JP2000295065A - Piezoelectric vibrator and its frequency adjusting method - Google Patents

Piezoelectric vibrator and its frequency adjusting method

Info

Publication number
JP2000295065A
JP2000295065A JP10195399A JP10195399A JP2000295065A JP 2000295065 A JP2000295065 A JP 2000295065A JP 10195399 A JP10195399 A JP 10195399A JP 10195399 A JP10195399 A JP 10195399A JP 2000295065 A JP2000295065 A JP 2000295065A
Authority
JP
Japan
Prior art keywords
frequency
vibration
electrode
electrodes
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10195399A
Other languages
Japanese (ja)
Other versions
JP2000295065A5 (en
Inventor
Akinori Ishita
明徳 井下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP10195399A priority Critical patent/JP2000295065A/en
Publication of JP2000295065A publication Critical patent/JP2000295065A/en
Publication of JP2000295065A5 publication Critical patent/JP2000295065A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a crystal oscillator with less frequency fluctuation quantity by bonding second electrodes for frequency fine adjustment at a peripheral part except for the center parts of first electrodes provided for the centers of both faces of a piezoelectric substrate. SOLUTION: Base electrodes 2a and 2b are bonded on the centers of the surface/back of a piezoelectric substrate 1. The lead electrodes 3a and 3b of the base electrodes 2a and 2b and a holder terminal are fixed and the fine quantity of metal is vapor- deposited through an electrode for frequency adjustment 4. A frequency is adjusted to a prescribed value. The displacement distribution α of vibration after the bonding of the base electrodes 2a and 2b becomes a curve and a bottom extends from the curve by the bonding of the electrode 4 for frequency adjustment 4. The effect of energy containment becomes small. The equivalent resistance value of a crystal oscillator becomes slightly larger, namely, the Q value of main vibration becomes small and therefore series load capacity is connected to the crystal oscillator. At the time of changing capacity or when a peripheral temperature is changed, the Q value of main vibration becomes small and the fluctuation rate of equivalent resistance becomes small even if high-order outline vibration is connected to main vibration.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は圧電振動子に関し、
特に副振動が主振動と結合することによる周波数変動を
少なくした圧電振動子に関する。
The present invention relates to a piezoelectric vibrator,
In particular, the present invention relates to a piezoelectric vibrator in which frequency fluctuations caused by coupling of sub-vibration with main vibration are reduced.

【0002】[0002]

【従来の技術】水晶振動子、特にATカット水晶振動子
は小型であり高精度、高安定度の周波数が容易に得られ
るため、近年では携帯電話端末からパーソナルコンピュ
ータまで広範囲に、且つ多量に用いられている。小型A
Tカット水晶振動子(厚みすべり振動)の開発の歴史を
みると、広範囲な温度に対して幅振動による主振動への
結合を如何に避けて、安定な周波数を得るかに多大の労
力を費やしてきた。例えば、「探針法に基づく水晶振動
子の振動姿態に関する研究」(福与、東京工大学報、195
5)では、ATカット水晶基板の厚さとZ'軸方向の長さ
を一定とし、X軸方向の長さのみを少しずつ研削した場
合、あるいは厚さとX軸方向の長さを一定とし、Z'軸方
向の長さのみを少しずつ研削した場合に、主振動の周波
数をはじめ励振される種々の振動の周波数を精密に測定
して、縦軸を共振周波数、横軸をX軸方向の長さ(ある
いはZ'軸方向の長さ)として周波数チャートを作成し
た。この周波数チャートを基にして、共振周波数がX軸
方向の長さ(あるいはZ'軸方向の長さ)に影響されない
振動群と、大きく左右される振動群とに分け、これらの
振動姿態を探針法を用いて詳細に観察した。この観察手
法は主振動の高周波側に生じるインハーモニックオーバ
トン、主振動の近傍に生じる高次輪郭振動(屈曲振動、
縦振動、面すべり振動等)の観察に適しており、前記周
波数チャートと相まって如何に主振動と副振動との結合
を避けて、良好な小型ATカット水晶振動子を設計する
かの指針を与えている。
2. Description of the Related Art In recent years, quartz resonators, especially AT-cut quartz resonators, are small in size and can easily obtain high-precision, high-stability frequencies. Have been. Small A
Looking at the history of the development of T-cut quartz resonators (thickness shear vibrations), a great deal of effort was spent on how to avoid coupling to the main vibration due to width vibration and obtain a stable frequency over a wide range of temperatures. Have been. For example, “Study on Vibration Mode of Quartz Crystal Resonator Based on Probe Method” (Fukuyo, Tokyo Institute of Technology, 195
5) In the case where the thickness of the AT-cut quartz substrate and the length in the Z'-axis direction are constant and only the length in the X-axis direction is slightly reduced, or the thickness and the length in the X-axis direction are constant, 'When only the length in the axial direction is ground little by little, the frequency of the various vibrations excited, including the frequency of the main vibration, is precisely measured, and the vertical axis is the resonance frequency, and the horizontal axis is the length in the X-axis direction. Then, a frequency chart was created as the height (or the length in the Z'-axis direction). Based on this frequency chart, the vibration group is divided into a vibration group whose resonance frequency is not affected by the length in the X-axis direction (or the length in the Z'-axis direction) and a vibration group that is greatly influenced by these vibration modes. It was observed in detail using the needle method. This observation method uses inharmonic overtons that occur on the high frequency side of the main vibration, and higher-order contour vibrations (bending vibration,
It is suitable for observing longitudinal vibration, surface sliding vibration, etc.), and in conjunction with the frequency chart, gives guidance on how to avoid coupling between main vibration and sub-vibration and design a good small AT-cut crystal resonator. ing.

【0003】また、Spencerらは1963年に、ATカット
基板に電極膜を付着した振動素子の振動姿態を透過X線
回折を利用したラング法を開発し、主振動及びその高周
波側に発生する副振動(インハーモニックオーバトン)
の振動姿態を詳細に観察した。この観察手法は前記探針
法では分解能が足りないため観察できなかったX軸方
向、Z'方向に複数の腹と節を持つ振動姿態についても観
察が容易となり、特定の振動モードを抑圧するための電
極設計が可能となった。また、関本らは「Two-dimension
al analysisi of thickness-shear and flexural vibra
tions in rectangular AT-cut quartz plates using a
one-dimensional finite element method」(44th FCS,p
358-p362,'90)にて、ATカット基板の厚さとX軸方向
の長さをいずれも一定とし、Z'軸の長さのみを変化させ
た場合について、高次輪郭振動のみならず屈曲振動も考
慮に入れた周波数チャートを有限要素法を用いて求め、
これと実験値を比較している。この計算には高次の面す
べり振動、縦振動は考慮されていないが、計算による周
波数チャートと実験による周波数チャートとがよく合致
しており、小型ATカット水晶振動子の設計に用いられ
ている。
In 1963, Spencer et al. Developed a Lang method using transmission X-ray diffraction to determine the vibration mode of a vibrating element having an electrode film attached to an AT-cut substrate. Vibration (Inharmonic Overton)
Was observed in detail. This observation method makes it easy to observe the vibration mode with multiple antinodes and nodes in the X-axis direction and Z 'direction that could not be observed because the resolution was insufficient with the probe method, and to suppress a specific vibration mode Electrode design became possible. Sekimoto et al., "Two-dimension
al analysisi of thickness-shear and flexural vibra
tions in rectangular AT-cut quartz plates using a
one-dimensional finite element method ”(44th FCS, p
In 358-p362, '90), when both the thickness of the AT-cut substrate and the length in the X-axis direction were constant and only the length of the Z'-axis was changed, not only the higher-order contour vibration but also bending Using a finite element method to obtain a frequency chart that takes vibration into account,
This is compared with the experimental value. Although high-order plane-slip vibration and longitudinal vibration are not considered in this calculation, the calculated frequency chart and the experimental frequency chart are in good agreement, and are used in the design of small AT-cut quartz resonators. .

【0004】図4はこうした先達らの示唆に基づき設計
された従来のATカット水晶振動子の構成の一例を示す
図で、同図(a)は平面図、同図(b)はB−Bにおける
断面図でる。水晶基板11の両主面のほぼ中央に電極12
a、12b(以下、ベース電極と称す)を付着した後、ベー
ス電極12a、12bそれぞれから延びるリード電極13a、13b
とホルダー(図示しない)の端子とを導電性接着剤等を
用いて固定する。周知のように、水晶振動子に求められ
る周波数の精度はppmのオーダーであるが、ベース電極
の厚みは製造誤差によりバラツキが生じるため、所望の
周波数を得ることは困難である。そこで、水晶振動素子
の一方の面(あるいは両面)から周波数微調用のマスク
を介して、金属を蒸着等の手段で微少量蒸着して、即ち
微調用電極14を付着して、周波数の微調整を行うのが一
般的である。この場合、水晶振動素子の周波数を計測器
を用いて監視しながら周波数を低下させて、所定の周波
数に調整する自動周波数調整機が一般に用いられてい
る。
FIGS. 4A and 4B show an example of the structure of a conventional AT-cut quartz crystal resonator designed based on the suggestions of the prior art. FIG. 4A is a plan view, and FIG. FIG. Electrodes 12 are located approximately at the center of both main surfaces of crystal substrate 11.
a, 12b (hereinafter, referred to as base electrodes), and then lead electrodes 13a, 13b extending from the base electrodes 12a, 12b, respectively.
And terminals of a holder (not shown) are fixed using a conductive adhesive or the like. As is well known, the precision of the frequency required for the crystal unit is on the order of ppm, but it is difficult to obtain a desired frequency because the thickness of the base electrode varies due to manufacturing errors. Therefore, fine adjustment of the frequency is performed by depositing a small amount of metal from one surface (or both surfaces) of the crystal unit via a mask for fine frequency adjustment by means of evaporation or the like, that is, attaching the fine adjustment electrode 14. It is common to do. In this case, an automatic frequency adjuster that reduces the frequency while monitoring the frequency of the crystal vibrating element using a measuring instrument and adjusts the frequency to a predetermined frequency is generally used.

【0005】図4(b)の下段に示す図は水晶振動子の
振動変位分布であり、ベース電極蒸着後の変位分布は実
線の曲線αで示すような分布であるが、振動素子を所定
の周波数に調整するために、周波数微調用電極14を付着
すると、エネルギー閉じ込め効果がベース蒸着の状態よ
り大きくなり、破線の曲線βで示すような分布になる
(曲線α、βとも変位分布の最大値で規準化してい
る)。これは、微調用電極14がベース電極12aの領域か
らはみ出さないようにベース電極の直径より小さい直径
の電極パターンを用いるため、電極の中央の質量効果が
増大することに起因する。曲線βのようにエネルギー閉
じ込め効果が大きくなると、保持部から漏洩する振動エ
ネルギーが小さくなるので、振動子の等価抵抗R1は小さ
く、即ち振動子のQ値は大きくなる。
FIG. 4 (b) shows the vibration displacement distribution of the crystal resonator. The displacement distribution after the base electrode is deposited is a distribution shown by a solid curve α. When the frequency fine-tuning electrode 14 is attached to adjust the frequency, the energy confinement effect becomes larger than that in the base vapor deposition state, and the distribution becomes as shown by the dashed curve β (both curves α and β have the maximum value of the displacement distribution). Is standardized). This is because the mass effect at the center of the electrode increases because the electrode pattern having a diameter smaller than the diameter of the base electrode is used so that the fine adjustment electrode 14 does not protrude from the area of the base electrode 12a. When the energy confinement effect increases as in the curve β, the vibration energy leaking from the holding unit decreases, so that the equivalent resistance R1 of the oscillator decreases, that is, the Q value of the oscillator increases.

【0006】水晶振動子に直列に負荷容量CLを接続し
て、該容量を変化させた場合、図5(a)に示すよう
に、ある容量値で主振動(周波数f1)と副振動(f2)と
が結合することがあり、副振動の周波数f2の近傍で主振
動の周波数が僅かに変動するか、あるいは結合の程度に
より周波数がジャンプする現象が生ずる。周知のよう
に、この周波数の変動量は、図5(b)に示した等価抵
抗(CI)の変動率ΔRに比例することからCIディッ
プによる周波数変動と呼ばれている。ここで、等価抵抗
の変動率ΔRは副振動が主振動に結合したときに、主振
動のエネルギーが副振動に漏洩し、その結果主振動の等
価抵抗が見かけ上、大きくなる率を示している。ここで
等価抵抗の変動率ΔRは次式のように表される。 ΔR=QQnk2 (1) ここで、Qは主振動のQ値、Qnは副振動のQ値、kは主振動
と副振動の結合度を表している。
[0006] Connect the load capacitance C L in series to the crystal oscillator, when changing the container volume, as shown in FIG. 5 (a), the secondary vibration to the main vibration in a volume value (frequency f 1) (F 2 ) may be coupled, and the frequency of the main vibration fluctuates slightly near the frequency f 2 of the sub-vibration, or the frequency jumps depending on the degree of coupling. As is well known, this variation in frequency is called the frequency variation due to the CI dip because it is proportional to the variation rate ΔR of the equivalent resistance (CI) shown in FIG. Here, the variation rate ΔR of the equivalent resistance indicates a rate at which the energy of the main vibration leaks to the sub-vibration when the sub-vibration is coupled to the main vibration, and as a result, the equivalent resistance of the main vibration becomes apparently large. . Here, the variation rate ΔR of the equivalent resistance is expressed by the following equation. ΔR = QQ n k 2 (1 ) where, Q is the Q value of the principal vibration, Q n is the secondary vibration Q value, k represents the degree of coupling primary vibration and secondary vibration.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記の
従来の周波数微調法においては、水晶振動子の周波数を
所定の周波数に調整すべく金属を蒸着するとエネルギー
閉じ込め効果が大きくなるので、前述した先達からの示
唆したものとズレを生ずることとなり、主振動のQ値が
大きくなる。主振動のQ値が大きくなると前記の式
(1)により主振動の等価抵抗の変動率ΔRが大きくな
る結果、副振動が結合した際に周波数変動量が大きくな
るという問題があった。本発明は上記問題を解決するた
めになされたものであって、周波数変動量の少ない水晶
振動子を提供することを目的とする。
However, in the above-mentioned conventional frequency fine-tuning method, when a metal is deposited to adjust the frequency of the quartz oscillator to a predetermined frequency, the energy confinement effect becomes large. In this case, a deviation occurs from that suggested by the above, and the Q value of the main vibration increases. As the Q value of the main vibration increases, the variation rate ΔR of the equivalent resistance of the main vibration increases according to the above equation (1). As a result, there is a problem that the amount of frequency fluctuation increases when the sub-vibration is coupled. SUMMARY OF THE INVENTION The present invention has been made to solve the above problem, and has as its object to provide a crystal resonator having a small amount of frequency fluctuation.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明に係る圧電振動子の請求項1記載の発明は、圧
電基板の両主面のほぼ中央に所定の大きさの第一の電極
を備え、該電極の上に周波数微調用の第二の電極を付着
して所定の周波数に調整する圧電振動子において、前記
第二の電極を前記第一の電極の中央部を除いて周辺部に
付着したことを特徴とする圧電振動子である。請求項2
記載の発明は、圧電基板の両主面のほぼ中央に所定の大
きさの第一の電極を備え、該電極から質量を除去して所
定の周波数に調整する圧電振動子において、前記第一の
電極の質量除去を該電極の周辺部を除いて中央部から除
去したことを特徴とする圧電振動子である。
According to a first aspect of the present invention, there is provided a piezoelectric vibrator according to the present invention. In a piezoelectric vibrator having an electrode, a second electrode for fine-tuning the frequency is attached on the electrode, and the frequency is adjusted to a predetermined frequency. In the piezoelectric vibrator, the second electrode is peripherally formed except for a central portion of the first electrode. A piezoelectric vibrator attached to a portion. Claim 2
The described invention comprises a first electrode having a predetermined size substantially at the center of both main surfaces of the piezoelectric substrate, and removing the mass from the electrode to adjust the frequency to a predetermined frequency. A piezoelectric vibrator characterized in that mass removal of an electrode is removed from a central portion except for a peripheral portion of the electrode.

【0009】[0009]

【発明の実施の形態】以下本発明を図面に示した実施の
形態に基づいて詳細に説明する。図1は本発明に係る水
晶振動子の構成を示す図で、同図(a)は平面図、同図
(b)はA−Aにおける断面図である。水晶基板1の両
主面のほぼ中央に電極2a、2bを付着した後、ホルダー
(図示しない)に保持し、ベース電極2a、2bのリード電
極3a、3bとホルダーの端子とを導電性接着剤等を用いて
固定する。水晶振動素子の一方の面(あるいは両面)か
ら周波数微調用のマスクを介して、金属を蒸着等の手段
で微少量蒸着4し、周波数を所定の周波数に調整する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail based on an embodiment shown in the drawings. 1A and 1B are diagrams showing a configuration of a crystal resonator according to the present invention. FIG. 1A is a plan view, and FIG. 1B is a cross-sectional view along AA. Electrodes 2a and 2b are attached to almost the center of both main surfaces of quartz substrate 1, and then held in a holder (not shown). Lead electrodes 3a and 3b of base electrodes 2a and 2b and terminals of the holder are electrically conductive adhesive. Fix using A small amount of metal is vapor-deposited from one surface (or both surfaces) of the crystal vibrating element by means such as vapor deposition through a mask for fine frequency adjustment, and the frequency is adjusted to a predetermined frequency.

【0010】本発明に係る水晶振動子の特徴は、ベース
電極2aの中央を除いて周辺部に金属等を付着し、その質
量効果により周波数を低下させて所定の周波数に調整す
る手段を用いる。このため振動変位分布は従来の分布と
異なることになる。即ち、ベース電極2a、2bを付着
した後の変位分布は実線で示す曲線αのようになるが、
本発明になる周波数微調用の電極4を付着すると、振動
変位分布は曲線αよりすそ野が広がり、エネルギー閉じ
込め効果は少し小さくなる。従って、従来のものより水
晶振動子の等価抵抗値R1は少し大きく、即ち主振動のQ
値は少し小さくなる。この結果、水晶振動子に直列に負
荷容量CLを接続し該容量を変化させて場合、あるいは水
晶振動子の周囲温度を変えて場合等に、高次輪郭振動が
主振動に結合したとしても、式(1)の主振動のQ値が
小さくなるので、等価抵抗の変動率ΔRは小さくなり、
従って周波数変動も小さくなる。
The quartz resonator according to the present invention is characterized in that a metal or the like is attached to the periphery except for the center of the base electrode 2a, and the frequency is reduced by a mass effect to adjust the frequency to a predetermined frequency. Therefore, the vibration displacement distribution is different from the conventional distribution. That is, the displacement distribution after attaching the base electrodes 2a and 2b is as shown by a curve α shown by a solid line.
When the electrode 4 for fine frequency adjustment according to the present invention is attached, the vibration displacement distribution has a broader skirt than the curve α, and the energy confinement effect is slightly reduced. Therefore, the equivalent resistance R1 of the crystal resonator is slightly larger than that of the conventional one,
The value will be slightly smaller. As a result, when varying the capacitive connecting the load capacitance C L in series to the crystal oscillator, or the like when changing the ambient temperature of the crystal oscillator, even higher contour vibration is attached to the main vibration , The Q value of the main vibration of the equation (1) becomes smaller, so that the variation rate ΔR of the equivalent resistance becomes smaller,
Therefore, the frequency fluctuation is reduced.

【0011】図2は本発明の変形実施例で、同図(a)
は平面図、同図(b)はA−Aにおける断面図であっ
て、表面実装型水晶振動子に本発明を適用した例であ
る。水晶基板1を短冊状に加工し、矩形のベース電極2
a、2bを蒸着等の手法で付着して、セラミックパッケー
ジ(図示しない)に収容し、リード電極3a、3bとパッ
ケージの周辺段差部に設けた端子電極と導電性接着剤を
用いて固定する。セラミックパッケージの開放した面よ
り微調用のマスクを介して金属を微少量蒸着する。この
際、マスクによりベース電極2aの中央部分を除いて周辺
部に周波数調整用の電極4が形成されるように蒸着す
る。
FIG. 2 shows a modified embodiment of the present invention.
FIG. 1 is a plan view, and FIG. 2B is a cross-sectional view taken along the line AA, which is an example in which the present invention is applied to a surface-mount type crystal unit. A quartz substrate 1 is processed into a strip shape, and a rectangular base electrode 2
A and 2b are attached by a method such as vapor deposition and the like, are housed in a ceramic package (not shown), and are fixed by using a conductive adhesive with the lead electrodes 3a and 3b and terminal electrodes provided on the peripheral step portion of the package. A small amount of metal is deposited from the open surface of the ceramic package through a fine adjustment mask. At this time, vapor deposition is performed using a mask so that the electrode 4 for frequency adjustment is formed in the peripheral portion except for the central portion of the base electrode 2a.

【0012】図3は本発明の他の変形実施例で、同図
(a)は平面図、同図(b)はA−Aにおける断面図で
あって、表面実装型水晶振動子に本発明を適用した例で
ある。図2に比べて、周波数調整用の電極5が電極ベー
ス電極2aの外周より内側に形成されているため、電極5
を付着する際にベース電極2aの領域より外側にはみ出
すことが防止できる。
3A and 3B show another modified embodiment of the present invention. FIG. 3A is a plan view, and FIG. 3B is a cross-sectional view taken along the line A--A of FIG. This is an example in which is applied. Since the electrode 5 for frequency adjustment is formed inside the outer periphery of the electrode base electrode 2a as compared with FIG.
Can be prevented from protruding outside of the region of the base electrode 2a when adhering.

【0013】以上の周波数調整はベース電極2aの上に周
波数微調用の電極4を蒸着等の手法を用いて付着して、
質量効果により周波数を調整する方法を説明したが、ベ
ース電極2aの中央部のみを電子ビーム等で僅かに削り、
周波数を調整する方法でも本発明の目的は達成できる。
In the above frequency adjustment, an electrode 4 for fine frequency adjustment is attached on the base electrode 2a by using a technique such as vapor deposition.
Although the method of adjusting the frequency by the mass effect has been described, only the central portion of the base electrode 2a is slightly cut with an electron beam or the like,
The object of the present invention can also be achieved by adjusting the frequency.

【0014】[0014]

【発明の効果】本発明は、以上説明したように構成した
ので、水晶振動子の主振動と副振動とが負荷容量によ
り、あるいは温度変動等により結合した場合でも、それ
による周波数変動を少なくすることができるので、本発
明になる水晶振動子を無線通信機器等に用いれば使用環
境の温度変化に対し、周波数変動の少ない優れた特性を
示すとういう効果を奏す。
According to the present invention, as described above, even when the main vibration and the sub-vibration of the crystal unit are coupled by the load capacitance or by the temperature fluctuation, the frequency fluctuation due to the coupling is reduced. Therefore, if the crystal resonator according to the present invention is used in a wireless communication device or the like, an effect of exhibiting excellent characteristics with little frequency fluctuation with respect to a temperature change of a use environment can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る水晶振動子の構成を示す図で、
(a)は平面図、(b)は断面図と変位分布を示す図で
ある。
FIG. 1 is a diagram showing a configuration of a crystal resonator according to the present invention;
(A) is a plan view, (b) is a diagram showing a sectional view and a displacement distribution.

【図2】本発明の変形実施例で、(a)は平面図、
(b)は断面図を示す図である。
2A is a plan view of a modified embodiment of the present invention, FIG.
(B) is a figure which shows sectional drawing.

【図3】本発明の他の変形実施例で、(a)は平面図、
(b)は断面図を示す図である。
3A is a plan view of another modified embodiment of the present invention, FIG.
(B) is a figure which shows sectional drawing.

【図4】従来の振動子の構成を示す図で、(a)は平面
図、(b)は断面図と変位分布を示す図である。
4A and 4B are diagrams showing a configuration of a conventional vibrator, in which FIG. 4A is a plan view, and FIG. 4B is a diagram showing a sectional view and a displacement distribution.

【図5】(a)は副振動の結合により主振動の周波数が
変動する様子を説明する図、(b)は等価抵抗値の変動
率ΔRを説明する図である。
5A is a diagram illustrating a state in which the frequency of a main vibration fluctuates due to coupling of a sub-vibration, and FIG. 5B is a diagram illustrating a fluctuation rate ΔR of an equivalent resistance value.

【符号の説明】[Explanation of symbols]

1・・圧電基板 2a、2b・・ベース電極 3a、3b・・リード電極 4、5・・周波数調整用の電極 α、β・・振動の変位分布 1. Piezoelectric substrate 2a, 2b Base electrode 3a, 3b Lead electrode 4, 5, Electrode for frequency adjustment α, β: Displacement distribution of vibration

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 圧電基板の両主面にそれぞれ所定の面積
を有する励振用電極を圧電基板を介して対向配置し、前
記励振用電極の少なくとも一方の中央部の電極膜厚を周
辺部のそれより薄くしたことを特徴とする圧電振動子。
An excitation electrode having a predetermined area is disposed on both main surfaces of a piezoelectric substrate so as to face each other via a piezoelectric substrate, and an electrode thickness of at least one central portion of the excitation electrode is set to that of a peripheral portion. A piezoelectric vibrator characterized by being thinner.
【請求項2】 圧電基板の両主面にそれぞれ所定の面積
を有する励振用電極を圧電基板を介して対向するように
形成し、該励振用電極の少なくとも一方の中央部分を除
去して所定の周波数に調整することを特徴とする圧電振
動子。
2. An excitation electrode having a predetermined area is formed on both main surfaces of a piezoelectric substrate so as to face each other via a piezoelectric substrate, and a central portion of at least one of the excitation electrodes is removed to remove the excitation electrode. A piezoelectric vibrator characterized by adjusting to a frequency.
【請求項3】 圧電基板の両主面にそれぞれ所定の面積
を有する励振用電極を圧電基板を介して対向するように
形成し、該励振用電極の少なくとも一方の周辺部分に調
整用電極を付着して所定の周波数に調整することを特徴
とする圧電振動子の調整方法。
3. An excitation electrode having a predetermined area is formed on both main surfaces of the piezoelectric substrate so as to face each other via the piezoelectric substrate, and an adjustment electrode is attached to at least one peripheral portion of the excitation electrode. And adjusting the frequency to a predetermined frequency.
JP10195399A 1999-04-09 1999-04-09 Piezoelectric vibrator and its frequency adjusting method Pending JP2000295065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10195399A JP2000295065A (en) 1999-04-09 1999-04-09 Piezoelectric vibrator and its frequency adjusting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10195399A JP2000295065A (en) 1999-04-09 1999-04-09 Piezoelectric vibrator and its frequency adjusting method

Publications (2)

Publication Number Publication Date
JP2000295065A true JP2000295065A (en) 2000-10-20
JP2000295065A5 JP2000295065A5 (en) 2006-06-08

Family

ID=14314261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10195399A Pending JP2000295065A (en) 1999-04-09 1999-04-09 Piezoelectric vibrator and its frequency adjusting method

Country Status (1)

Country Link
JP (1) JP2000295065A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006109472A (en) * 2004-10-01 2006-04-20 Agilent Technol Inc Piezoelectric thin film resonator with mass loading in perimeter
JP2008005333A (en) * 2006-06-23 2008-01-10 Daishinku Corp Piezoelectric vibration device
US8188810B2 (en) 2004-12-22 2012-05-29 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Acoustic resonator performance enhancement using selective metal etch
US8248185B2 (en) 2009-06-24 2012-08-21 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Acoustic resonator structure comprising a bridge
US8350445B1 (en) 2011-06-16 2013-01-08 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Bulk acoustic resonator comprising non-piezoelectric layer and bridge
US8575820B2 (en) 2011-03-29 2013-11-05 Avago Technologies General Ip (Singapore) Pte. Ltd. Stacked bulk acoustic resonator
US8796904B2 (en) 2011-10-31 2014-08-05 Avago Technologies General Ip (Singapore) Pte. Ltd. Bulk acoustic resonator comprising piezoelectric layer and inverse piezoelectric layer
US8902023B2 (en) 2009-06-24 2014-12-02 Avago Technologies General Ip (Singapore) Pte. Ltd. Acoustic resonator structure having an electrode with a cantilevered portion
US8962443B2 (en) 2011-01-31 2015-02-24 Avago Technologies General Ip (Singapore) Pte. Ltd. Semiconductor device having an airbridge and method of fabricating the same
US8981876B2 (en) 2004-11-15 2015-03-17 Avago Technologies General Ip (Singapore) Pte. Ltd. Piezoelectric resonator structures and electrical filters having frame elements
JP2015089093A (en) * 2013-10-28 2015-05-07 株式会社坂本電機製作所 Crystal oscillator
US9136818B2 (en) 2011-02-28 2015-09-15 Avago Technologies General Ip (Singapore) Pte. Ltd. Stacked acoustic resonator comprising a bridge
US9148117B2 (en) 2011-02-28 2015-09-29 Avago Technologies General Ip (Singapore) Pte. Ltd. Coupled resonator filter comprising a bridge and frame elements
US9154112B2 (en) 2011-02-28 2015-10-06 Avago Technologies General Ip (Singapore) Pte. Ltd. Coupled resonator filter comprising a bridge
US9203374B2 (en) 2011-02-28 2015-12-01 Avago Technologies General Ip (Singapore) Pte. Ltd. Film bulk acoustic resonator comprising a bridge
US9243316B2 (en) 2010-01-22 2016-01-26 Avago Technologies General Ip (Singapore) Pte. Ltd. Method of fabricating piezoelectric material with selected c-axis orientation
US9425764B2 (en) 2012-10-25 2016-08-23 Avago Technologies General Ip (Singapore) Pte. Ltd. Accoustic resonator having composite electrodes with integrated lateral features
US9444426B2 (en) 2012-10-25 2016-09-13 Avago Technologies General Ip (Singapore) Pte. Ltd. Accoustic resonator having integrated lateral feature and temperature compensation feature

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006109472A (en) * 2004-10-01 2006-04-20 Agilent Technol Inc Piezoelectric thin film resonator with mass loading in perimeter
US8981876B2 (en) 2004-11-15 2015-03-17 Avago Technologies General Ip (Singapore) Pte. Ltd. Piezoelectric resonator structures and electrical filters having frame elements
US8188810B2 (en) 2004-12-22 2012-05-29 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Acoustic resonator performance enhancement using selective metal etch
JP2008005333A (en) * 2006-06-23 2008-01-10 Daishinku Corp Piezoelectric vibration device
JP4665849B2 (en) * 2006-06-23 2011-04-06 株式会社大真空 Method for manufacturing piezoelectric vibration device
US8248185B2 (en) 2009-06-24 2012-08-21 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Acoustic resonator structure comprising a bridge
US8902023B2 (en) 2009-06-24 2014-12-02 Avago Technologies General Ip (Singapore) Pte. Ltd. Acoustic resonator structure having an electrode with a cantilevered portion
US9243316B2 (en) 2010-01-22 2016-01-26 Avago Technologies General Ip (Singapore) Pte. Ltd. Method of fabricating piezoelectric material with selected c-axis orientation
US9859205B2 (en) 2011-01-31 2018-01-02 Avago Technologies General Ip (Singapore) Pte. Ltd. Semiconductor device having an airbridge and method of fabricating the same
US8962443B2 (en) 2011-01-31 2015-02-24 Avago Technologies General Ip (Singapore) Pte. Ltd. Semiconductor device having an airbridge and method of fabricating the same
US9203374B2 (en) 2011-02-28 2015-12-01 Avago Technologies General Ip (Singapore) Pte. Ltd. Film bulk acoustic resonator comprising a bridge
US9136818B2 (en) 2011-02-28 2015-09-15 Avago Technologies General Ip (Singapore) Pte. Ltd. Stacked acoustic resonator comprising a bridge
US9148117B2 (en) 2011-02-28 2015-09-29 Avago Technologies General Ip (Singapore) Pte. Ltd. Coupled resonator filter comprising a bridge and frame elements
US9154112B2 (en) 2011-02-28 2015-10-06 Avago Technologies General Ip (Singapore) Pte. Ltd. Coupled resonator filter comprising a bridge
US8575820B2 (en) 2011-03-29 2013-11-05 Avago Technologies General Ip (Singapore) Pte. Ltd. Stacked bulk acoustic resonator
US8350445B1 (en) 2011-06-16 2013-01-08 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Bulk acoustic resonator comprising non-piezoelectric layer and bridge
US8796904B2 (en) 2011-10-31 2014-08-05 Avago Technologies General Ip (Singapore) Pte. Ltd. Bulk acoustic resonator comprising piezoelectric layer and inverse piezoelectric layer
US9425764B2 (en) 2012-10-25 2016-08-23 Avago Technologies General Ip (Singapore) Pte. Ltd. Accoustic resonator having composite electrodes with integrated lateral features
US9444426B2 (en) 2012-10-25 2016-09-13 Avago Technologies General Ip (Singapore) Pte. Ltd. Accoustic resonator having integrated lateral feature and temperature compensation feature
JP2015089093A (en) * 2013-10-28 2015-05-07 株式会社坂本電機製作所 Crystal oscillator

Similar Documents

Publication Publication Date Title
JP2000295065A (en) Piezoelectric vibrator and its frequency adjusting method
JP4709260B2 (en) Piezoelectric vibrating piece and piezoelectric device
US4870313A (en) Piezoelectric resonators for overtone oscillations
US20060066185A1 (en) Piezoelectric resonator element and piezoelectric device
JP2007158486A (en) Crystal resonator element, crystal resonator, and crystal oscillator
JP2010050960A (en) Piezoelectric vibration piece and piezoelectric device
KR20110076824A (en) Vibrating reed, vibrator, oscillator, electronic device and method of adjusting frequency
JP2007208771A (en) Piezoelectric vibration element, piezoelectric vibrator, and piezoelectric oscillator
JP5272121B2 (en) Quartz crystal unit, crystal unit, crystal oscillator, information communication device, and manufacturing method thereof
EP0483358A1 (en) Ultra thin quartz crystal filter element of multiple mode
JP2013042440A (en) Piezoelectric vibrating element, piezoelectric vibrator, electronic device and electronic apparatus
JP2012074807A (en) Piezoelectric vibration element, surface-mounted piezoelectric vibrator and surface-mounted piezoelectric oscillator
JP5154977B2 (en) Piezoelectric vibrating piece, piezoelectric device, and tuning fork type piezoelectric vibrator frequency adjusting method
JP2007189492A (en) Method of manufacturing piezoelectric substrate, piezoelectric substrate, piezoelectric transducer, and piezoelectric oscillator
JP2005039768A (en) Quartz crystal resonator, quartz crystal unit, and quartz crystal oscillator
US6016025A (en) Selected overtone resonator with channels
JP4517332B2 (en) Quartz crystal unit, crystal unit and crystal oscillator manufacturing method
JP2003273703A (en) Quartz vibrator and its manufacturing method
JPH0124368B2 (en)
JP3749917B2 (en) Manufacturing method of crystal oscillator
JP7448901B2 (en) piezoelectric device
JP2007189491A (en) Method of manufacturing piezoelectric substrate, piezoelectric substrate, piezoelectric resonator, and piezoelectric oscillator
JPH07254839A (en) Crystal vibrator
JPS6121860Y2 (en)
JP4074934B2 (en) Crystal oscillator and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060331

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD03 Notification of appointment of power of attorney

Effective date: 20060331

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A521 Written amendment

Effective date: 20060404

Free format text: JAPANESE INTERMEDIATE CODE: A523

A977 Report on retrieval

Effective date: 20081218

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090407