JP2005260692A - Piezoelectric vibrating bar, piezoelectric vibrator and piezo-oscillator - Google Patents

Piezoelectric vibrating bar, piezoelectric vibrator and piezo-oscillator Download PDF

Info

Publication number
JP2005260692A
JP2005260692A JP2004071026A JP2004071026A JP2005260692A JP 2005260692 A JP2005260692 A JP 2005260692A JP 2004071026 A JP2004071026 A JP 2004071026A JP 2004071026 A JP2004071026 A JP 2004071026A JP 2005260692 A JP2005260692 A JP 2005260692A
Authority
JP
Japan
Prior art keywords
vibrating piece
piezoelectric vibrating
excitation electrode
protrusion
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004071026A
Other languages
Japanese (ja)
Inventor
Masako Tanaka
雅子 田中
Susumu Maeda
進 前田
Yukihiro Iwashita
幸廣 岩下
Shigeru Shiraishi
茂 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2004071026A priority Critical patent/JP2005260692A/en
Publication of JP2005260692A publication Critical patent/JP2005260692A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make vibration displacement small at a peripheral end part of a piezoelectric vibrating reed, to improve a CI value and to stabilize an oscillation frequency without inducing other vibration modes by moderately controlling the attenuation of primary vibration in the piezoelectric vibrating reed with thickness-shear vibration defined as primary vibration. <P>SOLUTION: This piezoelectric vibrating reed 10 with thickness-shear vibration defined as as primary vibration is provided with an excitation electrode 20 provided facing the thickness direction of a pair of principal planes 11, a connection electrode 21 connected to the excitation electrode 20 to extend to a peripheral end part of the vibrating reed 10 and protrusions 30 and 31 on the principal planes 11 with thickness being the same as or smaller than that of the excitation electrode 20 with spacing left, surrounding the outer circumference of the excitation electrode 20. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は厚み滑り振動を主振動とする圧電振動片において、主振動の減衰を緩やかにし圧電振動片の周辺端部での振動変位を小さくする、圧電振動片、圧電振動子および圧電発振器に関する。   The present invention relates to a piezoelectric vibrating piece, a piezoelectric vibrator, and a piezoelectric oscillator that, in a piezoelectric vibrating piece having a thickness-shear vibration as a main vibration, moderately attenuate the main vibration and reduce a vibration displacement at a peripheral end of the piezoelectric vibrating piece.

近年、圧電振動子は各種電子機器や通信機器において、基準周波数信号源として広く用いられている。圧電振動子として特に、ATカット水晶振動子は広い温度範囲での周波数安定性を有し、また、経時変化特性にも優れていることから電子機器から移動体通信用機器など、広範囲の機器に利用されている。   In recent years, piezoelectric vibrators are widely used as reference frequency signal sources in various electronic devices and communication devices. Especially as a piezoelectric resonator, AT-cut quartz resonators have frequency stability over a wide temperature range and are excellent in time-varying characteristics, so they can be used in a wide range of devices such as electronic devices and mobile communication devices. It's being used.

ATカット水晶振動子は、一般に厚み滑り振動モードを主振動として用いられている。この厚み滑り振動では、振動片の中央に配置された励振電極直下に定在波を作り、その振動を共振周波数として取り出しているが、振動片の中央で発生した振動は減衰しながら振動片の周辺端部へ伝えられる。   In general, the AT-cut quartz resonator uses a thickness-shear vibration mode as a main vibration. In this thickness-shear vibration, a standing wave is created directly under the excitation electrode arranged at the center of the vibrating piece, and the vibration is taken out as a resonance frequency. However, the vibration generated at the center of the vibrating piece is attenuated while being attenuated. It is transmitted to the peripheral edge.

ここで、振動片の外周部における減衰された振動は、振動片としての特性を確保するためには充分に減衰されている必要がある。振動片は振動片周辺端部において、セラミックなどの収容容器に導電性接着材などを介して固着されて保持される。このため、振動片周辺端部における振動が充分に減衰されていない場合には、振動片周辺端部の固着部分から振動が収容器に漏洩し、振動片中心部の振動が阻害されてクリスタルインピーダンス(以下、CI値と呼ぶ)を悪化させることになる。また、他の振動モードを誘発して発振周波数の安定性を低下させることにもなる。   Here, the damped vibration in the outer peripheral portion of the vibrating piece needs to be sufficiently damped in order to ensure the characteristics as the vibrating piece. The vibrating piece is held and fixed to a receiving container such as ceramic via a conductive adhesive or the like at the periphery of the vibrating piece. For this reason, if the vibration at the periphery of the resonator element is not sufficiently damped, the vibration leaks from the fixed part of the periphery of the resonator element to the container, and the vibration at the center of the resonator element is hindered. (Hereinafter referred to as the CI value). In addition, other vibration modes are induced to decrease the stability of the oscillation frequency.

厚み滑り振動の減衰振動を振動片周辺端部で充分に減衰させるために、特許文献1および特許文献2に示すような構成が開示されている。この構成によれば、励振電極の外周縁に沿って1本の溝を設けることにより、振動片周辺端部での振動を抑制、あるいは振動子としての特性を改善する構成となっている。   In order to sufficiently attenuate the damping vibration of the thickness shear vibration at the peripheral end portion of the vibrating piece, configurations as shown in Patent Document 1 and Patent Document 2 are disclosed. According to this configuration, by providing one groove along the outer peripheral edge of the excitation electrode, the vibration at the peripheral end portion of the resonator element is suppressed or the characteristics as a resonator are improved.

特開平9−93076号公報JP-A-9-93076 特開2001−257558号公報JP 2001-257558 A

しかしながら、前述の構成において、振動片に溝を形成するためにはフォトリソグラフィによる液相エッチング法により形成する必要がある。この方法においては、レジスト塗布、露光、現像、エッチング、洗浄等、多くの工程を経る必要があり、工数がかかるという問題がある。また、気相における振動片のエッチングも可能であるが、装置の高額化や大型化となり実用的ではない。   However, in the above-described configuration, in order to form the groove in the resonator element, it is necessary to form the groove by a liquid phase etching method using photolithography. In this method, it is necessary to go through many steps such as resist coating, exposure, development, etching, and washing, and there is a problem that man-hours are required. Etching of the resonator element in the gas phase is also possible, but this is not practical because the apparatus is expensive and large.

本発明は上記従来技術の問題点に鑑みなされたものであって、振動片に溝を形成することなく、振動片の励振部分の面積を充分確保し、しかも振動片周辺端部の振動を充分に減衰させ、良好な電気的特性を得る圧電振動片、圧電振動子および圧電発振器を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and ensures a sufficient area of the excitation portion of the vibrating piece without forming a groove in the vibrating piece, and also sufficiently vibrates the peripheral edge of the vibrating piece. An object of the present invention is to provide a piezoelectric vibrating piece, a piezoelectric vibrator, and a piezoelectric oscillator that can be attenuated to obtain good electrical characteristics.

上記目的を達成するために本発明の圧電振動片は、厚み滑り振動を主振動とする圧電振動片であって、一対の主面において厚さ方向に対向して形成された励振電極と、励振電極に接続され前記圧電振動片の周辺端部に延伸された接続電極と、少なくとも一方の主面に励振電極の外周部を挟んで対峙するようにまたは励振電極を囲むように形成され励振電極と同じ厚さもしくは薄い厚さに形成された突部と、を備えたことを特徴とする。   In order to achieve the above object, a piezoelectric vibrating piece according to the present invention is a piezoelectric vibrating piece having thickness shear vibration as a main vibration, and is formed by exciting electrodes formed oppositely in the thickness direction on a pair of main surfaces. A connection electrode connected to the electrode and extended to a peripheral end of the piezoelectric vibrating piece, and an excitation electrode formed so as to face or surround the excitation electrode with at least one main surface sandwiching the outer periphery of the excitation electrode; And a protrusion formed in the same thickness or a thin thickness.

本発明の圧電振動片によれば、圧電振動片の励振電極を挟むように、または囲むように突部を形成したことにより、主面中央部で発生した厚み滑り振動を緩やかに減衰させ、圧電振動片の周辺端部の振動変位を小さくすることができる。
つまり、主振動の減衰を緩やかにすることおよび、圧電振動片から保持部への振動の漏洩が低減されることにより、圧電振動子の主振動を阻害することなく、CI値を向上させ、また、他の振動モードを誘発せず発振周波数の安定した圧電振動片を得ることができる。
According to the piezoelectric vibrating piece of the present invention, by forming the protrusion so as to sandwich or surround the excitation electrode of the piezoelectric vibrating piece, the thickness shear vibration generated at the central portion of the main surface is gently attenuated, and the piezoelectric vibrating piece is The vibration displacement at the peripheral end of the vibrating piece can be reduced.
In other words, the CI value can be improved without impeding the main vibration of the piezoelectric vibrator by reducing the attenuation of the main vibration and reducing the leakage of vibration from the piezoelectric vibrating piece to the holding portion. A piezoelectric vibrating piece having a stable oscillation frequency can be obtained without inducing other vibration modes.

また、本発明の圧電振動片において、突部は励振電極と同じ材料で形成してもよい。   In the piezoelectric vibrating piece of the present invention, the protrusion may be made of the same material as the excitation electrode.

このようにすれば、真空蒸着やスパッタリングなどの励振電極および接続電極を形成する工程と、突部を形成する工程とを同じ工程でしかも同時に形成することができる。このため、量産性が優れ電気的特性の良好な圧電振動片を提供することができる。   If it does in this way, the process of forming excitation electrodes and connection electrodes, such as vacuum evaporation and sputtering, and the process of forming a protrusion can be formed in the same process simultaneously. For this reason, it is possible to provide a piezoelectric vibrating piece with excellent mass productivity and good electrical characteristics.

また、本発明の圧電振動片において、突部を励振電極の外周部から圧電振動片の周辺端部に向かい間隔を開けて複数列設けてもよい。   In the piezoelectric vibrating piece of the present invention, the protrusions may be provided in a plurality of rows at intervals from the outer peripheral portion of the excitation electrode toward the peripheral end portion of the piezoelectric vibrating piece.

このようにすれば、圧電振動片の中央部で発生した厚み滑り振動を段階的に減衰させ、圧電振動片の周辺端部の振動変位を小さくすることができる。また、単数の突部を形成した場合の急激な振動の減衰を、突部を複数列設けることにより段階的に減衰させることが可能になり、振動の減衰を緩やかに制御することができる。このようにして、本発明の圧電振動片は、主振動の励振部分面積を充分確保した上で、振動片周辺部での変位の減衰を得ることができ、圧電振動片として良好な電気特性を得ることができる。   In this way, the thickness shear vibration generated at the center of the piezoelectric vibrating piece can be attenuated in stages, and the vibration displacement at the peripheral end of the piezoelectric vibrating piece can be reduced. In addition, abrupt vibration attenuation when a single protrusion is formed can be attenuated in stages by providing a plurality of protrusions, and vibration attenuation can be controlled gently. In this way, the piezoelectric vibrating piece of the present invention can obtain the attenuation of displacement at the periphery of the vibrating piece while sufficiently securing the excitation part area of the main vibration, and has good electrical characteristics as a piezoelectric vibrating piece. Can be obtained.

また、本発明の圧電振動片において、突部の厚さが励振電極の外周部から圧電振動片の周辺端部に向かい順次薄く形成してもよい。   Further, in the piezoelectric vibrating piece according to the present invention, the thickness of the protrusion may be gradually decreased from the outer peripheral portion of the excitation electrode toward the peripheral end portion of the piezoelectric vibrating piece.

突部の厚さは薄くするほど振動の減衰効果があるため、このようにすれば、主振動の近い部分での減衰を緩やかにすることができる。このようにして、本発明の圧電振動片は、主振動の励振部分面積を充分確保した上で、振動片周辺部での変位の減衰を得ることができ、圧電振動片として良好な電気的特性を得ることができる。   The thinner the protrusion is, the more effective it is to attenuate vibrations. In this way, it is possible to moderate the attenuation near the main vibration. In this way, the piezoelectric vibrating piece of the present invention can obtain the attenuation of displacement at the periphery of the vibrating piece while sufficiently securing the excitation part area of the main vibration, and has good electrical characteristics as a piezoelectric vibrating piece. Can be obtained.

また、本発明の圧電振動片において、突部を形成する間隔が励振電極の外周部から圧電振動片の周辺端部に向かい順次広く形成してもよい。   Further, in the piezoelectric vibrating piece of the present invention, the interval between the protrusions may be formed so as to increase gradually from the outer peripheral portion of the excitation electrode toward the peripheral end portion of the piezoelectric vibrating piece.

突部を形成する間隔は広くなるほど、振動の減衰効果があるため、このようにすれば、主振動の近い部分での減衰を緩やかにすることができる。このようにして、本発明の圧電振動片は、主振動の励振部分面積を充分確保した上で、振動片周辺部での変位の減衰を得ることができ、圧電振動片として良好な電気的特性を得ることができる。   The wider the interval between the protrusions, the more effective the vibration is attenuated. In this way, the attenuation near the main vibration can be moderated. In this way, the piezoelectric vibrating piece of the present invention can obtain the attenuation of displacement at the periphery of the vibrating piece while sufficiently securing the excitation part area of the main vibration, and has good electrical characteristics as a piezoelectric vibrating piece. Can be obtained.

また、本発明の圧電振動片において、突部の幅が励振電極の外周部から圧電振動片の周辺端部に向かい順次狭く形成してもよい。   Further, in the piezoelectric vibrating piece of the present invention, the width of the protrusion may be narrowed sequentially from the outer periphery of the excitation electrode toward the peripheral end of the piezoelectric vibrating piece.

突部の幅は狭くなるほど、振動の減衰効果があるため、このようにすれば、主振動の近い部分での減衰を緩やかにすることができる。このようにして、本発明の圧電振動片は、主振動の励振部分面積を充分確保した上で、振動片周辺部での変位の減衰を得ることができ、圧電振動片として良好な電気的特性を得ることができる。   As the width of the protrusion becomes narrower, there is a vibration damping effect. Thus, in this way, it is possible to moderate the damping near the main vibration. In this way, the piezoelectric vibrating piece of the present invention can obtain the attenuation of displacement at the periphery of the vibrating piece while sufficiently securing the excitation part area of the main vibration, and has good electrical characteristics as a piezoelectric vibrating piece. Can be obtained.

また、本発明の圧電振動片において、突部の厚さが励振電極の外周部から圧電振動片の周辺端部に向かい順次薄くなっており、さらに、突部を形成する間隔が励振電極の外周部から圧電振動片の周辺端部に向かい順次広く形成してもよい。   Further, in the piezoelectric vibrating piece according to the present invention, the thickness of the protrusion gradually decreases from the outer peripheral portion of the excitation electrode toward the peripheral end of the piezoelectric vibrating piece, and the interval at which the protrusion is formed further increases the outer periphery of the excitation electrode. It may be formed so as to gradually increase from the portion toward the peripheral end of the piezoelectric vibrating piece.

このようにすれば、突部の厚さを変化させる効果に加えて、突部を形成する間隔を変化させる効果も加わり、主振動の近い部分での減衰を緩やかにすることができる。このようにして、本発明の圧電振動片は、主振動の励振部分面積を充分確保した上で、振動片周辺部での変位の減衰を得ることができ、圧電振動片として良好な電気的特性を得ることができる。   In this way, in addition to the effect of changing the thickness of the protrusions, the effect of changing the interval at which the protrusions are formed is also added, so that the attenuation in the vicinity of the main vibration can be moderated. In this way, the piezoelectric vibrating piece of the present invention can obtain the attenuation of displacement at the periphery of the vibrating piece while sufficiently securing the excitation part area of the main vibration, and has good electrical characteristics as a piezoelectric vibrating piece. Can be obtained.

また、本発明の圧電振動片において、突部の厚さが励振電極の外周部から圧電振動片の周辺端部に向かい順次薄くなっており、さらに、突部の幅が励振電極の外周部から圧電振動片の周辺端部に向かい順次狭く形成してもよい。   Further, in the piezoelectric vibrating piece according to the present invention, the thickness of the protrusion gradually decreases from the outer peripheral portion of the excitation electrode toward the peripheral end of the piezoelectric vibrating piece, and the width of the protruding portion decreases from the outer peripheral portion of the excitation electrode. You may form narrowly sequentially toward the peripheral edge part of a piezoelectric vibrating piece.

このようにすれば、突部の厚さを変化させる効果に加え、突部の幅を変化させる効果が加わり、主振動の近い部分での減衰を緩やかにすることができる。このようにして、本発明の圧電振動片は、主振動の励振部分面積を充分確保した上で、振動片周辺部での変位の減衰を得ることができ、圧電振動片として良好な電気的特性を得ることができる。   In this way, in addition to the effect of changing the thickness of the protrusion, the effect of changing the width of the protrusion is added, and the attenuation in the portion close to the main vibration can be moderated. In this way, the piezoelectric vibrating piece of the present invention can obtain the attenuation of displacement at the periphery of the vibrating piece while sufficiently securing the excitation part area of the main vibration, and has good electrical characteristics as a piezoelectric vibrating piece. Can be obtained.

また、本発明の圧電振動片において、突部を形成する間隔が励振電極の外周部から圧電振動片の周辺端部に向かい順次広くなるように形成されており、さらに、突部の幅が励振電極の外周部から圧電振動片の周辺端部に向かい順次狭くなるように形成してもよい。   Further, in the piezoelectric vibrating piece according to the present invention, the interval between the protrusions is formed so as to gradually increase from the outer peripheral portion of the excitation electrode toward the peripheral end of the piezoelectric vibrating piece, and the width of the protruding portion is further increased. You may form so that it may become narrow sequentially from the outer peripheral part of an electrode toward the peripheral edge part of a piezoelectric vibrating piece.

このようにすれば、突部を形成する間隔を変化させる効果に加え、突部の幅を変化させる効果が加わり、主振動の近い部分での減衰を緩やかにすることができる。このようにして、本発明の圧電振動片は、主振動の励振部分面積を充分確保した上で、振動片周辺部での変位の減衰を得ることができ、圧電振動片として良好な電気的特性を得ることができる。   In this way, in addition to the effect of changing the interval at which the protrusions are formed, the effect of changing the width of the protrusions is added, so that the attenuation in the portion near the main vibration can be moderated. In this way, the piezoelectric vibrating piece of the present invention can obtain the attenuation of displacement at the periphery of the vibrating piece while sufficiently securing the excitation part area of the main vibration, and has good electrical characteristics as a piezoelectric vibrating piece. Can be obtained.

また、本発明の圧電振動片において、突部の厚さが励振電極の外周部から圧電振動片の周辺端部に向かい順次薄くなっており、突部を形成する間隔が励振電極の外周部から圧電振動片の周辺端部に向かい順次広くなっており、さらに、突部の幅が励振電極の外周部から圧電振動片の周辺端部に向かい順次狭く形成してもよい。   Further, in the piezoelectric vibrating piece according to the present invention, the thickness of the protrusion gradually decreases from the outer peripheral portion of the excitation electrode toward the peripheral end of the piezoelectric vibrating piece, and the interval at which the protrusion is formed extends from the outer peripheral portion of the excitation electrode. The width may be gradually increased toward the peripheral end portion of the piezoelectric vibrating piece, and the width of the protrusion may be gradually decreased from the outer peripheral portion of the excitation electrode toward the peripheral end portion of the piezoelectric vibrating piece.

このようにすれば、突部の厚さを変化させる効果に加えて、突部を形成する間隔および幅を変化させる効果が加わり、主振動の近い部分での減衰を緩やかにすることができる。このようにして、本発明の圧電振動片は、主振動の励振部分面積を充分確保した上で、振動片周辺部での変位の減衰を得ることができ、圧電振動片として良好な電気的特性を得ることができる。   In this way, in addition to the effect of changing the thickness of the protrusions, the effect of changing the interval and width of the protrusions is added, and the attenuation near the main vibration can be moderated. In this way, the piezoelectric vibrating piece of the present invention can obtain the attenuation of displacement at the periphery of the vibrating piece while sufficiently securing the excitation part area of the main vibration, and has good electrical characteristics as a piezoelectric vibrating piece. Can be obtained.

また、上述した本発明に係る圧電振動片と、圧電振動片を圧電振動片の周辺端部で固着し電気的接続をする保持部とを有する圧電振動子を提供することも可能となる。   It is also possible to provide a piezoelectric vibrator having the above-described piezoelectric vibrating piece according to the present invention, and a holding unit that fixes the piezoelectric vibrating piece at the peripheral end of the piezoelectric vibrating piece and makes electrical connection.

このようにすれば、圧電振動片の端部での振動は充分に減衰されており、圧電振動片の端部で導電性接着材等を介して固着保持しても、振動片から保持部への振動の漏洩が低減でき、主振動を阻害することがない。また、特に圧電振動片に突部を複数設けた場合には、主振動の近くで減衰をさらに緩やかにすることができ、主振動を阻害することを低減できる。このように、本発明の圧電振動子は、圧電振動片の主面に突部を形成した効果を引き出し、電気的特性の優れた圧電振動子を提供できる。   In this way, the vibration at the end of the piezoelectric vibrating piece is sufficiently damped, and even if the end of the piezoelectric vibrating piece is fixedly held via a conductive adhesive or the like, the vibrating piece is moved to the holding portion. The vibration leakage can be reduced and the main vibration is not hindered. In particular, when a plurality of protrusions are provided on the piezoelectric vibrating piece, attenuation can be further moderated near the main vibration, and inhibition of the main vibration can be reduced. As described above, the piezoelectric vibrator of the present invention can provide the piezoelectric vibrator having excellent electrical characteristics by extracting the effect of forming the protrusion on the main surface of the piezoelectric vibrating piece.

さらに、上述した本発明に係る圧電振動片と、圧電振動片を発振させるための回路部と、圧電振動片の端部を固着保持するとともに圧電振動片と回路部とを電気的に接続する保持部とを有する圧電発振器を提供することも可能となる。   Further, the above-described piezoelectric vibrating piece according to the present invention, a circuit unit for causing the piezoelectric vibrating piece to oscillate, and holding for fixing and holding the end of the piezoelectric vibrating piece and electrically connecting the piezoelectric vibrating piece and the circuit unit. It is also possible to provide a piezoelectric oscillator having a portion.

このようにすれば、圧電振動片の端部での振動は充分に減衰されており、圧電振動片の端部で導電性接着材等を介して固着保持しても、振動片から保持部への振動の漏洩が低減でき、主振動を阻害することがない。また、特に圧電振動片に突部を複数設けた場合には、主振動の近くでさらに減衰を緩やかにすることができ、主振動を阻害することを低減できる。このように、本発明の圧電発振器は、圧電振動片の主面に突部を形成した効果を引き出し、電気的特性の優れた圧電発振器を提供できる。   In this way, the vibration at the end of the piezoelectric vibrating piece is sufficiently damped, and even if the end of the piezoelectric vibrating piece is fixedly held via a conductive adhesive or the like, the vibrating piece is moved to the holding portion. The vibration leakage can be reduced and the main vibration is not hindered. In particular, when a plurality of protrusions are provided on the piezoelectric vibrating piece, damping can be further moderated near the main vibration, and inhibition of the main vibration can be reduced. As described above, the piezoelectric oscillator according to the present invention can provide the piezoelectric oscillator with excellent electrical characteristics by extracting the effect of forming the protrusion on the main surface of the piezoelectric vibrating piece.

以下、実施例に基づき本発明を詳細に説明するが、その前に本発明の原理についてATカット水晶振動片(以下、振動片という)の場合で説明する。   Hereinafter, the present invention will be described in detail based on examples, but before that, the principle of the present invention will be described in the case of an AT-cut crystal vibrating piece (hereinafter referred to as a vibrating piece).

厚み滑り振動の伝播は下記の数式1から4により表される。この数式1から4によれば、振動片上に周波数の違う領域が存在する場合、振動の伝播は周波数の高い方から低い方に向かって起こるが、周波数の低い方から高い方には、α、βが虚数となるために厚み滑り振動の伝播は起こらず減衰することになる。つまり、厚み滑り振動は周波数の低い励振電極のある部分から、周波数の高い励振電極のない周辺端部への伝播は起こらず減衰することになる。   The propagation of thickness shear vibration is expressed by the following formulas 1 to 4. According to Equations 1 to 4, when there are regions having different frequencies on the resonator element, vibration propagation occurs from the higher frequency to the lower frequency. Since β is an imaginary number, propagation of thickness-shear vibration does not occur and is attenuated. That is, the thickness-shear vibration is attenuated without propagation from a portion having a low frequency excitation electrode to a peripheral end portion having no high frequency excitation electrode.

Figure 2005260692
Figure 2005260692

Figure 2005260692
Figure 2005260692

Figure 2005260692
Figure 2005260692

Figure 2005260692
U:厚み滑り振動のX方向、Z´方向への変位、 B:振幅強度、
ω、ωS:メサ部分の角周波数および振動片の角周波数、
α、β:X、Z´方向それぞれへの伝播定数、C55、C66:弾性スティフネス(所定の結晶方向における弾性率を表すマトリックスの中の定数)、
11、s13、s33:弾性コンプライアンス(所定の結晶方向における弾性率を表すマトリックスの中の定数)、
j:虚数単位、t:時間、x:X方向の距離、z´:Z´方向の距離。
Figure 2005260692
U: displacement of thickness shear vibration in X direction and Z ′ direction, B: amplitude intensity,
ω, ω S : angular frequency of the mesa part and angular frequency of the resonator element,
α, β: Propagation constants in the X and Z ′ directions, C 55 , C 66 : Elastic stiffness (a constant in a matrix representing an elastic modulus in a predetermined crystal direction),
s 11 , s 13 , s 33 : elastic compliance (a constant in a matrix representing an elastic modulus in a predetermined crystal direction),
j: imaginary unit, t: time, x: distance in X direction, z ′: distance in Z ′ direction.

本発明は、上記の数式を用い、振動片に突部を形成することにより周波数の低い部分をつくり、振動の減衰を振動片の周辺端部で効果的に行うことを意図した。また、振動片の周辺端部における振動の減衰だけでなく、振動片中央部の励振部分を広く確保するなどしてインピーダンスの改良を図り、電気的特性の改善も考慮した。
つまり、本発明は振動片における突部に挟まれた凹部ついて、振動片周辺端部の振動を充分に減衰させるという観点と、周波数の低い領域が完全に機械的に分離された場合のスプリアス発生の問題も考慮して上記数式1から4を用い有限要素法(FEM)にて、突部構造を有する振動片について解析した。
The present invention uses the above mathematical formula to create a low frequency portion by forming a protrusion on the vibrating piece, and effectively attenuates the vibration at the peripheral end of the vibrating piece. In addition to the vibration attenuation at the peripheral edge of the resonator element, the impedance was improved by securing a wide excitation part at the center of the resonator element, and the improvement of electrical characteristics was also considered.
That is, the present invention relates to the concave portion sandwiched between the protrusions of the resonator element and sufficiently attenuates the vibration at the periphery of the resonator element, and spurious generation when the low frequency region is completely mechanically separated. In consideration of the above problem, the resonator element having the protrusion structure was analyzed by the finite element method (FEM) using the above formulas 1 to 4.

以下、本発明の実施形態について、図面を用いて詳細に説明する。本実施形態では圧電振動片の例として、ATカット水晶振動片(以下、振動片という)を例にとり説明する。なお、以下図面での尺度は説明のために現尺ではなく、適宜拡大および縮小されている。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the present embodiment, an AT-cut quartz crystal vibrating piece (hereinafter referred to as a vibrating piece) will be described as an example of the piezoelectric vibrating piece. It should be noted that the scales in the drawings are not the current scales for the sake of explanation, and are appropriately enlarged and reduced.

図1は本実施例に使用される振動片の形状および結晶軸を説明する概略図、図2は本発明の実施例1を説明する振動片の概略図である。図2(a)は振動片の平面図、図2(b)は同図(a)のA−A断面図、図2(c)は同図(b)の模式部分拡大図である。   FIG. 1 is a schematic diagram for explaining the shape and crystal axis of a vibrating piece used in this embodiment, and FIG. 2 is a schematic view of the vibrating piece for explaining Embodiment 1 of the present invention. 2A is a plan view of the resonator element, FIG. 2B is a cross-sectional view taken along line AA of FIG. 2A, and FIG. 2C is a schematic partial enlarged view of FIG.

図1に示すように圧電振動片としての振動片10は、例えば共振周波数27MHz、X辺比(振動片におけるX軸方向寸法の振動片厚に対する比)33、Z辺比(振動片におけるZ´軸方向寸法の振動片厚に対する比)21に設計されている。
この振動片10のY´軸およびZ´軸は、IEC(International Electro-technical Commission)規格に従った結晶軸の定義におけるX軸の+X方向に向かって時計回りに35.25度回転してなる新座標軸である。振動片10はY´軸方向に厚さ2bを有する矩形状の平板であり、Z´軸に直交するX軸方向の寸法2aおよび、X軸に直交するZ´軸方向の寸法2cとする主面11を表裏に有している。
As shown in FIG. 1, the resonator element 10 as a piezoelectric resonator element has, for example, a resonance frequency of 27 MHz, an X side ratio (ratio to the thickness of the resonator element in the X-axis direction dimension) 33, and a Z side ratio (Z ′ in the resonator element). The ratio of the dimension in the axial direction to the thickness of the resonator element is 21).
The Y ′ axis and the Z ′ axis of the resonator element 10 are rotated 35.25 degrees clockwise in the + X direction of the X axis in the definition of the crystal axis in accordance with the IEC (International Electro-technical Commission) standard. New coordinate axes. The resonator element 10 is a rectangular flat plate having a thickness 2b in the Y′-axis direction, and has a size 2a in the X-axis direction orthogonal to the Z′-axis and a dimension 2c in the Z′-axis direction orthogonal to the X-axis. It has the surface 11 on both sides.

次に図2に示すように、振動片10の主面11の中央部には励振電極20が形成され、この励振電極20に接続し、振動片10の周辺端部に延伸された接続電極21が設けられている。励振電極20は振動片10の厚さ方向に対向して表裏に形成されている。また、接続電極21は振動片10の表裏に形成され、それぞれの励振電極に電気的接続が可能に形成されている。励振電極20、接続電極21はCrを下地とし、Auを電極材料として真空蒸着やスパッタリングなどの手法にて形成されている。   Next, as shown in FIG. 2, an excitation electrode 20 is formed at the central portion of the main surface 11 of the resonator element 10, connected to the excitation electrode 20, and a connection electrode 21 extended to the peripheral end of the resonator element 10. Is provided. The excitation electrodes 20 are formed on the front and back surfaces so as to face each other in the thickness direction of the resonator element 10. In addition, the connection electrode 21 is formed on the front and back of the resonator element 10 and is formed so as to be electrically connected to each excitation electrode. The excitation electrode 20 and the connection electrode 21 are formed by a technique such as vacuum deposition or sputtering using Cr as a base and Au as an electrode material.

また、振動片10の主面11には、励振電極20を囲むように突部30が形成されている。突部30は励振電極20と同様に振動片10の厚さ方向に対向するように、振動片10の表裏に形成されている。この突部30は励振電極20、接続電極21と同じ工程にて、Crを下地とし、Auを電極材料として真空蒸着やスパッタリングなどの手法により同時に形成されている。
このように、この突部30の厚さは励振電極20、接続電極21と同じ厚さで形成されている。本実施例では、励振電極20の厚さはプレートバック量(励振電極を形成した部分における振動片主振動周波数の振動片周波数からの低下分を、振動片周波数で割った値をパーセンテージで表示した値)で8.8%相当の厚さとし、その厚さは片面でおよそ400nmとした。なお、突部30と励振電極20の隙間は振動片10の厚さと同等の隙間とした。また、突部30は他と電気的な接続はなされることはない。
In addition, a protrusion 30 is formed on the main surface 11 of the resonator element 10 so as to surround the excitation electrode 20. The protrusions 30 are formed on the front and back of the resonator element 10 so as to face each other in the thickness direction of the resonator element 10 like the excitation electrode 20. In the same process as the excitation electrode 20 and the connection electrode 21, the protrusion 30 is simultaneously formed by a technique such as vacuum deposition or sputtering using Cr as a base and Au as an electrode material.
As described above, the protrusion 30 is formed to have the same thickness as that of the excitation electrode 20 and the connection electrode 21. In the present embodiment, the thickness of the excitation electrode 20 is the plate back amount (the percentage obtained by dividing the decrease in the vibration piece main vibration frequency from the vibration piece frequency in the portion where the excitation electrode is formed by the vibration piece frequency in percentage). Value) of 8.8%, and the thickness was about 400 nm on one side. The gap between the protrusion 30 and the excitation electrode 20 was the same as the thickness of the resonator element 10. Further, the protrusion 30 is not electrically connected to others.

次に、上記のような振動片を提案するにいたる有限要素法(FEM)での解析結果について説明する。
図3は上述の振動片における振動変位を有限要素法にて解析した結果である。図3(a)は振動片10のX軸方向における振動変位の有限要素法による解析結果、図3(b)は振動片10のZ´軸方向における振動変位の有限要素法による解析結果である。なお、図3における縦軸は振動の変位量を比較のために任意の単位(Arbitrarily Unit)として表してある。また、横軸は振動片10のX軸方向またはZ´軸方向の長さを示している。
Next, the analysis result by the finite element method (FEM) leading to the above-described vibration piece will be described.
FIG. 3 shows the result of analyzing the vibration displacement in the above-mentioned vibrating piece by the finite element method. FIG. 3A shows the analysis result of the vibration displacement of the vibrating piece 10 in the X-axis direction by the finite element method, and FIG. 3B shows the analysis result of the vibration displacement of the vibration piece 10 in the Z′-axis direction by the finite element method. . Note that the vertical axis in FIG. 3 represents the amount of vibration displacement as an arbitrary unit for comparison. Further, the horizontal axis indicates the length of the resonator element 10 in the X-axis direction or the Z′-axis direction.

図3(a)において、実線で表した曲線が振動片10に突部30を設けた場合のX軸方向振動変位であり、点線で表した曲線が振動片10に突部を設けない場合のX軸方向振動変位である。
この結果によれば、振動片10の保持部側Gにおいて良好な小さい振動変位を確保している。また、振動片10のX軸方向における振動変位を比較すると、振動領域は突部30を設けた場合の方が広くなっているのが分かる。これは、振動片10に突部30を設けたことにより、主振動の減衰を緩やかに制御でき、振動の減衰が主振動を阻害せずに良好な振動がなされていることを意味する。そしてこの結果は、励振電極20の実効面積をあげることに等しく、CI値を低くする効果がある。
従来、CI値を低くするためには励振電極を厚くする手法が用いられていたが、この場合、エネルギー閉じ込めによる実効励振部分が狭くなるため、等価容量C1が小さくなり周波数可変量を低下させるという課題があった。本実施例によれば、励振電極の厚みを厚くしても外周の突部の影響でC1を小さくすることなくCI値を低くすることができ、周波数可変量を低下させないという効果が生ずる。
In FIG. 3A, the curve indicated by the solid line is the X-axis direction vibration displacement when the protrusion 30 is provided on the vibrating piece 10, and the curve indicated by the dotted line is the case where the protrusion is not provided on the vibration piece 10. X-axis direction vibration displacement.
According to this result, a favorable small vibration displacement is ensured on the holding portion side G of the resonator element 10. Further, when comparing the vibration displacement in the X-axis direction of the resonator element 10, it can be seen that the vibration region is wider when the protrusion 30 is provided. This means that by providing the protrusion 30 on the vibrating piece 10, the attenuation of the main vibration can be controlled gently, and the vibration attenuation does not hinder the main vibration and a good vibration is made. This result is equivalent to increasing the effective area of the excitation electrode 20, and has the effect of lowering the CI value.
Conventionally, in order to reduce the CI value, a method of thickening the excitation electrode has been used. However, in this case, since the effective excitation portion due to energy confinement becomes narrow, the equivalent capacitance C 1 becomes small and the frequency variable amount decreases. There was a problem. According to the present embodiment, even if the thickness of the excitation electrode is increased, the CI value can be lowered without decreasing C 1 due to the influence of the protrusion on the outer periphery, and the effect that the frequency variable amount is not lowered is produced.

次に、図3(b)において、実線で表した曲線が突部30を設けた場合のZ´軸方向振動変位であり、点線で表した曲線が突部を設けない場合のZ´軸方向振動変位である。
この結果によれば、振動片10のZ´軸方向における振動変位は、突部を設けない場合より突部30を設けた場合のほうが、緩やかな振動の減衰ができ、振動の減衰が主振動を阻害していないことがわかる。
以上のことから、振動片10に突部30を設けることにより振動の減衰を緩やかにすることができ、良好な振動の減衰状態を確保している。さらに、振動片10の振動領域を広くすることができることから、振動片の電気的特性を向上させることができる。
Next, in FIG. 3B, the curve represented by the solid line is the vibration displacement in the Z′-axis direction when the protrusion 30 is provided, and the curve represented by the dotted line is the Z′-axis direction when the protrusion is not provided. It is a vibration displacement.
According to this result, the vibration displacement in the Z′-axis direction of the resonator element 10 can be more moderately attenuated when the protrusion 30 is provided than when the protrusion is not provided, and the vibration attenuation is the main vibration. It turns out that it is not inhibiting.
From the above, the vibration attenuation can be moderated by providing the protrusion 30 on the vibration piece 10, and a good vibration attenuation state is secured. Furthermore, since the vibration region of the resonator element 10 can be widened, the electrical characteristics of the resonator element can be improved.

なお、発明者はプレートバック量が1%以上の励振電極および突部の厚さでも振動片の周辺端部での振動変位を抑制できる効果を確認した。また、このプレートバック量が15%を超えると別の振動モードである輪郭振動が発生し、振動片の周辺端部における振動の抑制を阻害することが分かった。   The inventor confirmed the effect of suppressing the vibration displacement at the peripheral end of the resonator element even with the excitation electrode having a plate back amount of 1% or more and the thickness of the protrusion. Further, it has been found that when the plate back amount exceeds 15%, contour vibration, which is another vibration mode, is generated, and inhibition of vibration at the peripheral end portion of the vibration piece is hindered.

図4は本発明の実施例2を説明する振動片の概略図である。図4(a)は振動片の平面図、図4(b)は同図(a)に示すA−A断面図、図4(c)は同図(b)の部分拡大図である。   FIG. 4 is a schematic view of a resonator element for explaining the second embodiment of the present invention. 4A is a plan view of the resonator element, FIG. 4B is a cross-sectional view taken along the line AA in FIG. 4A, and FIG. 4C is a partially enlarged view of FIG.

実施例1と同じ構成については同符号を付し説明を省略する。
振動片10の主面11の中央部には励振電極20が形成され、この励振電極20に接続し、振動片10の周辺端部に延伸された接続電極21が設けられている。励振電極20は振動片10の厚さ方向に対向して表裏に形成されている。また、接続電極21は振動片10の表裏に形成され、それぞれの励振電極に電気的接続が可能に形成されている。励振電極20、接続電極21はCrを下地とし、Auを電極材料として真空蒸着やスパッタリングなどの手法にて形成されている。
The same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
An excitation electrode 20 is formed at the central portion of the main surface 11 of the resonator element 10, and a connection electrode 21 extending to the peripheral end of the resonator element 10 is provided so as to connect to the excitation electrode 20. The excitation electrodes 20 are formed on the front and back surfaces so as to face each other in the thickness direction of the resonator element 10. In addition, the connection electrode 21 is formed on the front and back of the resonator element 10 and is formed so as to be electrically connected to each excitation electrode. The excitation electrode 20 and the connection electrode 21 are formed by a technique such as vacuum deposition or sputtering using Cr as a base and Au as an electrode material.

また、振動片10の主面11には、間隔を開けて励振電極20を囲むように第1突部30が形成されている。さらに、第1突部30の外周側から励振電極20を囲むように間隔を開けて第2突部31が形成されている。
第1突部30および第2突部31は、励振電極20と同様に振動片10の厚さ方向に対向するように、振動片10の表裏に形成されている。この第1突部30および第2突部31は励振電極20、接続電極21と同じ工程にて、Crを下地とし、Auを電極材料として真空蒸着やスパッタリングなどの手法により同時に形成されている。その後、第1突部30および第2突部31はエッチング処理がなされ、第1突部30の厚さT2は励振電極20の厚さT1より薄く、第2突部31の厚さT3は第1突部30の厚さT2より薄くなるように形成されている(T1>T2>T3なる関係)。このエッチング処理においては、例えば、プラズマエッチング法やイオンエッチング法などの手法が用いられる。この手法は励振電極をエッチングして振動片の周波数調整を行う手法として知られている。
本実施例では、励振電極20の厚さはプレートバック量で8.8%相当の厚さとし、その厚さはおよそ400nmとした。第1突部30の厚さは270nm、第2突部31の厚さは200nmとした。
Further, the first protrusion 30 is formed on the main surface 11 of the resonator element 10 so as to surround the excitation electrode 20 with a space therebetween. Furthermore, the 2nd protrusion 31 is formed at intervals so that the excitation electrode 20 may be enclosed from the outer peripheral side of the 1st protrusion 30. FIG.
The first protrusion 30 and the second protrusion 31 are formed on the front and back of the resonator element 10 so as to face each other in the thickness direction of the resonator element 10 like the excitation electrode 20. The first protrusion 30 and the second protrusion 31 are simultaneously formed by a technique such as vacuum evaporation or sputtering using Cr as a base and Au as an electrode material in the same process as the excitation electrode 20 and the connection electrode 21. Thereafter, the first protrusion 30 and the second protrusion 31 are etched, and the thickness T 2 of the first protrusion 30 is smaller than the thickness T 1 of the excitation electrode 20 and the thickness T 2 of the second protrusion 31. 3 is formed so as to be thinner than the thickness T 2 of the first protrusion 30 (relationship T 1 > T 2 > T 3 ). In this etching process, for example, a method such as a plasma etching method or an ion etching method is used. This method is known as a method for adjusting the frequency of the resonator element by etching the excitation electrode.
In the present embodiment, the thickness of the excitation electrode 20 is 8.8% of the plate back amount, and the thickness is about 400 nm. The thickness of the first protrusion 30 was 270 nm, and the thickness of the second protrusion 31 was 200 nm.

また、第1突部30と第2突部31の間隔L2は、励振電極20と第1突部30との間隔L1と同等の間隔に形成されている(L1≒L2なる関係)。
さらに、第2突部31の幅W2は第1突部30の幅W1と同等の幅に形成されている(W1≒W2なる関係)。
なお、第1突部30および第2突部31は他と電気的な接続はなされることはない。
Further, the distance L 2 between the first protrusion 30 and the second protrusion 31 is formed to be equal to the distance L 1 between the excitation electrode 20 and the first protrusion 30 (relationship L 1 ≈L 2). ).
Furthermore, the width W 2 of the second protrusion 31 is formed to be equal to the width W 1 of the first protrusion 30 (relationship W 1 ≈W 2 ).
Note that the first protrusion 30 and the second protrusion 31 are not electrically connected to each other.

次に、上記のような振動片を提案するにいたる有限要素法(FEM)での解析結果について説明する。
図5は、振動片に励振電極と同じ厚さの突部を同じ間隔で二列に形成した場合における、振動片の振動変位を有限要素法にて解析した結果である。図5(a)は振動片10のX軸方向における振動変位の有限要素法による解析結果、図5(b)はZ´軸方向における振動変位の有限要素法による解析結果である。なお、図5における縦軸は振動の変位量を比較のために任意の単位(Arbitrarily Unit)として表してある。また、横軸は振動片10のX軸方向またはZ´軸方向の長さを示している。
Next, the analysis result by the finite element method (FEM) leading to the above-described vibration piece will be described.
FIG. 5 shows the result of analyzing the vibration displacement of the vibrating piece by the finite element method when the protruding pieces having the same thickness as the excitation electrode are formed in two rows at the same interval on the vibrating piece. FIG. 5A shows an analysis result of the vibration displacement in the X-axis direction of the resonator element 10 by the finite element method, and FIG. 5B shows an analysis result of the vibration displacement in the Z′-axis direction by the finite element method. Note that the vertical axis in FIG. 5 represents the amount of vibration displacement as an arbitrary unit for comparison. Further, the horizontal axis indicates the length of the resonator element 10 in the X-axis direction or the Z′-axis direction.

図5(a)において、実線で表した曲線が振動片10に二列の突部である第1突部30および第2突部31を設けた場合のX軸方向振動変位であり、点線で表した曲線が振動片10に突部を設けない場合のX軸方向振動変位である。
この結果によれば、振動片10の保持部側Gにおいて良好な小さい振動変位を確保している。また、振動片10のX軸方向における振動変位は突部を設けない場合よりも、二列の第1突部30および第2突部31を設けた場合のほうが振動片10中央部の振動変位が大きくなり、また、振動領域が広くなっていることが分かる。また、図3(a)の振動片に一列の突部を形成した場合と比較しても、二列の突部を形成したほうが振動片10中央部の振動変位は大きくなっている。これは、振動片10に第1突部30および第2突部31を設けたことにより、主振動の減衰を緩やかに制御でき、振動の減衰が主振動を阻害せずに良好な振動がなされていることを意味する。つまり、この結果は励振電極20の実効面積をあげることに等しく、CI値を低くする効果がある。
従来、CI値を低くするためには励振電極を厚くする手法が用いられていたが、この場合、エネルギー閉じ込めによる実効励振部分が狭くなるため等価容量C1が小さくなり周波数可変容量を低下させるという課題があった。本実施例によれば、励振電極の厚みを厚くしても外周の突部の影響でC1を小さくすることなくCI値を低くすることができ、周波数可変量を低下させないという効果が生ずる。
In FIG. 5A, the curve represented by the solid line is the X-axis direction vibration displacement when the first protrusion 30 and the second protrusion 31 that are two rows of protrusions are provided on the resonator element 10. The curve shown represents the vibration displacement in the X-axis direction when no protrusion is provided on the resonator element 10.
According to this result, a favorable small vibration displacement is ensured on the holding portion side G of the resonator element 10. Further, the vibration displacement in the X-axis direction of the resonator element 10 is greater in the center of the resonator element 10 when the two rows of the first protrusions 30 and the second protrusions 31 are provided than when the protrusions are not provided. It becomes clear that the vibration region is widened. In addition, even when two rows of protrusions are formed on the vibrating piece in FIG. 3A, the vibration displacement at the center of the vibrating piece 10 is larger when the two rows of protrusions are formed. This is because the vibration piece 10 is provided with the first protrusion 30 and the second protrusion 31 so that the attenuation of the main vibration can be controlled gently, and the vibration attenuation does not disturb the main vibration, and a good vibration is made. Means that That is, this result is equivalent to increasing the effective area of the excitation electrode 20 and has the effect of lowering the CI value.
Conventionally, in order to reduce the CI value, a method of thickening the excitation electrode has been used. However, in this case, the effective excitation part due to energy confinement is narrowed, so the equivalent capacitance C 1 is reduced and the frequency variable capacitance is reduced. There was a problem. According to the present embodiment, even if the thickness of the excitation electrode is increased, the CI value can be lowered without decreasing C 1 due to the influence of the protrusion on the outer periphery, and the effect that the frequency variable amount is not lowered is produced.

次に、図5(b)において、実線で表した曲線が振動片10に二列の突部である第1突部30および第2突部31を設けた場合のZ´軸方向振動変位であり、点線で表した曲線が振動片10に突部を設けない場合のZ´軸方向振動変位である。
この結果によれば、振動片10のZ´軸方向における振動変位は、突部を設けない場合より二列の第1突部30および第2突部31を設けた場合のほうが、緩やかな振動の減衰ができ、また、良好な減衰状態を確保できている。また、図3(b)の振動片に一列の突部を形成した場合と比較しても、二列の突部を形成したほうが緩やかな振動の減衰となっている。
以上のことから、振動片10に二列の第1突部30および第2突部31を設けることにより振動の減衰を緩やかにすることができ、振動の減衰が主振動を阻害しないとともに、振動片の周辺端部の振動を充分に減衰することができる。さらに、振動片10の中央部における振動変位を大きくできることから、振動片の電気的特性を向上させることができる。
Next, in FIG. 5B, the curve represented by the solid line is the vibration displacement in the Z′-axis direction when the first protrusion 30 and the second protrusion 31 that are two rows of protrusions are provided on the resonator element 10. Yes, the curve represented by the dotted line is the vibration displacement in the Z′-axis direction when no protrusion is provided on the resonator element 10.
According to this result, the vibration displacement of the vibrating piece 10 in the Z′-axis direction is more gentle in the case where the two first protrusions 30 and the second protrusions 31 are provided than in the case where the protrusions are not provided. And a good attenuation state can be secured. Further, even when one row of protrusions is formed on the vibrating piece of FIG. 3B, the vibration attenuation is more gentle when the two rows of protrusions are formed.
From the above, the vibration attenuation can be moderated by providing the two rows of the first protrusions 30 and the second protrusions 31 on the resonator element 10, and the vibration attenuation does not hinder the main vibration, and the vibration The vibration at the peripheral edge of the piece can be sufficiently damped. Furthermore, since the vibration displacement at the center of the resonator element 10 can be increased, the electrical characteristics of the resonator element can be improved.

図6は、振動片に励振電極より薄い厚さの突部を二列に形成した場合における、振動片の振動変位を有限要素法にて解析した結果である。図6(a)は振動片10のX軸方向における振動変位の有限要素法による解析結果、図6(b)はZ´軸方向における振動変位の有限要素法による解析結果である。   FIG. 6 shows the result of analyzing the vibration displacement of the vibrating piece by the finite element method when the protruding pieces having a thickness smaller than the excitation electrode are formed in two rows on the vibrating piece. 6A shows the analysis result of the vibration displacement in the X-axis direction of the resonator element 10 by the finite element method, and FIG. 6B shows the analysis result of the vibration displacement in the Z′-axis direction by the finite element method.

図6(a)において、実線で表した曲線が振動片10に励振電極20より厚さの薄い、二列の突部である第1突部30および第2突部31を設けた場合のX軸方向振動変位であり、点線で表した曲線が振動片10に励振電極20と同じ厚さで二列の第1突部30および第2突部31を設けた場合のX軸方向振動変位である。
この結果によれば、二列の第1突部30および第2突部31を、励振電極20の厚さより薄く形成することにより、振動片10の周辺端部での振動の減衰が顕著に生じていることがわかる。
In FIG. 6A, the curve represented by the solid line is X in the case where the first protrusion 30 and the second protrusion 31 that are two rows of protrusions having a thickness smaller than that of the excitation electrode 20 are provided on the resonator element 10. This is the axial vibration displacement, and the curve represented by the dotted line is the vibration displacement in the X-axis direction when the first protrusion 30 and the second protrusion 31 in two rows having the same thickness as the excitation electrode 20 are provided on the resonator element 10. is there.
According to this result, by forming the two rows of the first protrusions 30 and the second protrusions 31 thinner than the thickness of the excitation electrode 20, vibration attenuation at the peripheral end of the resonator element 10 is significantly generated. You can see that

次に、図6(b)において、実線で表した曲線が振動片10に励振電極20より厚さの薄い、二列の第1突部30および第2突部31を設けた場合のZ´軸方向振動変位であり、点線で表した曲線が振動片10に励振電極20と同じ厚さで二列の第1突部30および第2突部31を設けた場合のZ´軸方向振動変位である。
この結果からも、二列の第1突部30および第2突部31を、励振電極20の厚さより薄く形成することにより振動片10の周辺端部での振動の減衰が顕著に生じていることがわかる。
Next, in FIG. 6B, Z ′ in the case where the two lines of the first protrusions 30 and the second protrusions 31 in which the curve shown by the solid line is thinner than the excitation electrode 20 is provided on the resonator element 10. Z′-axis direction vibration displacement in the case where the first protrusion 30 and the second protrusion 31 in two rows having the same thickness as that of the excitation electrode 20 are provided on the vibration piece 10. It is.
Also from this result, the vibration attenuation at the peripheral end of the resonator element 10 is significantly generated by forming the two rows of the first protrusions 30 and the second protrusions 31 thinner than the thickness of the excitation electrode 20. I understand that.

このように、突部30、31の厚さは薄いほうが振動の減衰効果があり、振動片10に二列の第1突部30および第2突部31を設け、これらの突部を励振電極20の厚さより薄く形成することにより、振動片10の周辺端部の振動を充分に減衰することができる。さらに、振動片10の中央部における振動変位を大きくできることから、振動片10の電気的特性を向上させることができる。   As described above, the thin projections 30 and 31 have a vibration damping effect when the projections 30 and 31 are thin, and the vibration piece 10 is provided with two rows of the first projections 30 and the second projections 31, and these projections are used as excitation electrodes. By forming it thinner than 20, the vibration at the peripheral end of the resonator element 10 can be sufficiently damped. Furthermore, since the vibration displacement at the center of the resonator element 10 can be increased, the electrical characteristics of the resonator element 10 can be improved.

以上の実施例1および実施例2の説明から、励振電極20を形成した振動片10に、励振電極20を囲むように突部を設けることにより、振動の減衰を緩やかにすることができ、振動片10の周辺端部の振動を充分に減衰することができる。さらに、振動片10の振動領域を広くすることができることから、振動片10の電気的特性を向上させることができる。
さらに、振動片10に設けた突部の厚さを励振電極20の厚さより薄く形成したほうが、振動片周辺端部での振動変位を小さく制御できる。
From the above description of the first and second embodiments, the vibration piece 10 formed with the excitation electrode 20 is provided with a protrusion so as to surround the excitation electrode 20. The vibration at the peripheral edge of the piece 10 can be sufficiently damped. Furthermore, since the vibration region of the resonator element 10 can be widened, the electrical characteristics of the resonator element 10 can be improved.
Furthermore, if the thickness of the protrusion provided on the resonator element 10 is made thinner than the thickness of the excitation electrode 20, the vibration displacement at the periphery of the resonator element can be controlled to be small.

また、振動片に形成した突部が複数列ある場合においては、数式1から4より主振動の伝播強度の減衰はその伝播する距離に依存するので、突部を形成する間隔は、振動片の励振電極外周から周辺端部に向かい順次広く形成されたほうが、振動の減衰については効果的であることがわかる。また、突部の幅についても、同様の理由から振動片の周辺端部に向かい順次狭く形成されたほうが振動の減衰については効果的である。   In addition, when there are a plurality of protrusions formed on the resonator element, the attenuation of the main vibration propagation intensity depends on the propagation distance from Equations 1 to 4, and therefore, the interval between the protrusions is determined by the distance between the protrusions. It can be seen that the vibration attenuation is more effective when the electrodes are formed so as to gradually increase from the outer periphery of the excitation electrode toward the peripheral edge. Further, for the same reason, the width of the protrusion is more effective for damping vibration if it is formed so as to narrow toward the peripheral end of the resonator element.

なお、振動片に複数列形成された突部の場合、突部の厚さを振動片の励振電極外周から周辺端部に向かい順次薄く、突部を形成する間隔を振動片の周辺端部に向かい順次広く、突部の幅を振動片の周辺端部に向かい順次狭く、形成することを、それぞれを組み合わせて実施をすることもできる。   In the case of the protrusions formed in a plurality of rows on the resonator element, the thickness of the protrusions is gradually decreased from the outer periphery of the excitation electrode to the peripheral end, and the interval between the protrusions is set at the peripheral end of the resonator element. It is also possible to carry out a combination of forming the protrusions so that they are gradually widened and the widths of the protrusions are gradually narrowed toward the peripheral edge of the resonator element.

(変形例)
以上のことを考慮すると、突部の配置、形状は例えば、図7(a)、(b)、(c)および図8に示すような他の形態での実施も可能である。
図7は実施例2と同様に振動片に二列の突部を設けた場合の、他の実施例を示す模式部分断面図である。
振動片10の中央部には、励振電極20が形成され、励振電極20をその外周側から間隔を開けて囲むように第1突部30および第2突部31が形成されている。そして、これらの励振電極20および第1突部30、第2突部31は、振動片10の厚さ方向に対向するように形成されている。
(Modification)
Considering the above, the arrangement and shape of the protrusions can be implemented in other forms as shown in FIGS. 7A, 7B, 7C, and 8, for example.
FIG. 7 is a schematic partial cross-sectional view showing another embodiment in the case where two rows of protrusions are provided on the resonator element as in the second embodiment.
An excitation electrode 20 is formed at the center of the resonator element 10, and a first protrusion 30 and a second protrusion 31 are formed so as to surround the excitation electrode 20 with an interval from the outer peripheral side. The excitation electrode 20, the first protrusion 30, and the second protrusion 31 are formed so as to face each other in the thickness direction of the resonator element 10.

図7(a)において、第1突部30の厚さT2は励振電極20の厚さT1より薄く、第2突部31の厚さT3は第1突部30の厚さT2よりも薄く形成されている(T1>T2>T3なる関係)。
また、第1突部30と第2突部31との間隔L2は、励振電極20と第1突部30との間隔L1よりも広く形成されている(L1<L2なる関係)。
さらに、第2突部31の幅W2は第1突部30の幅W1と同等に形成されている(W1≒W2なる関係)。
In FIG. 7 (a), the thickness T 2 of the first projection 30 is thinner than the thickness T 1 of the excitation electrode 20, the thickness T 3 of the second projection 31 has a thickness T 2 of the first projection 30 (A relation of T 1 > T 2 > T 3 ).
Further, the distance L 2 between the first protrusion 30 and the second protrusion 31 is formed wider than the distance L 1 between the excitation electrode 20 and the first protrusion 30 (relationship L 1 <L 2 ). .
Further, the width W 2 of the second protrusion 31 is formed to be equal to the width W 1 of the first protrusion 30 (relationship W 1 ≈W 2 ).

図7(b)においては、第1突部30の厚さT2は励振電極20の厚さT1より薄く、第2突部31の厚さT3は第1突部30の厚さT2よりも薄く形成されている(T1>T2>T3なる関係)。
また、第1突部30と第2突部31との間隔L2は、励振電極20と第1突部30との間隔L1と同等に形成されている(L1≒L2なる関係)。
さらに、第2突部31の幅W2は、第1突部30の幅W1より狭く形成されている(W1>W2なる関係)。
In FIG. 7B, the thickness T 2 of the first protrusion 30 is thinner than the thickness T 1 of the excitation electrode 20, and the thickness T 3 of the second protrusion 31 is the thickness T of the first protrusion 30. It is formed thinner than 2 (relationship T 1 > T 2 > T 3 ).
Further, the distance L 2 between the first protrusion 30 and the second protrusion 31 is formed to be equal to the distance L 1 between the excitation electrode 20 and the first protrusion 30 (relationship L 1 ≈L 2 ). .
Further, the width W 2 of the second protrusion 31 is formed narrower than the width W 1 of the first protrusion 30 (relationship W 1 > W 2 ).

図7(c)においては、第1突部30の厚さT2は励振電極20の厚さT1より薄く、第2突部31の厚さT3は第1突部30の厚さT2と同等に形成されている(T1>T2≒T3なる関係)。
また、第1突部30と第2突部31との間隔L2は、励振電極20と第1突部30との間隔L1よりも広く形成されている(L1<L2なる関係)。
さらに、第2突部31の幅W2は、第1突部30の幅W1より狭く形成されている(W1>W2なる関係)。
In FIG. 7C, the thickness T 2 of the first protrusion 30 is thinner than the thickness T 1 of the excitation electrode 20, and the thickness T 3 of the second protrusion 31 is the thickness T of the first protrusion 30. 2 (relationship T 1 > T 2 ≈T 3 ).
Further, the distance L 2 between the first protrusion 30 and the second protrusion 31 is formed wider than the distance L 1 between the excitation electrode 20 and the first protrusion 30 (relationship L 1 <L 2 ). .
Further, the width W 2 of the second protrusion 31 is formed narrower than the width W 1 of the first protrusion 30 (relationship W 1 > W 2 ).

また、図8は振動片に三列の突部を設けた場合の実施例を示す模式部分断面図である。
振動片10の中央部には、励振電極20が形成され、励振電極20の外周側から間隔を開けて囲むように第1突部30が形成され、そして、第1突部30の外周側から励振電極20を囲むように第2突部31が形成されている。さらに、第2突部31の外周側から励振電極20を囲むように第3突部32が形成されている。そして、これらの励振電極20および第1突部30、第2突部31、第3突部32は、振動片10の厚さ方向に対向するように形成されている。
FIG. 8 is a schematic partial cross-sectional view showing an example in which three rows of protrusions are provided on the resonator element.
An excitation electrode 20 is formed at the center of the resonator element 10, and a first protrusion 30 is formed so as to surround the excitation electrode 20 with an interval from the outer peripheral side, and from the outer peripheral side of the first protrusion 30. A second protrusion 31 is formed so as to surround the excitation electrode 20. Further, a third protrusion 32 is formed so as to surround the excitation electrode 20 from the outer peripheral side of the second protrusion 31. The excitation electrode 20, the first protrusion 30, the second protrusion 31, and the third protrusion 32 are formed so as to face each other in the thickness direction of the resonator element 10.

第1突部30の厚さT2は励振電極20の厚さT1より薄く、第2突部31の厚さT3は第1突部30の厚さT2よりも薄く形成されている。そして、第3突部32の厚さT4は第2突部31の厚さT3よりも薄く形成されている(T1>T2>T3>T4なる関係)。
また、第1突部30と第2突部31に間隔L2は、励振電極20と第1突部30との間隔L1よりも広く形成されている。そして、第2突部31と第3突部32との間隔L3は、第1突部30と第2突部31との間隔L2よりも広く形成されている(L1<L2<L3なる関係)。
さらに、第2突部31の幅W2は、第1突部30の幅W1より狭く形成され、第3突部32の幅W3は、第2突部31の幅W2より狭く形成されている(W1>W2>W3なる関係)。
The thickness T 2 of the first protrusion 30 is thinner than the thickness T 1 of the excitation electrode 20, and the thickness T 3 of the second protrusion 31 is thinner than the thickness T 2 of the first protrusion 30. . The thickness T 4 of the third protrusion 32 is formed thinner than the thickness T 3 of the second protrusion 31 (relationship T 1 > T 2 > T 3 > T 4 ).
Further, the distance L 2 between the first protrusion 30 and the second protrusion 31 is formed wider than the distance L 1 between the excitation electrode 20 and the first protrusion 30. The distance L 3 between the second protrusion 31 and the third protrusion 32 is formed wider than the distance L 2 between the first protrusion 30 and the second protrusion 31 (L 1 <L 2 < L 3 the relationship).
Furthermore, the width W 2 of the second projecting portion 31 is narrower than the width W 1 of the first projection 30, the width W 3 of the third projection 32 is narrower than the width W 2 of the second projection 31 is (W 1> W 2> W 3 the relationship).

このように、振動片への突部の配置、形状において、突部の厚さ、突部を形成する間隔、突部の幅の要素は本発明の趣旨を逸脱しない範囲において組み合わせ可能で、適宜変更して実施することができる。
また、励振電極の形状は任意の形状でよく、突部も任意の形状でもよい。突部は連続した形状でもよく、非連続の形状であってもよい。
Thus, in the arrangement and shape of the protrusions on the resonator element, the thickness of the protrusions, the interval between the protrusions, and the width of the protrusions can be combined without departing from the spirit of the present invention. It can be changed and implemented.
Further, the shape of the excitation electrode may be any shape, and the protrusion may be any shape. The protrusion may have a continuous shape or a discontinuous shape.

なお、本実施例では、振動片に突部を励振電極と同じ金属材料で形成したが、別工程にて、励振電極と異なる金属で形成してもよい。
また、突部をSiO2、TiO2、ZnO、Al23などの非導電性の材料で形成してもよい。このようにすれば、製造工程において、突部と励振電極のショートや振動片を導電性接着剤で固着する際の、突部と導電性接着剤のショートを防止することができる。
In this embodiment, the protrusion is formed on the vibrating piece with the same metal material as that of the excitation electrode. However, it may be formed with a metal different from that of the excitation electrode in a separate process.
Further, the protrusion may be formed of a nonconductive material such as SiO 2 , TiO 2 , ZnO, Al 2 O 3 or the like. By doing so, it is possible to prevent a short circuit between the protrusion and the conductive adhesive and a short circuit between the protrusion and the conductive adhesive when the vibration piece is fixed with the conductive adhesive in the manufacturing process.

図9は本発明の圧電振動片を用いた圧電振動子の一例を示す概略図である。図9(a)は圧電振動子の斜視図、図9(b)は同図のB−B断面図である。   FIG. 9 is a schematic view showing an example of a piezoelectric vibrator using the piezoelectric vibrating piece of the present invention. 9A is a perspective view of the piezoelectric vibrator, and FIG. 9B is a cross-sectional view taken along the line BB in FIG.

本実施例の圧電振動子50は、例えばセラミック製の収容容器51に本発明の圧電振動片10を導電性接着剤52にて固着して保持をし、図示はしないが、収容容器51の上面に接合して収容容器51内を真空あるいは不活性ガス雰囲気で密閉する蓋体を有する構造となっている。圧電振動片10には、中央部に励振電極20が厚み方向に対向するように形成され、また、励振電極20から圧電振動片10の周辺端部に延伸する接続電極21が形成されている。圧電振動片10の励振電極20を囲むように第1突部30および第2突部31が厚さ方向に対向するように形成されている。圧電振動片10は収容容器51の保持部53において、導電性接着剤52で固着保持され励振電極20と収容容器51の配線(図示せず)と電気的に接続されている。   The piezoelectric vibrator 50 according to the present embodiment, for example, holds the piezoelectric vibrating piece 10 of the present invention in a ceramic container 51 with a conductive adhesive 52 and holds the upper surface of the container 51. It has the structure which has a cover body sealed to the inside of the container 51 in a vacuum or an inert gas atmosphere. In the piezoelectric vibrating piece 10, an excitation electrode 20 is formed at the center so as to face the thickness direction, and a connection electrode 21 extending from the excitation electrode 20 to the peripheral end of the piezoelectric vibrating piece 10 is formed. The first protrusion 30 and the second protrusion 31 are formed so as to face each other in the thickness direction so as to surround the excitation electrode 20 of the piezoelectric vibrating piece 10. The piezoelectric vibrating piece 10 is fixedly held by the conductive adhesive 52 in the holding portion 53 of the storage container 51 and is electrically connected to the excitation electrode 20 and the wiring (not shown) of the storage container 51.

このように、圧電振動片10の励振電極20を囲むように突部30,31を形成したことにより、圧電振動片10の端部での振動は充分に減衰されており、圧電振動片10の端部で導電性接着材52を介して固着保持しても、圧電振動片10から保持部53への振動の漏洩が低減でき、主振動を阻害することがない。また、圧電振動片10に突部を複数設けたことにより、主振動の近くで減衰をさらに緩やかにすることができ、主振動を阻害することを低減できる。このように、本実施例の圧電振動子50は、圧電振動片10の主面に突部30,31を形成した効果を引き出し、電気的特性の優れた圧電振動子50を提供できる。   Thus, by forming the protrusions 30 and 31 so as to surround the excitation electrode 20 of the piezoelectric vibrating piece 10, the vibration at the end of the piezoelectric vibrating piece 10 is sufficiently damped. Even if the end portion is fixed and held via the conductive adhesive 52, leakage of vibration from the piezoelectric vibrating piece 10 to the holding portion 53 can be reduced, and main vibration is not hindered. In addition, by providing a plurality of protrusions on the piezoelectric vibrating piece 10, the damping can be further moderated near the main vibration, and the inhibition of the main vibration can be reduced. Thus, the piezoelectric vibrator 50 of the present embodiment can bring out the effect of forming the protrusions 30 and 31 on the main surface of the piezoelectric vibrating piece 10 and can provide the piezoelectric vibrator 50 with excellent electrical characteristics.

図10は本発明の圧電振動片を用いた圧電発振器の概略図である。図10(a)は圧電発振器の斜視図、図10(b)は同図(a)のC−C断面図である。 FIG. 10 is a schematic view of a piezoelectric oscillator using the piezoelectric vibrating piece of the present invention. 10A is a perspective view of the piezoelectric oscillator, and FIG. 10B is a cross-sectional view taken along the line C-C in FIG.

本実施例の圧電発振器70は、例えばセラミック製の収容容器71に本発明の圧電振動片10を導電性接着剤72にて固着して保持し、また、圧電振動片を発振させるための回路部74を固定し、図示はしないが、収容容器71の上面に接合して収容容器71内を真空あるいは不活性ガス雰囲気で密閉する蓋体を有する構造となっている。
圧電振動子10には、中央部に励振電極20が厚み方向に対向するように形成され、また、励振電極20から圧電振動子10の周辺端部に延伸する接続電極21が形成されている。圧電振動片10の励振電極20を囲むように第1突部30および第2突部31が厚さ方向に対向するように形成されている。圧電振動片10は収容容器71の保持部73において、導電性接着剤72で固着保持され励振電極20と収容容器71の配線(図示せず)および回路部74と電気的に接続されている。
The piezoelectric oscillator 70 of the present embodiment is a circuit unit for fixing and holding the piezoelectric vibrating piece 10 of the present invention to a ceramic container 71 with a conductive adhesive 72, and for oscillating the piezoelectric vibrating piece. 74 is fixed and has a structure that is not shown, but has a lid that is joined to the upper surface of the container 71 and hermetically seals the container 71 in a vacuum or an inert gas atmosphere.
In the piezoelectric vibrator 10, an excitation electrode 20 is formed at the center so as to face the thickness direction, and a connection electrode 21 extending from the excitation electrode 20 to the peripheral end of the piezoelectric vibrator 10 is formed. The first protrusion 30 and the second protrusion 31 are formed so as to face each other in the thickness direction so as to surround the excitation electrode 20 of the piezoelectric vibrating piece 10. The piezoelectric vibrating piece 10 is fixedly held by the conductive adhesive 72 in the holding portion 73 of the storage container 71 and is electrically connected to the excitation electrode 20, the wiring (not shown) of the storage container 71, and the circuit portion 74.

このように、圧電振動片10の励振電極20を囲むように突部30,31を形成したことにより、圧電振動片10の端部での振動は充分に減衰されており、圧電振動片10の端部で導電性接着材72を介して固着保持しても、圧電振動片10から保持部73への振動の漏洩が低減でき、主振動を阻害することがない。また、圧電振動片10に突部を複数設けたことにより、主振動の近くでさらに減衰を緩やかにすることができ、主振動を阻害することを低減できる。このように、本実施例の圧電発振器70は、圧電振動片10の主面に突部30、31を形成した効果を引き出し、電気的特性の優れた圧電発振器70を提供できる。   Thus, by forming the protrusions 30 and 31 so as to surround the excitation electrode 20 of the piezoelectric vibrating piece 10, the vibration at the end of the piezoelectric vibrating piece 10 is sufficiently damped. Even if the end portion is fixedly held via the conductive adhesive 72, leakage of vibration from the piezoelectric vibrating piece 10 to the holding portion 73 can be reduced, and main vibration is not hindered. In addition, by providing a plurality of protrusions on the piezoelectric vibrating piece 10, the damping can be further moderated near the main vibration, and inhibition of the main vibration can be reduced. As described above, the piezoelectric oscillator 70 according to the present embodiment can provide the piezoelectric oscillator 70 having excellent electrical characteristics by extracting the effect of forming the protrusions 30 and 31 on the main surface of the piezoelectric vibrating piece 10.

なお、本発明は振動片の励振電極を囲む突部を形成することに限定されず、振動片の長手方向両側に励振電極を挟んで対峙するように突部を形成してもよい。すなわち、振動片の短手方向両側に励振電極を挟んで対峙する突部のない構成であってもよい。
また、振動片の短手方向両側に励振電極を挟んで対峙するように突部を形成してもよい。すなわち振動片の長手方向両側に励振電極を挟んで対峙する突部のない構成であってもよい。
In addition, this invention is not limited to forming the protrusion surrounding the excitation electrode of a vibration piece, You may form a protrusion so that it may oppose on both sides of the longitudinal direction of a vibration piece on both sides of an excitation electrode. In other words, the configuration may be such that there are no protrusions facing each other across the excitation electrode on both sides in the short direction of the resonator element.
In addition, protrusions may be formed on both sides of the resonator element in the short direction so as to face each other with the excitation electrode interposed therebetween. In other words, a configuration may be employed in which there are no protrusions facing each other across the excitation electrode on both sides in the longitudinal direction of the resonator element.

本実施例に使用される振動片の形状および結晶軸を説明する概略図。Schematic explaining the shape and crystal axis of the resonator element used in this example. 本発明の実施例1を説明する振動片の概略図。FIG. 3 is a schematic diagram of a resonator element illustrating Example 1 of the invention. 厚み滑り振動の減衰状態を示す有限要素法による解析の変位分布図。The displacement distribution map of the analysis by the finite element method which shows the damping state of thickness shear vibration. 本発明の実施例2を説明する振動片の概略図。FIG. 6 is a schematic diagram of a resonator element for explaining Example 2 of the invention. 厚み滑り振動の減衰状態を示す有限要素法による解析の変位分布図。The displacement distribution map of the analysis by the finite element method which shows the damping state of thickness shear vibration. 厚み滑り振動の減衰状態を示す有限要素法による解析の変位分布図。The displacement distribution map of the analysis by the finite element method which shows the damping state of thickness shear vibration. 振動片に二列の突部を設けた場合の他の実施例を示す模式部分断面図。FIG. 9 is a schematic partial cross-sectional view showing another embodiment when two rows of protrusions are provided on the resonator element. 振動片に三列の突部を設けた場合の実施例を示す模式部分断面図。FIG. 6 is a schematic partial cross-sectional view showing an example in which three rows of protrusions are provided on a vibrating piece. 本発明における圧電振動子の概略図。The schematic diagram of the piezoelectric vibrator in the present invention. 本発明における圧電発振器の概略図。The schematic diagram of the piezoelectric oscillator in the present invention.

符号の説明Explanation of symbols

10…圧電振動片としての振動片、11…主面、20…励振電極、21…接続電極、30…突部としての第1突部、31…突部としての第2突部、32…突部としての第3突部、50…圧電振動子、70…圧電発振器、T1…励振電極の厚さ、T2…第1突部の厚さ、T3…第2突部の厚さ、T4…第3突部の厚さ、L1…励振電極と第1突部の間隔、L2…第1突部と第2突部の間隔、L3…第2突部と第3突部の間隔、W1…第1突部の幅、W2…第2突部の幅、W3…第3突部の幅。 DESCRIPTION OF SYMBOLS 10 ... Vibrating piece as a piezoelectric vibrating piece, 11 ... Main surface, 20 ... Excitation electrode, 21 ... Connection electrode, 30 ... 1st protrusion as a protrusion, 31 ... 2nd protrusion as a protrusion, 32 ... Projection Third protrusion as a part, 50... Piezoelectric vibrator, 70... Piezoelectric oscillator, T 1 ... Thickness of excitation electrode, T 2 ... Thickness of first protrusion, T 3 . T 4 ... thickness of the third protrusion, L 1 ... distance between the excitation electrode and the first protrusion, L 2 ... distance between the first protrusion and the second protrusion, L 3 ... second protrusion and third protrusion The interval between the parts, W 1 ... the width of the first protrusion, W 2 ... the width of the second protrusion, W 3 ... the width of the third protrusion.

Claims (12)

厚み滑り振動を主振動とする圧電振動片であって、一対の主面において厚さ方向に対向して形成された励振電極と、前記励振電極に接続され前記圧電振動片の周辺端部に延伸された接続電極と、少なくとも一方の主面に前記励振電極の外周部を挟んで対峙するようにまたは前記励振電極を囲むように形成され前記励振電極と同じ厚さもしくは薄い厚さに形成された突部と、を備えたことを特徴とする圧電振動片。   A piezoelectric vibrating piece having thickness shear vibration as a main vibration, which is formed of a pair of main surfaces opposed to each other in the thickness direction, and connected to the excitation electrode and extended to a peripheral end of the piezoelectric vibrating piece The connection electrode is formed so as to face at least one main surface with the outer peripheral portion of the excitation electrode interposed therebetween or to surround the excitation electrode, and is formed to have the same thickness or a thin thickness as the excitation electrode A piezoelectric vibrating piece comprising a protrusion. 請求項1記載の圧電振動片において、前記突部が前記励振電極と同じ材料で形成されていることを特徴とする圧電振動片。   The piezoelectric vibrating piece according to claim 1, wherein the protrusion is made of the same material as the excitation electrode. 請求項1または2に記載の圧電振動片において、前記突部が励振電極の外周部から圧電振動片の周辺端部に向かい間隔を開けて複数列設けられていることを特徴とする圧電振動片。   3. The piezoelectric vibrating piece according to claim 1, wherein the protrusions are provided in a plurality of rows at intervals from the outer peripheral portion of the excitation electrode toward the peripheral end portion of the piezoelectric vibrating piece. . 請求項3記載の圧電振動片において、前記突部の厚さが励振電極の外周部から圧電振動片の周辺端部に向かい順次薄くなるように形成されていることを特徴とする圧電振動片。   4. The piezoelectric vibrating piece according to claim 3, wherein the thickness of the protrusion is formed so as to become gradually thinner from the outer peripheral portion of the excitation electrode toward the peripheral end of the piezoelectric vibrating piece. 請求項3記載の圧電振動片において、前記突部を形成する間隔が励振電極の外周部から圧電振動片の周辺端部に向かい順次広くなるように形成されていることを特徴とする圧電振動片。   4. The piezoelectric vibrating piece according to claim 3, wherein an interval for forming the protrusions is formed so as to gradually increase from an outer peripheral portion of the excitation electrode toward a peripheral end portion of the piezoelectric vibrating piece. . 請求項3記載の圧電振動片において、前記突部の幅が励振電極の外周部から圧電振動片の周辺端部に向かい順次狭くなるように形成されていることを特徴とする圧電振動片。   4. The piezoelectric vibrating piece according to claim 3, wherein a width of the projecting portion is formed so as to be gradually reduced from an outer peripheral portion of the excitation electrode toward a peripheral end portion of the piezoelectric vibrating piece. 請求項3記載の圧電振動片において、前記突部の厚さが励振電極の外周部から圧電振動片の周辺端部に向かい順次薄くなるように形成されており、さらに、前記突部を形成する間隔が励振電極の外周部から圧電振動片の周辺端部に向かい順次広くなるように形成されていることを特徴とする圧電振動片。   4. The piezoelectric vibrating piece according to claim 3, wherein the thickness of the protruding portion is formed so as to be gradually decreased from the outer peripheral portion of the excitation electrode toward the peripheral end portion of the piezoelectric vibrating piece, and further, the protruding portion is formed. A piezoelectric vibrating piece characterized in that the interval is formed so as to increase gradually from the outer periphery of the excitation electrode toward the peripheral end of the piezoelectric vibrating piece. 請求項3記載の圧電振動片において、前記突部の厚さが励振電極の外周部から圧電振動片の周辺端部に向かい順次薄くなるように形成されており、さらに、前記突部の幅が励振電極の外周部から圧電振動片の周辺端部に向かい順次狭くなるように形成されていることを特徴とする圧電振動片。   4. The piezoelectric vibrating piece according to claim 3, wherein the thickness of the protrusion gradually decreases from the outer peripheral portion of the excitation electrode toward the peripheral end of the piezoelectric vibrating piece, and the width of the protrusion is further reduced. A piezoelectric vibrating piece, wherein the piezoelectric vibrating piece is formed so as to become narrower sequentially from the outer peripheral portion of the excitation electrode toward the peripheral end portion of the piezoelectric vibrating piece. 請求項3記載の圧電振動片において、前記突部を形成する間隔が励振電極の外周部から圧電振動片の周辺端部に向かい順次広くなるように形成されており、さらに、前記突部の幅が励振電極の外周部から圧電振動片の周辺端部に向かい順次狭くなるように形成されていることを特徴とする圧電振動片。   4. The piezoelectric vibrating piece according to claim 3, wherein an interval at which the protrusion is formed is formed so as to gradually increase from the outer peripheral portion of the excitation electrode toward the peripheral end of the piezoelectric vibrating piece, and the width of the protruding portion. Is formed so as to become narrower sequentially from the outer peripheral portion of the excitation electrode toward the peripheral end portion of the piezoelectric vibrating piece. 請求項3記載の圧電振動片において、前記突部の厚さが励振電極の外周部から圧電振動片の周辺端部に向かい順次薄くなるように形成されており、前記突部を形成する間隔が励振電極の外周部から圧電振動片の周辺端部に向かい順次広くなるように形成されており、さらに、前記突部の幅が励振電極の外周部から圧電振動片の周辺端部に向かい順次狭くなるように形成されていることを特徴とする圧電振動片。   The piezoelectric vibrating piece according to claim 3, wherein the thickness of the protrusion is formed so as to gradually decrease from the outer peripheral portion of the excitation electrode toward the peripheral end portion of the piezoelectric vibrating piece, and an interval between the protrusions is formed. It is formed so as to gradually increase from the outer periphery of the excitation electrode toward the peripheral end of the piezoelectric vibrating piece, and the width of the protrusion gradually decreases from the outer periphery of the excitation electrode toward the peripheral end of the piezoelectric vibrating piece. The piezoelectric vibrating piece is formed so as to be. 請求項1ないし10のいずれか一項に記載の圧電振動片と、前記圧電振動片をその端部で電気的に接続された状態に固着保持する保持部と、を有することを特徴とする圧電振動子。   11. A piezoelectric device comprising: the piezoelectric vibrating piece according to claim 1; and a holding portion that holds the piezoelectric vibrating piece in an electrically connected state at an end thereof. Vibrator. 請求項1ないし10のいずれか一項に記載の圧電振動片と、前記圧電振動片を発振させるための回路部と、前記圧電振動片の端部を固着保持するとともに前記圧電振動片と前記回路部とを電気的に接続する保持部と、を有することを特徴とする圧電発振器。

11. The piezoelectric vibrating piece according to claim 1, a circuit unit for oscillating the piezoelectric vibrating piece, an end portion of the piezoelectric vibrating piece being fixedly held, and the piezoelectric vibrating piece and the circuit A piezoelectric oscillator comprising: a holding portion that electrically connects the portion.

JP2004071026A 2004-03-12 2004-03-12 Piezoelectric vibrating bar, piezoelectric vibrator and piezo-oscillator Pending JP2005260692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004071026A JP2005260692A (en) 2004-03-12 2004-03-12 Piezoelectric vibrating bar, piezoelectric vibrator and piezo-oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004071026A JP2005260692A (en) 2004-03-12 2004-03-12 Piezoelectric vibrating bar, piezoelectric vibrator and piezo-oscillator

Publications (1)

Publication Number Publication Date
JP2005260692A true JP2005260692A (en) 2005-09-22

Family

ID=35085978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004071026A Pending JP2005260692A (en) 2004-03-12 2004-03-12 Piezoelectric vibrating bar, piezoelectric vibrator and piezo-oscillator

Country Status (1)

Country Link
JP (1) JP2005260692A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007189431A (en) * 2006-01-12 2007-07-26 Epson Toyocom Corp Piezoelectric vibration piece and piezoelectric device
JP2008047982A (en) * 2006-08-10 2008-02-28 Daishinku Corp Piezoelectric vibration device
JP2011097183A (en) * 2009-10-27 2011-05-12 Seiko Epson Corp Piezoelectric vibrator
JP2015089093A (en) * 2013-10-28 2015-05-07 株式会社坂本電機製作所 Crystal oscillator
JP2018088656A (en) * 2016-11-30 2018-06-07 京セラ株式会社 Crystal element and crystal device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59183025U (en) * 1983-05-23 1984-12-06 キンセキ株式会社 Crystal oscillator
JPS6179316A (en) * 1984-09-27 1986-04-22 Nippon Dempa Kogyo Co Ltd Piezo-electric vibrator
JPH02260910A (en) * 1989-03-31 1990-10-23 Meidensha Corp Crystal resonator piece
JPH07297666A (en) * 1994-04-27 1995-11-10 Daishinku Co Surface mounted type piezoelectric oscillator
JPH0998062A (en) * 1995-09-28 1997-04-08 Daishinku Co Monolithic crystal filter
JPH10308645A (en) * 1997-05-08 1998-11-17 Toyo Commun Equip Co Ltd At cut crystal oscillator and production thereof
JP2002217675A (en) * 2001-01-15 2002-08-02 Toyo Commun Equip Co Ltd Electrode structure of piezoelectric vibration element, and manufacturing apparatus therefor
JP2003046366A (en) * 2001-07-30 2003-02-14 Toyo Commun Equip Co Ltd Piezo-electric vibrator and its manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59183025U (en) * 1983-05-23 1984-12-06 キンセキ株式会社 Crystal oscillator
JPS6179316A (en) * 1984-09-27 1986-04-22 Nippon Dempa Kogyo Co Ltd Piezo-electric vibrator
JPH02260910A (en) * 1989-03-31 1990-10-23 Meidensha Corp Crystal resonator piece
JPH07297666A (en) * 1994-04-27 1995-11-10 Daishinku Co Surface mounted type piezoelectric oscillator
JPH0998062A (en) * 1995-09-28 1997-04-08 Daishinku Co Monolithic crystal filter
JPH10308645A (en) * 1997-05-08 1998-11-17 Toyo Commun Equip Co Ltd At cut crystal oscillator and production thereof
JP2002217675A (en) * 2001-01-15 2002-08-02 Toyo Commun Equip Co Ltd Electrode structure of piezoelectric vibration element, and manufacturing apparatus therefor
JP2003046366A (en) * 2001-07-30 2003-02-14 Toyo Commun Equip Co Ltd Piezo-electric vibrator and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007189431A (en) * 2006-01-12 2007-07-26 Epson Toyocom Corp Piezoelectric vibration piece and piezoelectric device
JP2008047982A (en) * 2006-08-10 2008-02-28 Daishinku Corp Piezoelectric vibration device
JP4687985B2 (en) * 2006-08-10 2011-05-25 株式会社大真空 Method for adjusting frequency of piezoelectric vibration device
JP2011097183A (en) * 2009-10-27 2011-05-12 Seiko Epson Corp Piezoelectric vibrator
JP2015089093A (en) * 2013-10-28 2015-05-07 株式会社坂本電機製作所 Crystal oscillator
JP2018088656A (en) * 2016-11-30 2018-06-07 京セラ株式会社 Crystal element and crystal device

Similar Documents

Publication Publication Date Title
JP2005286992A (en) Piezoelectric oscillating piece, piezoelectric vibrator, and piezoelectric oscillator
US7301258B2 (en) Piezoelectric resonator element, piezoelectric resonator, and piezoelectric oscillator
US8174171B2 (en) Piezoelectric vibrating devices having bisymmetric vibrating arms and supporting arms, and devices comprising same
JP2006238263A (en) Piezoelectric vibrating piece and piezoelectric vibrator
JP2001244778A (en) High-frequency piezoelectric vibrator
JP2010098531A (en) Piezoelectric vibration piece and piezoelectric device
JP2009065270A (en) Mesa type vibrating piece and mesa type vibrating device
JP5789914B2 (en) Tuning fork type piezoelectric vibrating piece and piezoelectric device
JP5789913B2 (en) Tuning fork type piezoelectric vibrating piece and piezoelectric device
JP2000252786A (en) Piezoelectric vibrating element
JP2012165367A (en) Piezoelectric vibrator and acoustic wave device
JP4665849B2 (en) Method for manufacturing piezoelectric vibration device
JP4003302B2 (en) Piezoelectric vibrator
JP2005260692A (en) Piezoelectric vibrating bar, piezoelectric vibrator and piezo-oscillator
JP2003087087A (en) Crystal transducer
JP5674241B2 (en) Piezoelectric vibrator, piezoelectric vibrator, electronic device
JP2000040938A (en) Ultra high frequency piezoelectric device
JP4325178B2 (en) Piezoelectric vibration element, piezoelectric vibrator and piezoelectric oscillator
JP2004165798A (en) Structure of piezoelectric vibrating element
JP4613498B2 (en) Piezoelectric vibrating piece, piezoelectric vibrator and piezoelectric oscillator
JP2001326554A (en) Piezoelectric vibrator
US8212458B2 (en) Flexural-mode tuning-fork type quartz crystal resonator
JPH1079640A (en) Piezoelectric device, its manufacture and mobile communication equipment
JP2004207913A (en) Crystal vibrator
JP2023000464A (en) Crystal vibrating piece and crystal oscillator

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070124

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070403

A977 Report on retrieval

Effective date: 20100112

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Effective date: 20100319

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100727