JP4003302B2 - Piezoelectric vibrator - Google Patents

Piezoelectric vibrator Download PDF

Info

Publication number
JP4003302B2
JP4003302B2 JP19831498A JP19831498A JP4003302B2 JP 4003302 B2 JP4003302 B2 JP 4003302B2 JP 19831498 A JP19831498 A JP 19831498A JP 19831498 A JP19831498 A JP 19831498A JP 4003302 B2 JP4003302 B2 JP 4003302B2
Authority
JP
Japan
Prior art keywords
notch
vibration
mode
substrate
piezoelectric vibrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19831498A
Other languages
Japanese (ja)
Other versions
JP2000031781A (en
Inventor
松太郎 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP19831498A priority Critical patent/JP4003302B2/en
Publication of JP2000031781A publication Critical patent/JP2000031781A/en
Application granted granted Critical
Publication of JP4003302B2 publication Critical patent/JP4003302B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は圧電振動子に関し、特に、スプリアス特性に優れた圧電振動子に関する。
【0002】
【従来の技術】
従来より圧電振動子として例えば水晶振動子は、その高いQ値によって高精度及び、高安定に周波数を制御することが可能である。
水晶振動子として代表的なATカット水晶基板は厚みすべり振動を主振動とするものであるが、通常、有限のATカット水晶基板には励振した時に出現する振動モードとして主振動の厚みすべり振動の他にも数多くの副振動モード発生する。これら副振動(以下スプリアスという)の存在は水晶振動子の周波数選択性及び、周波数安定性を悪化させる原因となる為、水晶振動子の周波数安定性向上を実現する上でスプリアスを抑制することは重要である。
従来、スプリアスの抑制を考慮した水晶振動子として例えば図4に示すようなものがある。
同図に示すように、水晶基板101の表裏面の中心部に振動部を兼ねた励振電極102を設けて、該励振電極102をリード電極103により水晶基板101の端部まで延長し、該端部を導電性接着剤104を用いパッケージ内に設けたランドパターン105に固定した水晶振動子に於いて、主振動モード近傍に発生するスプリアスの抑制手段として前記水晶基板101の表面の主振動領域以外の適所に例えばシリコン系接着剤等を点または線状に塗布してアブソーバー106を形成した構成としている。
このような構成により、前記水晶基板101に発生するスプリアスモードの振動エネルギーは前記アブソーバー106の質量付加により減衰される為、スプリアス特性に優れた水晶振動子を得ることが可能となる。
【0003】
【本発明が解決しようとする課題】
しかしながら、図4にて説明したスプリアス抑制方法はスプリアスモードの中でも主振動の高次モード(以下、インハーモニックという)の抑制には有効であるが、主振動である高い厚みすべり振動とは異なる屈曲振動モードの抑制には十分な効果が得られない。
従って、前記主振動モードと屈曲振動モードとが結合を起こし易い水晶振動子を用いた水晶発振器は、十分な周波数安定度が得られないという問題がある。
例えば、水晶振動子の前記厚みすべり振動である主振動モードの周波数は温度変化に伴い滑らかな三次曲線となるよう変化するが、ある温度点で前記主振動にスプリアスモードである前記屈曲振動モードが結合した場合、周波数が急激に変化し周波数ジャンプを生じることがあり、その結果、水晶振動子の周波数温度特性は不連続となり、十分な周波数安定度が得られないという問題が発生する。
この様な不具合は、例えば温度補償回路のコンダクタンス値を水晶振動子の三次関数的な温度特性を相殺するよう変化させるのみならず、屈曲振動モードによる周波数ジャンプをも相殺するよう変化させればよいが、コンダクタンス値を急激に変化させることは困難であり実現されなかった。
従って、周波数ジャンプを起こす水晶振動子は破棄しなければならず、これにより水晶振動子の歩留りの悪化が生じると共に、低価格化が十分に達成されないという問題を生じていた。
また、製造直後には周波数ジャンプが発生しなくとも、経年変化により発生する場合があり、この様な不具合を発生する水晶振動子を移動体通信機器に使用した場合、突然に通信状態が切断されるという問題を発生していた。
本発明は上記の問題を解決する為になされたものであって、振動子の主振動モードと結合し易い屈曲振動モードを抑制することにより、良好な周波数温度特性得られる圧電振動子を低価格で提供する。
【0004】
【課題を解決するための手段】
上記課題を解決する為に、本発明に係わる請求項1記載の圧電振動子は、矩形の圧電基板の短辺のほぼ中央に切り欠き部を形成した厚みすべりモードを主振動とする圧電振動子であって、前記切り欠き部の両側に位置する突出部をパッケージに接着固定した際に前記主振動以外の不要振動モードの発生を抑圧するよう前記切り欠き部の寸法を設定しており、前記切り欠き部の深さLを前記不要振動モードの波長λに対して0<L≦λ/4としたことを特徴としている。
【0006】
請求項記載の圧電振動子は、請求項1に記載の発明に加え、前記切り欠き部の両脇に位置する突出部の幅Wをそれぞれ前記圧電基板の短辺の幅W0に対してW0/4以下としたことを特徴としている。
【0007】
【本発明の実施の形態】
以下、図示した実施例に基づいて本発明を詳細に説明する。
図1は本発明に基づく水晶基板1の一実施例の構造図を示すものである。
同図(a)は外観斜視図を示すものであり、同図(b)は上面構成図を示したものである。
同図に示すようにATカット水晶振動子1は長手方向をXとした場合、矩形の水晶基板であってX方向の両端部のほぼ中央にはそれぞれ切り欠き部2を形成したものである。
本願発明者は上述するように上記構成のATカット水晶振動子について詳細な有限要素法解析を行い水晶振動子1を同図(b)に示すように前記水晶基板1の中央部に位置する領域Aと、その両脇に位置する領域Bとに分けた時、各領域の端部に於いて、屈曲振動モードの振動波の反射の様相が異なるとの知見を得、これを利用することにより、前記領域Bに屈曲振動モードの振動エネルギーを集中させることが可能となることを見出したのである。
即ち、先に説明した通り、水晶基板等の圧電基板には多数の振動モードが発生し、これら振動モードは、それぞれが異なる波長を有する為、基板端部での振動波の反射の様相も各々で異なってくる。
そこで、主振動モードと、スプリアスモードである屈曲振動モードとの波長の違いに応じて前記切り欠き部2の深さLの寸法と、該切り欠き部2の両脇に位置する突出部の幅Wの寸法とを適切に設定することにより、前記領域Bに屈曲振動波の振動エネルギーを集中させることが可能となる。
そして更に、前記切り欠き部2の両脇に位置する突出部を後述するように支持部としてセラミック容器に固定することにより、前記屈曲モードの振動エネルギーを抑圧することが可能である。
一方、前記領域Aには主振動である厚みすべり振動の振動エネルギーが残存する為、励振電極を領域Aに配置することにより所望の信号を得ることが可能である。
【0008】
以下、図1に示す構成の水晶振動子につき有限要素法を用いて解析した結果を従来の水晶基板の場合の解析結果と対比させながら詳細に説明する。
図2は前記水晶基板1に発生する屈曲振動モードの振動エネルギーの分布を示す解析結果である。
図5は図4に示す従来の水晶基板101についての解析結果を示すものである。図2(a)及び図5(a)はY軸方向からみた屈曲振動モードの変位図を示すものである。
図2(b)及び図5(b)はX軸方向からみた屈曲振動モードの変位図を示すものである。
以上の何れの図も図中の線の疎密により振動エネルギーの伝搬の様子が表わされており、線が密に描かれている部分であるほど振動エネルギーがより集中していることを示している。
尚、解析に用いた水晶基板の寸法については水晶基板101はX寸法400μm、Y寸法100μm、Z寸法400μmとし、また、水晶基板1は上記の寸法に加え、±Z方向の端部に屈曲振動モードの波長λに対してX軸方向にλ/8の長さの突出部を設けたものである。
【0009】
図2(a)に示すように水晶基板1のZ−X面に分布する屈曲振動モードの振動エネルギーは基板のZ軸方向両端に位置する領域Bに集中して伝搬していることがわかる。
更に、図2(b)に示すようにZ−Y面に分布する振動エネルギーも基板の両端に位置する領域Bに集中しており、Y軸方向への変位量も大きい。
これに対して、図5(a)に示すように端部に切り欠き部2を設けない水晶基板101ではZ−X面に屈曲振動モードの振動エネルギーが基板全体に一様に伝搬していると共に、図5(b)に示すようにY方向の基板の変位量は、全域に亙って一様に生じている。
即ち、これらの結果より前記水晶基板1に発生する屈曲振動モードの屈曲波の伝搬の様相は前記切り欠き部2による屈曲波の反射に影響され変化し、これに伴い前記領域Bに前記屈曲振動モードの振動エネルギーが集中するものと推定される。
従って、図3(a)または(b)に示すように該水晶基板1の前記切り欠き部2の両脇にある突出部を支持部としてセラミック容器3の段部4に導電性接着剤5を用いて固定することにより、前記領域Bに集中している前記屈曲振動モードの振動エネルギーが接着剤4を介して容器2へと拡散するので、屈曲振動モードを選択的に減衰させることが可能である。
尚、同図に示す前記セラミック容器3は、その内部に段部4と、該段部4の表面にあるランドパターン6とを備えており、また、水晶基板1は、その表裏面に励振電極7と、該励振電極7から前記突出部まで延長するリード電極8とを備えている。
【0010】
更に、前記切り欠き部2の深さLの最適値について検討した結果、屈曲振動波の波長λに対し、L>λ/4の深さとした場合、前記切り欠き部2の両脇に位置する突出部を支持部としても前記屈曲振動モードは前記領域A及びBに独立して存在してしまう為、前記屈曲振動モードが抑制され難い。
従って、前記切り欠き部2の深さはLの最適値は0<L≦λ/4となる範囲にて選択することが望ましい。
また、切り欠き部2の両脇に位置する前記突出部の幅Wの最適値については、水晶基板1のZ軸方向の幅をW0、として、W>W0/4の範囲とした場合、屈曲振動モードは領域Aのより中心部にまで存在し、主振動モードとスプリアスモードとの分離が十分行えない。
従って、前記突出部の幅WはW≦W0/4の範囲とすることが望ましい。
また、一実施例では圧電基板として水晶を用いて説明したが、本発明はこれに限るものでなく、ニオブ酸リチュウムまたは、タンタル酸リチュウム等の圧電材料から成る圧電基板を用いた圧電振動子であっても本発明を用いることにより一実施例と同等の機能が得られることは言うまでもない。
【0011】
【本発明の効果】
以上説明したように発明に基づくことにより、圧電基板の端部に切り欠き部を不要モード振動波の周波数λに対し深さλ/4以下及び、そのの両脇に位置するそれぞれの前記突出部の幅Wを該切り欠き部を設ける端部の幅W0に対してW0/4以下となるよう設定して設けて、更に、前記圧電基板をパッケージに固定する際に前記切り欠き部の両脇に位置する突出部を接着固定することにより主振動である厚みすべり振動モード以外の不要モードの発生を抑圧することが可能となる為、周波数安定度の高い圧電振動子が容易に得られるという効果と共に、前記効果による圧電振動子の歩留り向上に伴う低価格な圧電振動子の提供が可能になるという効果を奏する。
【図面の簡単な説明】
【図1】本発明に基づく水晶基板の外観構造図を示すものである。
(a)本発明に基づく水晶基板の側面傾斜構造図を示すものである。
(b)本発明に基づく水晶基板の上面構造図を示すものである。
【図2】本発明に基づく水晶基板の屈曲振動モードについての有限要素法の解析結果を示す振動エネルギー分布図である。
(a)本発明に基づく水晶基板のZ−X面の屈曲振動エネルギーの分布図を示すものである。
(b)本発明に基づく水晶基板のZ−Y面の屈曲振動エネルギーの分布図及びY方向の変位量を示す図である。
【図3】本発明に基づく水晶振動子の上面構造図を示すものである。
(a)水晶基板を片側保持した場合の構造図を示すものである。
(b)水曜基板を両側保持した場合の構造図を示すものである。
【図4】従来のスプリアスモード抑制方法を用いた水晶振動子の上面構造図を示すものである。
【図5】従来の従来の四角形状の水晶基板の屈曲振動モードについての有限要素法の解析結果を示す振動エネルギー分布図である。
(a)従来の水晶基板のZ−X面の屈曲振動エネルギーの分布図を示すものである。
(b)従来の水晶基板のZ−Y面の屈曲振動エネルギーの分布図及びY方向の変位量を示す図である。
【符号の説明】
1、101水晶基板、2切り欠き部、3セラミック容器、4段部、5、104導電性接着剤、6、105ランドパターン、7、102励振電極、8、103リード電極、106アブソーバー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a piezoelectric vibrator, and more particularly to a piezoelectric vibrator having excellent spurious characteristics.
[0002]
[Prior art]
Conventionally, for example, a crystal resonator as a piezoelectric resonator can control the frequency with high accuracy and high stability by its high Q value.
A typical AT-cut quartz substrate as a crystal resonator has a thickness-shear vibration as a main vibration. Normally, a finite AT-cut quartz substrate has a thickness-shear vibration as a vibration mode that appears when excited. Many other secondary vibration modes occur. The presence of these sub-vibrations (hereinafter referred to as spurious) causes the frequency selectivity and frequency stability of the crystal unit to deteriorate, so suppressing spurious in improving the frequency stability of the crystal unit is not possible. is important.
Conventionally, as shown in FIG. 4, for example, there is a quartz crystal resonator in consideration of spurious suppression.
As shown in the figure, an excitation electrode 102 that also serves as a vibration part is provided at the center of the front and back surfaces of the quartz substrate 101, and the excitation electrode 102 is extended to the end of the quartz substrate 101 by a lead electrode 103. In a crystal unit having a portion fixed to a land pattern 105 provided in a package using a conductive adhesive 104, as a means for suppressing spurious generated near the main vibration mode, other than the main vibration region on the surface of the crystal substrate 101 For example, the absorber 106 is formed by applying, for example, a silicon-based adhesive or the like in the form of dots or lines.
With such a configuration, the vibration energy of the spurious mode generated in the quartz substrate 101 is attenuated by the mass addition of the absorber 106, so that it is possible to obtain a quartz resonator having excellent spurious characteristics.
[0003]
[Problems to be solved by the present invention]
However, the spurious suppression method described with reference to FIG. 4 is effective in suppressing the higher-order mode (hereinafter referred to as inharmonic) of the main vibration among the spurious modes, but the bending is different from the high thickness shear vibration that is the main vibration. A sufficient effect cannot be obtained for suppressing the vibration mode.
Therefore, a crystal oscillator using a crystal resonator in which the main vibration mode and the bending vibration mode are likely to be coupled has a problem that sufficient frequency stability cannot be obtained.
For example, the frequency of the main vibration mode that is the thickness-shear vibration of the crystal resonator changes so as to become a smooth cubic curve with a temperature change, but the flexural vibration mode that is a spurious mode at a certain temperature point When coupled, the frequency may change suddenly, resulting in a frequency jump. As a result, the frequency temperature characteristic of the crystal resonator becomes discontinuous, and there is a problem that sufficient frequency stability cannot be obtained.
For example, it is only necessary to change the conductance value of the temperature compensation circuit so as to cancel the cubic function temperature characteristic of the crystal resonator, and also change the frequency jump due to the bending vibration mode. However, it has been difficult and difficult to change the conductance value rapidly.
Therefore, the crystal resonator that causes the frequency jump has to be discarded, which causes a problem that the yield of the crystal resonator is deteriorated and the cost is not sufficiently reduced.
Also, even if a frequency jump does not occur immediately after manufacturing, it may occur due to secular change, and when a crystal unit that generates such a malfunction is used in a mobile communication device, the communication state is suddenly disconnected. Had a problem.
The present invention has been made in order to solve the above-described problem, and a piezoelectric vibrator that can obtain good frequency-temperature characteristics by suppressing a flexural vibration mode that is easily coupled with the main vibration mode of the vibrator. Provide in.
[0004]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the piezoelectric vibrator according to claim 1 according to the present invention has a thickness-shear mode in which a notch portion is formed substantially at the center of a short side of a rectangular piezoelectric substrate as a main vibration. a is, and set the size of the notch so as to suppress the occurrence of unnecessary vibration mode other than the main vibration upon and adhere the protruding portions located on opposite sides of the notch in the package, the The depth L of the notch is 0 <L ≦ λ / 4 with respect to the wavelength λ of the unnecessary vibration mode .
[0006]
The piezoelectric vibrator according to claim 2, to the billing in addition to the serial mounting of the invention in claim 1, the notch width W0 of the short sides of each said piezoelectric substrate width W of the protruding portions located on both sides It is characterized by W0 / 4 or less.
[0007]
[Embodiments of the Invention]
Hereinafter, the present invention will be described in detail based on illustrated embodiments.
FIG. 1 shows a structural diagram of an embodiment of a quartz substrate 1 according to the present invention.
FIG. 2A shows an external perspective view, and FIG. 2B shows a top view.
As shown in the figure, when the longitudinal direction is X, the AT-cut quartz crystal resonator 1 is a rectangular quartz substrate, and is formed with a notch 2 at substantially the center of both ends in the X direction.
The inventor of the present application performs detailed finite element analysis on the AT-cut quartz crystal having the above-described configuration as described above, and the quartz crystal 1 is located in the central portion of the quartz crystal substrate 1 as shown in FIG. By obtaining the knowledge that the aspect of reflection of the vibration wave in the flexural vibration mode is different at the end of each area when it is divided into A and the area B located on both sides of the area. The inventors have found that it is possible to concentrate the vibration energy of the bending vibration mode in the region B.
That is, as described above, a large number of vibration modes are generated in a piezoelectric substrate such as a quartz substrate, and each of these vibration modes has a different wavelength. Will be different.
Therefore, depending on the difference in wavelength between the main vibration mode and the bending vibration mode which is a spurious mode, the dimension of the depth L of the notch 2 and the width of the protrusions located on both sides of the notch 2 are described. By appropriately setting the dimension of W, the vibration energy of the bending vibration wave can be concentrated in the region B.
Furthermore, the vibration energy in the bending mode can be suppressed by fixing the protrusions located on both sides of the notch 2 as a support to the ceramic container as will be described later.
On the other hand, since the vibration energy of the thickness shear vibration which is the main vibration remains in the region A, it is possible to obtain a desired signal by arranging the excitation electrode in the region A.
[0008]
Hereinafter, the analysis result of the quartz resonator having the configuration shown in FIG. 1 using the finite element method will be described in detail while comparing with the analysis result of the conventional quartz substrate.
FIG. 2 is an analysis result showing a distribution of vibration energy of the bending vibration mode generated in the quartz substrate 1.
FIG. 5 shows the analysis results for the conventional quartz substrate 101 shown in FIG. FIG. 2A and FIG. 5A show displacement diagrams in the bending vibration mode as seen from the Y-axis direction.
FIG. 2B and FIG. 5B show displacement diagrams in the bending vibration mode as seen from the X-axis direction.
In any of the above figures, the propagation of vibration energy is represented by the density of the lines in the figure, indicating that the more dense the lines are drawn, the more concentrated the vibration energy is. Yes.
As for the dimensions of the quartz substrate used for the analysis, the quartz substrate 101 has an X dimension of 400 μm, a Y dimension of 100 μm, and a Z dimension of 400 μm. In addition to the above dimensions, the quartz substrate 1 has bending vibration at the end in the ± Z direction. A protrusion having a length of λ / 8 is provided in the X-axis direction with respect to the mode wavelength λ.
[0009]
As shown in FIG. 2A, it can be seen that the vibration energy of the bending vibration mode distributed on the Z-X plane of the quartz crystal substrate 1 is concentrated and propagated in the regions B located at both ends in the Z-axis direction of the substrate.
Further, as shown in FIG. 2B, the vibration energy distributed in the ZY plane is also concentrated in the region B located at both ends of the substrate, and the displacement amount in the Y-axis direction is large.
On the other hand, as shown in FIG. 5A, in the quartz substrate 101 in which the notch 2 is not provided at the end, the vibration energy of the bending vibration mode is uniformly propagated to the entire Z-X plane. At the same time, as shown in FIG. 5B, the amount of displacement of the substrate in the Y direction occurs uniformly over the entire area.
In other words, from these results, the bending wave propagation mode of the bending vibration mode generated in the quartz substrate 1 is affected and changed by the reflection of the bending wave by the notch 2, and accordingly, the bending vibration in the region B is changed. It is estimated that the vibration energy of the mode is concentrated.
Accordingly, as shown in FIG. 3A or 3B, the conductive adhesive 5 is applied to the stepped portion 4 of the ceramic container 3 with the protruding portions on both sides of the cutout portion 2 of the crystal substrate 1 as supporting portions. By using and fixing, the vibration energy of the bending vibration mode concentrated in the region B is diffused to the container 2 through the adhesive 4, so that the bending vibration mode can be selectively attenuated. is there.
The ceramic container 3 shown in the figure includes a step portion 4 and a land pattern 6 on the surface of the step portion 4, and the quartz substrate 1 has excitation electrodes on the front and back surfaces thereof. 7 and a lead electrode 8 extending from the excitation electrode 7 to the protruding portion.
[0010]
Further, as a result of examining the optimum value of the depth L of the notch 2, it is located on both sides of the notch 2 when L> λ / 4 with respect to the wavelength λ of the bending vibration wave. Since the bending vibration mode exists independently in the regions A and B even if the protruding portion is a support portion, the bending vibration mode is difficult to be suppressed.
Accordingly, it is desirable to select the depth of the notch 2 in the range where the optimum value of L is 0 <L ≦ λ / 4.
Further, regarding the optimum value of the width W of the projecting portion located on both sides of the notch 2, the width in the Z-axis direction of the quartz substrate 1 is W0, and the width is W> W0 / 4. The vibration mode exists in the central part of the region A, and the main vibration mode and the spurious mode cannot be sufficiently separated.
Therefore, it is desirable that the width W of the protrusion is in the range of W ≦ W0 / 4.
Further, in one embodiment, the description has been made using quartz as a piezoelectric substrate, but the present invention is not limited to this, and a piezoelectric vibrator using a piezoelectric substrate made of a piezoelectric material such as lithium niobate or lithium tantalate. Even if it exists, it cannot be overemphasized that the function equivalent to one Example is acquired by using this invention.
[0011]
[Effect of the present invention]
As described above, according to the invention, the notch portion at the end portion of the piezoelectric substrate has a depth λ / 4 or less with respect to the frequency λ of the unnecessary mode vibration wave, and the protruding portions located on both sides thereof. The width W of the notch is set to be equal to or less than W0 / 4 with respect to the width W0 of the end where the notch is provided. Further, when the piezoelectric substrate is fixed to the package, both sides of the notch are provided. By bonding and fixing the projecting part located at the center, it is possible to suppress the generation of unnecessary modes other than the thickness-shear vibration mode, which is the main vibration, so that a piezoelectric vibrator with high frequency stability can be easily obtained. In addition, there is an effect that it is possible to provide a low-cost piezoelectric vibrator accompanying the improvement of the yield of the piezoelectric vibrator due to the above effect.
[Brief description of the drawings]
FIG. 1 is an external structural view of a quartz crystal substrate according to the present invention.
(A) Side surface inclination structure figure of quartz substrate based on this invention is shown.
(B) The top view of the quartz substrate based on this invention is shown.
FIG. 2 is a vibration energy distribution diagram showing an analysis result of a finite element method for a bending vibration mode of a quartz crystal substrate according to the present invention.
(A) The distribution map of the bending vibration energy of the ZX plane of the quartz crystal substrate based on this invention is shown.
(B) The distribution diagram of the bending vibration energy of the ZY plane of the quartz substrate based on this invention, and the figure which shows the displacement amount of a Y direction.
FIG. 3 is a top structural view of a crystal resonator according to the present invention.
(A) A structural view in the case of holding a quartz substrate on one side is shown.
(B) A structural diagram when the Wednesday substrate is held on both sides is shown.
FIG. 4 is a top structural view of a crystal resonator using a conventional spurious mode suppressing method.
FIG. 5 is a vibration energy distribution diagram showing an analysis result of a finite element method with respect to a bending vibration mode of a conventional conventional quartz crystal substrate.
(A) The distribution map of the bending vibration energy of the ZX plane of the conventional quartz substrate is shown.
(B) A distribution diagram of flexural vibration energy on the ZY plane of a conventional quartz substrate and a diagram showing the amount of displacement in the Y direction.
[Explanation of symbols]
1, 101 crystal substrate, 2 notch, 3 ceramic container, 4 steps, 5, 104 conductive adhesive, 6, 105 land pattern, 7, 102 excitation electrode, 8, 103 lead electrode, 106 absorber

Claims (2)

矩形の圧電基板の短辺のほぼ中央に切り欠き部を形成した厚みすべりモードを主振動とする圧電振動子であって、前記切り欠き部の両側に位置する突出部をパッケージに接着固定した際に前記主振動以外の不要振動モードの発生を抑圧するよう前記切り欠き部の寸法を設定しており、前記切り欠き部の深さLを前記不要振動モードの波長λに対して0<L≦λ/4としたことを特徴とする圧電振動子。A piezoelectric vibrator whose main vibration is a thickness-slip mode in which a notch is formed in the approximate center of the short side of a rectangular piezoelectric substrate, and the protrusions located on both sides of the notch are bonded and fixed to the package The size of the notch is set so as to suppress the occurrence of unnecessary vibration modes other than the main vibration, and the depth L of the notch is set to 0 <L ≦ with respect to the wavelength λ of the unnecessary vibration mode. A piezoelectric vibrator characterized by having λ / 4 . 前記切り欠き部の両脇に位置する突出部の幅Wをそれぞれ前記圧電基板の短辺の幅W0に対してW0/4以下としたことを特徴とする請求項1に記載の圧電振動子。The notch of the piezoelectric vibrator mounting serial to claim 1, each of the width W of the protruding portion, characterized in that the W0 / 4 or less with respect to the width W0 of the short side of the piezoelectric substrate located on both sides .
JP19831498A 1998-07-14 1998-07-14 Piezoelectric vibrator Expired - Fee Related JP4003302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19831498A JP4003302B2 (en) 1998-07-14 1998-07-14 Piezoelectric vibrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19831498A JP4003302B2 (en) 1998-07-14 1998-07-14 Piezoelectric vibrator

Publications (2)

Publication Number Publication Date
JP2000031781A JP2000031781A (en) 2000-01-28
JP4003302B2 true JP4003302B2 (en) 2007-11-07

Family

ID=16389075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19831498A Expired - Fee Related JP4003302B2 (en) 1998-07-14 1998-07-14 Piezoelectric vibrator

Country Status (1)

Country Link
JP (1) JP4003302B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016105581A (en) * 2014-11-21 2016-06-09 エスアイアイ・クリスタルテクノロジー株式会社 Piezoelectric vibration piece and piezoelectric vibrator
JP6649747B2 (en) * 2014-12-26 2020-02-19 エスアイアイ・クリスタルテクノロジー株式会社 Piezoelectric vibrating reed and piezoelectric vibrator
JP6613482B2 (en) * 2015-09-03 2019-12-04 日本電波工業株式会社 Crystal oscillator
JP2017060055A (en) * 2015-09-17 2017-03-23 エスアイアイ・クリスタルテクノロジー株式会社 Piezoelectric vibration piece and piezoelectric vibrator
JP2017060123A (en) * 2015-09-18 2017-03-23 エスアイアイ・クリスタルテクノロジー株式会社 Piezoelectric vibration piece and piezoelectric vibrator
JP6570388B2 (en) * 2015-09-18 2019-09-04 エスアイアイ・クリスタルテクノロジー株式会社 Piezoelectric vibrator element and piezoelectric vibrator
JP6611534B2 (en) * 2015-09-18 2019-11-27 エスアイアイ・クリスタルテクノロジー株式会社 Piezoelectric vibrator element and piezoelectric vibrator
JP2017060124A (en) * 2015-09-18 2017-03-23 エスアイアイ・クリスタルテクノロジー株式会社 Piezoelectric vibration piece and piezoelectric vibrator
JP6904863B2 (en) * 2017-09-26 2021-07-21 日本電波工業株式会社 Manufacturing method of piezoelectric device, piezoelectric vibrating piece and piezoelectric vibrating piece
JP7170549B2 (en) * 2019-01-28 2022-11-14 京セラ株式会社 Crystal element and crystal device
JP7272805B2 (en) * 2019-01-28 2023-05-12 京セラ株式会社 Crystal element and crystal device
CN115656789B (en) * 2022-12-26 2024-04-09 惠州市金百泽电路科技有限公司 Step bonding pad structure and testing method thereof

Also Published As

Publication number Publication date
JP2000031781A (en) 2000-01-28

Similar Documents

Publication Publication Date Title
EP0220320B1 (en) Piezo-electric resonator for generating overtones
TWI762832B (en) Surface acoustic wave device
JP4003302B2 (en) Piezoelectric vibrator
JP3094717B2 (en) Piezoelectric resonance components
JPH11355094A (en) Piezoelectric vibrator
EP0641073B1 (en) Packaged piezoelectric resonator
JP4665282B2 (en) AT cut crystal unit
US5548180A (en) Vibrator resonator and resonance component utilizing width expansion mode
JPWO2018070369A1 (en) Elastic wave device
JP2000295065A (en) Piezoelectric vibrator and its frequency adjusting method
JPH0514442B2 (en)
JP2000312130A (en) Piezoelectric device, manufacture thereof and mobile communication unit employing them
JPS6357967B2 (en)
US5914645A (en) Surface acoustic wave device with optimized ratio of film thickness to electrode period
JP2002368571A (en) Piezoelectric vibrator and filter using the same
JP2640936B2 (en) Piezoelectric resonator for overtone oscillation using higher-order mode vibration
JP2005260692A (en) Piezoelectric vibrating bar, piezoelectric vibrator and piezo-oscillator
JP2004179879A (en) Piezoelectric substrate, piezoelectric vibration element, piezoelectric vibrator, and piezoelectric oscillator
JPH0870232A (en) Surface acoustic wave element and oscillat0r
JPH01227515A (en) Piezoelectric oscillator
JPH07106909A (en) Piezoelectric resonance parts
JP2001339272A (en) Piezoelectric resonator
JPH07147526A (en) Vibrator utilizing width spread mode, resonator and resonator component
JPH0278313A (en) Structure for overtone oscillating piezoelectric resonator
JP2004207913A (en) Crystal vibrator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070518

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070813

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees