JP4857491B2 - Manufacturing method of surface mount type piezoelectric vibrator - Google Patents

Manufacturing method of surface mount type piezoelectric vibrator Download PDF

Info

Publication number
JP4857491B2
JP4857491B2 JP2001200197A JP2001200197A JP4857491B2 JP 4857491 B2 JP4857491 B2 JP 4857491B2 JP 2001200197 A JP2001200197 A JP 2001200197A JP 2001200197 A JP2001200197 A JP 2001200197A JP 4857491 B2 JP4857491 B2 JP 4857491B2
Authority
JP
Japan
Prior art keywords
piezoelectric
vibration
manufacturing
mount type
package
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001200197A
Other languages
Japanese (ja)
Other versions
JP2003017977A (en
Inventor
浩一 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2001200197A priority Critical patent/JP4857491B2/en
Publication of JP2003017977A publication Critical patent/JP2003017977A/en
Application granted granted Critical
Publication of JP4857491B2 publication Critical patent/JP4857491B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は表面実装型圧電振動子に関し、特に圧電基板の一部を超薄肉の振動部とした構造の圧電振動素子における圧電基板のたわみ変形を低減し、諸特性及び信頼性を向上した超高周波圧電振動子に関する。
また、本発明は表面実装型圧電振動子に関し、特に基本波共振周波数300MHz以上の圧電振動素子をパッケージ内に接続する手段としてAuバンプを用いた場合に従来問題となっていた種々の不具合を解決した表面実装型圧電振動子に関する。
【0002】
【従来の技術】
近年、各種電子機器、通信機器においては、高性能化、取扱う情報量の増大、データ処理の高速化等に伴って、使用周波数の高周波化、小型化、高信頼性化が求められ、これらの装置において基準周波数源、周波数制御手段として用いられる水晶振動子、水晶フィルタ等の圧電デバイスについても、同様に高周波化、小型化、高信頼性化が強く要望されている。
これらの圧電デバイスは、水晶等の圧電基板の主面に励振電極を形成した圧電振動素子をパッケージ内に気密封止した構成を備えている。
【0003】
[第1の従来例]
図7は、高周波化を目的とした超薄肉部を有するATカット水晶振動素子の断面図である。
この水晶振動素子は、ATカット水晶の基本波厚みすべり振動波を利用した振動素子であって、その共振周波数が板厚と反比例することから、機械的強度を保ちつつ高周波化を図る為に、厚さ80μmの水晶基板101の一方の主面をエッチングによって凹陥せしめ、該凹陥部102の底面を超薄肉の振動部103とするとともに、振動部103の外周を全周に渡って支持する厚肉の環状囲繞部104を一体化した構造となっている。
ここで、水晶基板101は結晶軸方向により異方性を有するため、前記凹陥部102の周壁部102a、102bは結晶軸方向により厚さ方向に異なった傾斜でエッチングされる性質を有する。
また、水晶基板101の一方の主面(平坦面)上には主面電極105が形成され、他方の主面(凹面)上には裏面電極106が形成されている。
例えば、622MHzの基本波厚みすべり振動波を得る場合、振動部103の板厚Hは約2μmとなる。
しかしながら、振動部103の長さLが例えば1mmの場合、振動部103の板厚Hに対する長さLの比L/Hは500程度となり、機械的剛性が劣化して自重若しくは主面電極105、裏面電極106の重さにより、図示のように振動部103にたわみが生じてしまう。
光学的干渉計により振動部のたわみ量を測定したところ、振動部中心の最大たわみ量Wは50〜80nm程度であった。
この場合、振動部103の最大たわみ量Wは、振動部の板厚Hの2.5〜4.0%に相当し、振動部に静的負荷すなわち内部歪みが残留していることになる。
このような場合、正常なエネルギー閉じ込め厚み振動が得られないばかりではなく、長期エージング等の信頼性も劣化するという問題があった。
【0004】
[第2の従来例]
次に、図8(a)及び(b)は高周波化を目的とした超薄肉部を有するATカット水晶振動素子の表裏面の斜視図であり、この水晶振動素子111はATカット水晶の基本波厚みすべり振動波を利用した振動素子であって、その共振周波数が板厚と反比例することから、機械的強度を保ちつつ高周波化を図る為に、水晶振動素子111を構成する水晶基板112の一方の主面をエッチングによって凹陥せしめ、該凹陥部113の底面を超薄肉の振動部113aとするとともに、振動部113aの外周を全周に渡って支持する厚肉の環状囲続部114を一体化している。
更に、水晶基板112の一方の主面(凹面)上には、主面電極(励振電極)115と、主面電極115より基板周縁に向けて延出するリード電極115aと、リード電極115aの端部に位置するパッド電極115bと、更に他のパッド電極116cを形成する。水晶基板112の裏面側の振動部113a上には、裏面電極116と、裏面電極116より周縁に向けて延出するリード電極116aと、リード電極116aの端部に位置する裏面側パッド電極116bが形成され、裏面側パッド電極116bは切欠き117を介して主面側に形成された前記パッド電極116cと導通している。
更に、パッド電極115b、116cは、Auパンプ118を形成するために、また、裏面側パッド電極116bは、切欠き117部の導通性向上のため蒸着によりアルミなどの導電性金属を厚付けされている。
Auバンプ118は、ワイヤボンデイングの技術を応用して、加熱、加圧および超音波印加による拡散現象により、パッド電極115b、及び116cに接合されている。
図9は上記水晶振動素子111を用いた表面実装型水晶振動子の構造を示す断面図である。
図8に示した水晶振動素子111をセラミックパッケージ120内に収納してから、セラミックパッケージ120の上面開口を金属の上蓋121により気密封止した構造を備える。
セラミックパッケージ120は、底部セラミック基板121と、セラミック基板121の上面外周に一体化されたセラミック製の環状枠体122と、上蓋121をシーム溶接するために枠体122上に環状に固定されたシームリング123とから成り、全体として中央に水晶振動素子1を収納するための凹所を有し、外周に環状部を有した箱形状を呈している。
セラミック基板121の上面にはAuメタライズにより形成された内部端子124,125が露出しており、それそれパッケージ底面等に設けた図示しない外部端子と接続されている。
【0005】
図10は、水晶振動素子111をパッケージ120内に接続する工程を示す図であって、先ず吸着用の先端面に吸引穴131が開口したコレット130により水晶振動素子111の平坦面側を吸着する。続いて、コレット130をパッケージ120の凹所内に移動して、吸着した水晶振動素子111の凹面側に位置する各パッド電極115b、116cを夫々パッケージ120内底面の入出力用内部端子124、125に一対一にて対面させて位置決めする。続いて、予め各パッド電極115b、116c上に形成しておいた各Auバンプ118を介して、フリップチップ実装の技術を用いた加熱、加圧および超音波印加による拡散現象を利用して両者を接合する。
なお、ここで、水晶振動素子111とパッケージ120との接合手段として、Auバンプ118を用いる理由は、Auバンプ118を用いた場合には、導電性接着剤を用いる場合に比べて導通性が向上し、局所的な接合が可能となり、アウトガスが発生しないこと等にあり、デバイスの高周波化、小型化、高信頼性化に寄与するからである。
しかしながら、水晶振動素子111をパッケージ120に接合する際、共振周波数300MHz以上の水晶振動素子111であると振動部113aの厚さが5μm以下となり、コレツ卜130による吸着及び加圧により、振動部113aが破損したり過度の歪みが発生した状態で接合を完了することになる。
本発明者による実験では、この歪みは肉眼でも確認できる程度の大きさであった。
このように、振動部113aに歪みが残留している状態であると、経時変化や熱変化により残留歪みが解放されるに伴い周波数が変動する性質を有する水晶振動素子111は、接合直後の共振周波数を保てなくなり、安定性が劣化するという問題があった。
【0006】
【発明が解決しようとする課題】
本発明は、上記問題を解決する為になされたものであって、第1の従来例に対応する本発明の第1の課題は、超薄肉の振動部の外周を厚肉の環状囲繞部により一体的に支持した構成を備えた圧電基板から成る圧電振動素子において、圧電基板の機械的剛性を高めて振動部のたわみ変形を防止することによって、高性能且つ高信頼性の超高周波圧電振動素子を提供することを課題とする。
次に、第2の従来例に対応する本発明の第2の課題は、圧電振動素子をパッケージ内に接続する手段としてAuバンプを用い、コレットにより吸着した圧電振動素子をパッケージ内の端子上に圧接しながらAuバンプを用いて接合するときに発生する超薄振動部の破損や過度の歪み発生という問題を解決する表面実装型圧電振動子を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するために、請求項1の発明は、圧電基板の主面を凹陥せしめた凹陥部の底面に配置された振動部と、該振動部の周縁を一体的に支持し、前記振動部の厚みよりも厚肉の保持手段と、前記振動部の両面に夫々互いに対向するように設けられた電極と、を備えた圧電振動素子の一方の面を、表面実装型パッケージ内に電気的機械的に接続した表面実装型圧電振動子の製造方法であって、先端面に吸引穴を備え、前記先端面の外形が前記圧電振動素子の外形輪郭とほぼ合致する形状のコレットにて、前記振動部と前記吸引穴とが干渉しないように、前記凹陥部とは反対側の前記圧電振動素子の主面を吸着保持し、吸着保持した状態で前記圧電振動素子を前記表面実装型パッケージ内にバンプにて接続することを特徴とする。
請求項2の発明は、前記保持手段は圧電材料から成る厚肉の環状部である、ことを特徴とすることを特徴とする。
請求項3の発明は、前記振動部の長さLと前記振動部の厚Hとの比L/Hが、0<L/H≦250を満足することを特徴とする。
請求項4の発明は、前記圧電振動素子の基本波共振周波数は300MHz以上であることを特徴とする。
請求項5の発明は、前記圧電材料は、ATカット水晶であることを特徴とする。
【0008】
【発明の実施の形態】
[第1の従来例に対応する実施形態]
以下、本発明の第1の実施形態を図面にした例に基づいて詳細に説明する。
図1は、高周波化を目的とした超薄肉部を有するATカット水晶振動素子の断面図である。
この水晶振動素子1はATカット水晶の基本波厚みすべり振動波を利用しており、その共振周波数が板厚と反比例することから、機械的強度を保ちつつ高周波化を図る為に、厚さ80μmの水晶基板2の一方の主面をエッチングによって凹陥せしめて凹陥部3を形成し、該凹陥部3の底面を超薄肉の振動部4とするとともに、振動部4の外周を全周に渡って支持する厚肉の環状囲繞部5を振動部4と一体化した構造を備えている。
ここで、水晶基板2は結晶軸方向により異方性を有するため、前記凹陥部3の周壁部3a、3bは結晶軸方向により厚さ方向に異なった傾斜でエッチングされる性質を有する。
また、水晶基板2の一方の主面(平坦面)上には主面電極10が、他方の主面(凹面)上には裏面電極11が夫々形成されている。各電極10,11からは図示しないリード端子が基板端縁に向かって延びており、図示しないパッケージ内にマウントされる際にパッケージ内の電極と導通する。
本発明では、300MHz以上の共振周波数を得るために振動部4の板厚は、超薄肉となっている。例えば、622MHzの基本波厚みすべり振動波を得る場合、振動部4の板厚Hは約2μmとなる。
本発明の特徴的な構成は、振動部4の長さLを0.5mm以下、すなわち振動部4の板厚Hに対する長さLの比L/Hを250以下になるように設定した点にあり、このように構成することによって圧電基板2の機械的剛性を高め、振動部4のたわみ変形を防止して、高性能且つ高信頼性を得ることを可能ならしめている。なお、ここで長さLとは、図1に示した正面から見た場合の振動部103の長さのみならず、図1と直交する側面から見た場合の長さLも含むものである。
【0009】
図2は、この比L/Hに対する振動部中心の最大たわみ量Wの増加の傾向について、材料力学的に解析を行った結果を示す表である。
最大たわみ量Wは、上記比の値と、指数関数的関係を有し、L/H=250以上になると急激に増加する。このことは、UHF帯すなわち共振周波数300MHz以上の振動素子については、いずれの場合も同様の結果となる。
従って、比L/Hを250以下に設定することで、共振周波数300MHz以上の超高周波化を図っても振動部の機械的剛性が劣化することなく、たわみに起困する内部歪みの残留を低減し、正常なエネルギー閉じ込め厚み振動を得ることができるばかりでなく、長期エージング等の信頼性も劣化することはない。
尚、超高周波の基本波厚み振動を得る場合、エネルギーは主面電極10付近に十分に閉じ込めることができ、振動部端部へのエネルギー漏洩を懸念する必要はないため、振動部の長さLは主面電極10より僅かに大きい程度であれば良く、L/Hを極限まで小さくすることで、たわみの影響は無視できるようになる。
このことは、同時に振動素子1の小型化の可能性を示唆するものである。
尚、上記実施形態では、本発明を超薄肉の振動部を有するATカット水晶振動素子に適用したものを例として説明したが、本発明はこれのみに限定されるものではなく、水晶基板の片面上に形成する電極が分割電極の2重モードフィルタであっても良いことは自明である。
又、機械研磨等の手段により、水晶基板全体が超薄肉である振動素子において、該振動素子の外周縁を他の保持手段により保持すること等により空間を確保した場合であっても、振動部のたわみ変形に起因した同様の不具合を解決するために、本発明の構成を適用できることは自明である。
尚、圧電基板のカットアングルについても、ATカット以外の水晶或いは水晶以外の圧電基板であっても良い。
次に、上記の如き構成を備えた圧電振動素子1は、これをセラミックパッケージ内に気密封止することによって表面実装型の圧電デバイスとしての圧電振動子を構成することができる。
【0010】
[第2の従来例に対応する実施形態]
次に、本発明の第2の実施形態を図面にした形態例に基づいて詳細に説明する。
図3は高周波化を目的とした超薄肉振動部を有するATカット水晶振動素子の表裏面の斜視図であり、この水晶振動素子21はATカット水晶の基本波厚みすべり振動波を利用した振動子であって、その共振周波数が板厚と反比例することから、機械的強度を保ちつつ高周波化を図る為に、水晶振動素子21を構成する水晶基板22の一方の主面をエッチングによって凹陥せしめて凹陥部23を形成し、該凹陥部23の底面を超薄肉の振動部24とするとともに、振動部24の外周を全周に渡って支持する厚肉の環状囲続部25を一体化している。
更に、図3(a)に示すように水晶基板22の一方の主面(凹面)上には、主面電極(励振電極)25と、これより基板端縁へ向けて引き出されるリード電極26aと、リード電極26aの端部に厚肉に蒸着形成された主面側パッド電極26bと、を有する。該パッド電極26bは、基板端縁の切欠き27を介して基板裏面側のパッド電極26cと、導通接続している。
図3(b)に示すように、水晶基板22の裏面上には、主面電極25と対向する位置に形成された裏面電極31と、裏面電極32から延出したリード電極32aと、リード電極32aの端縁に厚肉に蒸着形成されたパッド電極32bと、を有する。裏面側の両パッド電極26cと32b上には夫々Auバンプ40が形成されている。Auバンプ40はワイヤボンデイングの技術を応用して、加熱、加圧および超音波印加による拡散現象によりパッド電極26c、32bに接合されている。
パッド電極26b、26c、及び32bは、Auバンプ40の形成及び切欠き27の導通性向上のため蒸着により厚付けされている。
【0011】
図4は上記水晶振動素子21を用いた圧電デバイスの一例としての表面実装型水晶振動子の構造を示す断面図である。
図3に示した水晶振動素子21をセラミックパッケージ50内に収納してから、セラミックパッケージ50の上面開口を金属の上蓋51により気密封止した構造を備える。
セラミックパッケージ50は、底板を構成するセラミック基板52と、セラミック基板52の上面外周に一体化されたセラミック製の環状枠体53と、上蓋51をシーム溶接するために枠体53上に環状に囲定されたシームリング54とから成り、全体として中央に水晶振動素子21を収納するための凹所を有し、外周に環状部を有した箱形状を呈している。
セラミック基板52の上面にはAuメタライズにより形成された内部端子56,57が露出しており、夫々パッケージ外底面等に設けた図示しない外部端子と電気的に接続されている。内部端子56,57は、夫々水晶振動素子21の裏面側のパッド電極26c、32bと一対一の対応位置関係で接続可能となるようにその位置、形状を予め設定されている。
この水晶振動子は、水晶振動素子21の平坦な裏面側をパッケージ内底面と対向させた状態でAuバンプ40を用いて、内部端子56,57をパッド電極26c、32bと接続し、パッケージの凹所を蓋51により気密封止した構成を備えている。
【0012】
図5は、コレット61により吸着保持した水晶振動素子21をパッケージ50内に接続する工程を示す図であって、図示しない真空ポンプと接続されたコレット61は、吸着用の平坦な先端面に真空ポンプと連通して負圧を受ける吸引穴62を備える。コレット61の先端面を水晶振動素子の凹面(主面)側に密着させて吸着保持し、Auバンプ40を予め備えた裏面側パッド電極26c、32bと、セラミックパッケージ側の入出力用内部端子56,57とを、Auバンプ40を介して接触させた状態で、フリップチップ実装の技術を用いた加熱、加圧および超音波印加による拡散現象を利用して電気的機械的に接続する。
Auパンプ40を用いる理由は、導電性接着剤を用いる場合に比べ、導通性が向上すること、局所的な接合が可能であること、アウトガスが無いこと等にあり、圧電デバイスの高周波化、小型化、高信頼性化に寄与する。
ここで、本発明の実施形態の特徴的な構成は、コレット60が吸着する水晶振動素子21の面(被吸着面)を凹面側とし、振動部24とコレット60の先端面との接触を回避したことにある。
コレット60の先端面の底面形状は、水晶振動素子の外形輪郭とほぼ合致する形状とし、図示のようにコレット先端面を水晶振動素子の主面側と密着させたときに、吸引穴62が水晶基板の凹所23を含む主面全体に対面、接触してこれを吸引するので、確実に保持することができる。一方、コレット先端面は、振動部24と直接接触しないので、吸引穴からの吸引力や、コレット先端面からの加圧力によって振動部24が変形したり、破損することがない。
即ち、基本波共振周波数300MHz以上の水晶振動素子21であると振動部24の厚さは5μm以下となり機械的強度が著しく低下するが、この場合、コレット60での吸着及び加圧により振動部24に直接的負荷が作用しないため、振動部が破損したり過度の歪みが発生することなく接合を完了することが可能となる。
従って、振動部24に接合による歪みが残留しないため、経時変化や熱変化によっても水晶振動素子21は接合直後の共振周波数を保ち、優れた安定性を確保できる。
【0013】
また、図6は他の実施形態であり、同図に示す通り、コレット60の先端面によって水晶振動素子21の平坦な裏面側を吸着するようにしてもよい。この場合には、コレット60の吸引穴62と振動部24とが干渉しないように振動部の形状、位置を吸引穴62から回避するように予め設定する。このようにすれば、少なくとも吸着による振動部24の破損や歪みを回避でき、励振不能になったり、経時変化や熱変化により共振周波数の安定性が劣化するという不具合を解消できる。
尚、本実施形態では、本発明を超薄肉の振動部を有するATカット水晶振動素子に適用したものを例として説明したが、本発明はこれのみに限定されるものではなく、水晶基板の片面上に形成する電極が分割電極の2重モードフィルタであっても良いことは明白である。
尚、使用する圧電基板としては、カットアングルがATカット以外の水晶或いは水晶以外の圧電基板であっても良い。
【0014】
【発明の効果】
本発明の第1の実施形態は、基本波共振周波数が300MHz以上の超薄肉の振動部の外周を厚肉の環状囲繞部により一体的に支持した構成を備えた圧電基板から成る圧電振動素子において、振動部の長さLと該振動部の厚Hとの比L/Hが250以下となるように設定したので、圧電基板の機械的剛性を高めて振動部のたわみ変形を防止することによって、高性能且つ高信頼性の超高周波圧電振動素子を提供することができる。従って、高性能且つ高信頼性の超高周波圧電振動子を提供する上で著しい効果を奏する。
本発明の第2の実施形態は、圧電基板の主面を凹陥せしめ該凹陥部の底面を超薄肉の振動部とし、該主面及び裏面に夫々電極を設けた基本波共振周波数300MHz以上の超高周波圧電振動素子であって、先端面に吸引穴を備えたコレットにて主面又は裏面を吸着保持された状態で表面実装型パッケージ内にAuバンプにて電気的機械的に接続されるものにおいて、超薄肉の振動部をコレットによる吸着時に該吸引穴に干渉しない位置に配置したので、圧電振動素子をセラミックパッケージ内に組み付ける際に、コレットでの吸着及び加圧による振動部の破損や歪みが発生せず、励振不能になったり、経時変化や熱変化により共振周波数の安定性が劣化するという不具合を解消することができる。従って、Auパンプを用いた効果を十分に発揮する高性能且つ高信頼性の表面実装型超高周波圧電共振子を提供する上で著しい効果を奏する。
【図面の簡単な説明】
【図1】本発明の一実施の形態例としてのATカット水晶振動素子の断面図。
【図2】振動部中心の最大たわみと寸法比との関係を示す図。
【図3】(a)及び(b)は本発明の一実施形態に係る水晶振動素子の主面側及び裏面側の構成を示す斜視図。
【図4】図2の水晶振動素子をセラミックパッケージ内に封止した水晶振動子の構成を示す断面図。
【図5】コレットにより本発明の水晶振動素子を吸着しつつパッケージ内に組み付けている状態を示す断面図。
【図6】図5の変形例を示す図。
【図7】第1の従来例の説明図。
【図8】(a)及び(b)は第2の従来例の水晶振動素子の主面側及び裏面側の構成を示す斜視図。
【図9】図8の水晶振動素子をパッケージ内に収容した水晶振動子の断面図。
【図10】従来例の欠点を説明する図。
【符号の説明】
1 水晶振動素子(圧電振動素子)、2 水晶基板(圧電基板)、3 凹陥部、4 振動部、5 環状囲繞部(環状部)、10 主面電極、11 裏面電極、21 水晶振動素子、22 水晶基板、23 凹陥部、24 振動部、25 環状囲繞部、26a リード電極、26b パッド電極、26c パッド電極、27切欠き、32a リード電極、32b パッド電極、40 Auバンプ、50セラミックパッケージ、51 上蓋、52 セラミック基板、53 枠体、54 シームリング、56,57 内部端子、61 コレット、62 吸引穴。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a surface-mount type piezoelectric vibrator , and more particularly, a piezoelectric vibration element having a structure in which a part of a piezoelectric substrate is an ultra-thin vibrating portion reduces bending deformation of the piezoelectric substrate to improve various characteristics and reliability. The present invention relates to a high-frequency piezoelectric vibrator.
The present invention also relates to a surface-mounted piezoelectric vibrator , and in particular, solves various problems that have conventionally been caused when Au bumps are used as means for connecting a piezoelectric vibration element having a fundamental resonance frequency of 300 MHz or more in a package. The present invention relates to a surface mount type piezoelectric vibrator.
[0002]
[Prior art]
In recent years, in various electronic devices and communication devices, with higher performance, increased amount of information to be handled, higher speed of data processing, etc., higher frequency of use, miniaturization, and higher reliability are required. Similarly, there is a strong demand for higher frequency, smaller size, and higher reliability for piezoelectric devices such as crystal resonators and crystal filters used as reference frequency sources and frequency control means in the apparatus.
These piezoelectric devices have a configuration in which a piezoelectric vibration element in which an excitation electrode is formed on a main surface of a piezoelectric substrate such as quartz is hermetically sealed in a package.
[0003]
[First Conventional Example]
FIG. 7 is a cross-sectional view of an AT-cut quartz crystal resonator element having an ultra-thin part for the purpose of increasing the frequency.
This crystal vibration element is a vibration element using the fundamental wave thickness shear vibration wave of AT cut crystal, and since the resonance frequency is inversely proportional to the plate thickness, in order to increase the frequency while maintaining the mechanical strength, One main surface of the quartz substrate 101 having a thickness of 80 μm is recessed by etching, the bottom surface of the recessed portion 102 is used as an ultrathin vibrating portion 103, and the outer periphery of the vibrating portion 103 is supported over the entire circumference. It has a structure in which the meat annular surrounding portion 104 is integrated.
Here, since the quartz substrate 101 has anisotropy in the crystal axis direction, the peripheral wall portions 102a and 102b of the concave portion 102 have a property of being etched with different inclinations in the thickness direction depending on the crystal axis direction.
A main surface electrode 105 is formed on one main surface (flat surface) of the quartz substrate 101, and a back surface electrode 106 is formed on the other main surface (concave surface).
For example, when a fundamental wave thickness shear vibration wave of 622 MHz is obtained, the plate thickness H of the vibration part 103 is about 2 μm.
However, when the length L of the vibrating portion 103 is, for example, 1 mm, the ratio L / H of the length L to the plate thickness H of the vibrating portion 103 is about 500, the mechanical rigidity is deteriorated, and the self-weight or main surface electrode 105, Due to the weight of the back electrode 106, the vibration part 103 is bent as shown in the figure.
When the amount of deflection of the vibration part was measured with an optical interferometer, the maximum amount of deflection W at the center of the vibration part was about 50 to 80 nm.
In this case, the maximum deflection amount W of the vibration part 103 corresponds to 2.5 to 4.0% of the plate thickness H of the vibration part, and a static load, that is, internal strain remains in the vibration part.
In such a case, there is a problem that not only normal energy confinement thickness vibration cannot be obtained but also reliability such as long-term aging is deteriorated.
[0004]
[Second Conventional Example]
Next, FIGS. 8A and 8B are perspective views of the front and back surfaces of an AT-cut crystal resonator element having an ultra-thin portion for the purpose of increasing the frequency, and this crystal resonator element 111 is the basic structure of an AT-cut crystal. Since the resonant frequency is inversely proportional to the plate thickness, the resonant frequency of the quartz crystal substrate 112 constituting the quartz crystal vibrating element 111 is designed to increase the frequency while maintaining the mechanical strength. One main surface is recessed by etching, and the bottom surface of the recessed portion 113 is an ultrathin vibrating portion 113a, and a thick annular surrounding portion 114 that supports the outer periphery of the vibrating portion 113a over the entire circumference is provided. It is integrated.
Furthermore, on one main surface (concave surface) of the quartz substrate 112, a main surface electrode (excitation electrode) 115, a lead electrode 115a extending from the main surface electrode 115 toward the peripheral edge of the substrate, and an end of the lead electrode 115a A pad electrode 115b located in the area and another pad electrode 116c are formed. On the vibration portion 113a on the back surface side of the quartz substrate 112, there are a back electrode 116, a lead electrode 116a extending from the back electrode 116 toward the periphery, and a back surface side pad electrode 116b positioned at an end of the lead electrode 116a. The back-side pad electrode 116b is electrically connected to the pad electrode 116c formed on the main surface side through the notch 117.
Further, the pad electrodes 115b and 116c are formed by depositing a conductive metal such as aluminum by vapor deposition in order to form the Au bump 118, and the back-side pad electrode 116b is formed by vapor deposition in order to improve the conductivity of the notch 117 portion. Yes.
The Au bump 118 is bonded to the pad electrodes 115b and 116c by a diffusion phenomenon caused by heating, pressurization, and application of ultrasonic waves by applying a wire bonding technique.
FIG. 9 is a cross-sectional view showing the structure of a surface-mounted crystal resonator using the crystal resonator element 111.
After the crystal resonator element 111 shown in FIG. 8 is accommodated in the ceramic package 120, the upper surface opening of the ceramic package 120 is hermetically sealed with a metal upper lid 121.
The ceramic package 120 includes a bottom ceramic substrate 121, a ceramic annular frame 122 integrated on the outer periphery of the upper surface of the ceramic substrate 121, and a seam that is annularly fixed on the frame 122 for seam welding the upper lid 121. It consists of a ring 123 and has a recess for accommodating the crystal resonator element 1 at the center as a whole, and has a box shape with an annular portion on the outer periphery.
Internal terminals 124 and 125 formed of Au metallization are exposed on the upper surface of the ceramic substrate 121, and each is connected to an external terminal (not shown) provided on the bottom surface of the package.
[0005]
FIG. 10 is a diagram illustrating a process of connecting the crystal resonator element 111 into the package 120. First, the flat surface side of the crystal resonator element 111 is sucked by the collet 130 having the suction hole 131 opened in the tip surface for suction. . Subsequently, the collet 130 is moved into the recess of the package 120, and the pad electrodes 115b and 116c located on the concave surface side of the adsorbed crystal resonator element 111 are respectively connected to the input / output internal terminals 124 and 125 on the inner bottom surface of the package 120. Position one-on-one. Subsequently, both of them are utilized by utilizing a diffusion phenomenon caused by heating, pressurization, and application of ultrasonic waves using a flip chip mounting technique through each Au bump 118 formed in advance on each pad electrode 115b, 116c. Join.
Here, the reason why the Au bump 118 is used as a bonding means between the crystal resonator element 111 and the package 120 is that, when the Au bump 118 is used, the conductivity is improved as compared with the case where a conductive adhesive is used. This is because local bonding becomes possible and no outgas is generated, which contributes to higher frequency, smaller size, and higher reliability of the device.
However, when the crystal resonator element 111 is bonded to the package 120, if the crystal resonator element 111 has a resonance frequency of 300 MHz or more, the thickness of the vibration portion 113a is 5 μm or less, and the vibration portion 113a is attracted and pressurized by the cores 130. The bonding is completed in a state where the wire is damaged or excessive distortion occurs.
In the experiment by the present inventor, this distortion was large enough to be confirmed with the naked eye.
As described above, when the strain remains in the vibration portion 113a, the crystal resonator element 111 having a property that the frequency fluctuates as the residual strain is released due to a change with time or a thermal change is a resonance immediately after bonding. There was a problem that the frequency could not be maintained and the stability deteriorated.
[0006]
[Problems to be solved by the invention]
The present invention has been made to solve the above problems, and the first problem of the present invention corresponding to the first conventional example is that the outer periphery of the ultrathin vibrating portion is formed with a thick annular surrounding portion. High-performance and high-reliability ultra-high-frequency piezoelectric vibration by increasing the mechanical rigidity of the piezoelectric substrate and preventing bending deformation of the vibration part. It is an object to provide an element.
Next, a second problem of the present invention corresponding to the second conventional example is that Au bumps are used as means for connecting the piezoelectric vibration element in the package, and the piezoelectric vibration element adsorbed by the collet is placed on the terminal in the package. An object of the present invention is to provide a surface-mount type piezoelectric vibrator that solves the problem of damage to an ultrathin vibrating portion and excessive distortion that occur when bonding using Au bumps while being pressed.
[0007]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the invention according to claim 1 is characterized in that the vibration portion disposed on the bottom surface of the recessed portion in which the main surface of the piezoelectric substrate is recessed, and the periphery of the vibration portion are integrally supported, and the vibration and holding means thicker than the thickness of the parts, before Symbol both surfaces disposed so as to respectively face each other electrode of the vibrating portion, one surface of the piezoelectric vibrating element provided with electrical surface-mount type package A mechanically connected surface-mount type piezoelectric vibrator having a suction hole on a tip surface, and a collet having a shape in which the outer shape of the tip surface substantially matches the outer contour of the piezoelectric vibration element, The main surface of the piezoelectric vibration element opposite to the recessed portion is sucked and held so that the vibration section and the suction hole do not interfere with each other, and the piezoelectric vibration element is held in the surface mounted package in the sucked and held state. It is characterized by being connected by bumps.
The invention of claim 2 is characterized in that the holding means is a thick annular portion made of a piezoelectric material.
According to a third aspect of the present invention, a ratio L / H between the length L of the vibrating portion and the thickness H of the vibrating portion satisfies 0 <L / H ≦ 250.
The invention according to claim 4 is characterized in that the fundamental resonance frequency of the piezoelectric vibration element is 300 MHz or more.
The invention of claim 5 is characterized in that the piezoelectric material is an AT cut crystal.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
[Embodiment corresponding to first conventional example]
Hereinafter, a first embodiment of the present invention will be described in detail based on an example shown in the drawings.
FIG. 1 is a cross-sectional view of an AT-cut quartz crystal vibrating element having an ultra-thin part for the purpose of increasing the frequency.
This quartz resonator element 1 uses the fundamental thickness shear vibration wave of AT-cut quartz, and its resonance frequency is inversely proportional to the plate thickness. Therefore, in order to increase the frequency while maintaining the mechanical strength, the thickness is 80 μm. The main surface of the quartz substrate 2 is recessed by etching to form a recessed portion 3, and the bottom surface of the recessed portion 3 is used as an ultrathin vibrating portion 4, and the outer periphery of the vibrating portion 4 extends over the entire circumference. The thick ring-shaped surrounding portion 5 to be supported is integrated with the vibrating portion 4.
Here, since the quartz substrate 2 has anisotropy in the crystal axis direction, the peripheral wall portions 3a and 3b of the recessed portion 3 have a property of being etched with different inclinations in the thickness direction depending on the crystal axis direction.
Further, a main surface electrode 10 is formed on one main surface (flat surface) of the quartz substrate 2, and a back surface electrode 11 is formed on the other main surface (concave surface). Lead terminals (not shown) extend from the electrodes 10 and 11 toward the edge of the substrate, and are electrically connected to the electrodes in the package when mounted in a package (not shown).
In the present invention, in order to obtain a resonance frequency of 300 MHz or higher, the plate thickness of the vibrating portion 4 is ultrathin. For example, when a fundamental wave thickness shear vibration wave of 622 MHz is obtained, the plate thickness H of the vibration part 4 is about 2 μm.
The characteristic configuration of the present invention is that the length L of the vibration part 4 is set to 0.5 mm or less, that is, the ratio L / H of the length L to the plate thickness H of the vibration part 4 is set to 250 or less. With such a configuration, the mechanical rigidity of the piezoelectric substrate 2 is increased, and the flexure deformation of the vibration part 4 is prevented, so that high performance and high reliability can be obtained. Here, the length L includes not only the length of the vibrating portion 103 when viewed from the front shown in FIG. 1, but also the length L when viewed from the side surface orthogonal to FIG.
[0009]
FIG. 2 is a table showing the results of material mechanics analysis on the tendency of increase in the maximum deflection amount W at the center of the vibration portion with respect to the ratio L / H.
The maximum deflection amount W has an exponential relationship with the value of the above ratio, and increases rapidly when L / H = 250 or more. This is the same in both cases for the UHF band, that is, the vibration element having a resonance frequency of 300 MHz or more.
Therefore, by setting the ratio L / H to 250 or less, the mechanical rigidity of the vibrating part is not deteriorated even when an ultra-high frequency of 300 MHz or more is achieved, and the residual internal strain that causes deflection is reduced. In addition, normal energy confinement thickness vibration can be obtained, and reliability such as long-term aging is not deteriorated.
It should be noted that when obtaining an ultra-high frequency fundamental wave thickness vibration, the energy can be sufficiently confined in the vicinity of the main surface electrode 10 and there is no need to worry about energy leakage to the end of the vibration part. Is only required to be slightly larger than the main surface electrode 10, and by reducing L / H to the limit, the influence of deflection can be ignored.
This suggests the possibility of downsizing the vibration element 1 at the same time.
In the above embodiment, the present invention has been described as an example of applying the present invention to an AT-cut crystal resonator element having an ultrathin vibrating portion, but the present invention is not limited to this, It is self-evident that the electrode formed on one side may be a split-mode dual mode filter.
Moreover, even if a space is ensured by means of mechanical polishing, etc., even if a space is ensured by holding the outer peripheral edge of the vibration element by other holding means, etc. It is obvious that the configuration of the present invention can be applied to solve the same problem due to the deflection deformation of the portion.
The cut angle of the piezoelectric substrate may be a crystal other than the AT cut or a piezoelectric substrate other than the crystal.
Next, the piezoelectric vibration element 1 having the above-described configuration can be hermetically sealed in a ceramic package to form a piezoelectric vibrator as a surface-mount type piezoelectric device.
[0010]
[Embodiment corresponding to second conventional example]
Next, a second embodiment of the present invention will be described in detail based on the illustrated embodiment.
FIG. 3 is a perspective view of the front and back surfaces of an AT-cut quartz crystal resonator element having an ultra-thin vibrating portion for the purpose of increasing the frequency, and this crystal resonator element 21 is a vibration utilizing the fundamental wave thickness shear vibration wave of an AT-cut crystal. Since the resonance frequency is inversely proportional to the plate thickness, one main surface of the crystal substrate 22 constituting the crystal resonator element 21 is recessed by etching in order to increase the frequency while maintaining the mechanical strength. The concave portion 23 is formed, and the bottom surface of the concave portion 23 is formed as an ultrathin vibrating portion 24 and a thick annular surrounding portion 25 that supports the outer periphery of the vibrating portion 24 over the entire circumference is integrated. ing.
Further, as shown in FIG. 3 (a), on one main surface (concave surface) of the quartz substrate 22, a main surface electrode (excitation electrode) 25, and a lead electrode 26a drawn from the main surface electrode toward the substrate edge. And a main surface side pad electrode 26b formed by vapor deposition on the end portion of the lead electrode 26a. The pad electrode 26b is conductively connected to the pad electrode 26c on the back side of the substrate through a notch 27 at the edge of the substrate.
As shown in FIG. 3B, on the back surface of the quartz substrate 22, a back electrode 31 formed at a position facing the main surface electrode 25, a lead electrode 32a extending from the back electrode 32, and a lead electrode And a pad electrode 32b formed by thick deposition on the edge of 32a. Au bumps 40 are formed on both pad electrodes 26c and 32b on the back side. The Au bump 40 is bonded to the pad electrodes 26c and 32b by a diffusion phenomenon caused by heating, pressurization, and application of ultrasonic waves by applying a wire bonding technique.
The pad electrodes 26b, 26c, and 32b are thickened by vapor deposition in order to form the Au bump 40 and improve the conductivity of the notch 27.
[0011]
FIG. 4 is a cross-sectional view showing the structure of a surface-mounted crystal resonator as an example of a piezoelectric device using the crystal resonator element 21.
After the crystal resonator element 21 shown in FIG. 3 is accommodated in the ceramic package 50, the upper surface opening of the ceramic package 50 is hermetically sealed with a metal upper lid 51.
The ceramic package 50 is annularly enclosed on the frame 53 for seam welding the ceramic substrate 52 constituting the bottom plate, the ceramic annular frame 53 integrated on the outer periphery of the upper surface of the ceramic substrate 52, and the upper lid 51. It consists of a fixed seam ring 54 and has a recess for accommodating the crystal resonator element 21 at the center as a whole, and has a box shape with an annular portion on the outer periphery.
Internal terminals 56 and 57 formed of Au metallization are exposed on the upper surface of the ceramic substrate 52, and are electrically connected to external terminals (not shown) provided on the outer bottom surface of the package. The positions and shapes of the internal terminals 56 and 57 are set in advance so that the internal terminals 56 and 57 can be connected to the pad electrodes 26c and 32b on the back surface side of the crystal resonator element 21 in a one-to-one corresponding positional relationship.
In this crystal resonator, the internal terminals 56 and 57 are connected to the pad electrodes 26c and 32b by using the Au bump 40 with the flat back surface of the crystal resonator element 21 facing the bottom surface of the package, and the package is recessed. The structure is hermetically sealed with a lid 51.
[0012]
FIG. 5 is a diagram showing a process of connecting the crystal resonator element 21 sucked and held by the collet 61 into the package 50, and the collet 61 connected to a vacuum pump (not shown) is vacuumed on the flat front end surface for suction. A suction hole 62 that communicates with the pump and receives negative pressure is provided. The front end surface of the collet 61 is brought into close contact with the concave surface (main surface) side of the crystal resonator element and is held by suction, and the back surface side pad electrodes 26c and 32b previously provided with Au bumps 40 and the input / output internal terminals 56 on the ceramic package side. , 57 are brought into contact with each other through the Au bump 40, and are electrically and mechanically connected by utilizing a diffusion phenomenon caused by heating, pressurizing, and applying ultrasonic waves using a flip chip mounting technique.
The reason for using the Au pump 40 is that the conductivity is improved, local bonding is possible, and there is no outgas, compared with the case where a conductive adhesive is used. Contributes to higher reliability and higher reliability.
Here, the characteristic configuration of the embodiment of the present invention is such that the surface of the crystal resonator element 21 (surface to be attracted) to which the collet 60 is attracted is a concave surface, and contact between the vibrating portion 24 and the tip surface of the collet 60 is avoided. It is to have done.
The shape of the bottom surface of the tip surface of the collet 60 is a shape that substantially matches the outer contour of the crystal resonator element. When the collet tip surface is brought into close contact with the main surface side of the crystal resonator element as shown in the drawing, the suction hole 62 is made of crystal The entire main surface including the recess 23 of the substrate faces and contacts and sucks it, so that it can be reliably held. On the other hand, the collet tip surface does not come into direct contact with the vibrating portion 24, so that the vibrating portion 24 is not deformed or damaged by the suction force from the suction hole or the applied pressure from the collet tip surface.
That is, if the crystal resonator element 21 has a fundamental resonance frequency of 300 MHz or more, the thickness of the vibrating part 24 becomes 5 μm or less and the mechanical strength is significantly reduced. In this case, the vibrating part 24 is attracted and pressurized by the collet 60. Since no direct load acts on the joint, it is possible to complete the joining without damaging the vibration part or causing excessive distortion.
Therefore, since the distortion due to the bonding does not remain in the vibration part 24, the crystal resonator element 21 can maintain the resonance frequency immediately after the bonding and ensure excellent stability even with a change with time or a thermal change.
[0013]
FIG. 6 shows another embodiment, and the flat back surface side of the crystal resonator element 21 may be adsorbed by the tip surface of the collet 60 as shown in FIG. In this case, the shape and position of the vibration part are set in advance so as to avoid the suction hole 62 so that the suction hole 62 of the collet 60 and the vibration part 24 do not interfere with each other. In this way, at least damage and distortion of the vibration part 24 due to adsorption can be avoided, and it is possible to eliminate the inconvenience that excitation becomes impossible and the stability of the resonance frequency deteriorates due to aging and thermal changes.
In the present embodiment, the present invention has been described as an example in which the present invention is applied to an AT-cut crystal resonator element having an ultrathin vibrating portion, but the present invention is not limited to this, Obviously, the electrode formed on one side may be a split-mode dual mode filter.
The piezoelectric substrate to be used may be a crystal having a cut angle other than AT cut or a piezoelectric substrate other than crystal.
[0014]
【Effect of the invention】
The first embodiment of the present invention is a piezoelectric vibration element comprising a piezoelectric substrate having a structure in which the outer periphery of an ultrathin vibrating portion having a fundamental resonance frequency of 300 MHz or higher is integrally supported by a thick annular surrounding portion. Therefore, the ratio L / H between the length L of the vibration part and the thickness H of the vibration part is set to be 250 or less, so that the mechanical rigidity of the piezoelectric substrate is increased to prevent the deformation of the vibration part. Thus, it is possible to provide a high-performance and high-reliability ultrahigh-frequency piezoelectric vibration element. Therefore, there is a remarkable effect in providing a high-performance and high-reliability ultrahigh-frequency piezoelectric vibrator.
In the second embodiment of the present invention, the principal surface of the piezoelectric substrate is recessed, the bottom surface of the recessed portion is an ultrathin vibrating portion, and an electrode is provided on each of the principal surface and the back surface. Ultra-high-frequency piezoelectric vibration element that is electrically and mechanically connected by Au bumps in a surface-mount package with the main surface or back surface adsorbed and held by a collet having a suction hole on the front end surface Since the ultra-thin vibrating portion is disposed at a position where it does not interfere with the suction hole when attracted by the collet, when the piezoelectric vibration element is assembled in the ceramic package, Distortion does not occur and excitation cannot be performed, and the problem that the stability of the resonance frequency is deteriorated due to change with time or heat can be solved. Therefore, the present invention is remarkably effective in providing a high-performance and highly reliable surface-mount type super-high frequency piezoelectric resonator that sufficiently exhibits the effect of using the Au pump.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an AT-cut crystal resonator element as an embodiment of the present invention.
FIG. 2 is a diagram showing a relationship between a maximum deflection at the center of a vibration part and a size ratio.
FIGS. 3A and 3B are perspective views showing configurations of a main surface side and a back surface side of a crystal resonator element according to an embodiment of the present invention. FIGS.
4 is a cross-sectional view showing a configuration of a crystal resonator in which the crystal resonator element of FIG. 2 is sealed in a ceramic package.
FIG. 5 is a cross-sectional view showing a state in which the quartz resonator element of the present invention is adsorbed by a collet and assembled in a package.
6 is a view showing a modification of FIG.
FIG. 7 is an explanatory diagram of a first conventional example.
FIGS. 8A and 8B are perspective views showing configurations of a main surface side and a back surface side of a crystal resonator element of a second conventional example.
9 is a cross-sectional view of a crystal resonator in which the crystal resonator element of FIG. 8 is housed in a package.
FIG. 10 is a diagram for explaining a defect of a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Crystal resonator element (piezoelectric resonator element), 2 Crystal substrate (piezoelectric substrate), 3 Recessed part, 4 Vibration part, 5 Ring surrounding part (annular part), 10 Main surface electrode, 11 Back electrode, 21 Crystal oscillator, 22 Crystal substrate, 23 concave part, 24 vibrating part, 25 annular surrounding part, 26a lead electrode, 26b pad electrode, 26c pad electrode, 27 notch, 32a lead electrode, 32b pad electrode, 40 Au bump, 50 ceramic package, 51 top cover , 52 Ceramic substrate, 53 Frame, 54 Seam ring, 56, 57 Internal terminal, 61 Collet, 62 Suction hole.

Claims (5)

圧電基板の主面を凹陥せしめた凹陥部の底面に配置された振動部と、該振動部の周縁を一体的に支持し、前記振動部の厚みよりも厚肉の保持手段と、前記振動部の両面に夫々互いに対向するように設けられた電極と、を備えた圧電振動素子の一方の面を、表面実装型パッケージ内に電気的機械的に接続した表面実装型圧電振動子の製造方法であって、
先端面に吸引穴を備え、前記先端面の外形が前記圧電振動素子の外形輪郭とほぼ合致する形状のコレットにて、前記振動部と前記吸引穴とが干渉しないように、前記凹陥部とは反対側の前記圧電振動素子の主面を吸着保持し、
吸着保持した状態で前記圧電振動素子を前記表面実装型パッケージ内にバンプにて接続することを特徴とする表面実装型圧電振動子の製造方法。
A vibrating portion disposed to the main surface of the piezoelectric substrate to the bottom surface of the concave portion was allowed concave, the periphery of the vibrating portion is supported integrally, and holding means thicker than the thickness of the vibrating section, before Symbol vibration A surface-mount type piezoelectric vibrator in which one surface of a piezoelectric vibration element provided with electrodes provided so as to face each other on both surfaces of a part is electrically and mechanically connected in a surface-mount type package Because
With the collet having a suction hole in the tip surface and the outer shape of the tip surface substantially matching the outer contour of the piezoelectric vibration element , the concave portion is defined so that the vibration part and the suction hole do not interfere with each other. Adsorb and hold the main surface of the piezoelectric vibration element on the opposite side ,
A method of manufacturing a surface-mount type piezoelectric vibrator, wherein the piezoelectric vibration element is connected to the surface-mount package by a bump in a state of being held by suction.
前記保持手段は圧電材料から成る厚肉の環状部であることを特徴とする請求項1に記載の表面実装型圧電振動子の製造方法。  2. The method for manufacturing a surface-mounted piezoelectric vibrator according to claim 1, wherein the holding means is a thick annular portion made of a piezoelectric material. 前記振動部の長さLと前記振動部の厚Hとの比L/Hが、0<L/H≦250を満足することを特徴とする請求項1又は2に記載の表面実装型圧電振動子の製造方法。  3. The surface-mount type piezoelectric vibration according to claim 1, wherein a ratio L / H of a length L of the vibration part and a thickness H of the vibration part satisfies 0 <L / H ≦ 250. Child manufacturing method. 前記圧電振動素子の基本波共振周波数は300MHz以上であることを特徴とする請求項1乃至3の何れか一項に記載の表面実装型圧電振動子の製造方法。  The method for manufacturing a surface-mount type piezoelectric vibrator according to claim 1, wherein a fundamental wave resonance frequency of the piezoelectric vibration element is 300 MHz or more. 前記圧電材料は、ATカット水晶であることを特徴とする請求項1乃至4の何れか一項に記載の表面実装型圧電振動子の製造方法。  The method for manufacturing a surface-mount piezoelectric vibrator according to claim 1, wherein the piezoelectric material is an AT-cut quartz.
JP2001200197A 2001-06-29 2001-06-29 Manufacturing method of surface mount type piezoelectric vibrator Expired - Fee Related JP4857491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001200197A JP4857491B2 (en) 2001-06-29 2001-06-29 Manufacturing method of surface mount type piezoelectric vibrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001200197A JP4857491B2 (en) 2001-06-29 2001-06-29 Manufacturing method of surface mount type piezoelectric vibrator

Publications (2)

Publication Number Publication Date
JP2003017977A JP2003017977A (en) 2003-01-17
JP4857491B2 true JP4857491B2 (en) 2012-01-18

Family

ID=19037356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001200197A Expired - Fee Related JP4857491B2 (en) 2001-06-29 2001-06-29 Manufacturing method of surface mount type piezoelectric vibrator

Country Status (1)

Country Link
JP (1) JP4857491B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5216210B2 (en) 2006-12-28 2013-06-19 日本電波工業株式会社 Quartz vibrating piece and quartz vibrating device
JP5468240B2 (en) * 2008-11-17 2014-04-09 日本電波工業株式会社 Temperature compensated crystal oscillator for surface mounting
JP6035808B2 (en) * 2012-03-27 2016-11-30 セイコーエプソン株式会社 Vibration element, vibrator, electronic device, and electronic apparatus
JP6074903B2 (en) * 2012-03-28 2017-02-08 セイコーエプソン株式会社 Vibration element, vibrator, electronic device, and electronic apparatus
CN104900796B (en) * 2015-05-26 2017-09-22 张广 The ratchet device suitable for high-frequency low-load based on piezoelectricity back wash effect

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0878892A (en) * 1994-09-02 1996-03-22 Daishinku Co Vacuum-clamping nozzle and bonding method with bond, using the nozzle
JP2000040938A (en) * 1998-07-23 2000-02-08 Toyo Commun Equip Co Ltd Ultra high frequency piezoelectric device
JP4051452B2 (en) * 1998-08-25 2008-02-27 株式会社大真空 Piezoelectric vibrator
JP2000232332A (en) * 1999-02-09 2000-08-22 Toyo Commun Equip Co Ltd Surface mounted piezoelectric resonator

Also Published As

Publication number Publication date
JP2003017977A (en) 2003-01-17

Similar Documents

Publication Publication Date Title
EP2051375B1 (en) Quartz crystal device for surface mounting
JP5796355B2 (en) Piezoelectric vibration element, piezoelectric vibrator, electronic device, and electronic apparatus
KR101837516B1 (en) Piezoelectric vibrating reed, piezoelectric vibrator, method for manufacturing piezoelectric vibrating reed, and method for manufacturing piezoelectric vibrator
JP5824967B2 (en) Vibration element, vibrator, electronic device, and electronic apparatus
WO2013027381A1 (en) Vibrating element, resonator, electronic device, and electronic apparatus
JP2013042440A (en) Piezoelectric vibrating element, piezoelectric vibrator, electronic device and electronic apparatus
US7388320B2 (en) Quartz crystal unit and holding structure for same
JP5824958B2 (en) Vibration element, vibrator, electronic device, and electronic apparatus
JP5910092B2 (en) Piezoelectric vibration element, piezoelectric vibrator, electronic device, and electronic apparatus
JP4857491B2 (en) Manufacturing method of surface mount type piezoelectric vibrator
JP5668392B2 (en) Piezoelectric vibration element, piezoelectric vibrator and piezoelectric oscillator
JP2000232332A (en) Surface mounted piezoelectric resonator
JP6780718B2 (en) Piezoelectric vibration device
JP6794941B2 (en) Crystal diaphragm and crystal vibration device
JP2005033390A (en) Piezoelectric device and manufacturing method for the same
JP2008236514A (en) Piezoelectric viblation device
JP2010021613A (en) Piezoelectric vibration device
JP2002141765A (en) Piezoelectric substrate, piezoelectric vibrator and piezoelectric device mounting it
JP2013258452A (en) Vibration element, vibrator, electronic device, electronic apparatus, mobile body, and manufacturing method of vibration element
JP3968782B2 (en) Electronic component package, piezoelectric vibration device using the package, and method of manufacturing piezoelectric vibration device
JP6137274B2 (en) Vibration element, vibrator, electronic device, and electronic apparatus
JP5599057B2 (en) Package and piezoelectric vibrator
JP2003060472A (en) Piezoelectric vibrator
WO2020195144A1 (en) Crystal vibration device
JP2010213134A (en) Piezoelectric vibration device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110729

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111017

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees