JP2000040938A - Ultra high frequency piezoelectric device - Google Patents

Ultra high frequency piezoelectric device

Info

Publication number
JP2000040938A
JP2000040938A JP10207495A JP20749598A JP2000040938A JP 2000040938 A JP2000040938 A JP 2000040938A JP 10207495 A JP10207495 A JP 10207495A JP 20749598 A JP20749598 A JP 20749598A JP 2000040938 A JP2000040938 A JP 2000040938A
Authority
JP
Japan
Prior art keywords
mode
vibration
vibrating
frequency
vibrating portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10207495A
Other languages
Japanese (ja)
Inventor
Koichi Iwata
浩一 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP10207495A priority Critical patent/JP2000040938A/en
Publication of JP2000040938A publication Critical patent/JP2000040938A/en
Pending legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a ultra high frequency crystal resonator which suppresses spurious vibration in the neighborhood of principal vibration by arranging a stepped part, that becomes a boundary between a vibrating part and an annular part which surrounds its periphery at a specified position. SOLUTION: The part of one principal plane of an AT cut quarts substrate 1 is made recessed by etching and the bottom of a recessed part 2 is etched to prescribed thickness to form a ultra thin vibrating part 3, and also a thick annular surrounding part which supports the circumference of the part 3 is formed integrally. A full electrode 5 is provided on the part 2 side and a partial electrode 6, a lead electrode 7 and a pad electrode 8 are formed on a flat side. The displacement of principal vibration (S0 mode) is small by appropriately setting the dimension W of the part 3 and a stepped part 4 which is a boundary between the part 3, so that an annular part is located at a position where the displacement of the primary symmetrical vibrating mode (S1 mode) is sufficiently larger than the displacement of the S0 mode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は超高周波圧電デバイ
スに関し、特に主振動近傍のスプリアスを抑圧した超高
周波圧電デバイスに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultra-high frequency piezoelectric device, and more particularly to an ultra-high frequency piezoelectric device in which spurious components near main vibrations are suppressed.

【0002】[0002]

【従来の技術】近年、通信機器の高周波化、データ処理
の高速化、大容量化に伴ってこれらの装置に用いられる
圧電デバイスの要望が大きくなっている。このような超
高周波圧電デバイスの1つにATカット超高周波水晶振
動子があり、その周波数は数百MHzまで実用されてい
る。周知のように、ATカット水晶振動子の振動モード
は厚みすべり振動であり、その周波数は水晶基板の厚さ
に反比例するため、高周波化を図るには水晶基板の厚さ
を薄くする必要がある。しかし、ATカット水晶基板を
平板で作成する場合、耐衝撃性等の機械的強度を考慮す
ると、基本波振動で約55MHz(厚さで約30μm)
が上限の周波数であると考えられる。
2. Description of the Related Art In recent years, the demand for piezoelectric devices used in these apparatuses has been increasing with the increase in the frequency of communication equipment, the speed of data processing, and the increase in capacity. One such ultrahigh-frequency piezoelectric device is an AT-cut ultrahigh-frequency crystal oscillator, whose frequency is practically used up to several hundred MHz. As is well known, the vibration mode of the AT-cut crystal resonator is a thickness shear vibration, and its frequency is inversely proportional to the thickness of the crystal substrate. Therefore, it is necessary to reduce the thickness of the crystal substrate in order to increase the frequency. . However, when the AT-cut quartz substrate is made of a flat plate, the fundamental wave vibration is about 55 MHz (about 30 μm in thickness) in consideration of mechanical strength such as impact resistance.
Is considered to be the upper limit frequency.

【0003】この周波数の上限を上げるために開発され
たATカット水晶振動子が、フォトリソグラフィ技法と
エッチングとを用いて製作する超高周波ATカット水晶
振動子(以下、超高周波振動子と称す)であり、図4
(a)はその構成を示す断面図、同図(b)は斜視図で
ある。はじめに、水晶基板の製作過程を説明すると、機
械的強度を保持しつつ高周波化を図る為に、厚さ約80
μmのATカット水晶基板11の一方の主面の一部をフ
ォトリソグラフィ技法とエッチングとを用いて凹陥せし
め、該凹陥部12の底面の厚さを所定の厚さまでエッチ
ングして、超薄肉の振動部13とするとともに、該振動
部13の周囲を支持する厚肉の環状囲繞部を一体的に形
成する。この際、超薄肉の振動部13のエッチングされ
た平面は水晶基板11の他方の主面と平行にエッチング
される性質があるため、良好な平面度、平行度を有する
振動部13が形成される。一方、水晶基板11は結晶軸
方向により異方性を有するため、前記凹陥部12の周囲
の段差部14a、14bは結晶軸方向により厚さ方向に
異なった傾斜でエッチングされる性質を有する。
[0003] An AT-cut crystal resonator developed to increase the upper limit of the frequency is an ultra-high-frequency AT-cut crystal resonator (hereinafter, referred to as an ultra-high-frequency resonator) manufactured using photolithography and etching. Yes, FIG. 4
(A) is a sectional view showing the configuration, and (b) is a perspective view. First, the manufacturing process of the quartz substrate will be described. In order to increase the frequency while maintaining the mechanical strength, a thickness of about 80 mm is required.
A part of one main surface of the AT-cut quartz substrate 11 of μm is depressed by using a photolithography technique and etching, and the thickness of the bottom surface of the depressed portion 12 is etched to a predetermined thickness. The vibrating portion 13 is formed, and a thick annular surrounding portion that supports the periphery of the vibrating portion 13 is integrally formed. At this time, since the etched plane of the ultra-thin vibrating portion 13 has a property of being etched in parallel with the other main surface of the quartz substrate 11, the vibrating portion 13 having good flatness and parallelism is formed. You. On the other hand, since the quartz substrate 11 has anisotropy in the crystal axis direction, the steps 14a and 14b around the recess 12 have a property of being etched with a different inclination in the thickness direction depending on the crystal axis direction.

【0004】超薄肉の振動部13の厚さを所定の厚さに
エッチングした後、凹陥部12側には全面に金電極15
を付着して一方の電極とすると共に、平面側にはフォト
リソグラフィ技法を用いて、部分電極16と該電極から
延在するリード電極17及びボンデング部18を形成す
る。この例においては水晶基板11のリード電極17が
延在する方向がX軸、これと直行する方向がZ’軸とな
るように結晶軸を設定してある。
After the thickness of the ultra-thin vibrating part 13 is etched to a predetermined thickness, a gold electrode 15
Is attached to form one electrode, and a partial electrode 16, a lead electrode 17 extending from the electrode, and a bonding portion 18 are formed on the plane side by using a photolithography technique. In this example, the crystal axis is set such that the direction in which the lead electrode 17 of the crystal substrate 11 extends is the X axis, and the direction perpendicular thereto is the Z ′ axis.

【0005】超高周波振動子の振動モードも従来のAT
カット水晶振動子の振動モードと同様であり、厚みすべ
り振動モード(thickness shear mode)と厚みねじれ振
動モード(thickness twist mode)が存在する。前者は
X軸方向に変位しX軸方向に伝搬する振動モードであ
り、後者はX軸方向に変位しZ’軸方向に伝搬する振動
モードである。図4に示すような構造の超高周波振動子
では、上記いずれの振動モードのエネルギー閉じ込め
も、部分電極16の質量負荷効果に依存する。また、そ
の振動モードの変位分布は部分電極16上では余弦状で
あり、該電極16からの距離と共に指数関数的に減衰す
ることが知られている。部分電極16上には厚みすべり
主振動である対称最低次振動モード(S0モード)以外
に、多数の対称振動モードSi(i=1,2..)と反
対称振動モードAi(i=0,1,2..)が励起さ
れ、これらの非調和振動モード(インハーモニック・モ
ード)は主振動に対してはスプリアス振動モードとな
る。
[0005] The vibration mode of the ultrahigh-frequency vibrator is the same as that of the conventional AT.
The vibration mode is the same as the vibration mode of the cut quartz crystal resonator, and there are a thickness shear mode and a thickness twist mode. The former is a vibration mode that displaces in the X-axis direction and propagates in the X-axis direction, and the latter is a vibration mode that displaces in the X-axis direction and propagates in the Z′-axis direction. In the ultrahigh-frequency vibrator having the structure shown in FIG. 4, the energy confinement in any of the above vibration modes depends on the mass load effect of the partial electrode 16. Further, it is known that the displacement distribution of the vibration mode has a cosine shape on the partial electrode 16 and decays exponentially with the distance from the electrode 16. On the partial electrode 16, in addition to the symmetric lowest-order vibration mode (S 0 mode) that is the thickness-shear main vibration, a number of symmetric vibration modes S i (i = 1, 2,...) And anti-symmetric vibration modes Ai (i = 0, 1, 2) are excited, and these anharmonic vibration modes (inharmonic modes) are spurious vibration modes with respect to the main vibration.

【0006】ATカット振動子の主振動とスプリアス振
動モードの振る舞いを統一的に説明するための理論が、
所謂エネルギー閉じ込め理論であり、その成果の1つと
してスプリアスを抑圧したATカット水晶振動子の設計
法として、厚みすべり振動に対しては次式がよく知られ
ている。 L1×√Δ/H=2.8 (1) また、厚みねじれ振動に対しては L2×√Δ/H=2.4 (2) となる。ここでL1、L2は部分電極16のX軸方向およ
びZ’軸方向の寸法、Hは振動部13の厚さと凹陥部側
の電極膜15を水晶基板の厚さに換算した厚さとの和で
ある。また、Δは周波数低下量であり、一般的には水晶
基板のカットオフ周波数をfs、電極を付着した場合の
カットオフ周波数をfeとすると、次式で表される。 Δ=(fs−fe)/fs (3) ただ、図3のような構造の超高周波振動子の場合は、H
Eを部分電極の膜厚とすると、Δ=HE/(H+HE)と
表すこともできる。
The theory for unifying the behavior of the main vibration and spurious vibration mode of the AT-cut vibrator is as follows:
This is a so-called energy confinement theory. As one of the results, the following formula is well known for a thickness shear vibration as a design method of an AT-cut crystal resonator in which spurious is suppressed. L 1 × √Δ / H = 2.8 (1) Further, for thickness torsional vibration, L 2 × √Δ / H = 2.4 (2). Here, L 1 and L 2 are the dimensions of the partial electrode 16 in the X-axis direction and the Z′-axis direction, and H is the thickness of the vibrating portion 13 and the thickness of the electrode film 15 on the side of the recess converted to the thickness of the quartz substrate. It is sum. Further, Δ is the amount of decrease in frequency, and is generally expressed by the following equation, where fs is the cutoff frequency of the quartz substrate, and fe is the cutoff frequency when electrodes are attached. Δ = (fs−fe) / fs (3) However, in the case of an ultrahigh-frequency oscillator having a structure as shown in FIG.
If E is the film thickness of the partial electrode, it can be expressed as Δ = H E / (H + H E ).

【0007】一般のATカット水晶振動子では、式
(1)〜(3)を用いて主振動のみを閉じ込めモードと
するように諸定数を設定するが、超高周波振動子のよう
に所望の周波数が数百MHzと高周波化する振動子に上
式を適用しようとすると、振動部13の厚さが極めて薄
くなるため、部分電極16の電極寸法L1、L2を極めて
小さくするか、部分電極の膜厚HEを極端に薄くする
か、それとも前記両方の値を極めて小さい値と必要があ
る。図5は、従来の構造の超高周波振動子の諸定数とし
て、振動部13の厚さHを2.237μm、周波数低下
量Δを0.17、振動部のX軸およびZ’軸の基板長W
1、W2をそれぞれ0.92mm、1.16mm、電極
寸法L1、L2を共に0.2mmに設定した場合の周波数
スペクトルで、共振周波数は619MHである。横軸は
周波数(MHz)、縦軸は超高周波振動子のリアクタン
ス(Ω)を示している。
In a general AT-cut crystal resonator, various constants are set so that only the main vibration is in the confinement mode by using the equations (1) to (3). If the above equation is applied to a vibrator whose frequency is increased to several hundred MHz, the thickness of the vibrating portion 13 becomes extremely thin, so that the electrode dimensions L 1 and L 2 of the partial electrode 16 are made extremely small or thickness H or extremely thin E of, or need a very small value the value of the both. FIG. 5 shows, as various constants of the conventional high-frequency vibrator, the thickness H of the vibrating portion 13 is 2.237 μm, the frequency reduction Δ is 0.17, and the substrate lengths of the vibrating portion on the X axis and the Z ′ axis are shown. W
1 and W2 are 0.92 mm and 1.16 mm, respectively, and the electrode dimensions L 1 and L 2 are both set to 0.2 mm. The resonance spectrum is 619 MH. The horizontal axis represents the frequency (MHz), and the vertical axis represents the reactance (Ω) of the ultrahigh frequency vibrator.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、図5か
ら明らかなように従来の超高周波振動子は、多数のスプ
リアス振動モードがエネルギー閉じ込め状態にあること
を示している。上記の超高周波振動子の部分電極16の
膜厚HEは、成膜技術上の制約、オーミックロスあるい
はエージングの信頼性等の点から、一定の膜厚以下に薄
くすることはできない。また、部分電極16の寸法
1、L2を小さくしていくと振動子の等価インダクタン
スが大きくなり、発振器の素子として用いる場合には適
さない。このような制約からX軸方向及びZ’軸方向に
多数存在する非調和高次振動モードが閉じ込めモードと
なり、強勢なスプリアス振動が多数発生することにな
る。このように強勢なスプリアス振動が主振動の近傍に
存在する高周波振動子を発振器の振動素子として用いる
と、異常発振(主振動モードで発振するのではなく、ス
プリアス振動モードで発振する現象)を引き起こすとい
う問題があった。また、上記高周波振動子を電圧制御水
晶発振器に用いるとスプリアス振動のため、その周波数
可変範囲が制限されるという問題もあった。本発明は上
記問題を解決するためになされたものであって、主振動
の近傍のスプリアス振動を抑圧した超高周波水晶振動子
を提供することを目的とする。
However, as apparent from FIG. 5, the conventional ultrahigh-frequency vibrator shows that many spurious vibration modes are in an energy confined state. Thickness H E partial electrodes 16 of the super high frequency oscillator, restrictions on the deposition technique, in terms of reliability and the like of the ohmic loss or aging, can not be thinned below a certain thickness. Also, as the dimensions L 1 and L 2 of the partial electrode 16 are reduced, the equivalent inductance of the vibrator increases, which is not suitable for use as an oscillator element. Due to such restrictions, a large number of anharmonic higher-order vibration modes existing in the X-axis direction and the Z′-axis direction become confinement modes, and a large number of strong spurious vibrations are generated. When a high-frequency vibrator in which such a strong spurious vibration exists in the vicinity of the main vibration is used as a vibrating element of an oscillator, abnormal oscillation (a phenomenon of oscillating in a spurious vibration mode instead of oscillating in a main vibration mode) is caused. There was a problem. Further, when the high-frequency vibrator is used for a voltage-controlled crystal oscillator, there is a problem that the frequency variable range is limited due to spurious vibration. The present invention has been made to solve the above problem, and has as its object to provide an ultrahigh-frequency crystal resonator in which spurious vibrations near the main vibration are suppressed.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に本発明に係る超高周波圧電デバイスの請求項1記載の
発明は、薄肉の振動部と該振動部の周縁を包囲する環状
部とを圧電基板にて一体的に形成し、前記振動部の表面
に互いに対向する一対の電極を設けた超高周波圧電振動
子において、前記振動部に励起される主振動たるS0
ードの変位が小さく、第1次対称モード振動たるS1
ードの変位が主振動のそれに比べて大きくなる位置に前
記振動部と前記環状部との境界となる段差部を配置する
ように構成したことを特徴とする超高周波圧電デバイス
である。請求項2記載の発明は、薄肉の振動部と該振動
部の周縁を包囲する厚肉の環状部とを圧電基板にて一体
的に形成し、前記振動部の表面に互いに対向する一対の
電極を設けた超高周波圧電振動子において、部分電極の
寸法Li(i=1,2)と振動部の厚さHとの比Li/H
を60〜150、周波数低下量Δを0.04〜0.28
としたとき、前記振動部3の寸法W1と前記振動部の厚
さHとの比W1/Hを195〜215となるように設定
したことを特徴とする超高周波圧電デバイスである。請
求項3記載の発明は、薄肉の振動部と該振動部の周縁を
包囲する環状部とを圧電基板にて一体的に形成し、前記
振動部の表面に少なくとも一方を分割電極とする電極を
対向配置した超高周波圧電多重モードフィルタにおい
て、前記振動部に励起される2つの主振動であるS0
ードとA0モードの変位が小さく、第1次モード振動で
あるA1モードの変位が主振動のそれに比べて大きくな
る位置に前記振動部と前記環状部との境界となる段差部
を配置するように構成したことを特徴とする超高周波圧
電デバイスである。請求項4記載の発明は、前記圧電基
板を水晶基板とすることを特徴とする請求項1乃至2記
載の超高周波圧電振動子である。
According to a first aspect of the present invention, there is provided an ultrahigh frequency piezoelectric device comprising a thin vibrating portion and an annular portion surrounding a peripheral edge of the vibrating portion. integrally formed in the piezoelectric substrate, the ultra-high frequency piezoelectric vibrator in which a pair of electrodes facing each other on the surface of the vibrating portion, the displacement of the main vibration serving S 0 mode excited in the vibrating section is small, ultra characterized by being configured to position the stepped portion displacement of the first order symmetric mode vibration serving S 1 mode is a boundary between the annular portion and the vibrating portion in larger position than that of the main vibration It is a high-frequency piezoelectric device. According to a second aspect of the present invention, a thin vibrating portion and a thick annular portion surrounding the periphery of the vibrating portion are integrally formed on a piezoelectric substrate, and a pair of electrodes opposed to each other on a surface of the vibrating portion. , The ratio Li / H of the dimension L i (i = 1, 2) of the partial electrode to the thickness H of the vibrating portion in the ultrahigh frequency piezoelectric vibrator provided with
From 60 to 150, and the frequency reduction amount Δ from 0.04 to 0.28
Wherein the ratio W 1 / H of the dimension W 1 of the vibrating section 3 to the thickness H of the vibrating section is set to be 195 to 215. According to a third aspect of the present invention, a thin vibrating portion and an annular portion surrounding the periphery of the vibrating portion are integrally formed on a piezoelectric substrate, and an electrode having at least one divided electrode on the surface of the vibrating portion is provided. in opposing microwave piezoelectric multimode filter arranged, wherein a two main vibration excited in the vibrating portion S 0 mode and a 0 mode displacement is small, a 1 mode displacement is a first order mode vibration is mainly An ultrahigh-frequency piezoelectric device, wherein a step portion serving as a boundary between the vibrating portion and the annular portion is arranged at a position where the level is larger than that of the vibration. The invention according to claim 4 is the ultrahigh frequency piezoelectric vibrator according to claims 1 or 2, wherein the piezoelectric substrate is a quartz substrate.

【0010】[0010]

【発明の実施の形態】以下本発明を図面に示した実施の
形態に基づいて詳細に説明する。図1は本発明に係る超
高周波振動子の構成を示す図であって図1(a)は断面
図、同図(b)は斜視図である。厚さ約80μmのAT
カット水晶基板1の一方の主面の一部をフォトリソグラ
フィ技法とエッチングと用いて凹陥せしめ、該凹陥部2
の底面を所定の厚さまでエッチングして、超薄肉の振動
部3を形成すると共に、振動部3の周囲を支持する厚肉
の環状囲繞部を一体的に形成する。この凹陥部2の形状
と振動部3の平面度、平行度は、フォトリソグラフィ技
法とエッチングとを用いて再現よく形成することができ
ることは前述した通りである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail based on an embodiment shown in the drawings. FIG. 1 is a view showing a configuration of an ultrahigh-frequency vibrator according to the present invention. FIG. 1 (a) is a sectional view, and FIG. 1 (b) is a perspective view. AT of about 80μm thickness
A part of one main surface of the cut quartz substrate 1 is recessed by using a photolithography technique and etching.
Is etched to a predetermined thickness to form the ultra-thin vibrating portion 3 and integrally form a thick annular surrounding portion that supports the periphery of the vibrating portion 3. As described above, the shape of the concave portion 2 and the flatness and parallelism of the vibrating portion 3 can be formed with good reproducibility using photolithography and etching.

【0011】超高周波圧電基板の振動部3の厚さを所定
の厚さに仕上げた後、凹陥部側には全面電極5を施し、
平坦側にはフォトリソグラフィ技法を用いて部分電極6
と、該電極から延在するリード電極7及びパッド電極8
とを形成し、これをセラミックパッケージ等に収容し、
端子の導通を図って超高周波振動子を作成する。図1に
示す本発明に係る超高周波振動子の特徴は、平板のAT
カット水晶振動子のスプリアス振動モードの抑圧指標で
ある部分電極6の寸法Li(i=1,2でサフィックス
1はX軸方向、2はZ’軸方向を表す)と、振動部3の
寸法Wi(i=1,2でフィックス1はX軸方向、2は
Z’軸方向を表す)とを考慮に入れて、主振動近傍のス
プリアスモードを大幅に抑圧した点にある。その原理は
図2に示すように振動部3と同じ厚みの圧電基板9に励
振電極10を設けた場合、主振動であるS0モードの変
位分布はaのようになり、スプリアス振動モードである
1モードはbのように表される。本発明ではS0モード
の変位が小さく、S1モードの変位がS0に比べて十分に
大きい位置、即ち図中点線の位置に振動部と環状部との
境界である段差部が位置するよう構成する。
After finishing the thickness of the vibrating portion 3 of the ultrahigh frequency piezoelectric substrate to a predetermined thickness, the entire surface electrode 5 is applied to the concave portion side,
The partial electrode 6 is formed on the flat side by using a photolithography technique.
And a lead electrode 7 and a pad electrode 8 extending from the electrode.
Is formed and housed in a ceramic package or the like,
An ultra-high frequency vibrator is made by conducting the terminals. The feature of the ultrahigh-frequency vibrator according to the present invention shown in FIG.
The dimension L i of the partial electrode 6 (i = 1, 2 where the suffix 1 represents the X-axis direction and 2 represents the Z′-axis direction), which is the index of suppression of the spurious vibration mode of the cut crystal resonator, and the dimension of the vibrating section 3 W i (fix 1 i = 1,2 is the X-axis direction, 2 represents the Z 'axis direction) taking into account and, in point greatly suppressed spurious mode of the main vibration vicinity. The principle is the case where the excitation electrodes 10 provided on the piezoelectric substrate 9 having the same thickness as the vibration portion 3 as shown in FIG. 2, the displacement distribution of the S 0 mode is the main vibration becomes as shown in a, is spurious vibration mode S 1 mode can be expressed as b. Small displacement of the S 0 mode in the present invention, S 1 displacement is sufficiently large position compared to S 0 mode, i.e. such that the step portion is located is a boundary between the vibrating section and the annular portion in the position of the dotted line in FIG. Constitute.

【0012】このように構成することにより主振動(S
0)の変位は十分に小さくなっているのに対し、第1次
モード(S1モード)から高次のスプリアス振動モード
の変位は段差部およびその外側においても比較的大きい
ため、高次のスプリアスモードは段差部4a、4bで乱
反射を生じ、そのエネルギーを大きく損失することにな
る。即ち、閉じ込め理論より求めた閉じ込め係数(Li
×√Δ/H)を計算すると、主振動のみならず高次のス
プリアス振動モードまで閉じ込めモードとなり、これら
のスプリアス振動も強勢に励起されるが、振動部3の寸
法Wiを従来のものより小さくし、第1次対称振動モー
ド(S1モード)から高次のスプリアス振動モードを乱
反射して消散できるため、主振動のみがが強勢に励起さ
れることになる。このように振動部3の寸法Wiを適切
に設定することにより、主振動(S0モード)のみを閉
じ込めモードとし、対称第1次振動モード(S1モー
ド)から高次の振動モードの共振強度を減衰させる手段
が本発明の特徴である。
With such a configuration, the main vibration (S
While the displacement of 0) is sufficiently small, the displacement of the higher-order spurious vibration mode from the first-order mode (S 1 mode) is relatively larger at the step portion and the outer, higher-order spurious In the mode, irregular reflection occurs at the steps 4a and 4b, and the energy is greatly lost. That is, the confinement coefficient (L i) obtained from the confinement theory
Calculating the × √Δ / H), becomes the main vibration not only mode confinement to the high-order spurious vibration mode, these spurious vibration is excited in the stress, the dimensions W i of the vibrating portion 3 than the conventional small and, since it dissipate irregularly reflected higher order spurious vibration modes of the first order symmetric vibration mode (S 1 mode), only the primary vibration is excited in the stress. By appropriately setting the dimension W i of the vibrating part 3 in this way, only the main vibration (S 0 mode) is set as the confinement mode, and the resonance intensity from the symmetric primary vibration mode (S 1 mode) to a higher vibration mode is set. Is a feature of the present invention.

【0013】図3は本発明に係る超高周波振動子の一例
で、諸定数として振動部の厚さHを2.237μm、周
波数低下量を0.17、振動部3の寸法W1、W2をそれ
ぞれ0.4mmと0.44mm、部分電極6の寸法
1、L2を共に0.2mm、とした場合の周波数スペク
トルで、共振周波数は618MHzである。電気的な諸
定数は、図5に示したものと同等であるにも拘わらず、
図3の周波数スペクトルは従来の図5のそれと比べ主振
動の近傍のスプリアス振動モードが大幅に抑圧されてい
る。特に注目すべき点は、反共振点近傍のスプリアス振
動振動が抑圧されたことにより、反共振周波数にスプリ
アス振動モードが重畳しなくなったことである。更に、
種々パラメータを変更して実験を行った結果、600M
Hz帯においては部分電極の寸法Li(i=1,2)と
振動部の厚さHとの比Li/Hをほぼ100、周波数低
下量Δをほぼ0.17とした場合、前記振動部3の寸法
1と前記振動部の厚さHとの比W1/Hが195〜21
5となるように設定した時に主振動の近傍のスプリアス
が抑圧されることが明らかとなった。また、他の共振周
波数の場合でもLi/Hを60〜150、Δを0.04
〜0.28としたとき、W1/Hが195〜215の範
囲で同等の結果が得られることを確認した。このように
主振動に近接するスプリアス振動モードを抑圧すること
は、該超高周波振動子を発振器に用いた場合、異常発振
等の不具合等を解消するばかりでなく、該超高周波振動
子を電圧制御発振器の素子として用いた場合、周波数変
動幅を大幅に改善することができる。
FIG. 3 shows an example of the ultrahigh-frequency vibrator according to the present invention. The thickness H of the vibrating section is 2.237 μm, the frequency reduction is 0.17, and the dimensions W 1 and W 2 of the vibrating section 3 are various constants. Are 0.4 mm and 0.44 mm, respectively, and the dimensions L 1 and L 2 of the partial electrode 6 are both 0.2 mm. The resonance frequency is 618 MHz. Although the electrical constants are equivalent to those shown in FIG.
In the frequency spectrum of FIG. 3, the spurious vibration mode near the main vibration is greatly suppressed as compared with that of the conventional frequency spectrum of FIG. What is particularly noteworthy is that the spurious vibration mode near the anti-resonance point is suppressed, so that the spurious vibration mode does not overlap the anti-resonance frequency. Furthermore,
As a result of conducting experiments with various parameters changed, 600M
In the Hz band, when the ratio L i / H of the dimension L i (i = 1, 2) of the partial electrode to the thickness H of the vibrating portion is approximately 100 and the frequency decrease Δ is approximately 0.17, the vibration the ratio W 1 / H dimension W 1 and the thickness H of the vibrating portion parts 3 195-21
It has been clarified that the spurious in the vicinity of the main vibration is suppressed when the setting is made to be 5. Also, in the case of other resonance frequencies, L i / H is 60 to 150, and Δ is 0.04.
When it was set to 結果 0.28, it was confirmed that equivalent results were obtained when W 1 / H was in the range of 195 to 215. Suppressing the spurious vibration mode close to the main vibration in this way not only eliminates problems such as abnormal oscillation when using the ultrahigh-frequency oscillator as an oscillator, but also controls the ultrahigh-frequency oscillator with voltage control. When used as an oscillator element, the frequency fluctuation width can be greatly improved.

【0014】上記の説明では、本発明を618MHz帯
の基本波水晶振動子に適用した例を挙げたが、本発明は
これのみに限定されるものではなく、あらゆる周波数の
超高周波振動子に適用可能である。また、水晶振動子の
凹陥部形状については、水晶基板の両面に対向して凹陥
部を形成したものであってもよく、超薄肉の振動部ある
いは部分電極は円形であってもよい。上記説明では基板
1の凹陥部2側に全面電極5を、平坦側に部分電極6を
設けたが、その逆あるいは双方ともに部分電極であって
もよいことは云うまでもない。さらに、リード電極はX
軸方向に延在したが、Z軸方向としてもよく、任意の方
向よいことは云うまでもない。
In the above description, an example has been given in which the present invention is applied to a 618 MHz band fundamental wave crystal oscillator. However, the present invention is not limited to this, but is applied to an ultra-high frequency oscillator of any frequency. It is possible. Regarding the shape of the concave portion of the crystal resonator, a concave portion may be formed opposite to both surfaces of the crystal substrate, and the ultra-thin vibrating portion or the partial electrode may be circular. In the above description, the entire surface electrode 5 is provided on the concave portion 2 side of the substrate 1 and the partial electrode 6 is provided on the flat side, but it is needless to say that the reverse or both may be partial electrodes. Furthermore, the lead electrode is X
Although extending in the axial direction, it may be in the Z-axis direction, and it goes without saying that any direction is suitable.

【0015】また、本発明は2つの振動モードを用いる
2重モードフィルタにも適用できることは云うまでもな
い。2重モードフィルタの場合は、いずれか一方の電極
を分割電極とするため対称振動モード(Siモード)の
他に、反対称振動モード(Aiモード)も励起される。
従って、振動部の振動板寸法は2つの主振動S0 0
ードの振動変位は十分に小さくするが、これらより高次
のスプリアス振動S1、S2、S3・・やA1、A2、A3
・の振動変位は比較的大きくし、振動部3の端の段差部
4a、4bに達し、それらの振動変位(振動エネルギ
ー)が乱反射するように振動部寸法を設定すればよい。
It is needless to say that the present invention can be applied to a dual mode filter using two vibration modes. For double-mode filter, in addition to the symmetrical oscillation mode to the one of the electrodes divided electrodes (S i-mode), antisymmetric vibrational mode (A i-mode) is also excited.
Accordingly, the diaphragm size of the vibrating unit 2 of the main vibration S 0, A 0 the vibration displacement mode is sufficiently small, these higher order spurious vibration S 1, S 2, S 3 ·· or A 1, A 2 , A 3
The vibration displacement may be relatively large, and the dimensions of the vibration portion may be set such that the vibration displacements (vibration energy) reach the step portions 4a and 4b at the ends of the vibration portion 3 and are irregularly reflected.

【0016】以上の説明は圧電基板として水晶基板を例
に挙げて説明したが、本発明は水晶に限定する必要はな
く、他の圧電材料、ランガサイト、タンタル酸リチウ
ム、タンタル酸ナイオベイト及び四硼酸リチウム等の圧
電材料に適用できることは云うまでもない。
Although the above description has been made by taking a quartz substrate as an example of the piezoelectric substrate, the present invention is not limited to quartz, and other piezoelectric materials, langasite, lithium tantalate, niobate tantalate, and tetraborate can be used. It goes without saying that the present invention can be applied to piezoelectric materials such as lithium.

【0017】[0017]

【発明の効果】本発明は、以上説明したように構成した
ので、超高周波デバイスにおいて、超薄肉振動部の振動
板の厚に対して、成膜上の制約、電極膜の信頼性、ある
いは使い易さ等のため、エネルギー閉じ込め係数以上に
電極膜厚を厚くあるいは電極寸法を大きくしても、スプ
リアスモードを効果的に抑圧する手段を見出したため、
主振動の近傍にスプリアスの無い超高周波圧電デバイス
を実現できるよになり、これを通信機等に用いればその
性能を大幅に改善できるという効果を奏する。
As described above, the present invention is constructed as described above. Therefore, in an ultra-high frequency device, the thickness of the diaphragm of the ultra-thin vibrating portion is restricted by the film formation, the reliability of the electrode film, or For ease of use, etc., we found a means to effectively suppress spurious modes even if the electrode film thickness or electrode size is increased beyond the energy confinement coefficient.
An ultra-high frequency piezoelectric device having no spurious components near the main vibration can be realized. If this device is used in a communication device or the like, the performance can be greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る超高周波水晶振動子の構成を示す
図で、(a)は断面図、(b)は斜視図である。
FIGS. 1A and 1B are diagrams showing a configuration of an ultrahigh-frequency crystal resonator according to the present invention, wherein FIG. 1A is a cross-sectional view and FIG. 1B is a perspective view.

【図2】主振動モードa及び対称第1次振動モードbの
変位部分布を説明する断面図である。
FIG. 2 is a cross-sectional view illustrating a displacement portion distribution in a main vibration mode a and a symmetric primary vibration mode b.

【図3】本発明に係る超高周波水晶振動子の周波数スペ
クトルを示す図である。
FIG. 3 is a diagram showing a frequency spectrum of the ultrahigh frequency crystal resonator according to the present invention.

【図4】従来の超高周波水晶振動子の構成を示す図で、
(a)は断面図、(b)は斜視図である。
FIG. 4 is a diagram showing a configuration of a conventional ultra-high frequency crystal resonator.
(A) is a sectional view, and (b) is a perspective view.

【図5】従来の超高周波水晶振動子の周波数スペクトル
を示す図である。
FIG. 5 is a diagram showing a frequency spectrum of a conventional ultrahigh-frequency crystal resonator.

【符号の説明】[Explanation of symbols]

1・・ATカット水晶基板、 2・・凹陥部 3・・振動部 4・・段差部 5・・凹陥部側電極(裏面電極) 6・・部分電極 7・・リード電極 8・・パッド電極 L1、L2・・部分電極のX軸及びZ’方向寸法 W1、W2・・振動部の振動板のX軸及びZ’方向寸法 HE・・部分電極の膜厚 H・・振動部の厚さと、電極膜厚を振動部の厚さに換算
した厚さとを加算した厚さ X、Z’・・ATカット水晶基板の結晶軸
1. AT cut crystal substrate 2. Depressed part 3. Vibration part 4. Step part 5. Depressed part side electrode (backside electrode) 6. Partial electrode 7. Lead electrode 8. Pad electrode L 1 , L 2 ... X-axis and Z′-direction dimensions of the partial electrode W 1 , W 2 ... X-axis and Z′-direction dimensions of the diaphragm of the vibrating part HE E. X, Z '· · · Crystal axis of AT-cut quartz substrate

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 薄肉の振動部と該振動部の周縁を包囲す
る厚肉の環状部とを圧電基板にて一体的に形成し、前記
振動部の表面に互いに対向する一対の電極を設けた超高
周波圧電振動子において、前記振動部に励起される主振
動たるS0モードの変位が小さく、第1次対称モード振
動たるS1モードの変位が主振動のそれに比べて大きく
なる位置に前記振動部と前記環状部との境界となる段差
部を配置するように構成したことを特徴とする超高周波
圧電デバイス。
1. A thin vibrating portion and a thick annular portion surrounding a peripheral edge of the vibrating portion are integrally formed on a piezoelectric substrate, and a pair of electrodes facing each other are provided on a surface of the vibrating portion. in very high frequency piezoelectric transducer, the vibration in the main are excited in the vibration portion vibrating serving S 0 mode of the displacement is small, displacement of the first order symmetric mode vibration serving S 1 mode is greater than that of the main vibration position An ultrahigh frequency piezoelectric device, wherein a step portion serving as a boundary between a portion and the annular portion is arranged.
【請求項2】 薄肉の振動部と該振動部の周縁を包囲す
る厚肉の環状部とを圧電基板にて一体的に形成し、前記
振動部の表面に互いに対向する一対の電極を設けた超高
周波圧電振動子において、 部分電極の寸法Li(i=1,2)と振動部の厚さHと
の比Li/Hを60〜150、周波数低下量Δを0.0
4〜0.28としたとき、前記振動部3の寸法W 1と前
記振動部の厚さHとの比W1/Hを195〜215とな
るように設定したことを特徴とする超高周波圧電デバイ
ス。
2. Surrounding a thin vibrating portion and a peripheral edge of the vibrating portion.
And a thick annular portion formed integrally with the piezoelectric substrate,
Ultra high height with a pair of electrodes facing each other on the surface of the vibrating part
In the frequency piezoelectric vibrator, the dimension L of the partial electrodei(I = 1, 2) and the thickness H of the vibrating part
The ratio Li/ H is 60 to 150 and the frequency reduction amount Δ is 0.0
4 to 0.28, the dimension W of the vibrating portion 3 1And before
Ratio W to thickness H of recording part1/ H is 195 to 215
Ultra-high frequency piezoelectric device characterized by setting
Su.
【請求項3】 薄肉の振動部と該振動部の周縁を包囲す
る厚肉の環状部とを圧電基板にて一体的に形成し、前記
振動部の表面に少なくとも一方を分割電極とする電極を
対向配置した超高周波圧電多重モードフィルタにおい
て、 前記振動部に励起される2つの主振動であるS0モード
とA0モードの変位が小さく、第1次モード振動である
1モードの変位が主振動のそれに比べて大きくなる位
置に前記振動部と前記環状部との境界となる段差部を配
置するように構成したことを特徴とする超高周波圧電デ
バイス。
3. A thin vibrating portion and a thick annular portion surrounding the periphery of the vibrating portion are integrally formed on a piezoelectric substrate, and an electrode having at least one of the divided electrodes on a surface of the vibrating portion. in opposing microwave piezoelectric multimode filter arranged, wherein a two main vibration excited in the vibrating portion S 0 mode and a 0 mode displacement is small, a 1 mode displacement is a first order mode vibration is mainly An ultrahigh-frequency piezoelectric device, wherein a step portion serving as a boundary between the vibrating portion and the annular portion is arranged at a position where the level is larger than that of the vibration.
【請求項4】 前記圧電基板を水晶基板とすることを特
徴とする請求項1乃至3記載の超高周波圧電デバイス。
4. The ultrahigh frequency piezoelectric device according to claim 1, wherein said piezoelectric substrate is a quartz substrate.
JP10207495A 1998-07-23 1998-07-23 Ultra high frequency piezoelectric device Pending JP2000040938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10207495A JP2000040938A (en) 1998-07-23 1998-07-23 Ultra high frequency piezoelectric device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10207495A JP2000040938A (en) 1998-07-23 1998-07-23 Ultra high frequency piezoelectric device

Publications (1)

Publication Number Publication Date
JP2000040938A true JP2000040938A (en) 2000-02-08

Family

ID=16540672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10207495A Pending JP2000040938A (en) 1998-07-23 1998-07-23 Ultra high frequency piezoelectric device

Country Status (1)

Country Link
JP (1) JP2000040938A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017977A (en) * 2001-06-29 2003-01-17 Toyo Commun Equip Co Ltd Ultrahigh frequency piezoelectric vibrating element and surface mounted piezoelectric vibrator
JP2005204253A (en) * 2004-01-19 2005-07-28 Toyo Commun Equip Co Ltd Uhf band fundamental wave at cut crystal oscillating element
US7098574B2 (en) * 2002-11-08 2006-08-29 Toyo Communication Equipment Co., Ltd. Piezoelectric resonator and method for manufacturing the same
JP2010074840A (en) * 2009-11-06 2010-04-02 Seiko Epson Corp Piezoelectric vibrating piece, and method of manufacturing the same
JP2010110019A (en) * 2010-02-15 2010-05-13 Epson Toyocom Corp Method of manufacturing uhf band fundamental wave at cut crystal vibration element
JP2011045112A (en) * 2010-10-01 2011-03-03 Epson Toyocom Corp At-cut crystal resonator element, at-cut crystal resonator, and at-cut crystal oscillator
JP2014154994A (en) * 2013-02-07 2014-08-25 Seiko Epson Corp Vibration element, vibrator, electronic device, electronic apparatus, and mobile
US9136793B2 (en) 2012-06-06 2015-09-15 Seiko Epson Corporation Resonator element, resonator, electronic device, electronic apparatus, and method of manufacturing resonator element

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017977A (en) * 2001-06-29 2003-01-17 Toyo Commun Equip Co Ltd Ultrahigh frequency piezoelectric vibrating element and surface mounted piezoelectric vibrator
US7098574B2 (en) * 2002-11-08 2006-08-29 Toyo Communication Equipment Co., Ltd. Piezoelectric resonator and method for manufacturing the same
US7235913B2 (en) 2002-11-08 2007-06-26 Toyo Communication Equipment Co., Ltd. Piezoelectric substrate, piezoelectric resonating element and surface-mount piezoelectric oscillator
JP2005204253A (en) * 2004-01-19 2005-07-28 Toyo Commun Equip Co Ltd Uhf band fundamental wave at cut crystal oscillating element
JP2010074840A (en) * 2009-11-06 2010-04-02 Seiko Epson Corp Piezoelectric vibrating piece, and method of manufacturing the same
JP2010110019A (en) * 2010-02-15 2010-05-13 Epson Toyocom Corp Method of manufacturing uhf band fundamental wave at cut crystal vibration element
JP2011045112A (en) * 2010-10-01 2011-03-03 Epson Toyocom Corp At-cut crystal resonator element, at-cut crystal resonator, and at-cut crystal oscillator
US9136793B2 (en) 2012-06-06 2015-09-15 Seiko Epson Corporation Resonator element, resonator, electronic device, electronic apparatus, and method of manufacturing resonator element
JP2014154994A (en) * 2013-02-07 2014-08-25 Seiko Epson Corp Vibration element, vibrator, electronic device, electronic apparatus, and mobile

Similar Documents

Publication Publication Date Title
JP4936221B2 (en) Mesa-type piezoelectric vibrating piece, mesa-type piezoelectric vibrating device, oscillator, and electronic device
US4870313A (en) Piezoelectric resonators for overtone oscillations
JP5708089B2 (en) Piezoelectric vibration element, piezoelectric vibrator, piezoelectric oscillator, and electronic device
JP5625432B2 (en) Piezoelectric vibration element and piezoelectric vibrator
JP2001244778A (en) High-frequency piezoelectric vibrator
JP5796355B2 (en) Piezoelectric vibration element, piezoelectric vibrator, electronic device, and electronic apparatus
US6518688B1 (en) Piezoelectric vibration device
JP5824967B2 (en) Vibration element, vibrator, electronic device, and electronic apparatus
JP3542416B2 (en) Thick mode piezoelectric vibrator
JP2013042440A (en) Piezoelectric vibrating element, piezoelectric vibrator, electronic device and electronic apparatus
JP2004215227A (en) Surface acoustic wave device and manufacturing method thereof, and electronic equipment
JP2000040938A (en) Ultra high frequency piezoelectric device
US6492759B1 (en) Piezoelectric resonator and a filter
JP2013042410A (en) Piezoelectric vibrating element, piezoelectric vibrator, electronic device and electronic apparatus
JP4196641B2 (en) Ultra-thin piezoelectric device and manufacturing method thereof
JPS60142607A (en) Piezoelectric thin film composite oscillator
US6016025A (en) Selected overtone resonator with channels
JP2002190717A (en) High frequency piezoelectric device
JP2000312130A (en) Piezoelectric device, manufacture thereof and mobile communication unit employing them
JP2022542478A (en) thickness mode resonator
JP2640936B2 (en) Piezoelectric resonator for overtone oscillation using higher-order mode vibration
JP2002368571A (en) Piezoelectric vibrator and filter using the same
JP6137274B2 (en) Vibration element, vibrator, electronic device, and electronic apparatus
JP2001326554A (en) Piezoelectric vibrator
JP2002368573A (en) Superthin sheet piezoelectric vibrator and production method therefor