の条件で第1の導電層をエッチングして、側面の断面の一部が85〜90度である第2の導電層を形成し、第2の導電層の表面を酸化した後、第2の導電層及び第1のマスクパターンを第2の条件でエッチングして第3の導電層及び第2のマスクパターンを形成する。配線基板の作製方法である。さらには、第2のマスクパターンを除去した後、絶縁層を形成する半導体装置の作製方法である。第2の条件において、第2の導電層に対する第1のマスクパターンの選択比は、第1の条件より大きいことを特徴とする。
第2の条件において、第1の条件で用いるエッチングガスと、第1の導電層に対する第1のマスクパターンの選択比が第1の条件より大きいエッチングガスとの混合ガスを用いる。また、前記第1の形状の導電層は、アルミニウムを含む導電層である場合、第1の条件で用いるエッチングガスは、三塩化ボロン、又は塩素であり、第1の導電層に対する第1のマスクパターンの選択比が第1の条件より大きいエッチングガスは、四フッ化炭素、フッ化硫黄、及び酸素から選ばれた一つ又は複数である。
また、本発明の一は、基板表面上に形成される配線を有し、配線の側面は基板表面に対して複数の傾斜面を有し、第1の傾斜面と絶縁表面とがなす角度は50度以上70度以下で、第2の傾斜面と絶縁表面とがなす角度は20度以上60度以下で、第1の傾斜面が絶縁表面と接している。また、第1の傾斜面及び第2の傾斜面が交差する領域は、配線の同一の層の側面である。
また、本発明の一は、基板表面上に形成される配線を有し、配線基板の配線は、側面に湾曲面を有する。
また、本発明の一は絶縁表面上に形成される配線を有し、配線上に平坦性を有する絶縁層を有し、配線の側面は絶縁表面に対して複数の傾斜面を有し、第1の傾斜面と絶縁表面とがなす角度は50度以上70度以下で、第2の傾斜面と絶縁表面とがなす角度は20度以上60度以下で、第1の傾斜面が絶縁表面と接していることを特徴とする半導体装置である。また、第1の傾斜面及び第2の傾斜面が交差する領域は、配線の同一の層の側面である。また、平坦性を有する絶縁層は、有機樹脂又はシロキサンポリマーを塗布して形成される。
また、本発明の一は絶縁表面上に形成される配線を有し、配線上に平坦性を有する絶縁層を有し、配線の側面は湾曲面を有することを特徴とする半導体装置である。また、平坦性を有する絶縁層は、有機樹脂又はシロキサンポリマーを塗布して形成される。
本発明の配線基板の配線は、側面で湾曲面又は複数の傾斜面を有するため、基板を洗浄する際、配線間に残留するパーティクルを洗い流しやすい。このため、配線基板及び半導体装置のパーティクルの密度を低減することが可能である。特に、配線間のパーティクルの密度を低減することが可能であるため、配線の短絡や、上層絶縁層のクラックの発生を低減することが可能である。
また、多層構造の半導体装置において、配線の側面で湾曲面又は複数の傾斜面を有するため、配線のアスペクト比(凹凸差)を低減することが可能であり、多層配線間に設けられる絶縁層の被覆性(カバレッジ)が改善され、下層配線及び上層配線間の短絡の発生を低減することが可能である。また、配線の後に形成される絶縁層の平坦性を向上させることができる。
また、配線側面及び端部で湾曲面又は複数の傾斜面を有するため、端部における絶縁層の応力の発生が低減し、絶縁層のクラックの発生を低減することが可能である。このため、クラックを介して侵入した水分による配線の腐食、連鎖的なクラックの発生を防止することが可能である。更には、多層構造の半導体装置の歩留まりを向上させることが可能である。
以下に、本発明の実施の形態を図面に基づいて説明する。
但し、本発明は多くの異なる態様で実施することが可能であり、本発明の趣旨及びその範囲から 逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に 理解される。従って、本実施の形態の記載内容に限定して解釈されるものではない。なお、実施の形態を説明するための全図において、同一部分又は同様な機能を有する部分には同一の符号を付し、その繰り返しの説明は省略する。
(実施の形態1)
本実施の形態では、第1の条件によるエッチング工程及び第2の条件によるエッチング工程によって、側面に湾曲面を有する配線で形成される配線基板の作製方法を、図1、図3、及び図7を用いて説明する。
図3(A)に示すように、基板100上に第1の絶縁層101を形成し、第1の絶縁層101上に第1の導電層102を形成する。次に、第1の導電層102上に第1のマスクパターン103を形成する(図1のステップS101)。
基板100としては、ガラス基板、石英基板、アルミナなど絶縁物質で形成される基板、後工程の処理温度に耐え得る耐熱性を有するプラスチック基板、シリコンウェハ、金属板等を用いることができる。この場合、酸化シリコン(SiOx)、窒化シリコン(SiNx)、酸化窒化シリコン(SiOxNy)(x>y)、窒化酸化シリコン(SiNxOy)(x>y)など、基板側から不純物などの拡散を防止するための絶縁膜を形成しておくことが望ましい。また、ステンレスなどの金属または半導体基板などの表面に酸化シリコンや窒化シリコンなどの絶縁膜を形成した基板なども用いることができる。また、基板100がガラス基板の場合、320mm×400mm、370mm×470mm、550mm×650mm、600mm×720mm、680mm×880mm、1000mm×1200mm、1100mm×1250mm、1150mm×1300mmのような大面積基板を用いることができる。
なお、基板100にプラスチック基板を用いる場合、PC(ポリカーボネート)、PES(ポリエチレンスルホン)、PET(ポリエチレンテレフタレート)もしくはPEN(ポリエチレンナフタレート)等のガラス転移点が比較的高いものを用いることが好ましい。ここでは、基板100としてガラス基板を用いる。
第1の絶縁層101は、公知の方法により絶縁性を有する材料を用いて形成する。代表的には、無機絶縁材料、又は有機絶縁材料を用いる。具体的には、ポリイミド、ポリアミド、ポリエステル、アクリル等を塗布し焼成して有機樹脂層を形成することができる。また、PSG(リンガラス)、BPSG(リンボロンガラス)、シリケートSOG(Spin on Glass)、ポリシラザンSOG、アルコキシシリケートSOG、シロキサンポリマー等を、液滴吐出法、塗布法、印刷法により塗布し焼成してSi−CH3結合を有するSiO2を形成することができる。また、窒化珪素、窒化酸化珪素、酸化珪素等をPVD法(Physical Vapor Deposition)、CVD法(Chemical Vapor Deposition)、熱酸化法により形成することができる。また、Ag、Cu、Ni、Pt、Pd、Ir、Rh、W、Al、Ta、Mo、Cd、Zn、Fe、Ti、Si、Ge、Zr、Ba等の金属酸化物を、蒸着法、陽極酸化法等により形成することができる。ここでは、CVD法により酸化珪素膜を成膜する。
第1の導電層102は、液滴吐出法、印刷法、電界メッキ法、PVD法(Physical Vapor Deposition)、CVD法(Chemical Vapor Deposition)、蒸着法等より形成することができる。第1の導電層102の材料としては、Ag、Au、Cu、Ni、Pt、Pd、Ir、Rh、W、Al、Ta、Mo、Cd、Zn、Fe、Ti、Si、Ge、Zr、Ba等の金属又はその合金、若しくはその金属窒化物、さらには透光性の酸化物導電性材料、代表的には酸化インジウムスズ(ITO)、酸化亜鉛(ZnO)、酸化インジウム亜鉛(IZO)、ガリウムを添加した酸化亜鉛(GZO)、酸化珪素を含む酸化インジウムスズ、有機インジウム、有機スズ等の材料を適宜用いて形成することができる。また、1〜20%のニッケルを含むアルミニウムを用いることができる。ここでは、スパッタリング法により第1の導電層をアルミニウムで形成する。
第1のマスクパターン103は、側面にテーパー形状の端部(以下、テーパー部と示す。)を有することが好ましい。このときのテーパー部の角度は、50〜80度、好ましは60〜70度である。第1のマスクパターンがテーパー部を有することにより、後に形成する第2の導電層が、テーパー部を有する形状とすることができる。第1のマスクパターンは、フォトリソグラフィー、液滴吐出法、印刷法等により形成することができる。なお、フォトリソグラフィーにより第1のマスクパターンを形成する場合、露光装置としては、縮小投影露光装置(通称、ステッパ−という。)や、ミラープロジェクション方式の露光装置(通称、MPAという。)が挙げられる。なお、縮小投影露光装置を用いる場合、テーパー部がなく側面が垂直に切り立ったマスクパターンが形成される場合があるが、この場合は160〜200度で加熱することで、側面にテーパー部を形成することができる。なお、側面にテーパー部を有するマスクパターンを形成することが可能であれば、これらの露光装置に限定されず、公知の露光装置を自由に用いることができる。
なお、テーパー形状の端部とは、基板表面に対して傾斜角度を有する形状を有する端部である。
第1のマスクパターン103の材料としては、アクリル樹脂、ポリイミド樹脂、メラミン樹脂、ポリエステル樹脂、ポリカーボネート樹脂、フェノール樹脂、エポキシ樹脂、ポリアセタール、ポリエーテル、ポリウレタン、ポリアミド(ナイロン)、フラン樹脂、ジアリルフタレート樹脂、ノボラック樹脂、珪素樹脂、ジアリルフタレート樹脂等の有機樹脂を適宜用いて形成する。ここでは、ポリイミドを主成分とするレジストを用いる。
次に、図3(B)に示すように、テーパー部を有する第1のマスクパターン103を用いて第1の導電層102を第1の条件でエッチングして、テーパー部を有する第2の導電層111を形成する(図1のステップS102)。第1の条件は、側面にテーパー部を有する導電層を形成する条件である。即ち、第1のマスクパターン103と第1の導電層102との選択比が小さい条件である。このような条件を満たすためには、エッチングガスとして、第1のマスクパターン及び第1の導電層の両方をエッチングすることが可能な材料を用いることが好ましい。この結果、第1のマスクパターン103と第1の導電層102とを後退させながら、エッチングすることが可能であり、テーパー部を有する第2の導電層111を形成することができる。このとき、第1のマスクパターンは後退されるため、若干幅が狭くなり膜厚も減少する。このようなマスクパターンを第2のマスクパターン112と示す。ここでは、塩化物ガスを用いる。塩化物ガスの代表例としては、三塩化ボロン、塩素等が上げられる。
なお、第1のマスクパターン103と第1の導電層102との選択比が小さい条件とは、具体的には、第1の導電層に対する第1のマスクパターンの選択比が小さい条件であり、代表的には、0.25〜4である。また、ここでの選択比とは、第1の導電層のエッチングレートに対する第1のマスクパターンのエッチングレートの比である。
エッチング方法としては、ICP(Inductively Coupled Plasma:誘導結合型プラズマ)エッチング法、ECR(Electron Cyclotron Resonance:マイクロ波プラズマ)エッチング法、ECR(Reactive ion etching:反応性イオンエッチング)法、CCP(Capacitively Coupled Plasma:容量結合プラズマ)エッチング法、SWP(Surface Wave Plasma:表面波プラズマ)エッチング法等を適宜用いることができる。ここでは、ICPエッチング法を用いる。
次に、図3(C)に示すように、第2のマスクパターン112を残したまま、第2の条件により第2の導電層111をエッチングして、湾曲面132を有する第3の導電層131を形成する(図1のステップS103)。第2の条件は、第2のマスクパターン112と第2の導電層111との選択比が大きい条件である。即ち、第2の導電層111のエッチングレートよりも、第2のマスクパターン112のエッチングレートが高い条件である。このような条件を満たすためには、エッチングガスとして、少なくとも第2の導電層111をエッチングすることが可能なガスと、第2のマスクパターン112のみを選択的にエッチングすることが可能なガスとの混合ガスを用いることが好ましい。少なくとも第2の導電層111をエッチングすることが可能なエッチングガスとしては、第1の条件で用いたエッチングガスを適宜用いることができる。また、第2のマスクパターン112のみを選択的にエッチングすることが可能なガスとしては、四フッ化炭素、フッ化硫黄、酸素等が挙げられる。ここでは、三塩化ボロンと四フッ化炭素の混合気体をエッチングガスとして用いる。
なお、第2のマスクパターン112と第2の導電層111との選択比が大きい条件とは、第1の条件と比較して第2の導電層111に対する第2のマスクパターン112の選択比が大きい条件である。また、ここでの選択比とは、第2の導電層のエッチングレートに対する第2のマスクパターンのエッチングレートの比である。
また、バイアスパワーを印加して高電圧の自己バイアス電圧を生成して、イオン衝撃エネルギーを高めることが好ましい。第2のマスクパターン112を選択的にエッチングするガスを用いて第2のマスクパターン112を後退させることで、第3のマスクパターン121が形成される。また、このマスクパターンの後退により第2の導電層111の露出した表面を、エッチングすることで、第2の導電層111の上方端部が選択的にエッチングされる。この結果、湾曲面132を有する第3の導電層131を形成することができる。なお、エッチング方法としては、第1の条件で列挙したエッチング方法の何れかを適宜用いることができる。
また、第1の絶縁層101の露出している領域もエッチングされ、若干膜厚が減少する。このため、段差を有する第2の絶縁層133が形成される。
次に、第3のマスクパターン121を除去することで、湾曲面132を有する第3の導電層131が形成された配線基板を形成することができる。なお、第2のマスクパターン112のテーパー部の傾斜角度をより小さくすると、第2のマスクパターンが第2の条件によるエッチングで後退しやすく、第3の導電層131の上方端部にも湾曲面を持たせることが可能である。なお、ここで導電層の上方端部とは、導電層の上面と側面とが交わる領域134であり、下方端部とは導電層の下面と側面とが交わる領域135である。
本実施の形態で形成された導電層の断面形状について図7を用いて説明する。本実施の形態の工程により形成された絶縁層500上の導電層501の側面は、図7に示すように、湾曲している。即ち湾曲面502、503を有する。
このような構造を有する配線が形成される配線基板は、エッチング処理の後の洗浄工程において、パーティクルを洗い流しやすい。この結果、配線基板及び半導体装置のパーティクルを低減することが可能である。特に、配線間のパーティクルの密度を低減することが可能であるため、配線の短絡や、上層絶縁層のクラックの発生を低減することが可能である。
また、多層構造の半導体装置において、配線の凹凸差を低減することが可能であるため、多層配線間に設けられる絶縁層の被覆性(カバレッジ)が改善され、下層配線及び上層配線間の短絡の発生を低減することが可能である。更には、配線の上層に塗布法により絶縁層を形成する場合、絶縁層の平坦性を向上させることが可能であり、当該絶縁層上で微細なパターンの露光が可能である。この結果、配線の細線化、緻密化、これに伴う高集積化が可能となる。
(実施の形態2)
本実施の形態では、実施の形態1とは異なるエッチング条件により、側面に湾曲面を有する配線で形成される配線基板の作製方法を、図1、図4、及び図7を用いて説明する。
図4(A)に示すように、実施の形態1と同様に、基板100上に第1の絶縁層101を形成し、第1の絶縁層101上に第1の導電層102を形成する。次に、第1の導電層102上に第1のマスクパターン103を形成する(図1のステップS101)。
次に、図4(B)に示すように、第1のマスクパターン103を用いて第1の導電層102を第1の条件でエッチングして、側面が垂直な第2の導電層211を形成する(図1のステップS102)。第1の条件は、第1の導電層102を異方的にエッチングする条件、代表的には側面が垂直である導電層を形成する条件である。更に代表的には、第1のマスクパターン103を後退させず、第1の導電層102のみをエッチングする条件である。実施の形態1の第1の条件と比較すると、自己バイアス電圧が低く、反応室内の圧力が若干高い。この結果、第1のマスクパターン103がテーパー部を有するにも関らず、第1のマスクパターン103の端部と概略一致する第2の導電層の側面と、第1のマスクパターンに覆われていない第2の導電層の領域とが概略垂直である形状を有する第2の導電層211を形成することができる。なお、エッチング方法としては、第1の条件で列挙したエッチング方法の何れかを適宜用いることができる。
なお、ここでの具体的な第1の条件は、凸部を有し、凸部の側部の断面の一部が垂直である導電層を形成する条件である。このため、実施の形態1の第1の条件と比較すると、自己バイアス電圧が低く、反応室内の圧力が若干高いため、第1のマスクパターン103はエッチングされない。
なお、ここでの具体的な第2の導電層211の形状は、第2の導電層は側部の断面が垂直である凸部を有する形状である。また、凸部の側部の断面の一部が垂直とは、側部の断面の一部が、基板100表面に対して85〜90度の傾斜角度を有することである。
次に、図4(C)に示すように、第1のマスクパターン103を残したまま、第2の条件により第2の導電層211をエッチングして、湾曲面232を有する第3の導電層231を形成する(図1のステップS103)。第2の条件は、実施の形態1の第2の条件と同様の条件であり、第1のマスクパターン103と第2の導電層211との選択比が大きい条件である。第2の条件でエッチングすることにより、第1のマスクパターン103を選択的にエッチングし、第2のマスクパターン221が形成される。また、該エッチングにより露出された第2の導電層211の表面をエッチングすることにより、導電層の下方端部よりも上方端部を選択的にエッチングする。この結果、湾曲面232を有する第3の導電層231を形成することができる。なお、エッチング方法としては、第1の条件で列挙したエッチング方法の何れかを適宜用いることができる。
なお、第1のマスクパターン103と第2の導電層211との選択比が大きい条件とは、第1の条件と比較して第2の導電層211に対する第1のマスクパターン103の選択比が大きい条件である。即ち、第2の導電層211のエッチングレートに対する第1のマスクパターン103のエッチングレートの比が高い条件である。
また、第1の絶縁層101の露出している領域もエッチングされ、若干膜厚が減少する。このため、段差を有する第2の絶縁層133が形成される。
次に、図4(D)に示すように、第2のマスクパターン221を除去することで、湾曲面232を有する第3の導電層231が形成された配線基板を形成することができる。なお、本実施の形態においても同様に、第1のマスクパターン103のテーパー部の傾斜角度をより小さくすると、第2の条件でのエッチングにおいて第1のマスクパターン103が後退しやすく、第3の導電層231の上方端部にも湾曲面232を持たせることが可能である。
本実施の形態で形成された導電層の断面形状は、実施の形態1と同様に、図7に示すような湾曲面502、503を有する形状である。このような構造を有する配線が形成される配線基板及び多層構造の半導体装置は、実施の形態1と同様の効果を有する。
(実施の形態3)
本実施の形態では、実施の形態1及び実施の形態2とは異なるエッチング工程により、側面に複数の傾斜面を有する配線で形成される配線基板の作製方法を、図2、図5、及び図8を用いて説明する。
図5(A)に示すように、実施の形態1と同様に基板100上に第1の絶縁層101を形成し、第1の絶縁層101上に第1の導電層102を形成する。次に、第1の導電層102上に第1のマスクパターン103を形成する(図2のステップS101)。
次に、図5(B)に示すように、第1のマスクパターン103を用いて第1の導電層102を第1の条件でエッチングして、第2の導電層302を形成する(図2のステップS102)。第1の条件は、第1の導電層102の一部をエッチングして端部にテーパー部を有する導電層を形成する条件である。ここでは、実施の形態1の第1の条件と同様の条件を用いる。ただし、エッチング時間を実施の形態1の第1のエッチング工程よりも短くして、第1の導電層102の一部をエッチングして第2の導電層302を形成する。このとき、第1のマスクパターン103は後退するため、若干幅が狭くなり膜厚も減少する。このようなマスクパターンを第2のマスクパターン312と示す。なお、エッチング方法としては、第1の条件で列挙したエッチング方法の何れかを適宜用いることができる。
なお、ここでの具体的な第1の条件は、すなわち、凸部を有し、凸部の側部の断面がテーパー形状である導電層を形成する条件である。この結果、第2の導電層302は、第1のマスクパターン103の端部と概略一致する第2の導電層の側面と、第1のマスクパターン103に覆われていない第2の導電層の領域とがテーパー形状を有する。すなわち、第2の導電層は側部の断面がテーパー形状である凸部を有する。
次に、図5(C)に示すように、第2の導電層302の表面を酸化して、酸化物層303を形成する(図2のステップS111)。酸化物の形成方法としては、水又はオゾン水により第2の導電層302の表面を洗浄して酸化物を形成する方法、基板を大気に晒して表面を酸化して酸化物を形成する方法、適当な温度での加熱による表面の酸化により酸化物を形成する方法等が挙げられる。また、酸化物の形成方法として、水又はオゾン水による洗浄を採用することにで、基板表面のパーティクルを洗い流すことが可能である。
次に、図5(D)に示すように、再び第1の条件により第2の導電層302をエッチングして端部にテーパー部を有する第3の導電層311を形成する。なお、第2の導電層302表面には酸化物層303が形成されているため、第1の条件において、より高いバイアスパワーを印加してより高い自己バイアス電圧を生成することが好ましい。この結果、第2の導電層302を短時間でエッチングすることが可能である。また、酸化物層303は、エッチング方向(基板に垂直な方向)に対して露出しているため、該酸化物層303もエッチングされる。また、第2のマスクパターン312もエッチングされ、若干幅及び膜厚が減少する。このときのマスクパターンを第3のマスクパターン313と示す。
なお、第2の導電層の凸部の断面はテーパー形状であるため、テーパー部の酸化物層は、方向性を有する反応性イオンに曝され、エッチングされる。
次に、図5(E)に示すように、第3のマスクパターン313残したまま、第2の条件により、第3の導電層311をエッチングして、異なる傾斜面332を有する第4の導電層321を形成する(図2のステップS103)。第2の条件は、実施の形態1の第2の条件と同様の条件であり、第1のマスクパターンと第2の導電層302との選択比が大きい条件である。第2の条件でエッチングすることにより、第3のマスクパターン313を選択的にエッチングし、第4のマスクパターン322を形成すると共に、露出された第3の導電層311の表面をエッチングすることにより、第3の導電層311の下方端部よりも上方端部を選択的にエッチングする。この結果、異なる傾斜面332を有する第4の導電層321を形成することができる。なお、エッチング方法としては、第1の条件で列挙したエッチング方法の何れかを適宜用いることができる。
また、第1の絶縁層101の露出している領域もエッチングされ、若干膜厚が減少する。このため、段差を有する第2の絶縁層133が形成される。
次に、図5(F)に示すように、第4のマスクパターン322を除去することで、複数の傾斜面332を有する第4の導電層321が形成された配線基板を形成することができる。
本実施の形態で形成された導電層の断面形状について図8を用いて説明する。本実施の形態の工程により形成された導電層601の側面は、図8に示すように、第1の傾斜面602と第2の傾斜面603を有している。第1の傾斜面602と絶縁層600の表面とが形成する角度をθ1とし、第2の傾斜面603を延長した面と絶縁層600の表面とが形成する角度をθ2とすると、θ1は50度以上70度以下、θ2は20度以上60度以下、好ましくは38度以降54度以下である。
なお、本実施の形態の工程で導電層を形成することで、第1の傾斜面602と第2の傾斜面603とが交差する領域は、異なる材料で形成される層の界面に限らず、同一の材料で形成される層の側面で形成することができる。このため、導電層を形成する材料の選択幅が広がると共に、工程数を削減することが可能である。
このような構造を有する配線が形成される配線基板は、第1のエッチング処理後の酸化物層形成工程において洗浄工程を行うことにより、パーティクルを洗い流しやすい。この結果、配線基板及び半導体装置のパーティクルを低減することが可能である。特に、配線間のパーティクルの密度を低減することが可能であるため、配線の短絡や、上層絶縁層のクラックの発生を低減することが可能である。
また、多層構造の半導体装置において、配線の凹凸差を低減することが可能であるため、多層配線間に設けられる絶縁層の被覆性(カバレッジ)が改善され、下層配線及び上層配線間の短絡の発生を低減することが可能である。更には、配線の上層に塗布法により絶縁層を形成する場合、絶縁層の平坦性をさらに向上させることが可能であり、当該絶縁層上での微細なパターンの露光が可能である。この結果、配線の細線化、緻密化、これに伴う高集積化が可能となる。
(実施の形態4)
本実施の形態では、実施の形態3及とは異なるエッチング条件により、側面に複数の傾斜面を有する配線で形成される配線基板の作製方法を、図2、図6及び図8を用いて説明する。
図6(A)に示すように、実施の形態1と同様に基板100上に第1の絶縁層101を形成し、第1の絶縁層101上に第1の導電層102を形成する。次に、第1の導電層102上に第1のマスクパターン103を形成する(図2のステップS101)。
図6(B)に示すように、第1のマスクパターン103を用いて第1の導電層102を第1の条件でエッチングして、第2の導電層211を形成する。第1の条件は、実施の形態2の第1の条件と同様に、第1の導電層を異方的にエッチングする条件、代表的には側面が垂直である導電層を形成する条件である。この結果、第2の導電層211は、第1のマスクパターン103の端部と概略一致する第2の導電層211の側面と、第1のマスクパターンに覆われていない第2の導電層の領域とが概略垂直である形状を有する。(図2のステップS102)。
なお、ここでの具体的な第1の条件は、凸部を有し、凸部の側部の断面が垂直である導電層を形成する条件である。この結果、第2の導電層211は、側部の断面が基板100表面に対して垂直である凸部を有する形状となる。
次に、図6(C)に示すように、第2の導電層211の表面を酸化して、酸化物層403を形成する(図2のステップS111)。酸化物層403の形成方法としては、水又はオゾン水により第2の導電層211の表面を洗浄して酸化物層を形成する方法、基板を大気に晒して表面を酸化して酸化物層を形成する方法、適当な温度での加熱による表面の酸化により酸化物層を形成する方法等が挙げられる。また、酸化物層の形成方法として、水又はオゾン水による洗浄を採用することにより、基板表面のパーティクルを洗い流すことが可能である。
次に、図6(D)に示すように、第1のマスクパターン103残したまま、第2の条件により、第2の導電層211をエッチングして、異なる傾斜面433を有する第3の導電層431を形成する(図2のステップS103)。第2の条件は、実施の形態1の第2の条件と同様の条件であり、第1のマスクパターンと第2の導電層との選択比が大きい条件であり、第1の条件と比較して第2の導電層211に対する第1のマスクパターン103の選択比が大きい条件である。すなわち、第2の導電層211のエッチングレートよりも、第1のマスクパターン103のエッチングレートが高い条件である。第2の条件でエッチングすることにより、第1のマスクパターン103を選択的にエッチングし、第2のマスクパターン421が形成される。すなわち、該エッチングにより露出された第3の導電層431の表面をエッチングすることにより、導電層の下方端部よりも上方端部を選択的にエッチングする。この結果、異なる傾斜面433を有する第3の導電層431を形成することができる。なお、エッチング方法としては、第1の条件で列挙したエッチング方法の何れかを適宜用いることができる。
なお、第2の条件により、第2の導電層211において基板と平行な面に形成される酸化物層403はエッチングされる。一方、第1のマスクパターン103の端部下方において、垂直面に形成される酸化物層403は、上方のみがエッチングされ、導電層の側面に酸化物432が残存する。
また、第1の絶縁層101の露出している領域もエッチングされ、若干膜厚が減少する。このため、段差を有する第2の絶縁層133が形成される。
次に、図6(E)に示すように、第2のマスクパターン421を除去することで、複数の傾斜面433を有する第3の導電層431が形成された配線基板を形成することができる。
本実施の形態で形成された導電層の断面形状について図8を用いて説明する。本実施の形態の工程により形成された導電層601の側面は、実施の形態3と同様に図8に示すように、第1の傾斜面602と第2の傾斜面603を有している。第1の傾斜面602と絶縁層600の表面とが形成する角度をθ1とし、第2の傾斜面603を延長した面と絶縁層600の表面とが形成する角度をθ2とすると、θ1は50度以上70度以下、θ2は20度以上60度以下、好ましくは21度以上35度以下の角度を有する。このような構造を有する配線が形成される配線基板及び多層構造の半導体装置は、実施の形態3と同様の効果を有する。
なお、本実施の形態の工程で導電層を形成することで、第1の傾斜面602と第2の傾斜面603とが交差する領域は、異なる材料で形成される層の界面に限らず、同一の材料で形成される層の側面で形成することができる。よって、導電層の材料の選択幅が広がると共に、工程数を削減することが可能である。
本実施例では、実施の形態1で示したエッチング方法を用いて配線を形成する工程を図3及び図9を用いて説明する。
図3(A)に示すように、基板100上に第1の絶縁層101を形成し、絶縁膜上に第1の導電層102を成膜した。ここでは基板としてコーニング社製1737ガラス基板を用いた。第1の絶縁層101は、スパッタリングガスにアルゴンと酸素(流量比アルゴン:酸素が1:3)を用い、ターゲットにシリコンを用いたスパッタリング法により、膜厚100nmの酸化珪素膜を成膜した。第1の導電層102としては、スパッタリング法により、第1の絶縁層101側から膜厚が100nmのチタン、膜厚が700nmのアルミニウムーシリコン合金、膜厚が100nmのチタンで積層される導電層を形成した。なおチタン膜は、スパッタリング法によりチタンターゲット及びアルゴンガスを用いて成膜した。また、アルミニウムーシリコン合金膜は、スパッタリング法により2wt%のシリコンを有するアルミニウムターゲット及びアルゴンガスを用いて成膜した。
次に、第1の導電層102上に第1のマスクパターン103をフォトリソグラフィー工程により形成した。ここでは、レジストを第1の導電層102上に塗布し、50〜150度で仮焼きした。この後、フォトマスクを用いて仮焼きしたレジストを露光したのち、現像液を用いて現像して、第1のマスクパターン103を形成した。
次に、第1の条件により第1の導電層102をエッチングして第2の導電層111を形成した。エッチングにはICPエッチング装置を用いた。図23にICPエッチング装置の構成を示す。反応室811にはエッチング用のガス供給手段813、反応室内を減圧状態に保持する排気手段814が連結されている。プラズマ生成手段は反応室811に石英板を介して誘導結合するスパイラルコイル812、高周波(13.56MHz)電力供給手段815から成っている。基板側へのバイアスパワー印加は高周波(13.56MHz)電力供給手段816で行い、基板を搭載する下部電極817に自己バイアスが発生するような構成となっている。エッチング加工には供給するエッチングガス種と、高周波(13.56MHz)電力供給手段815、816により供給されるそれぞれの高周波電力、エッチング圧力が主なパラメーターとなる。
本実施例では、エッチング用ガスにBCl3とCl2とを用い、それぞれのガス流量比を60:20(sccm)とし、1.9Paの圧力でコイル型の電極に450WのRF(13.56MHz)電力を投入してプラズマを生成し、基板側(下部電極817)に100WのRF(13.56MHz)電力を投入し、実質的に負のバイアスパワーを印加し自己バイアス電圧を生成して第1のエッチングを行った。チタンとアルミニウムーシリコン合金のエッチング速度はほぼ同じである。この結果、図3(B)に示すように、端部にテーパー部を有する第2の導電層111を形成した。なお、第1のエッチング工程により、第1のマスクパターン103はエッチングされ、幅及び膜厚が減少した。このようなマスクパターンを第2のマスクパターン112と示す。また、第2の導電層111は、第1の導電層102と異なり、基板面において分離された所望の形状を有するパターンとして形成された。
次に、第2の条件により第2のマスクパターン112を後退させて第3のマスクパターン121を形成すると共に、第2の導電層111の上端部をエッチングして第3の導電層131を形成した。本実施例では、第2の条件として、ICPエッチング法を用い、エッチング用ガスにBCl3とCF4とを用い、それぞれのガス流量比を40:40(sccm)とし、1.9Paの圧力で、コイル型の電極に500WのRF(13.56MHz)電力を投入してプラズマを生成し、基板側(下部電極)に300WのRF(13.56MHz)電力を投入し、実質的に負のバイアスパワーを印加し自己バイアス電圧を生成して、第2のエッチングを行った。エッチング用ガスのCF4は、第2の導電層111と比較して第2のマスクパターン112の選択比が高く、第2のマスクパターン112のエッチング速度の方が速い。また、第1の条件と比較して、より高電圧な自己バイアス電圧が生成されるようにバイアスパワーを印加した。これらの結果、第2のマスクパターン112を選択的に後退させることが可能である。
また、第2のマスクパターン112が後退するにつれ、第2の導電層111の上部表面が露出される。この露出された領域が徐々にエッチングされる。この結果、図3(C)に示すように、端部が湾曲している第3の導電層131を形成した。このとき、露出している第1の絶縁層101もエッチングされるため、第3の導電層131が重畳する領域の絶縁層と比較して若干膜厚が薄くなった。
次に、剥離液を用いて第3のマスクパターン121を除去することで、第3の導電層131を有する配線基板を作製することができた。このときの第3の導電層131の断面のSEM写真及びその模式図を図9に示す。
図9(A)は、第3の導電層の131断面のSEM写真であり、図9(B)はその模式図である。絶縁層701上に第3の導電層702が形成されている。第3の導電層702の端部は湾曲していることが分かる。
また、本実施例で形成した第3の導電層702は湾曲面を有するが、この湾曲面は異なる傾斜面の交差部がなだらかになって湾曲している形状である。第1の傾斜面は、第3の導電層702の側面において下方部に形成される傾斜面である。絶縁層701の表面と第1の傾斜面とがなす角度をθ1で示す。一方、第2の傾斜面は、第3の導電層702の側面において上方部に形成される傾斜面である。絶縁層701と第2の傾斜面とがなす角度をθ2で示す。ここでは、θ1は62度で、θ2は44度である。
また、同様に実施の形態1に示したエッチング方法を用いて形成した導電層において、異なる傾斜面それぞれが絶縁層とのなす角度θ1及びθ2を表1に示す。
Figure 0004860175
以上の工程により、湾曲面を有する導電層を形成することができた。
本実施例では、実施の形態2で示したエッチング方法を用いて配線を形成する工程を図4及び図10を用いて説明する。
図4(A)に示すように、実施例1と同様に基板100上に第1の絶縁層101を形成し、絶縁膜上に第1の導電層102を成膜した。次に、実施例1と同様に、第1の導電層102上に第1のマスクパターン103をフォトリソグラフィー工程により形成した。
次に、第1の条件により第1の導電層102をエッチングして第2の導電層211を形成した。本実施例では、第1の条件として、ICPエッチング法を用い、エッチング用ガスにBCl3とCl2とを用い、それぞれのガス流量比を 40:40(sccm)とした。また、1.9Paの圧力でコイル型の電極に700WのRF(13.56MHz)電力を投入してプラズマを生成し、基板側(下部電極)に50WのRF(13.56MHz)電力を投入し、実質的に負の自己バイアス電圧を印加して第1のエッチングを行い、第1の導電層102の一部を異方的にエッチングした。
この結果、図4(B)に示すように、第1のマスクパターン103の端部下方において、基板に対して側面が垂直な形状の凸部を有する第2の導電層211を形成した。なお、本実施例では、実施例1の第1の条件と比較して、自己バイアス電圧が低いため、第1のマスクパターン103をエッチングせず、第1の導電層102のみを異方的にエッチングした。なお、第2の導電層211は、実施例1の第2の導電層111と異なり、基板全面上に第2の導電層211が形成されており、第1のマスクパターン103に覆われている領域が凸部である。
次に、第2の条件により第1のマスクパターン103を後退させて第2のマスクパターン221を形成すると共に、第2の導電層211の上端部をエッチングして第3の導電層231を形成した。本実施例では、第2の条件として、実施例1の第2の条件を用いた。この結果、第2の導電層の上部表面が露出される。この露出された領域が徐々にエッチングされる。この結果、図4(C)に示すように、端部が湾曲面232を有する第3の導電層231を形成した。このとき、露出している第1の絶縁層101の一部もエッチングされ、段差を有する第2の絶縁層133が形成された。このときの絶縁層は、第3の導電層231に覆われていない領域の膜厚は、第3の導電層231が重畳する領域の膜厚と比較して、若干薄くなった。
次に、剥離液を用いて第2のマスクパターン221を除去することで、第3の導電層231を有する配線基板を作製することができた。このときの第3の導電層231の断面のSEM写真及びその模式図を図10に示す。
図10(A)は、第3の導電層の断面のSEM写真であり、図10(B)はその模式図である。絶縁層801上に第3の導電層802が形成されている。第3の導電層802の側面は実施例1と同様に湾曲していることが分かる。
また、本実施例で形成した第3の導電層802は湾曲面を有するが、この湾曲面は異なる傾斜面の交差部がなだらかになって湾曲している形状である。第1の傾斜面は、第3の導電層802の側面において下方部に形成される傾斜面である。絶縁層801の表面と第1の傾斜面とがなす角度をθ1で示す。一方、第2の傾斜面は、第3の導電層802の側面において上方部に形成される傾斜面である。絶縁層801と第2の傾斜面とがなす角度をθ2で示す。ここでは、θ1は53度で、θ2は40度である。
また、同様に実施の形態2で示したエッチング方法を用いて形成した導電層において、異なる傾斜面それぞれが絶縁層となす角度θ1及びθ2を表2に示す。
Figure 0004860175
以上の工程により、湾曲面を有する導電層形成することができた。
本実施例では、実施の形態3で示したエッチング方法を用いて配線を形成する工程を図5及び図11を用いて説明する。なお、本実施例では、実施例1と同様の第1の条件及び第2の条件を用いて導電層をエッチングする。また、導電層の表面を酸化する工程を有する。
実施例1と同様に基板100上に第1の絶縁層101を形成し、絶縁膜上に第1の導電層102を成膜した。次に、第1の導電層102上に第1のマスクパターン103をフォトリソグラフィー工程により形成した。次に、第1の条件により第1の導電層102をエッチングして第2の導電層302を形成した。本実施例では、第1の条件として、ICPエッチング法を用い、エッチング用ガスにBCl3とCl2とを用い、それぞれのガス流量比を60:20(sccm)とした。また、1.9Paの圧力でコイル型の電極に450WのRF(13.56MHz)電力を投入してプラズマを生成し、基板側(下部電極)に100WのRF(13.56MHz)電力を投入し、実質的に負の自己バイアス電圧を印加し第1のエッチングを行った。このとき、第1の導電層102の一部をエッチングし、テーパー部を有する第2の導電層302を形成した。この結果、図5(B)に示すように、第1のマスクパターン103の端部下方において、テーパー部を有する第2の導電層302を形成した。
次に、図5(B)に示すように、第2の導電層302を酸化して、第1の酸化物層303を形成した。ここでは、実施例3と同様に用いスピンコーティグ法により純水を塗布して、第2の導電層の表面を酸化した。この結果、基板表面のパーティクルを洗い流すことが可能である。
次に、第1の条件により第2の導電層302をエッチングして図5(D)に示すように、テーパー部を有する第3の導電層311を形成した。なお、第3の導電層311は、第1の導電層102及び第2の導電層302と異なり、基板表面において分離されて所望の形状を有する膜パターンとして形成された。また、第2のマスクパターン312も若干エッチングされる。このときのマスクパターンを第3のマスクパターン313と示す。
次に、第2の条件により第3のマスクパターン313を後退させて第4のマスクパターン322を形成すると共に、第3の導電層311の上端部をエッチングして第4の導電層321を形成した。本実施例では、第2の条件として、実施例1の第2の条件を用いる。即ち、実施例1と同様に、エッチング用ガスにCF4を用いるため、図5(E)に示すように、第3のマスクパターン313を後退させることが可能である。この結果、第3の導電層311の上部表面が露出される。この露出された領域が徐々にエッチングされ、異なる傾斜面を有する第4の導電層321を形成した。このとき、露出している第1の絶縁層101の一部もエッチングされ、段差を有する第2の絶縁層133が形成された。このときの第2の絶縁層133は、第4の導電層321に覆われていない領域の膜厚が第4の導電層321が重畳する領域の膜厚と比較して、若干薄くなった。
次に、剥離液を用いて第4のマスクパターン322を除去することで、第4の導電層321を有する配線基板を作製することができる。このときの第4の導電層321の断面のSEM写真及びその模式図を図11に示す。
図11(A)は、第3の導電層の断面のSEM写真であり、図11(B)はその模式図である。絶縁層901上に第4の導電層902が形成されている。第4の導電層902の側面は異なる傾斜面を有する。第1の傾斜面は、第4の導電層902の側面において、下方部に形成される傾斜面である。絶縁層901の表面と第1の傾斜面とがなす角度をθ1で示す。一方、第2の傾斜面は、第4の導電層902の側面において上方部に形成される傾斜面である。絶縁層901と第2の傾斜面とがなす角度をθ2で示す。ここでは、θ1は65度で、θ2は40度である。
また、同様に実施の形態3で示したエッチング方法を用いて形成した導電層において、異なる傾斜面それぞれが絶縁層となす角度θ1及びθ2を表3に示す。
Figure 0004860175
以上の工程により、側面それぞれにおいて2つの傾斜面を有する導電層を形成することができた。
本実施例では、実施の形態4で示したエッチング方法を用いて配線を形成する工程を図6及び図12を用いて説明する。なお、本実施例では、実施例2と同様の第1の条件及び第2の条件を用いる。また、実施例3と同様に、導電層の表面を酸化する工程を有する。
実施例1と同様に基板100上に第1の絶縁層101を形成し、絶縁膜上に第1の導電層102を成膜した。次に、第1の導電層102上に第1のマスクパターン103をフォトリソグラフィー工程により形成した。次に、第1の条件により第1の導電層102をエッチングして第2の導電層211を形成した。
本実施例では、第1の条件として、実施例2の第1の条件を用いて第1のエッチングを行った。このとき、第1の導電層102の一部を異方的にエッチングした。この結果、図6(B)に示すように、第1のマスクパターン103の端部下方において、垂直な側面を有する第2の導電層211を形成することができた。なお、第2の導電層211は、実施例3の第2の導電層302と同様に、基板全面上に導電層が形成されており、第1のマスクパターン103に覆われている凸部を有する。
次に、図6(C)に示すように、第2の導電層211を酸化して、第1の酸化物層403を形成した。ここでは、実施例3と同様に用いスピンコーティグ法により純水を塗布して、第2の導電層の表面を酸化した。この結果、基板表面のパーティクルを洗い流すことが可能である。
次に、第2の条件により第1のマスクパターン103を後退させて第2のマスクパターン421を形成すると共に、第2の導電層211をエッチングして第3の導電層431を形成した。本実施例では、第2の条件として、実施例1の第2の条件を用いた。このため、実施例1と同様に、エッチング用ガスにCF4を用いるため、図6(D)に示すように、第1のマスクパターン103を後退させることが可能である。この結果、第2の導電層211の上部表面が露出される。この露出された領域が徐々にエッチングされ、異なる傾斜面を有する第3の導電層431を形成した。このとき、第2の絶縁層133において、第3の導電層431に覆われていない領域の膜厚は、第3の導電層431が重畳する領域の膜厚と比較して、若干薄くなった。
次に、剥離液を用いて第2のマスクパターン421を除去することで、第3の導電層431を有する配線基板を作製することができる。このときの第3の導電層の断面のSEM写真及びその模式図を図12に示す。
図12(A)は、第4の導電層の断面のSEM写真であり、図12(B)はその模式図である。絶縁層1001上に第3の導電層1002が形成されている。第3の導電層1002の側面は異なる傾斜面を有する。第1の傾斜面は、第3の導電層1002の側面において、下方部に形成される傾斜面である。絶縁層1001の表面と第1の傾斜面とがなす角度をθ1で示す。一方、第2の傾斜面は、第3の導電層1002の側面において上方部に形成される傾斜面である。絶縁層1001と第2の傾斜面とがなす角度をθ2で示す。ここでは、θ1は60度で、θ2は26度である。
また、同様に実施の形態4で示したエッチング方法を用いて形成した導電層において、異なる傾斜面それぞれが絶縁層となす角度θ1及びθ2を表4に示す。
Figure 0004860175
以上の工程により、側面それぞれにおいて2つの傾斜面を有する導電層を形成することができた。
次に、実施例1〜実施例4で示した表1〜表4の結果を図13(A)及び(B)に示す。
図13(A)及び(B)の横軸は、θ1(導電層の下方側面に形成される傾斜面と絶縁層の表面とがなす角度)を示し、縦軸はθ2(導電層の上方側面に形成される傾斜面と絶縁層の表面とがなす角度)を示す。
実施例1及び実施例2の工程によって形成された導電層のθ1及びθ2を図13(A)に示す。また、実施例1で形成された導電層のθ1及びθ2を菱形で示し、実施例2で形成された導電層のθ1及びθ2を三角形で示す。実施例1で形成された導電層のθ1は、50度以上70度以下、好ましくは51度以上68度以下の範囲であり、θ2は20度以上60度以下、好ましくは33度以上49度以下の範囲である。
実施例2の工程によって形成された導電層のθ1は、50度以上70度以下、好ましくは53度以上66度以下の範囲であり、θ2は20度以上60度以下、好ましくは35度以上46度以下の範囲である。
次に、実施例3及び実施例4の工程によって形成された導電層のθ1及びθ2を図13(B)に示す。また、実施例3で形成された導電層のθ1及びθ2を菱形で示し、実施例4で形成された導電層のθ1及びθ2を三角形で示す。実施例3の工程によって形成された導電層のθ1は、50度以上70度以下、好ましくは54度以上67度以下の範囲であり、θ2は20度以上60度以下、好ましくは38度以上53度以下の範囲である。
実施例4の工程によって形成された導電層のθ1は、50度以上70度以下、好ましくは56度以上70度以下の範囲であり、θ2は20度以上60度以下、好ましくは21度以上34度以下の範囲である。
本実施例では、表示パネルとして発光表示パネルの作製方法について図14〜図16を用いて説明する。画素部の平面構造を図16に示し、図14及び図15は、図16の画素部のA−B、及びC−Dに対応する縦断面構造を模式的に示したものである。また、本実施例においては、第1実施の形態を用いて第4の導電層を形成するがこれに限定されず、実施の形態2乃至実施の形態4の何れかの工程を用いることができる。
図14(A)に示すように、基板2001上に第1の絶縁層2002を膜厚100〜1000nmで形成する。ここでは、第1の絶縁層として、プラズマCVD法を用いた膜厚100nmの酸化シリコン膜と減圧熱CVD法を用いた膜厚480nmの酸化シリコン膜を積層させて形成する。
次に、非晶質半導体膜を膜厚10〜100nmで形成する。ここでは減圧熱CVD法を用いて膜厚50nmの非晶質シリコン膜を形成する。次に、この非晶質シリコン膜を結晶化させる。本実施例では、非晶質シリコン膜にレーザ光を照射して結晶性シリコン膜を形成する。次に、結晶性シリコン膜上にレジストを塗布し仮焼きした後、第1のフォトリソグラフィー工程及び第1のエッチング処理により結晶性シリコン膜の不要な部分を除去して半導体領域2003、2004を形成する。次に、ゲート絶縁膜として機能する第2の絶縁層を形成する。ここでは、第2の絶縁層としてCVD法により酸化珪素膜を成膜する。
なお、半導体領域2003、2004は、ポリチエニレンビニレン、ポリ(2,5−チエニレンビニレン)、ポリアセチレン、ポリアセチレン誘導体、ポリアリレンビニレンなどの有機半導体材料を用いて形成しても良い。また、第2の絶縁層を、液滴吐出法、塗布法、ゾルゲル法等を用いて絶縁性を有する溶液を用いて形成することができる。絶縁性を有する溶液の代表例としては、無機酸化物の微粒子が分散された溶液、ポリイミド、ポリアミド、ポリエステル、アクリル、PSG(リンガラス)、BPSG(リンボロンガラス)、シリケートSOG(Spin on Glass)、ポリシラザンSOG、アルコキシシリケート系SOG、シロキサンポリマーを適宜用いることができる。
次いで、TFTのチャネル領域となる領域にp型またはn型の不純物元素を低濃度に添加するチャネルドープ工程を全面または選択的に行う。このチャネルドープ工程は、TFTしきい値電圧を制御するための工程である。なお、ここではジボラン(B26)を質量分離しないでプラズマ励起したイオンドープ法でボロンを添加する。また、質量分離を行うイオンインプランテーション法を用いてもよい。
次に、第1の導電層を形成する。ここでは、スパッタリング法を用い、TaN膜とW膜との積層からなる第1の導電層を形成する。次に、第1の導電層上にレジストを塗布し仮焼きした後、第2のフォトリソグラフィー工程及び第2のエッチング処理によりゲート電極として機能する第2の導電層2006〜2008、および容量配線として機能する第2の導電層2009を形成する。
なお、第2の導電層2006〜2009を、Ag、Au、Agの導電体を用い、液滴吐出法、印刷法、電界メッキ法等により形成しても良い。この場合、フォトリソグラフィー工程を行わなくとも、第2の導電層2006〜2009を形成することができるため、工程数を削減することが可能である。
次いで、第2の導電層2006〜2009をマスクとして自己整合的にリンを半導体領域に添加して、低濃度不純物領域2010a、2011a、2013a、2014aと高濃度不純物領域2010〜2014を形成する。低濃度不純物領域のリンの濃度が、1×1016〜5×1018atoms/cm3(代表的には3×1017〜3×1018atoms/cm3)、高濃度不純物領域のリンの濃度が1×1020〜1×1021atoms/cm(代表的には32×1020〜5×1020atoms/cm3)となるように調整する。なお、半導体領域2003、2004のうち、第2の導電層2006〜2008の厚い部分と重なる領域はチャネル形成領域となる。
次いで、第2の導電層2006〜2009を覆う第3の絶縁層を形成する。ここでは、水素を含む絶縁膜を成膜する。この後、半導体領域に添加された不純物元素の活性化および半導体領域の水素化を行う。水素を含む絶縁膜は、PCVD法により得られる窒化酸化珪素膜(SiNO膜)を用いる。
なお、第3の絶縁層は、感光性または非感光性の有機材料(ポリイミド、アクリル、ポリアミド、ポリイミドアミド、レジストまたはベンゾシクロブテン)を塗布し焼成して形成することができる。または、PSG(リンガラス)、BPSG(リンボロンガラス)、ポリシラザンSOG、シリケートSOG(Spin on Glass)、アルコキシシリケート系SOG、シロキサンポリマーを塗布し焼成して形成することができる。
また、第3の絶縁層として、CVD法により形成された酸化珪素膜、窒化珪素膜、酸化窒化珪素膜、又は窒化酸化珪素膜、若しくはこれらいずれか2つ以上で形成される積層を用いることができる。
次いで、第3の絶縁層上にレジストを塗布し仮焼きした後、第3のフォトリソグラフィー工程及び第3のエッチング処理により開口部を有する第4の絶縁層2015及び第5の絶縁層2005を形成すると共に、半導体領域の一部を露出する。この後、第3の導電層2021を形成する。第3の導電層2021は、チタン膜と、アルミニウムーシリコン合金膜と、チタン膜とをスパッタリング法で連続して形成した3層構造の積層膜を成膜する。
次に、第3の導電層2021上にレジストを塗布し仮焼きした後、第4のフォトリソグラフィー工程により第1のマスクパターン2017〜2020を形成する。
なお、第1のマスクパターン2017〜2020は、ポリイミド、アクリル、ポリアミド、ポリイミドアミド等の有機樹脂を液滴吐出法によって、所定の場所に吐出し焼成して形成してもよい。
次に、図14(B)に示すように、第1のマスクパターンを用いて第4のエッチング工程及び第5のエッチング工程により第4の導電層2025〜2028を形成する。ここでは、実施例1で示した第1の条件を用いて第4のエッチングを行い、第2の条件を用いて第5のエッチングを行って、第4の導電層2025〜2028を形成する。第4の導電層の側面は湾曲面を有するため、後に形成される絶縁層のクラックを低減することが可能である。以上の工程により、配線基板を形成することができる。
次に、図15(A)に示すように、第6の絶縁層を形成する。第6の絶縁層としては、CVD法により形成される無機絶縁層(酸化シリコン、窒化シリコン、酸化窒化シリコンなど)、塗布法により形成される感光性または非感光性の有機樹脂層(ポリイミド、アクリル、ポリアミド、ポリイミドアミド、レジストまたはベンゾシクロブテン)、またはこれらの積層などを用いて形成する。
第6の絶縁層としては、平坦化が可能な絶縁層が好ましい。平坦化が可能な絶縁層としては、塗布法により形成される上記感光性又は非感光性の有機樹脂層のほか、塗布法によって得られるSiOx層からなる絶縁層、例えばシリカガラスに代表される無機シロキサンポリマー、アルキルシロキサンポリマー、アルキルシルセスキオキサンポリマー、水素化シルセスキオキサンポリマー、水素化アルキルシルセスキオキサンポリマーなどに代表される有機シロキサンポリマーを塗布し焼成して形成された絶縁層を用いることができる。シロキサンポリマーの一例としては、東レ製塗布絶縁膜材料であるPSB−K1、PSB−K31や触媒化成製塗布絶縁膜材料であるZRS−5PHが挙げられる。ここではアクリル樹脂を塗布焼成して、第6の絶縁層を形成する。なお、第6の絶縁層として、黒色顔料、色素などの可視光を吸収する材料を溶解又は分散させてなる有機材料を用いることで、後に形成される発光素子の迷光の吸収、それに伴うコントラスト向上が可能である。
次に、第6の絶縁層上にレジストを塗布し仮焼きした後、第6のフォトリソグラフィー工程及び第6のエッチング工程により第6の絶縁層をエッチングして開口部を有する第7の絶縁層2031を形成すると共に、第4の導電層2028の一部を露出する。
次に、第5の導電層を成膜し、第5の導電層上にレジストを塗布し仮焼きした後、第7のフォトリソグラフィー工程及び第7のエッチング工程により、第6の導電層2035を形成する。第6の導電層2035は、第1の画素電極として機能する。第5の導電層としては、反射導電膜と透明導電膜を積層して成膜する。ここでは、炭素、ニッケル、及びAlの合金膜と酸化珪素を有するITOをスパッタリング法で積層する。なお、図15(A)の縦断面構造A−B及びC−Dに対応する平面構造を図16に示すので同時に参照する。
次に、図15(B)に示すように、第6の導電層2035の端部を覆って隔壁、且つ、ブラックマトリクスとなる、第8の絶縁層2041を形成する。第8の絶縁層は、遮光性を有する絶縁物であり、色素、黒色顔料等の可視光を吸収する材料を溶解又は分散させてなる感光性または非感光性の有機材料(ポリイミド、アクリル、ポリアミド、ポリイミドアミド、レジストまたはベンゾシクロブテン)、またはSOG膜(例えば、アルキル基を含むSiOx膜)を膜厚0.8μm〜1μmの範囲で用いる。例えば、富士フィルムオーリン社製COLOR MOSAIC CK(商品名)のような材料を用いる。なお、本実施例では、第7の絶縁層2031も遮光性を有する絶縁物で設けることによって、第7の絶縁層2031とのトータルで遮光の効果を得ることができる。また、第8の絶縁層2041として、感光性の材料を用いて形成すると、その側面は曲率半径が連続的に変化する形状となり、上層の薄膜が段切れせずに形成されるため好ましい。
なお、第8の絶縁層2041を液滴吐出法、印刷法で形成しても良い。
次に、蒸着法、塗布法、液滴吐出法などにより発光物質材料を塗布し焼成して第6の導電層2035上及び第8の絶縁層2041の端部に発光物質を含む層2042を形成する。この後、発光物質を含む層2042上に、第2の画素電極として機能する第7の導電層2043を形成する。ここでは、酸化珪素を含むITOをスパッタリング法により成膜する。この結果、第6の導電層、発光物質を含む層、及び第7の導電層により発光素子を形成することができる。発光素子を構成する導電層及び、発光物質を含む層の各材料は適宜選択し、各膜厚も調整する。
なお、発光物質を含む層2042を形成する前に、大気圧中で200℃の熱処理を行い第8の絶縁層2041中若しくはその表面に吸着している水分を除去する。また、減圧下で200〜400℃、好ましくは250〜350℃に熱処理を行い、そのまま大気に晒さずに発光物質を含む層2042を真空蒸着法や、減圧下の液滴吐出法で形成することが好ましい。
発光物質を含む層2042は、有機化合物又は無機化合物を含む電荷注入輸送物質及び発光材料で形成し、低分子系有機化合物、デンドリマー、オリゴマー等に代表的される中分子系有機化合物、高分子系有機化合物から選ばれた一種又は複数種の層を含み、電子注入輸送性又は正孔注入輸送性の無機化合物と組み合わせても良い。
電荷注入輸送物質のうち、特に電子輸送性の高い物質としては、例えばトリス(8−キノリノラト)アルミニウム(略称:Alq3)、トリス(5−メチル−8−キノリノラト)アルミニウム(略称:Almq3)、ビス(10−ヒドロキシベンゾ[h]−キノリナト)ベリリウム(略称:BeBq2)、ビス(2−メチル−8−キノリノラト)−4−フェニルフェノラト−アルミニウム(略称:BAlq)など、キノリン骨格またはベンゾキノリン骨格を有する金属錯体等が挙げられる。
また、正孔輸送性の高い物質としては、例えば4,4’−ビス[N−(1−ナフチル)−N−フェニル−アミノ]−ビフェニル(略称:α−NPD)や4,4’−ビス[N−(3−メチルフェニル)−N−フェニル−アミノ]−ビフェニル(略称:TPD)や4,4’,4’’−トリス(N,N−ジフェニル−アミノ)−トリフェニルアミン(略称:TDATA)、4,4’,4’’−トリス[N−(3−メチルフェニル)−N−フェニル−アミノ]−トリフェニルアミン(略称:MTDATA)などの芳香族アミン系(即ち、ベンゼン環−窒素の結合を有する)の化合物が挙げられる。
また、電荷注入輸送物質のうち、特に電子注入性の高い物質としては、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF2)等のようなアルカリ金属又はアルカリ土類金属の化合物が挙げられる。また、この他、Alq3のような電子輸送性の高い物質とマグネシウム(Mg)のようなアルカリ土類金属との混合物であってもよい。
電荷注入輸送物質のうち、正孔注入性の高い物質としては、例えば、モリブデン酸化物(MoOx)やバナジウム酸化物(VOx)、ルテニウム酸化物(RuOx)、タングステン酸化物(WOx)、マンガン酸化物(MnOx)等の金属酸化物が挙げられる。また、この他、フタロシアニン(略称:H2Pc)や胴フタロシアニン(CuPc)等のフタロシアニン系の化合物が挙げられる。
発光層は、発光波長帯の異なる発光層を画素毎に形成して、カラー表示を行う構成としても良い。典型的には、R(赤)、G(緑)、B(青)の各色に対応した発光層を形成する。この場合にも、画素の光放射側にその発光波長帯の光を透過するフィルター(着色層)を設けた構成とすることで、色純度の向上や、画素部の鏡面化(映り込み)の防止を図ることができる。フィルター(着色層)を設けることで、従来必要であるとされていた円偏光版などを省略することが可能となり、発光層から放射される光の損失を無くすことができる。さらに、斜方から画素部(表示画面)を見た場合に起こる色調の変化を低減することができる。
発光層を形成する発光材料には様々な材料がある。低分子系有機発光材料では、4−(ジシアノメチレン)2−メチル−6−[2−(1,1,7,7−テトラメチルジュロリジン−9−イル)エテニル]−4H−ピラン(略称:DCJT)、9,10−ジフェニルアントラセン(略称:DPA)、ペリフランテン、2,5−ジシアノ−1,4−ビス[2−(10−メトキシ−1,1,7,7−テトラメチルジュロリジン−9−イル)エテニル]ベンゼン、N,N’−ジメチルキナクリドン(略称:DMQd)、クマリン6、クマリン545T、トリス(8−キノリノラト)アルミニウム(略称:Alq3)、9,9’−ビアントリル、9,10−ジフェニルアントラセン(略称:DPA)や9,10−ジ(2−ナフチル)アントラセン(略称:DNA)等を用いることができる。また、この他の物質でもよい。
一方、高分子系有機発光材料は低分子系に比べて物理的強度が高く、発光素子の耐久性が高い。また塗布により成膜することが可能であるので、発光素子の作製が比較的容易である。高分子系有機発光材料を用いた発光素子の構造は、低分子系有機発光材料を用いたときと基本的には同じであり、陰極/発光物質を含む層/陽極となる。しかし、高分子系有機発光材料を用いた発光物質を含む層を形成する際には、低分子系有機発光材料を用いたときのような積層構造を形成させることは難しく、多くの場合2層構造となる。具体的には、陰極/発光層/正孔輸送層/陽極という構造である。
発光色は、発光層を形成する材料で決まるため、これらを選択することで所望の発光を示す発光素子を形成することができる。発光層の形成に用いることができる高分子系の発光材料は、ポリパラフェニレンビニレン系、ポリパラフェニレン系、ポリチオフェン系、ポリフルオレン系が挙げられる。
ポリパラフェニレンビニレン系には、ポリ(パラフェニレンビニレン) [PPV] の誘導体、ポリ(2,5−ジアルコキシ−1,4−フェニレンビニレン) [RO−PPV]、ポリ(2−(2’−エチル−ヘキソキシ)−5−メトキシ−1,4−フェニレンビニレン)[MEH−PPV]、ポリ(2−(ジアルコキシフェニル)−1,4−フェニレンビニレン)[ROPh−PPV]等が挙げられる。ポリパラフェニレン系には、ポリパラフェニレン[PPP]の誘導体、ポリ(2,5−ジアルコキシ−1,4−フェニレン)[RO−PPP]、ポリ(2,5−ジヘキソキシ−1,4−フェニレン)等が挙げられる。ポリチオフェン系には、ポリチオフェン[PT]の誘導体、ポリ(3−アルキルチオフェン)[PAT]、ポリ(3−ヘキシルチオフェン)[PHT]、ポリ(3−シクロヘキシルチオフェン)[PCHT]、ポリ(3−シクロヘキシル−4−メチルチオフェン)[PCHMT]、ポリ(3,4−ジシクロヘキシルチオフェン)[PDCHT]、ポリ[3−(4−オクチルフェニル)−チオフェン][POPT]、ポリ[3−(4−オクチルフェニル)−2,2ビチオフェン][PTOPT]等が挙げられる。ポリフルオレン系には、ポリフルオレン[PF]の誘導体、ポリ(9,9−ジアルキルフルオレン)[PDAF]、ポリ(9,9−ジオクチルフルオレン)[PDOF]等が挙げられる。
なお、正孔輸送性の高分子系有機発光材料を、陽極と発光性の高分子系有機発光材料の間に挟んで形成すると、陽極からの正孔注入性を向上させることができる。一般にアクセプター材料と共に水に溶解させたものをスピンコート法などで塗布する。また、有機溶媒には不溶であるため、上述した発光性の発光材料との積層が可能である。正孔輸送性の高分子系有機発光材料としては、PEDOTとアクセプター材料としてのショウノウスルホン酸(CSA)の混合物、ポリアニリン[PANI]とアクセプター材料としてのポリスチレンスルホン酸[PSS]の混合物等が挙げられる。
また、発光層は単色又は白色の発光を呈する構成とすることができる。白色発光材料を用いる場合には、画素の光放射側に特定の波長の光を透過するフィルター(着色層)を設けた構成としてカラー表示を可能にすることができる。
白色に発光する発光層を形成するには、例えば、Alq3、部分的に赤色発光色素であるナイルレッドをドープしたAlq3、p−EtTAZ、TPD(芳香族ジアミン)を蒸着法により順次積層することで白色を得ることができる。また、スピンコートを用いた塗布法により発光層を形成する場合には、発光材料を塗布した後、真空加熱で焼成することが好ましい。例えば、正孔注入層として作用するポリ(エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)水溶液(PEDOT/PSS)を全面に塗布、焼成し、その後、発光層として作用する発光中心色素(1,1,4,4−テトラフェニル−1,3−ブタジエン(TPB)、4−ジシアノメチレン−2−メチル−6−(p−ジメチルアミノ−スチリル)−4H−ピラン(DCM1)、ナイルレッド、クマリン6など)をドープしたポリビニルカルバゾール(PVK)溶液を全面に塗布、焼成すればよい。
発光層は単層で形成することもでき、ホール輸送性のポリビニルカルバゾール(PVK)に電子輸送性の1,3,4−オキサジアゾール誘導体(PBD)を分散させてもよい。また、30wt%のPBDを電子輸送剤として分散し、4種類の色素(TPB、クマリン6、DCM1、ナイルレッド)を適当量分散することで白色発光が得られる。ここで示した白色発光が得られる発光素子の他にも、発光層の材料を適宜選択することによって、赤色発光、緑色発光、または青色発光が得られる発光素子を作製することができる。
さらに、発光層は、一重項励起発光材料の他、金属錯体などを含む三重項励起材料を用いても良い。例えば、赤色の発光性の画素、緑色の発光性の画素及び青色の発光性の画素のうち、輝度半減時間が比較的短い赤色の発光性の画素を三重項励起発光材料で形成し、他を一重項励起発光材料で形成する。三重項励起発光材料は発光効率が良いので、同じ輝度を得るのに消費電力が少なくて済むという特徴がある。また、赤色画素に適用した場合、発光素子に流す電流量が少なくて済むので、信頼性を向上させることができる。また、低消費電力化として、赤色の発光性の画素と緑色の発光性の画素とを三重項励起発光材料で形成し、青色の発光性の画素を一重項励起発光材料で形成しても良い。人間の視感度が高い緑色の発光素子も三重項励起発光材料で形成することで、より低消費電力化を図ることができる。
三重項励起発光材料の一例としては、金属錯体をドーパントとして用いたものがあり、第3遷移系列元素である白金を中心金属とする金属錯体、イリジウムを中心金属とする金属錯体などが知られている。三重項励起発光材料としては、これらの化合物に限られることはなく、上記構造を有し、且つ中心金属に周期表の8〜10属に属する元素を有する化合物を用いることも可能である。
以上に掲げる発光物質を含む層を形成する物質は一例であり、正孔注入輸送層、正孔輸送層、電子注入輸送層、電子輸送層、発光層、電子ブロック層、正孔ブロック層などの機能性の各層を適宜積層することで発光素子を形成することができる。また、これらの各層を合わせた混合層又は混合接合を形成しても良い。
上記のような材料で形成した発光素子は、順方向にバイアスすることで発光する。発光素子を用いて形成する表示装置の画素は、単純マトリクス方式、若しくはアクティブマトリクス方式で駆動することができる。いずれにしても、個々の画素は、ある特定のタイミングで順方向バイアスを印加して発光させることとなるが、ある一定期間は非発光状態となっている。この非発光時間に逆方向のバイアスを印加することで発光素子の信頼性を向上させることができる。発光素子では、一定駆動条件下で発光強度が低下する劣化や、画素内で非発光領域が拡大して見かけ上輝度が低下する劣化モードがあるが、順方向及び逆方向にバイアスを印加する交流的な駆動を行うことで、劣化の進行を遅くすることができ、発光装置の信頼性を向上させることができる。
次に、発光素子を覆って、水分の侵入を防ぐ透明保護層2044を形成する。透明保護層2044としては、スパッタ法またはCVD法により得られる窒化珪素膜、酸化珪素膜、酸化窒化珪素膜(SiNO膜(組成比N>O)またはSiON膜(組成比N<O))、炭素を主成分とする薄膜(例えばDLC膜、CN膜)などを用いることができる。
以上の工程により、多層構造の発光表示パネルを作製することができる。なお、静電破壊防止のための保護回路、代表的にはダイオードなどを、接続端子とソース配線層(ゲート配線層)の間または画素部に設けてもよい。この場合、上記したTFTと同様の工程で作製し、画素部のゲート配線層とダイオードのドレイン配線層又はソース配線層とを接続することにより、静電破壊を防止することができる。
なお、実施の形態1乃至実施の形態4のいずれをも本実施例に適応することができる。また、表示パネルとして発光表示パネルを例に挙げて説明したが、これに限られるものではなく、液晶表示パネル、DMD(Digital Micromirror Device;デジタルマイクロミラーデバイス)、PDP(Plasma Display Panel;プラズマディスプレイパネル)、FED(Field Emission Display;フィールドエミッションディスプレイ)、電気泳動表示装置(電子ペーパー)等のアクティブ型表示パネルに、本発明を適宜適応することができる。
上記実施例において適用可能な発光素子の形態を、図17を用いて説明する。
図17(A)は第1の画素電極11を透光性の酸化物導電性材料で形成した例であり、酸化珪素を1〜15原子%の濃度で含む酸化物導電性材料で形成している。その上に正孔注入層若しくは正孔輸送層41、発光層42、電子輸送層若しくは電子注入層43を積層した発光物質を含む層16を設けている。第2の画素電極17は、LiFやMgAgなどアルカリ金属又はアルカリ土類金属を含む第3の電極層33とアルミニウムなどの金属材料で形成する第4の電極層34で形成している。この構造の画素は、図中に矢印で示したように第1の画素電極11側から光を放射することが可能となる。
図17(B)は第2の画素電極17から光を放射する例を示し、第1の画素電極11はアルミニウム、チタンなどの金属、又は該金属と化学量論的組成比以下の濃度で窒素を含む金属材料で形成する第1の電極層35と、酸化珪素を1〜15原子%の濃度で含む酸化物導電性材料で形成する第2の電極層32で形成している。その上に正孔注入層若しくは正孔輸送層41、発光層42、電子輸送層若しくは電子注入層43を積層した発光物質を含む層16を設けている。第2の画素電極17は、LiFやCaFなどのアルカリ金属又はアルカリ土類金属を含む第3の電極層33とアルミニウムなどの金属材料で形成する第4の電極層34で形成するが、いずれの層も100nm以下の厚さとして光を透過可能な状態としておくことで、第2の画素電極17から光を放射することが可能となる。
図17(E)は、両方向、即ち第1の画素電極11及び第2の画素電極から光を放射する例を示し、第1の画素電極11に、透光性を有し且つ仕事関数の大きい導電膜を用い、第2の画素電極17に、透光性を有し且つ仕事関数の小さい導電膜を用いる。代表的には、第1の画素電極11を、酸化珪素を1〜15原子%の濃度で含む酸化物導電性材料で形成し、第2の画素電極17を、それぞれ100nm以下の厚さのLiFやCaFなどのアルカリ金属又はアルカリ土類金属を含む第3の電極層33とアルミニウムなどの金属材料で形成する第4の電極層34で形成すればよい。
図17(C)は第1の画素電極11から光を放射する例を示し、かつ、発光物質を含む層を電子輸送層若しくは電子注入層43、発光層42、正孔注入層若しくは正孔輸送層41の順に積層した構成を示している。第2の画素電極17は、発光物質を含む層16側から酸化珪素を1〜15原子%の濃度で含む酸化物導電性材料で形成する第2の電極層32、アルミニウム、チタンなどの金属、又は該金属と化学量論的組成比以下の濃度で窒素を含む金属材料で形成する第1の電極層35で形成している。第1の画素電極11は、LiFやCaFなどのアルカリ金属又はアルカリ土類金属を含む第3の電極層33とアルミニウムなどの金属材料で形成する第4の電極層34で形成するが、いずれの層も100nm以下の厚さとして光を透過可能な状態としておくことで、第1の画素電極11から光を放射することが可能となる。
図17(D)は第2の画素電極17から光を放射する例を示し、かつ、発光物質を含む層16を電子輸送層若しくは電子注入層43、発光層42、正孔注入層若しくは正孔輸送層41の順に積層した構成を示している。第1の画素電極11は図17(A)と同様な構成とし、膜厚は発光物質を含む層で発光した光を反射可能な程度に厚く形成している。第2の画素電極17は、酸化珪素を1〜15原子%の濃度で含む酸化物導電性材料で構成している。この構造において、正孔注入層若しくは正孔輸送層41を無機物である金属酸化物(代表的には酸化モリブデン若しくは酸化バナジウム)で形成することにより、第2の電極層32を形成する際に導入される酸素が供給されて正孔注入性が向上し、駆動電圧を低下させることができる。
図17(F)は、両方向、即ち第1の画素電極11及び第2の画素電極17から光を放射する例を示し、第1の画素電極11に、透光性を有し且つ仕事関数の小さい導電膜を用い、第2の画素電極17に、透光性を有し且つ仕事関数の大きい導電膜を用いる。代表的には、第1の画素電極11を、それぞれ100nm以下の厚さのLiFやCaFなどのアルカリ金属又はアルカリ土類金属を含む第3の電極層33とアルミニウムなどの金属材料で形成する第4の電極層34で形成し、第2の画素電極17を、酸化珪素を1〜15原子%の濃度で含む酸化物導電性材料で形成すればよい。
上記実施例で示す発光表示パネルの画素回路、及びその動作構成について、図18を用いて説明する。発光表示パネルの動作構成は、デジタルの表示装置において、画素に入力されるビデオ信号が電圧で規定されるのものと、電流で規定されるものとがある。ビデオ信号が電圧によって規定されるものには、発光素子に印加される電圧が一定のもの(CVCV)と、発光素子に印加される電流が一定のもの(CVCC)とがある。また、ビデオ信号が電流によって規定されるものには、発光素子に印加される電圧が一定のもの(CCCV)と、発光素子に印加される電流が一定のもの(CCCC)とがある。本実施例では、CVCV動作をする画素を図18(A)及び(B)用いて説明する。また、CVCC動作をする画素を図18(C)〜(F)を用いて説明する。
図18(A)及び(B)に示す画素は、列方向に信号線3710及び電源線3711、行方向に走査線3714が配置される。また、スイッチング用のTFT3701、駆動用のTFT3703、容量素子3702及び発光素子3705を有する。
なお、スイッチング用のTFT3701及び駆動用のTFT3703は、オンしているときは線形領域で動作する。また駆動用のTFT3703は発光素子3705に電圧を印加するか否かを制御する役目を有する。両TFTは同じ導電型を有していると作製工程上好ましく、本実施例ではpチャネル型TFTとして形成する。また駆動用のTFT3703には、エンハンスメント型だけでなく、ディプリーション型のTFTを用いてもよい。また、駆動用のTFT3703のチャネル幅Wとチャネルと長Lの比(W/L)は、TFTの移動度にもよるが1〜1000であることが好ましい。W/Lが大きいほど、TFTの電気特性が向上する。
図18(A)、(B)に示す画素において、TFT3701は、画素に対するビデオ信号の入力を制御するものであり、TFT3701がオンとなると、画素内にビデオ信号が入力される。すると、容量素子3702にそのビデオ信号の電圧が保持される。
図18(A)において、電源線3711がVssで発光素子3705の対向電極がVddの場合、即ち図17(C)、(D)及び(F)の場合、発光素子の対向電極は陽極であり、駆動用のTFT3703に接続される電極は陰極である。この場合、駆動用のTFT3703の特性バラツキによる輝度ムラを抑制することが可能である。
図18(A)において、電源線3711がVddで発光素子3705の対向電極がVssの場合、即ち図17(A)、(B)及び(E)の場合、発光素子の対向電極は陰極であり、駆動用のTFT3703に接続される電極は陽極である。この場合、Vddより電圧の高いビデオ信号を信号線3710に入力することにより、容量素子3702にそのビデオ信号の電圧が保持され、駆動用のTFT3703が線形領域で動作するので、TFTのバラツキによる輝度ムラを改善することが可能である。
図18(B)に示す画素は、TFT3706と走査線3715を追加している以外は、図18(A)に示す画素構成と同じである。
TFT3706は、新たに配置された走査線3715によりオン又はオフが制御される。TFT3706がオンとなると、容量素子3702に保持された電荷は放電し、TFT3703がオフとなる。つまり、TFT3706の配置により、強制的に発光素子3705に電流が流れない状態を作ることができる。そのためTFT3706を消去用のTFTと呼ぶことができる。従って、図18(B)の構成は、全ての画素に対する信号の書き込みを待つことなく、書き込み期間の開始と同時又は直後に点灯期間を開始することができるため、発光のデューティ比を向上することが可能となる。
上記動作構成を有する画素において、発光素子3705の電流値は、線形領域で動作する駆動用のTFT3703により決定することができる。上記構成により、TFTの特性のバラツキを抑制することが可能であり、TFT特性のバラツキに起因した発光素子の輝度ムラを改善して、画質を向上させた表示装置を提供することができる。
次に、CVCC動作をする画素を図18(C)〜(F)を用いて説明する。図18(C)に示す画素は、図18(A)に示す画素構成に、電源線う712、電流制御用のTFT3704が設けられている。
図18(E)に示す画素は、駆動用のTFT3703のゲート電極が、行方向に配置された電源線712に接続される点が異なっており、それ以外は図18(C)に示す画素と同じ構成である。つまり、図18(C)、(E)に示す両画素は、同じ等価回路図を示す。しかしながら、行方向に電源線3712が配置される場合(図18(C))と、列方向に電源線3712が配置される場合(図18(E))とでは、各電源線は異なるレイヤーの導電膜で形成される。ここでは、駆動用のTFT3703のゲート電極が接続される配線に注目し、これらを作製するレイヤーが異なることを表すために、図18(C)、(E)として分けて記載する。
なお、スイッチング用のTFT3701は線形領域で動作し、駆動用のTFT3703は飽和領域で動作する。また駆動用のTFT3703は発光素子3705に流れる電流値を制御する役目を有し、TFT3704は飽和領域で動作し発光素子3705に対する電流の供給を制御する役目を有する。
図18(D)及び(F)示す画素はそれぞれ、図18(C)及び(E)に示す画素に、消去用のTFT3706と走査線3715を追加している以外は、図18(C)及び(E)に示す画素構成と同じである。
なお、図18(A)及び(B)に示される画素でも、CVCC動作をすることは可能である。また、図18(C)〜(F)に示される動作構成を有する画素は、図18(A)及び(B)と同様に、発光素子の電流の流れる方向によって、Vdd及びVssを適宜変えることが可能である。
上記構成を有する画素は、TFT3704が線形領域で動作するために、TFT3704のVgsの僅かな変動は、発光素子3705の電流値に影響を及ぼさない。つまり、発光素子3705の電流値は、飽和領域で動作する駆動用のTFT3703により決定することができる。上記構成により、TFTの特性バラツキに起因した発光素子の輝度ムラを改善して、画質を向上させた表示装置を提供することができる。
特に、非晶質半導体等を有する薄膜トランジスタを形成する場合、駆動用のTFTの半導体膜の面積を大きくすると、TFTのバラツキの低減が可能であるため好ましい。このため、図18(A)及び図18(B)に示す画素は、TFTの数が少ないため開口率を増加させることが可能である。
なお、容量素子3702を設けた構成を示したが、本発明はこれに限定されず、ビデオ信号を保持する容量をゲート容量などでまかなうことが可能な場合には、容量素子3702を設けなくてもよい。
また、薄膜トランジスタの半導体領域が非晶質半導体膜で形成される場合は、しきい値がシフトしやすいため、しきい値を補正する回路を画素内又は画素部周辺に設けることが好ましい。
このようなアクティブマトリクス型の発光装置は、画素密度が増えた場合、各画素にTFTが設けられているため低電圧駆動でき、有利であると考えられている。一方、一列毎にTFTが設けられるパッシブマトリクス型の発光装置を形成することもできる。パッシブマトリクス型の発光装置は、各画素にTFTが設けられていないため、高開口率となる。
また、本発明の表示装置において、画面表示の駆動方法は特に限定されず、例えば、点順次駆動方法や線順次駆動方法や面順次駆動方法などを用いればよい。代表的には、線順次駆動方法とし、時分割階調駆動方法や面積階調駆動方法を適宜用いればよい。また、表示装置のソース線に入力する映像信号は、アナログ信号であってもよいし、デジタル信号であってもよく、適宜、映像信号に合わせて駆動回路などを設計すればよい。
以上のように、多様な画素回路を採用することができる。
本実施例では、表示モジュールの一例として、発光表示モジュールの外観について、図19を用いて説明する。図19(A)は、第1の基板1200と、第2の基板1204との間が第1のシール材1205及び第2のシール材によって封止されたパネルの上面図であり、図19(B)は、図19(A)のA−A’における断面図に相当する。
図19(A)において、点線で示された1201は信号線(ソース線)駆動回路、1202は画素部、1203は走査線(ゲート線)駆動回路である。本実施例において、信号線駆動回路1201、画素部1202、及び走査線駆動回路1203は第1のシール材及び第2のシール材で封止されている領域内にある。第1のシール材としては、フィラーを含む粘性の高いエポキシ系樹脂を用いるのが好ましい。また、第2のシール材としては、粘性の低いエポキシ系樹脂を用いるのが好ましい。また、第1のシール材1205及び第2のシール材はできるだけ水分や酸素を透過しない材料であることが望ましい。
また、画素部1202と第1のシール材1205との間に、乾燥剤を設けてもよい。さらには、画素部において、走査線又は信号線上に乾燥剤を設けてもよい。乾燥剤としては、酸化カルシウム(CaO)や酸化バリウム(BaO)等のようなアルカリ土類金属の酸化物のような化学吸着によって水(H2O)を吸着する物質を用いるのが好ましい。但し、これに限らずゼオライトやシリカゲル等の物理吸着によって水を吸着する物質を用いても構わない。
また、透湿性の高い樹脂に乾燥剤の粒状の物質を含ませた状態で第2の基板1204に固定することができる。ここで、透湿性の高い樹脂としては、例えば、エステルアクリレート、エーテルアクリレート、エステルウレタンアクリレート、エーテルウレタンアクリレート、ブタジエンウレタンアクリレート、特殊ウレタンアクリレート、エポキシアクリレート、アミノ樹脂アクリレート、アクリル樹脂アクリレート等のアクリル樹脂を用いることができる。この他、ビスフェノールA型液状樹脂、ビスフェノールA型固形樹脂、含ブロムエポキシ樹脂、ビスフェノールF型樹脂、ビスフェノールAD型樹脂、フェノール型樹脂、クレゾール型樹脂、ノボラック型樹脂、環状脂肪族エポキシ樹脂、エピビス型エポキシ樹脂、グリシジルエステル樹脂、グリシジルアミン系樹脂、複素環式エポキシ樹脂、変性エポキシ樹脂等のエポキシ樹脂を用いることができる。また、この他の物質を用いても構わない。また、例えばシロキサンポリマー等の無機物等を用いてもよい。
乾燥剤を走査線と重畳する領域に設けることで、開口率を低下せずに表示素子への水分の侵入及びそれに起因する劣化を抑制することができる。
なお、1210は、信号線駆動回路1201及び走査線駆動回路1203に入力される信号を伝送するための接続領域であり、外部入力端子となるFPC(フレキシブルプリント配線)1209から、接続配線1208を介してビデオ信号やクロック信号を受け取る。
次に、断面構造について図19(B)を用いて説明する。第1の基板1200上には駆動回路及び画素部1202が形成されており、TFTを代表とする半導体素子を複数有している。駆動回路として信号線駆動回路1201を示す。なお、信号線駆動回路1201はnチャネル型TFT1221とpチャネル型TFT1222とを組み合わせたCMOS回路が形成される。
本実施例においては、同一基板上に信号線駆動回路、走査線駆動回路、及び画素部のTFTが形成されている。このため、発光表示装置の面積を縮小することができる。
また、画素部1202はスイッチング用のTFT1211と、駆動用のTFT1212とそのドレインに電気的に接続された反射性を有する導電膜からなる第1の画素電極1213を含む複数の画素により形成される。
また、これらのTFT1211、1212、1221、1222の層間絶縁膜1220としては、無機材料(酸化シリコン、窒化シリコン、酸化窒化シリコンなど)、有機材料(ポリイミド、ポリアミド、ポリイミドアミド、ベンゾシクロブテン、またはシロキサンポリマー)を主成分とする材料を用いて形成することができる。また、層間絶縁膜の原料としてシロキサンポリマーを用いると、シリコンと酸素を骨格構造に有し、側鎖に水素又は/及びアルキル基を有する構造の絶縁膜となる。
また、第1の画素電極1213の両端には絶縁物(隔壁、障壁、土手などと呼ばれる)1214が形成される。絶縁物1214に形成する膜の被覆率(カバレッジ)を良好なものとするため、絶縁物1214の上端部または下端部に曲率を有する曲面が形成されるようにする。絶縁物1214の材料としては、無機材料(酸化シリコン、窒化シリコン、酸化窒化シリコンなど)、有機材料(ポリイミド、ポリアミド、ポリイミドアミド、ベンゾシクロブテンなど)、またはシロキサンポリマーを主成分とする材料を用いて形成することができる。また、絶縁物の原料としてシロキサンポリマーを用いると、シリコンと酸素を骨格構造に有し、側鎖に水素又は/及びアルキル基を有する構造の絶縁膜となる。また、絶縁物1214を窒化アルミニウム膜、窒化酸化アルミニウム膜、炭素を主成分とする薄膜、または窒化珪素膜からなる保護膜で覆ってもよい。また、絶縁物として、黒色顔料、色素などの可視光を吸収する材料を溶解又は分散させてなる有機材料を用いることで、後に形成される発光素子の迷光の吸収、それに伴うコントラスト向上が可能である。
また、第1の画素電極1213上には、有機化合物材料の蒸着を行い、発光物質を含む層1215を選択的に形成する。
発光物質を含む層1215は実施例5に示される構造を適宜用いることができる。
こうして、第1の画素電極1213、発光物質を含む層1215、及び第2の画素電極1216からなる発光素子1217が形成される。発光素子1217は、第2の基板1204側に発光する。
また、発光素子1217を封止するために保護積層1218を形成する。保護積層は、第1の無機絶縁膜と、応力緩和膜と、第2の無機絶縁膜との積層からなっている。次に、保護積層1218と第2の基板1204とを、第1のシール材1205及び第2のシール材1206で接着する。なお、第2の基板1204表面には、偏光板1225が固定され、偏光板1225表面には、1/2λ又は1/4λの位相差板1229及び反射防止膜1226が設けられている。また、第2の基板1204から順に、1/4λ板の位相差板及び1/2λ板の位相差板1229、偏光板1225を順次設けてもよい。
接続配線1208とFPC1209とは、異方性導電膜又は異方性導電樹脂1227で電気的に接続されている。さらに、各配線層と接続端子との接続部を封止樹脂で封止することが好ましい。この構造により、断面部からの水分が発光素子に侵入し、劣化することを防ぐことができる。
なお、第2の基板1204と、保護積層1218との間には、不活性ガス、例えば窒素ガスを充填した空間を有してもよい。水分や酸素の侵入の防止を高めることができる。
第2の基板1204表面、又は第2の基板1204と偏光板1225との間に着色層を設けることができる。この場合、画素部に白色発光が可能な発光素子を設け、RGBを示す着色層を第2の基板1204表面、又は第2の基板1204と偏光板1225との間に別途設けることでフルカラー表示することができる。また、画素部に青色発光が可能な発光素子を設け、色変換層などを別途設けることによってフルカラー表示することができる。さらには、各画素部、赤色、緑色、青色の発光を示す発光素子を形成し、且つ着色層を2の基板1204表面、又は第2の基板1204と偏光板1225との間に用いることもできる。このような表示モジュールは、各RBGの色純度が高く、高精細な表示が可能となる。
また、第1の基板1200又は第2の基板1204の一方、若しくは両方にフィルム又は樹脂等の基板を用いて発光表示モジュールを形成してもよい。このように対向基板を用いず封止すると、表示装置の軽量化、小型化、薄膜化を向上させることができる。
なお、実施の形態1乃至実施の形態4のいずれをも本実施例に適応することができる。また、表示モジュールとして発光表示モジュールの例を示したが、これに限られるものではなく、液晶表示モジュール、DMD(Digital Micromirror Device;デジタルマイクロミラーデバイス)、PDP(Plasma Display Panel;プラズマディスプレイパネル)、FED(Field Emission Display;フィールドエミッションディスプレイ)、電気泳動表示装置(電子ペーパー)等の表示モジュールに適宜適応することができる。
本実施例では、多層配線を有する積層構造の半導体装置の作製方法について、図24を用いて説明する。
図24に示すように、基板2201上に基板からの不純物をブロックするための下地膜2202を形成する。この後、所望の形状を有する半導体層で形成される半導体領域を形成した後、ゲート絶縁膜となる第1の絶縁層2204、ゲート電極となる第1の導電層を成膜する。次に、第1の導電層を所望の形状にエッチングして、ゲート電極2205を形成する。このとき、エッチング条件によっては第1の絶縁層2204も一部エッチングされ、膜厚が薄くなる。次に、基板全面に酸化ケイ素膜で形成される第2の絶縁層2206を成膜してもよい。第2の絶縁層により、ゲート電極の酸化を防ぐことができる。その後、ゲート電極をマスクとして半導体領域に不純物を添加して、不純物領域を形成した後、不純物領域に添加された不純物を活性化するため、加熱処理、強光の照射、またはレーザ光の照射を行う。この工程により、ソース領域及びドレイン領域2203を形成する。この後、第1の絶縁層2206上に有機樹脂を塗布して第1の層間絶縁層2207を形成する。
次に、第1の層間絶縁層の一部をエッチングして開口部を形成すると共に、ソース領域及びドレイン領域2203の一部を露出する。次に、第2の導電層を成膜する。次に、実施の形態1で示される第1の条件及び第2の条件を用いてソース電極及びドレイン電極2213a、2213bを形成する。なお、ソース電極及びドレイン電極の側面は湾曲面を有する。
次に、第1の層間絶縁層2207上に有機樹脂を塗布し、硬化して、第2の層間絶縁層2221を形成する。次に、第2の層間絶縁層2221の一部をエッチングしてソース電極又はドレイン電極2213a、2213bの表面の一部を露出する。次に、基板全面に第3の導電層を形成し、実施の形態1の第1の条件及び第2の条件を用いて、所望の形状にエッチングして、ソース電極及びドレイン電極2213a、2213bに接続する第1の配線2222a、2222bを形成する。
次に、第3の層間絶縁層2223及び第2の配線2224a、2224bを形成することで、多層配線を形成することができる。
本発明により、半導体素子を高集積した回路、代表的には、信号線駆動回路、コントローラ、CPU、音声処理回路のコンバータ、電源回路、送受信回路、メモリ、音声処理回路のアンプ等の半導体装置を歩留まり高く、信頼性高く形成することができる。さらには、MPU(マイクロコンピュータ)、メモリ、I/Oインターフェースなどひとつのシステム(機能回路)を構成する回路がモノリシックに搭載され、高速化、高信頼性、低消費電力化が可能なシステムオンチップを、歩留まり高く、信頼性高く形成することができる。
上記実施例に示される半導体装置を筺体に組み込むことによって様々な電子機器を作製することができる。電子機器としては、テレビジョン装置、ビデオカメラ、デジタルカメラ、ゴーグル型ディスプレイ(ヘッドマウントディスプレイ)、ナビゲーションシステム、音響再生装置(カーオーディオ、オーディオコンポ等)、パーソナルコンピュータ、ゲーム機器、携帯情報端末(モバイルコンピュータ、携帯電話、携帯型ゲーム機または電子書籍等)、記録媒体を備えた画像再生装置(具体的にはDigital Versatile Disc(DVD)等の記録媒体を再生し、その画像を表示しうるディスプレイを備えた装置)などが挙げられる。ここでは、これらの電子機器の代表例としてテレビジョン装置及びそのブロック図をそれぞれ図21及び図20に、デジタルカメラを図22に示す。
図20は、アナログのテレビジョン放送を受信するテレビジョン装置の一般的な構成を示す図である。図20において、アンテナ1101で受信されたテレビ放送用の電波は、チューナ1102に入力される。チューナ1102は、アンテナ1101より入力された高周波テレビ信号を希望受信周波数に応じて制御された局部発振周波数の信号と混合することにより、中間周波数(IF)信号を生成して出力する。
チューナ1102により取り出されたIF信号は、中間周波数増幅器(IFアンプ)1103により必要な電圧まで増幅された後、映像検波回路1104によって映像検波されると共に、音声検波回路1105によって音声検波される。映像検波回路1104により出力された映像信号は、映像系処理回路1106により、輝度信号と色信号とに分離され、さらに所定の映像信号処理が施されて映像信号となり、本発明の半導体装置である表示装置、代表的には液晶表示装置、発光表示装置、DMD(Digital Micromirror Device;デジタルマイクロミラーデバイス)、PDP(Plasma Display Panel;プラズマディスプレイパネル)、FED(Field Emission Display;フィールドエミッションディスプレイ)、電気泳動表示装置(電子ペーパー)等の映像系出力部1108に出力される。なお、表示装置に液晶表示装置を用いたものは、液晶テレビジョン装置となり、発光表示装置を用いたものはELテレビジョン装置となる。また、他の表示装置を用いた場合も同様である。
また、音声検波回路1105により出力された信号は、音声系処理回路1107により、FM復調などの処理が施されて音声信号となり、適宜増幅されてスピーカ等の音声系出力部1109に出力される。
なお、本発明を用いたテレビジョン装置は、VHF帯やUHF帯などの地上波放送、ケーブル放送、又はBS放送などのアナログ放送に対応するものに限らず、地上波デジタル放送、ケーブルデジタル放送、又はBSデジタル放送に対応するものであっても良い。
図21はテレビジョン装置を前面方向から見た斜視図であり、筐体1151、表示部1152、スピーカ部1153、操作部1154、ビデオ入力端子1155等を含む。また、図20に示すような構成となっている。
表示部1152は、図20の映像系出力部1108の一例であり、ここで映像を表示する。
スピーカ部1153は、図20の音声系出力部1109の一例であり、ここで音声を出力する。
操作部1154は、電源スイッチ、ボリュームスイッチ、選局スイッチ、チューナースイッチ、選択スイッチ等が設けられており、該ボタンの押下によりテレビジョン装置の電源のON/OFF、映像の選択、音声の調整、及びチューナの選択等を行う。なお、図示していないが、リモートコントローラ型操作部によって、上記の選択を行うことも可能である。
ビデオ入力端子1155は、VTR、DVD、ゲーム機等の外部からの映像信号をテレビジョン装置に入力する端子である。
本実施例で示されるテレビジョン装置を壁掛け用テレビジョン装置の場合、本体背面に壁掛け用の部位が設けられている。
テレビジョン装置の表示部に本発明の半導体装置の一例である表示装置を用いることにより、歩留まり高く作製することができる。また、テレビジョン装置の映像検波回路、映像処理回路、音声検波回路、音声処理回路を制御するCPUに本発明の半導体装置を用いることにより、低コストで、スループットや歩留まり高くテレビジョン装置を作製することができる。このため、壁掛けテレビジョン装置、鉄道の駅や空港などにおける情報表示板や、街頭における広告表示板など特に大面積の表示媒体として様々な用途に適用することができる。
図22(A)及び図22(B)は、デジタルカメラの一例を示す図である。図22(A)は、デジタルカメラの前面方向から見た斜視図、図22(B)は、後面方向から見た斜視図である。図22(A)において、デジタルカメラには、リリースボタン1301、メインスイッチ1302、ファインダー窓1303、フラッシュ1304、レンズ1305、鏡胴1306、筺体1307が備えられている。
また、図22(B)において、ファインダー接眼窓1311、モニター1312、操作ボタン1313が備えられている。
リリースボタン1301は、半分の位置まで押下されると、焦点調整機構および露出調整機構が作動し、最下部まで押下されるとシャッターが開く。
メインスイッチ1302は、押下又は回転によりデジタルカメラの電源のON/OFFを切り替える。
ファインダー窓1303は、デジタルカメラの前面のレンズ1305の上部に配置されており、図22(B)に示すファインダー接眼窓1311から撮影する範囲やピントの位置を確認するための装置である。
フラッシュ1304は、デジタルカメラの前面上部に配置され、被写体輝度が低いときに、リリースボタンが押下されてシャッターが開くと同時に補助光を照射する。
レンズ1305は、デジタルカメラの正面に配置されている。レンズは、フォーカシングレンズ、ズームレンズ等により構成され、図示しないシャッター及び絞りと共に撮影光学系を構成する。また、レンズの後方には、CCD(Charge Coupled Device)等の撮像
素子が設けられている。
鏡胴1306は、フォーカシングレンズ、ズームレンズ等のピントを合わせるためにレンズの位置を移動するものであり、撮影時には、鏡胴を繰り出すことにより、レンズ1305を手前に移動させる。また、携帯時は、レンズ1305を沈胴させてコンパクトにする。なお、本実施例においては、鏡胴を繰り出すことにより被写体をズーム撮影することができる構造としているが、この構造に限定されるものではなく、筺体1307内での撮影光学系の構成により鏡胴を繰り出さずともズーム撮影が可能なデジタルカメラでもよい。
ファインダー接眼窓1311は、デジタルカメラの後面上部に設けられており、撮影する範囲やピントの位置を確認する際に接眼するために設けられた窓である。
操作ボタン1313は、デジタルカメラの後面に設けられた各種機能ボタンであり、セットアップボタン、メニューボタン、ディスプレイボタン、機能ボタン、選択ボタン等により構成されている。
本発明の半導体装置の一実施例である表示装置をモニターに用いことにより、歩留まり高く作製することが可能である。また、各種機能ボタン、メインスイッチ、リリースボタン等の操作入力を受けて関連した処理を行うCPU、自動焦点動作及び自動焦点調整動作を行う回路、ストロボ発光の駆動制御、CCDの駆動を制御するタイミング制御回路、CCD等の撮像素子によって光電変換された信号から画像信号を生成する撮像回路、撮像回路で生成された画像信号をデジタル信号に変換するA/D変換回路、メモリへの画像データの書き込み及び画像データの読み出しを行うメモリインターフェース等の各回路を制御するCPU等に本発明の半導体装置を用いることにより、歩留まり高くデジタルカメラを作製することが可能である。
本発明に係る配線基板の作製工程を示したフローチャートである。 本発明に係る配線基板の作製工程を示したフローチャートである。 本発明に係る配線基板の作製工程を示した断面図である。 本発明に係る配線基板の作製工程を示した断面図である。 本発明に係る配線基板の作製工程を示した断面図である。 本発明に係る配線基板の配線の形状を示した断面図である。 本発明に係る配線基板の配線の形状を示した断面図である。 本発明に係る配線基板の配線の形状を示した断面図である。 本発明に係る配線基板の配線の形状を示した断面図である。 本発明に係る配線基板の配線の形状を示した断面図である。 本発明に係る配線基板の配線の形状を示した断面図である。 本発明に係る配線基板の配線の形状を示した断面図である。 本発明に係る配線基板の配線の角度を示したグラフである。 本発明に係る半導体装置の作製工程を示した断面図である。 本発明に係る半導体装置の作製工程を示した断面図である。 本発明に係る半導体装置の作製工程を示した上面図である。 本発明に適応可能な発光素子の形態を説明する図である。 本発明の発光表示パネルに適応できる画素の等価回路を示した図である。 (A)本発明に係る半導体装置の構造を示した上面図である。(B)本発明に係る半導体装置の構造を示した断面図である。 電子機器の構成を示したブロック図である。 電子機器の一例を示した図である。 電子機器の一例を示した図である。 本発明に適応可能なエッチング装置を示した断面図である。 本発明に係る半導体装置を示した断面図である。

Claims (4)

  1. 絶縁表面上に導電層を形成する工程と、
    前記導電層上にマスクパターンを形成する工程と、
    第1のエッチングを行うことによって、前記導電層及び前記マスクパターンに第1の加工を施し、前記導電層の露出表面の一部をエッチングする工程と、
    水又はオゾン水を用いて前記導電層の表面を洗浄し、前記導電層の表面に酸化物が形成される工程と、
    第2のエッチングを行うことによって、前記酸化物をエッチングするとともに、前記導電層及び前記マスクパターンに第2の加工を施し、前記絶縁表面を露出させる工程と、
    第3のエッチングを行うことによって、前記導電層及び前記マスクパターンに第3の加工を施し、配線を形成する工程と、
    前記マスクパターンを除去する工程と、を有し、
    前記第3のエッチングは、前記第1のエッチング及び前記第2のエッチングと比較して、前記導電層に対する前記マスクパターンの選択比が大きい条件で行われ、
    前記第1の加工の際に、前記マスクパターンの端部下方において、側部の断面がテーパー形状の凸部が形成されることを特徴とする配線の作製方法。
  2. 絶縁表面上に導電層を形成する工程と、
    前記導電層上にマスクパターンを形成する工程と、
    第1のエッチングを行うことによって、前記導電層に第1の加工を施し、前記導電層の露出表面の一部をエッチングする工程と、
    水又はオゾン水を用いて前記導電層の表面を洗浄し、前記導電層の表面に酸化物が形成される工程と、
    第2のエッチングを行うことによって、前記酸化物をエッチングするとともに、前記導電層及び前記マスクパターンに第2の加工を施し、配線を形成する工程と、
    前記マスクパターンを除去する工程と、を有し、
    前記第2のエッチングは、前記第1のエッチングと比較して、前記導電層に対する前記マスクパターンの選択比が大きい条件で行われ、
    前記第1の加工の際に、前記マスクパターンの端部下方において、側部の断面が垂直な凸部が形成されることを特徴とする配線の作製方法。
  3. 半導体素子上に第1の絶縁膜を形成する工程と、
    前記第1の絶縁膜上に導電層を形成する工程と、
    前記導電層上にマスクパターンを形成する工程と、
    第1のエッチングを行うことによって、前記導電層及び前記マスクパターンに第1の加工を施し、前記導電層の露出表面の一部をエッチングする工程と、
    水又はオゾン水を用いて前記導電層の表面を洗浄し、前記導電層の表面に酸化物が形成される工程と、
    第2のエッチングを行うことによって、前記酸化物をエッチングするとともに、前記導電層及び前記マスクパターンに第2の加工を施し、前記第1の絶縁膜を露出させる工程と、
    第3のエッチングを行うことによって、前記導電層及び前記マスクパターンに第3の加工を施し、配線を形成する工程と、
    前記マスクパターンを除去する工程と、
    前記配線上に第2の絶縁膜を形成する工程と、を有し、
    前記第3のエッチングは、前記第1のエッチング及び前記第2のエッチングと比較して、前記導電層に対する前記マスクパターンの選択比が大きい条件で行われ、
    前記第1の加工の際に、前記マスクパターンの端部下方において、側部の断面がテーパー形状の凸部が形成されることを特徴とする半導体装置の作製方法。
  4. 半導体素子上に第1の絶縁膜を形成する工程と、
    前記第1の絶縁膜上に導電層を形成する工程と、
    前記導電層上にマスクパターンを形成する工程と、
    第1のエッチングを行うことによって、前記導電層に第1の加工を施し、前記導電層の露出表面の一部をエッチングする工程と、
    水又はオゾン水を用いて前記導電層の表面を洗浄し、前記導電層の表面に酸化物が形成される工程と、
    第2のエッチングを行うことによって、前記酸化物をエッチングするとともに、前記導電層及び前記マスクパターンに第2の加工を施し、配線を形成する工程と、
    前記マスクパターンを除去する工程と、
    前記配線上に第2の絶縁膜を形成する工程と、を有し、
    前記第2のエッチングは、前記第1のエッチングと比較して、前記導電層に対する前記マスクパターンの選択比が大きい条件で行われ、
    前記第1の加工の際に、前記マスクパターンの端部下方において、側部の断面が垂直な凸部が形成されることを特徴とする半導体装置の作製方法。
JP2005130163A 2004-04-28 2005-04-27 配線の作製方法、半導体装置の作製方法 Expired - Fee Related JP4860175B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005130163A JP4860175B2 (ja) 2004-04-28 2005-04-27 配線の作製方法、半導体装置の作製方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004134535 2004-04-28
JP2004134535 2004-04-28
JP2005130163A JP4860175B2 (ja) 2004-04-28 2005-04-27 配線の作製方法、半導体装置の作製方法

Publications (3)

Publication Number Publication Date
JP2005340800A JP2005340800A (ja) 2005-12-08
JP2005340800A5 JP2005340800A5 (ja) 2008-04-17
JP4860175B2 true JP4860175B2 (ja) 2012-01-25

Family

ID=35493953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005130163A Expired - Fee Related JP4860175B2 (ja) 2004-04-28 2005-04-27 配線の作製方法、半導体装置の作製方法

Country Status (1)

Country Link
JP (1) JP4860175B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5656036B2 (ja) * 2013-03-28 2015-01-21 Toto株式会社 複合構造物
JP6326312B2 (ja) * 2014-07-14 2018-05-16 株式会社ジャパンディスプレイ 表示装置
KR20170141668A (ko) 2015-04-16 2017-12-26 고쿠리츠다이가쿠호진 호쿠리쿠 센단 가가쿠 기쥬츠 다이가쿠인 다이가쿠 에칭 마스크, 에칭 마스크 전구체 및 산화물층의 제조 방법 및 박막 트랜지스터의 제조 방법
CN108885987A (zh) * 2016-03-14 2018-11-23 国立大学法人北陆先端科学技术大学院大学 层叠体、蚀刻掩模、层叠体的制造方法、蚀刻掩模的制造方法、及薄膜晶体管的制造方法
JP6885024B2 (ja) * 2016-11-17 2021-06-09 大日本印刷株式会社 透明電極

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2585267B2 (ja) * 1987-05-08 1997-02-26 株式会社東芝 液晶表示装置
JPH0661195A (ja) * 1992-08-06 1994-03-04 Toshiba Corp 半導体装置の製造方法
JP3164756B2 (ja) * 1995-08-30 2001-05-08 京セラ株式会社 多層薄膜回路の形成方法
JP4301628B2 (ja) * 1999-04-23 2009-07-22 三菱電機株式会社 ドライエッチング方法

Also Published As

Publication number Publication date
JP2005340800A (ja) 2005-12-08

Similar Documents

Publication Publication Date Title
US8669663B2 (en) Wiring over substrate, semiconductor device, and methods for manufacturing thereof
JP4536601B2 (ja) 半導体装置の作製方法
KR101058176B1 (ko) 박막 트랜지스터의 제조 방법
US8102005B2 (en) Wiring substrate, semiconductor device and manufacturing method thereof
US7416977B2 (en) Method for manufacturing display device, liquid crystal television, and EL television
JP4939756B2 (ja) 半導体装置の作製方法
US7955907B2 (en) Semiconductor device, television set, and method for manufacturing the same
US7531294B2 (en) Method for forming film pattern, method for manufacturing semiconductor device, liquid crystal television, and EL television
JP4969041B2 (ja) 表示装置の作製方法
JP5057652B2 (ja) 薄膜トランジスタの作製方法
JP4932173B2 (ja) 膜パターンの形成方法
JP5089027B2 (ja) 半導体装置
JP4754841B2 (ja) 半導体装置の作製方法
JP4877871B2 (ja) 表示装置の作製方法、液晶テレビジョン、及びelテレビジョン
JP4628004B2 (ja) 薄膜トランジスタの作製方法
JP4860175B2 (ja) 配線の作製方法、半導体装置の作製方法
JP4785396B2 (ja) 半導体装置の作製方法
JP4713192B2 (ja) 薄膜トランジスタの作製方法
JP4877865B2 (ja) 薄膜トランジスタの作製方法及び表示装置の作製方法
JP2006032735A (ja) 半導体装置の作製方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees