JP2004207913A - Crystal vibrator - Google Patents

Crystal vibrator Download PDF

Info

Publication number
JP2004207913A
JP2004207913A JP2002373283A JP2002373283A JP2004207913A JP 2004207913 A JP2004207913 A JP 2004207913A JP 2002373283 A JP2002373283 A JP 2002373283A JP 2002373283 A JP2002373283 A JP 2002373283A JP 2004207913 A JP2004207913 A JP 2004207913A
Authority
JP
Japan
Prior art keywords
frequency
electrode
crystal resonator
crystal
mhz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002373283A
Other languages
Japanese (ja)
Other versions
JP2004207913A5 (en
Inventor
Ryoichi Yasuike
亮一 安池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP2002373283A priority Critical patent/JP2004207913A/en
Publication of JP2004207913A publication Critical patent/JP2004207913A/en
Publication of JP2004207913A5 publication Critical patent/JP2004207913A5/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a means for enhancing a frequency-temperature characteristic and a CI-temperature characteristic of a high frequency piezoelectric vibrator. <P>SOLUTION: The piezoelectric vibrator is configured by disposing opposed electrodes on both principal sides of a piezoelectric substrate and by employing a plate back amount greater than that expressed in a relation of Δ=(2×F)<SP>1/2</SP>-3, where Δ(%) is a plate back amount by the electrodes and F(MHz) is a resonance frequency of the piezoelectric vibrator. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は水晶振動子に関し、特に周波数−温度特性及びCI−温度特性を改善した高周波水晶振動子に関する。
【0002】
【従来の技術】
圧電振動子は小型であること、経年変化が小さいこと、高精度、高安定な周波数が容易に得られること等のため、通信機器から電子機器まで広く用いられている。中でも周波数−温度特性が3次曲線を呈するATカット水晶振動子は、広範囲の温度補償回路と組み合わせて携帯電話用のTCXO(温度補償水晶発振器)として、恒温槽に収容して基地局用のOCXO(高安定水晶発振器)として広く用いられている。また、ATカット水晶板は携帯電話のIF用MCF(モノリシック・クリスタル・フィルタ)の圧電基板としても用いられている。
【0003】
ATカット水晶振動子の周波数−温度特性及びCI−温度特性(CIはクリスタルインピーダンスで水晶振動子の実効抵抗Rr)、Q値の改善等に古くから多くの研究者、技術者が関わってきた。一方、フィルタに用いられるATカット水晶共振子では主振動の高域近傍に生じる複数の不要振動、所謂インハーモニック・モードを如何に抑圧するかが最大の課題であった。
良好な周波数−温度特性及びCI−温度特性を実現する手段として、10MHz以下の低周波帯水晶振動子では、主振動の振動領域を基板中心部に集中させるように水晶板の輪郭形状を加工する手法が考案された。また、10MHz以上の水晶振動子では電極の寸法を周波数に反比例して小さくして、良好な周波数−温度特性及びCI−温度特性、あるいは主振動の共振近傍のインハーモニック・モードを抑圧した水晶振動子を実現する手法が実験的に見いだされた。しかし、周波数が変わるたびに実験をやり直す必要があり、これには多くの時間を要した。
【0004】
このように、水晶振動子の周波数−温度特性及びCI−温度特性の改良、共振周波数近傍のスプリアス抑圧等の改善は、主として実験的手法を重ねて得られてきたが、エネルギー閉じ込め理論の発表以来、水晶振動子(あるいは水晶共振子)の最適設計は簡単な計算により求められるようになった。エネルギー閉じ込め理論は周知のように、主振動の波数k(伝搬定数とも云う)を虚数に、高次のインハーモニック・モードの波数k(i=1,2,・・)を実数になるように、閉じ込め係数P(P=μ(a/h)√Δ、μは異方性定数、aは電極の大きさ、hは圧電基板の厚さ、Δは励振電極部分における周波数低下量(プレートバック量)でありΔ=(fs−f0)/f0で定義される。ここでfsは圧電基板のカットオフ周波数、f0は電極部のカットオフ周波数)を設定し、閉じ込め係数Pに基づいて電極の大きさa、プレートバック量Δを決定する手法である。このように、それぞれの波数k、kを設定すると主振動の振動エネルギーは電極近傍に閉じ込められ、高次のインハーモニック・モードの振動エネルギーは水晶板の周縁部まで伝搬し、水晶振動子の支持部へ振動エネルギーが漏洩して劣化するので、主振動のみを強勢に励振できるという理論である。
【0005】
図5は従来のATカット水晶振動子の構成を示す図であって、同図(a)は平面図、(b)はQ−Qにおける断面図である。ATカット水晶基板11の主表面のほぼ中央部に対向電極12、13を配置すると共に、該電極12、13からそれぞれ基板11の端部に向けてリード電極14、15を延在して、水晶振動素子を形成する。
上述したように、水晶振動子の電極部分におけるプレートバック量Δは、電極12、13を付着した領域のカットオフ周波数f0、電極の形成されていない水晶基板が露出している領域のカットオフ周波数fsより、Δ=(fs−f0)/f0で求めることができる。
図5に示すような構造の基本波共振周波数が比較的低い水晶振動子にあっては、0.数%から約2%を上限とする範囲でプレートバック量Δを設定するのが一般的とされていた。
【0006】
図6は、従来のATカット水晶振動子の他の構成例を示す断面図で、対向電極の一方を全面電極13’としたものである。全面電極13’はプレートバック量Δ、等価インダクタンスL等にも関与せず、電極12’の大きさとその負荷質量のみが関係することになる。従って、図5のものと同等の閉じ込め係数Pを実現するためには、電極12と電極12’の大きさが同一であるとすれば、電極12’の厚さh”を、電極12の膜厚h’の2倍とすればよい。
【0007】
ところが近年では無線機器のキャリア周波数の高周波化や、伝送装置の搬送波の高周波に伴い、水晶振動子の更なる高周波化の要求が強くなった。周知のように、ATカット水晶振動子では、その共振周波数は圧電基板の厚さに反比例するため、基本波共振周波数が50MHz超の高周波水晶振動子を得るには水晶板をミクロンオーダーまで薄く加工する必要がある。水晶板がミクロンオーダーまで薄くなるとその加工は一段と難しくなり、その保持や取り扱いも容易ではない。
そこで、薄板のATカット板を実現する手段の1つとして、ATカット水晶板の一方の主面の一部をエッチング等の手段により凹陥せしめ、薄板状の薄肉部(振動部)と、該薄肉部の周囲を支持する厚肉の環状囲繞部とを一体的に形成して、薄肉部の機械的強度を保持しつつ、基本波共振周波数が50MHz超の高周波化を実現した高周波水晶振動子が実用化されている。
【0008】
図7(a)は上述の高周波水晶振動子の構成を示す平面図、同図(b)は裏面図、同図(c)はQ−Qにおける断面図である。一方の主面は平坦面のままとし、他方の主面をエッチング等の手段により凹陥部22を形成したATカット水晶板21の平坦面側に電極23を配置すると共に、該電極23からリード電極24延在し、水晶板21の端に設けたパッド電極25と接続する。さらに、凹陥面側22には電極23と対向して電極26を配置し、該電極26からリード電極27を延在し、水晶板21の端に設けたパッド電極28と接続して、高周波水晶振動子を構成する。
【0009】
水晶振動子の基本波共振周波数を60MHzとし、図7に示すような構造の高周波水晶振動子を試作した。水晶板21の寸法を2.3mm×2.3mm、凹陥部22の寸法を1.0mm×1.0mm、円形電極を用いその径を0.8mmφとして5個のサンプルを試作した。
上述したように基本波共振周波数が高くすると水晶基板がミクロンオーダーにまで薄くなる。するとこれに応じて電極膜も薄いものとなるが、電極膜が薄いと電極膜のオーミックロスにより実効抵抗が劣化することになる。そこで、プレートバック量Δを上限値である2%とすると共に、膜厚を厚くするべく電極材料には軽い金属、ここではアルミニウムを用いている。
【0010】
【発明が解決しようとする課題】
しかしながら、試作したサンプルの周波数−温度特性を示す図8(a)およびCI−温度特性を示す図8(b)から明らかなように、周波数−温度特性は滑らかな3次曲線から大幅にずれ、CI−温度特性は周囲温度を変化させると実効抵抗Rrの平坦性が大幅に損なわれるという問題があった。本発明は上記問題を解決するためになされたものであって、周波数−温度特性及びCI−温度特性を改善した高周波振動子を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記目的を達成するために本発明に係る水晶振動子の請求項1記載の発明は、ATカット水晶基板の両主面に対向電極を配置して構成した水晶振動子において、該水晶振動子の基本波共振周波数をF(MHz)、前記電極部分におけるプレートバック量をΔ(%)としたとき、
Δ>(2・F)1/2−3
で表される関係を満足していることを特徴とする水晶振動子である。
請求項2記載の発明は、ATカット水晶基板の両主面に対向電極を配置して構成した水晶振動子において、該水晶振動子の基本波共振周波数をF(MHz)、前記電極部分におけるプレートバック量をΔ(%)としたとき、
(2・F)1/2−3<Δ<(13・F)1/2−3
で表される関係を満足していることを特徴とする水晶振動子である。
請求項3記載の発明は、基本波周波数が200MHz以上の水晶振動子に適用したことを特徴とする請求項2に記載の水晶振動子である。
【0012】
【発明の実施の形態】
以下本発明を図面に示した実施の形態に基づいて詳細に説明する。
図1(a)は本発明に係る高周波水晶振動子の構成を示す平面図、同図(b)は裏面図、同図(c)はQ−Qにおける断面図である。水晶板1の一方の主面は平坦面のままとし、他方の主面をエッチング等の手段により凹陥部2を形成したATカット水晶板1の平坦面側に電極3を配置すると共に、該電極3からリード電極4延在し、水晶板1の端に設けたパッド電極5と接続する。そして、凹陥部側2には電極3と対向して電極6を配置し、該電極6からリード電極7を延在し、水晶板1の端に設けたパッド電極8と接続して、高周波水晶振動子を構成する。
【0013】
本発明に係る第1の実施例として60MHzの基本波水晶振動子の電気的特性を図2に示す。水晶板1の寸法を2.3mm×2.3mm、凹陥部2(振動部)の寸法を1.0mm×1.0mm、円形電極3、6の直径を0.8mmφ、電極部分におけるプレートバック量Δを従来の実績と大幅に変えて8%として、10個のサンプルを試作し、その周波数−温度特性及びCI−温度特性を測定した。図2(a)は周波数−温度特性であり、同図(b)はCI−温度特性と示す図である。
同図から明らかなように、本発明に係る高周波水晶振動子の周波数−温度特性は滑らかな3次曲線を呈し、実効抵抗Rr(CI)は周囲温度を変化させてもほぼ一定値であり、その値も13Ωと良好な数値を示していることが分かる。従来の理論と実績とに基づき電極部分におけるプレートバック量Δを2%に設定した水晶振動子の図8と比較しても大幅に改善されていることが確認できる。
当初本願発明者は、電極膜のオーミックロスにより実効抵抗が劣化することを回避するべく、プレートバック量Δを従来は一般的な数値の上限値とされていた2%と大きな値に設定したため、電極へのエネルギー閉じ込めが強くなりすぎて不要モードである高次輪郭系振動と推定される振動と主振動とが結合したことが従来技術の不具合の原因と考えた。
しかし、実際には基本波共振周波数が高いATカット水晶振動子においては、むしろプレートバック量Δを従前の常識的な数値を大幅に上回る値(8%)まで増大することによって特性が改善されるという意外な事実を見い出すに至ったのである。
なお、主振動とインハーモニック・モードとの共振スペクトルは図示していないが、インハーモニック・モードの中の一番大きな実効抵抗値は主振動のそれの3倍以上となっていた。従って、本発明に係る水晶振動子を発振回路に用いても、インハーモニック・モードで発振する、所謂周波数ジャンプ現象が発生するおそれは無いことが確認できた。
【0014】
第2の実施例として310MHzの基本波水晶振動子の電気的特性を図3に示す。水晶板1の寸法を1.0mm×1.5mm、凹陥部2(振動部)の寸法を0.5mm×0.5mm、電極3、6の直径を0.2mmφ、電極部分におけるプレートバック量Δを23%として、サンプルを試作し、その周波数−温度特性及びCI−温度特性を測定した。図3(a)は周波数−温度特性であり、同図(b)はCI−温度特性と示す図である。この図から明なように、周波数−温度特性は滑らかな3次曲線を呈し、実効抵抗Rr(CI)は温度を変化させてもほぼ一定値26Ωを示していることが分かる。この高周波水晶振動子を電圧制御型水晶発振器(VCXO)に用いて各種の環境試験を行ったが、周波数のジャンプ現象は起こらなかった。
【0015】
以上、2例を説明したが、本発明の特徴は従来のエネルギー閉じ込め理論や従来の設計実績にとらわれることなく、電極部分におけるプレートバック量Δを大幅に大きくしたところにある。
大きなプレートバック量Δに設定することが可能となったので、電極材料として質量が重い金属が使えるようになり、軽いアルミニウムに代えて金を用いて電極を構成することができるようになった。周知のように金は極めて化学的に安定した金属であり電極材料として最適な材質であり、水晶振動子の製作工程中における加熱処理等の温度も高温に設定できるようになり、水晶振動子の周波数エージング等が改善されるという副次的な効果も得られる。
【0016】
さらに高周波の基本波水晶振動子についても種々の実験を実施したところ、主振動に高次輪郭振動が結合することも無く、周波数−温度特性は滑らかな3次曲線を呈し、また、CI−温度特性もほぼ平坦な直線となることが判明した。インハーモニック・モードの共振レベルも主振動のそれと比べて小さく抑圧されており、発振器用には十分に使用可能であることが判明した。例えば、600MHz帯の基本波水晶振動子を試作し、該振動子をVCXO基板に実装して周波数−温度特性、温度変化による周波数ジャンプ現象の測定を行ったが良好な結果を得ている。この600MHz帯の水晶振動子の電極部分におけるプレートバック量は30%を越していた。これらの実験より水晶振動子の共振周波数F(MHz)とプレートバック量Δ(%)との関係を近似式で表すと、次式のようになる。
Δ=(2・F)1/2−3 (1)
【0017】
一方、電極膜が厚くなると電極膜歪みによる水晶板の歪み、電極膜の振動損失等が生じてくるので、電極膜を厚くし過ぎることはできない。
この事実に基づき本願発明者は、まだ実験による確認はしていないが、水晶振動子の基本波共振周波数F(MHz)と電極膜の厚さ、即ちプレートバック量Δ(%)との関係は次式で表される値より小さくすべきであると推測する。
Δ=(13・F)1/2−3 (2)
図4は水晶振動子の共振周波数F(MHz)とプレートバック量Δ(%)との関係を示した図であって、式1で表すΔはプレートバック量Δの下限を、式2で表すΔはプレートバック量Δの上限を示し、この範囲内のΔ−Fを用いて水晶振動子を構成すれば、周波数−温度特性及びCI−温度特性とも良好な振動子が得られる。
なお、図中のα、βは第1及び第2の実施例の実験値をプロットしたものである。
【0018】
基本波水晶振動子の高周波化を進めていくと水晶板のエッチング加工にも難しい問題が生じてくる。特に凹陥部(振動部)の厚さが7μm程度になると、エッチングしない平坦側の面と凹陥側のエッチング面との平行度、平面度等が振動子の電気特性に影響を及ぼすようになる。そして、電極膜が薄いと基板の影響が大きく現れる傾向がある。そこで、本発明に係るプレートバック量を通常の設計より大幅に大きくするのは、良好な周波数−温度特性及びCI−温度特性を実現するのに有効な手段と考えられる。このような理由で200MHz(基板の厚さとして約7μmに相当)以上の高周波な基本波水晶振動子を製作するに当たり、本発明が特に有効な手段であると考える。
また、周知のように周波数−温度特性は電極膜の質量効果により、あたかも水晶板の切断角度を回転させたかのように理想的な3次曲線からずれた曲線を呈することとなる。つまり所望の3次曲線を呈する周波数−温度特性を得るためには、従前の場合と同様にプレートバック量Δに応じて水晶基板の切断角度を予め補正して設計することになる。
【0019】
【発明の効果】
本発明は、以上説明したように構成したので、請求項1に記載の発明は良好な基本波水晶振動子を得る際の、周波数Fに対する下限のプレートバック量を与えるという優れた効果を表す。請求項2に記載の発明は周波数Fに対する上限のプレートバック量を与えるという優れた効果を表す。請求項3に記載の発明は実用上特に重要な200MHz以上の水晶振動子を製作するに当たり、重要な設計指針を与えるという優れた効果を表す。
【図面の簡単な説明】
【図1】本発明に係る高周波水晶振動子の構成を示す図で、(a)は平面図、(b)は裏面図、(c)は断面図である。
【図2】60MHz基本波水晶振動子の電気特性を示す図で、(a)は周波数−温度特性、(b)はCI−温度特性である。
【図3】310MHz基本波水晶振動子の電気特性を示す図で、(a)は周波数−温度特性、(b)はCI−温度特性である。
【図4】本発明に係る周波数Fとプレートバック量Δとの関係図で、Δで示す下限の曲線とΔで示す上限の曲線との範囲内が望ましいプレートバック量Δである。
【図5】従来のATカット水晶振動子の構成を示す図で、(a)は平面図、(b)は断面図である。
【図6】従来の高周波ATカット水晶振動子の構成を示す断面図である。
【図7】従来の基本波水晶振動子の構成を示す図で、(a)は平面図、(b)は裏面図、(c)は断面図である。
【図8】従来の60MHz基本波水晶振動子の電気特性を示す図で、(a)は周波数−温度特性、(b)はCI−温度特性である。
【符号の説明】
1・・圧電基板
2・・凹陥部
3、6・・電極
4、7・・リード電極
5、8・・パッド電極
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a crystal resonator, and more particularly to a high-frequency crystal resonator having improved frequency-temperature characteristics and CI-temperature characteristics.
[0002]
[Prior art]
2. Description of the Related Art Piezoelectric vibrators are widely used from communication devices to electronic devices because of their small size, small aging, easy acquisition of high-accuracy and high-stable frequencies, and the like. Among them, an AT-cut crystal resonator whose frequency-temperature characteristic exhibits a cubic curve is combined with a wide-range temperature compensation circuit as a TCXO (Temperature-Compensated Crystal Oscillator) for a mobile phone and housed in a constant temperature bath and an OCXO for a base station. (Highly stable crystal oscillator). The AT-cut quartz plate is also used as a piezoelectric substrate of an MCF (monolithic crystal filter) for IF of a mobile phone.
[0003]
Many researchers and engineers have long been involved in improving the frequency-temperature characteristics and the CI-temperature characteristics (CI is the crystal impedance and the effective resistance Rr of a crystal oscillator) and the Q value of an AT-cut quartz oscillator. On the other hand, in the AT-cut quartz resonator used for the filter, the biggest problem is how to suppress a plurality of unnecessary vibrations, that is, so-called inharmonic modes, generated near the high frequency of the main vibration.
As means for realizing good frequency-temperature characteristics and CI-temperature characteristics, in the low-frequency band crystal resonator of 10 MHz or less, the contour shape of the crystal plate is processed so that the vibration region of the main vibration is concentrated at the center of the substrate. A method has been devised. In the case of a crystal resonator of 10 MHz or more, the dimensions of the electrodes are made smaller in inverse proportion to the frequency, so that a good frequency-temperature characteristic and CI-temperature characteristic, or a crystal vibration in which the inharmonic mode near the resonance of the main vibration is suppressed. A method to realize the child has been experimentally found. However, the experiment had to be repeated every time the frequency changed, which took a lot of time.
[0004]
As described above, the improvement of the frequency-temperature characteristics and the CI-temperature characteristics of the crystal unit and the improvement of the spurious suppression near the resonance frequency have been mainly obtained through repeated experimental methods, but since the publication of the energy confinement theory, The optimal design of the crystal resonator (or crystal resonator) has been found by simple calculations. So that the energy confinement theory of well-known, the main vibration of the wave number k 0 (also referred to as a propagation constant) to the imaginary, and the wave number of the higher-order inharmonic mode k i (i = 1,2, ·· ) to the real number Thus, the confinement coefficient P (P = μ (a / h) √Δ, μ is the anisotropy constant, a is the size of the electrode, h is the thickness of the piezoelectric substrate, and Δ is the amount of frequency reduction in the excitation electrode portion ( is defined by the plate a back amount) Δ = (f s -f 0 ) / f 0. where f s is the cutoff frequency, f 0 of the piezoelectric substrate set the cut-off frequency) of the electrode portion, confined This is a method of determining the electrode size a and the plateback amount Δ based on the coefficient P. As described above, when the respective wave numbers k 0 and k i are set, the vibration energy of the main vibration is confined in the vicinity of the electrode, and the vibration energy of the higher-order inharmonic mode propagates to the periphery of the quartz plate, and the quartz oscillator It is the theory that only the main vibration can be strongly excited because the vibration energy leaks to the supporting portion and deteriorates.
[0005]
FIGS. 5A and 5B are diagrams showing a configuration of a conventional AT-cut crystal resonator, in which FIG. 5A is a plan view, and FIG. 5B is a cross-sectional view along QQ. Opposite electrodes 12 and 13 are arranged substantially at the center of the main surface of the AT-cut quartz substrate 11, and lead electrodes 14 and 15 extend from the electrodes 12 and 13 toward the ends of the substrate 11, respectively. A vibration element is formed.
As described above, the plate back amount Δ in the electrode portion of the crystal unit is determined by the cut-off frequency f 0 of the region where the electrodes 12 and 13 are attached, and the cut-off frequency f 0 of the region where the crystal substrate where no electrode is formed is exposed. than the frequency f s, can be determined by Δ = (f s -f 0) / f 0.
In the case of a crystal resonator having a structure as shown in FIG. It has been generally accepted that the plateback amount Δ is set within a range from several% to about 2% as an upper limit.
[0006]
FIG. 6 is a cross-sectional view showing another configuration example of a conventional AT-cut quartz resonator, in which one of the opposing electrodes is a full-surface electrode 13 '. Full-surface electrode 13 'is the plate back amount delta, without also involved in the equivalent inductance L 1 or the like, the electrode 12' only that load weight and size of is be related. Therefore, in order to realize a confinement coefficient P equivalent to that of FIG. 5, if the size of the electrode 12 and the electrode 12 ′ is the same, the thickness h ″ of the electrode 12 ′ The thickness may be twice the thickness h '.
[0007]
However, in recent years, with the increase in the frequency of the carrier frequency of the wireless device and the frequency of the carrier wave of the transmission device, a demand for a further increase in the frequency of the crystal oscillator has increased. As is well known, in an AT-cut quartz resonator, the resonance frequency is inversely proportional to the thickness of the piezoelectric substrate. Therefore, in order to obtain a high-frequency quartz resonator having a fundamental resonance frequency exceeding 50 MHz, the quartz plate is thinned to the order of microns. There is a need to. When the quartz plate is thinned down to the micron order, its processing becomes more difficult, and its holding and handling are not easy.
Therefore, as one of means for realizing a thin AT-cut plate, a part of one main surface of the AT-cut quartz plate is depressed by means of etching or the like to form a thin plate-shaped thin portion (vibrating portion) and the thin wall. A high-frequency crystal resonator that realizes a high-frequency fundamental wave resonance frequency of more than 50 MHz while maintaining the mechanical strength of the thin-walled part by integrally forming a thick annular surrounding part that supports the periphery of the part Has been put to practical use.
[0008]
FIG. 7A is a plan view showing the configuration of the above-described high-frequency crystal resonator, FIG. 7B is a rear view, and FIG. 7C is a cross-sectional view taken along QQ. One main surface is kept flat, and the other main surface is provided with an electrode 23 on the flat surface side of the AT-cut quartz plate 21 in which the recessed portion 22 is formed by means of etching or the like. 24 and connected to a pad electrode 25 provided at the end of the quartz plate 21. Further, an electrode 26 is arranged on the recessed surface side 22 so as to face the electrode 23, a lead electrode 27 extends from the electrode 26, and is connected to a pad electrode 28 provided at an end of the quartz plate 21, and Construct a vibrator.
[0009]
A fundamental high-frequency crystal resonator having a structure as shown in FIG. 7 was prototyped by setting the fundamental wave resonance frequency of the crystal resonator to 60 MHz. Five samples were made with the size of the quartz plate 21 being 2.3 mm × 2.3 mm, the size of the recess 22 being 1.0 mm × 1.0 mm, and the diameter thereof being 0.8 mmφ using a circular electrode.
As described above, when the fundamental frequency is increased, the thickness of the quartz substrate is reduced to the order of microns. Then, the electrode film becomes thinner accordingly, but if the electrode film is thinner, the effective resistance is deteriorated due to ohmic crossing of the electrode film. Thus, the plateback amount Δ is set to the upper limit of 2%, and a light metal, here, aluminum is used as the electrode material in order to increase the film thickness.
[0010]
[Problems to be solved by the invention]
However, as is apparent from FIG. 8A showing the frequency-temperature characteristics of the prototype sample and FIG. 8B showing the CI-temperature characteristics, the frequency-temperature characteristics deviate significantly from the smooth cubic curve, The CI-temperature characteristic has a problem that when the ambient temperature is changed, the flatness of the effective resistance Rr is significantly impaired. The present invention has been made to solve the above problems, and has as its object to provide a high-frequency vibrator with improved frequency-temperature characteristics and CI-temperature characteristics.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 of the crystal resonator according to the present invention is directed to a crystal resonator configured by arranging opposing electrodes on both main surfaces of an AT-cut crystal substrate. When the fundamental wave resonance frequency is F (MHz) and the amount of plate back at the electrode portion is Δ (%),
Δ> (2 · F) 1/2 −3
A crystal resonator characterized by satisfying a relationship represented by:
According to a second aspect of the present invention, there is provided a quartz resonator having counter electrodes arranged on both main surfaces of an AT-cut quartz substrate, wherein a fundamental wave resonance frequency of the quartz resonator is F (MHz), and a plate in the electrode portion is provided. When the back amount is Δ (%),
(2 · F) 1/2 −3 <Δ <(13 · F) 1/2 −3
A crystal resonator characterized by satisfying a relationship represented by:
The invention according to claim 3 is the crystal resonator according to claim 2, wherein the invention is applied to a crystal resonator having a fundamental frequency of 200 MHz or more.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.
FIG. 1A is a plan view showing the configuration of a high-frequency crystal resonator according to the present invention, FIG. 1B is a rear view, and FIG. 1C is a cross-sectional view taken along QQ. One main surface of the quartz plate 1 is kept flat, and the other main surface is provided with an electrode 3 on the flat surface side of the AT-cut quartz plate 1 in which the recess 2 is formed by means such as etching. A lead electrode 4 extends from 3 and is connected to a pad electrode 5 provided at an end of the quartz plate 1. An electrode 6 is arranged on the concave side 2 so as to face the electrode 3, a lead electrode 7 extends from the electrode 6, and is connected to a pad electrode 8 provided at an end of the quartz plate 1, thereby forming a high-frequency crystal. Construct a vibrator.
[0013]
FIG. 2 shows the electrical characteristics of a 60 MHz fundamental wave crystal resonator as a first embodiment according to the present invention. The actual size of the quartz plate 1 is 2.3 mm x 2.3 mm, the size of the recess 2 (vibrating part) is 1.0 mm x 1.0 mm, the diameter of the circular electrodes 3 and 6 is 0.8 mm, As a result, the frequency-temperature characteristics and the CI-temperature characteristics of ten samples were measured. FIG. 2A shows frequency-temperature characteristics, and FIG. 2B shows CI-temperature characteristics.
As is clear from the figure, the frequency-temperature characteristic of the high-frequency crystal resonator according to the present invention exhibits a smooth cubic curve, and the effective resistance Rr (CI) is almost constant even when the ambient temperature is changed. It can be seen that the value is as good as 13Ω. Based on the conventional theory and results, it can be confirmed that the plate resonator is greatly improved even when compared with FIG. 8 of the crystal resonator in which the plate back amount Δ at the electrode portion is set to 2%.
Initially, the inventor of the present application set the plateback amount Δ to a large value of 2%, which was conventionally set to the upper limit of a general numerical value, in order to avoid deterioration of the effective resistance due to ohmic crossing of the electrode film. The inconvenience of the prior art was considered to be due to the fact that the confinement of energy in the electrode became too strong and the vibration estimated to be an unnecessary mode of higher-order contour system vibration and the main vibration were coupled.
However, in practice, in an AT-cut quartz resonator having a high fundamental wave resonance frequency, the characteristics are improved by increasing the plateback amount Δ to a value (8%) which is much larger than the conventional common sense value. This led to the surprising fact.
Although the resonance spectra of the main vibration and the inharmonic mode are not shown, the largest effective resistance value in the inharmonic mode was three times or more that of the main vibration. Therefore, it has been confirmed that even when the crystal resonator according to the present invention is used for an oscillation circuit, there is no risk of occurrence of a so-called frequency jump phenomenon that oscillates in an inharmonic mode.
[0014]
FIG. 3 shows the electrical characteristics of a 310 MHz fundamental wave crystal resonator as a second embodiment. Assuming that the size of the quartz plate 1 is 1.0 mm × 1.5 mm, the size of the concave portion 2 (vibrating portion) is 0.5 mm × 0.5 mm, the diameter of the electrodes 3 and 6 is 0.2 mmφ, and the plateback amount Δ in the electrode portion is 23%. Samples were prototyped, and their frequency-temperature characteristics and CI-temperature characteristics were measured. FIG. 3A shows frequency-temperature characteristics, and FIG. 3B shows CI-temperature characteristics. As is clear from this figure, the frequency-temperature characteristic exhibits a smooth cubic curve, and the effective resistance Rr (CI) shows a substantially constant value of 26Ω even when the temperature is changed. Various environmental tests were performed using this high-frequency crystal oscillator as a voltage controlled crystal oscillator (VCXO), but no frequency jump phenomenon occurred.
[0015]
Although two examples have been described above, the feature of the present invention lies in that the plateback amount Δ in the electrode portion is greatly increased without being bound by the conventional energy confinement theory or the conventional design results.
Since it is possible to set a large plateback amount Δ, a metal having a large mass can be used as an electrode material, and an electrode can be formed using gold instead of light aluminum. As is well known, gold is a metal that is extremely chemically stable and is the most suitable material as an electrode material, and the temperature of heat treatment and the like during the crystal oscillator manufacturing process can be set to a high temperature. There is also obtained a secondary effect that frequency aging and the like are improved.
[0016]
Furthermore, various experiments were performed on a high-frequency fundamental wave crystal resonator. As a result, no higher-order contour vibration was coupled to the main vibration, and the frequency-temperature characteristics exhibited a smooth cubic curve. It has been found that the characteristics are also substantially flat straight lines. The resonance level of the inharmonic mode was also suppressed to be smaller than that of the main vibration, and it was found that it could be used sufficiently for an oscillator. For example, a prototype of a 600 MHz band fundamental wave crystal resonator was mounted on a VCXO substrate, and frequency-temperature characteristics and a frequency jump phenomenon due to a temperature change were measured. Good results were obtained. The amount of plate back in the electrode portion of the crystal unit in the 600 MHz band exceeded 30%. From these experiments, the relationship between the resonance frequency F (MHz) of the crystal unit and the plateback amount Δ (%) can be expressed by an approximate expression as follows.
Δ 1 = (2 · F) 1/2 −3 (1)
[0017]
On the other hand, when the electrode film is thick, distortion of the quartz plate due to electrode film distortion, vibration loss of the electrode film, and the like occur, so that the electrode film cannot be made too thick.
Based on this fact, the inventor of the present application has not confirmed by experiment yet, but the relationship between the fundamental resonance frequency F (MHz) of the crystal resonator and the thickness of the electrode film, that is, the plate back amount Δ (%) is Infer that it should be smaller than the value represented by the following equation.
Δ 2 = (13 · F) 1/2 −3 (2)
Figure 4 is a diagram illustrating a relationship between the resonant frequency F of the crystal oscillator (MHz) and the plate back amount delta (%), the lower limit of the delta 1 represented by Formula 1 plate back amount delta, in Formula 2 It represents delta 2 indicates the upper limit of the plate back amount delta, if a crystal unit is configured using a delta-F in this range, frequency - both temperature characteristics and CI- temperature characteristics good oscillator obtained.
In the figures, α and β are plots of experimental values of the first and second embodiments.
[0018]
As the frequency of the fundamental wave crystal resonator is increased, difficulties arise in the etching of the quartz plate. In particular, when the thickness of the concave portion (vibrating portion) is about 7 μm, the parallelism, flatness, and the like between the flat surface that is not etched and the etched surface on the concave side affect the electrical characteristics of the vibrator. When the electrode film is thin, the influence of the substrate tends to appear significantly. Therefore, it is considered that making the plateback amount according to the present invention much larger than the normal design is an effective means for realizing good frequency-temperature characteristics and CI-temperature characteristics. For this reason, the present invention is considered to be a particularly effective means for producing a high-frequency fundamental-wave crystal resonator of 200 MHz or more (corresponding to a thickness of the substrate of about 7 μm) or more.
Also, as is well known, the frequency-temperature characteristic exhibits a curve deviated from an ideal cubic curve as if the cutting angle of the quartz plate was rotated due to the mass effect of the electrode film. In other words, in order to obtain a desired frequency-temperature characteristic exhibiting a desired cubic curve, the cutting angle of the crystal substrate is corrected in advance according to the plateback amount Δ in the same manner as in the conventional case.
[0019]
【The invention's effect】
Since the present invention is configured as described above, the invention described in claim 1 shows an excellent effect of giving a lower limit of the plate back amount to the frequency F when obtaining a good fundamental wave crystal resonator. The invention described in claim 2 shows an excellent effect of giving the upper limit of the plateback amount to the frequency F. The invention described in claim 3 shows an excellent effect of giving an important design guideline in manufacturing a crystal oscillator of 200 MHz or more which is particularly important in practical use.
[Brief description of the drawings]
1A and 1B are diagrams showing a configuration of a high-frequency crystal resonator according to the present invention, wherein FIG. 1A is a plan view, FIG. 1B is a rear view, and FIG.
FIGS. 2A and 2B are diagrams showing electric characteristics of a 60 MHz fundamental wave crystal resonator. FIG. 2A shows frequency-temperature characteristics, and FIG. 2B shows CI-temperature characteristics.
3A and 3B are diagrams showing electric characteristics of a 310 MHz fundamental wave crystal resonator, wherein FIG. 3A shows frequency-temperature characteristics and FIG. 3B shows CI-temperature characteristics.
[4] In relation diagram between the frequency F and the plate back amount delta of the present invention, a plate back amount within the desired range between the curve of the upper delta indicated by lower curve and delta 2 indicated by delta 1.
5A and 5B are diagrams showing a configuration of a conventional AT-cut crystal resonator, wherein FIG. 5A is a plan view and FIG. 5B is a cross-sectional view.
FIG. 6 is a cross-sectional view showing a configuration of a conventional high-frequency AT-cut quartz resonator.
7A and 7B are diagrams showing a configuration of a conventional fundamental wave crystal resonator, wherein FIG. 7A is a plan view, FIG. 7B is a rear view, and FIG. 7C is a cross-sectional view.
FIGS. 8A and 8B are diagrams showing electric characteristics of a conventional 60 MHz fundamental wave crystal resonator, wherein FIG. 8A shows frequency-temperature characteristics and FIG. 8B shows CI-temperature characteristics.
[Explanation of symbols]
1 ··· Piezoelectric substrate 2 ··· Recess 3, 6 ··· Electrode 4, 7 ··· Lead electrode 5, 8.

Claims (3)

ATカット水晶基板の両主面に対向電極を配置して構成した水晶振動子において、該水晶振動子の基本波共振周波数をF(MHz)、前記電極部分におけるプレートバック量をΔ(%)としたとき、
Δ>(2・F)1/2−3
で表される関係を満足していることを特徴とする水晶振動子。
In a quartz oscillator configured by arranging opposed electrodes on both main surfaces of an AT-cut quartz substrate, a fundamental wave resonance frequency of the quartz oscillator is F (MHz), and a plateback amount in the electrode portion is Δ (%). When
Δ> (2 · F) 1/2 −3
A crystal resonator characterized by satisfying the relationship represented by:
ATカット水晶基板の両主面に対向電極を配置して構成した水晶振動子において、該水晶振動子の基本波共振周波数をF(MHz)、前記電極部分におけるプレートバック量をΔ(%)としたとき、
(2・F)1/2−3<Δ<(13・F)1/2−3
で表される関係を満足していることを特徴とする水晶振動子。
In a quartz oscillator configured by arranging opposed electrodes on both main surfaces of an AT-cut quartz substrate, a fundamental wave resonance frequency of the quartz oscillator is F (MHz), and a plateback amount in the electrode portion is Δ (%). When
(2 · F) 1/2 −3 <Δ <(13 · F) 1/2 −3
A crystal resonator characterized by satisfying the relationship represented by:
基本波周波数が200MHz以上の水晶振動子に適用したことを特徴とする請求項2に記載の水晶振動子。3. The crystal unit according to claim 2, wherein the crystal unit has a fundamental frequency of 200 MHz or more.
JP2002373283A 2002-12-24 2002-12-24 Crystal vibrator Withdrawn JP2004207913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002373283A JP2004207913A (en) 2002-12-24 2002-12-24 Crystal vibrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002373283A JP2004207913A (en) 2002-12-24 2002-12-24 Crystal vibrator

Publications (2)

Publication Number Publication Date
JP2004207913A true JP2004207913A (en) 2004-07-22
JP2004207913A5 JP2004207913A5 (en) 2006-02-02

Family

ID=32811604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002373283A Withdrawn JP2004207913A (en) 2002-12-24 2002-12-24 Crystal vibrator

Country Status (1)

Country Link
JP (1) JP2004207913A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013207336A (en) * 2012-03-27 2013-10-07 Seiko Epson Corp Vibration element, vibrator, electronic device, and electronic apparatus
JP2014154994A (en) * 2013-02-07 2014-08-25 Seiko Epson Corp Vibration element, vibrator, electronic device, electronic apparatus, and mobile
CN116248068A (en) * 2022-09-28 2023-06-09 泰晶科技股份有限公司 Ultrahigh frequency AT cut quartz wafer and manufacturing process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013207336A (en) * 2012-03-27 2013-10-07 Seiko Epson Corp Vibration element, vibrator, electronic device, and electronic apparatus
JP2014154994A (en) * 2013-02-07 2014-08-25 Seiko Epson Corp Vibration element, vibrator, electronic device, electronic apparatus, and mobile
CN116248068A (en) * 2022-09-28 2023-06-09 泰晶科技股份有限公司 Ultrahigh frequency AT cut quartz wafer and manufacturing process
CN116248068B (en) * 2022-09-28 2024-03-08 泰晶科技股份有限公司 Ultrahigh frequency AT cut quartz wafer and manufacturing method

Similar Documents

Publication Publication Date Title
CN102684638B (en) Piezoelectric vibration device, piezoelectric vibrator, piezoelectric oscillator and electronic equipment
JP2001244778A (en) High-frequency piezoelectric vibrator
JP2011205516A (en) Piezoelectric vibrating element and piezoelectric vibrator
JP4665282B2 (en) AT cut crystal unit
WO2022000809A1 (en) Resonator and method for making same
JP2013042440A (en) Piezoelectric vibrating element, piezoelectric vibrator, electronic device and electronic apparatus
JP5824958B2 (en) Vibration element, vibrator, electronic device, and electronic apparatus
JP2011041040A (en) Piezoelectric substrate, piezoelectric vibrating element, and piezoelectric device
JP4640511B2 (en) Piezoelectric vibration element, piezoelectric vibrator, and piezoelectric oscillator
JP2004207913A (en) Crystal vibrator
JP4196641B2 (en) Ultra-thin piezoelectric device and manufacturing method thereof
JP2010187307A (en) At cut quartz resonator and manufacturing method thereof
JP2000040938A (en) Ultra high frequency piezoelectric device
JP2001257558A (en) Piezoelectric vibrator
JP4325178B2 (en) Piezoelectric vibration element, piezoelectric vibrator and piezoelectric oscillator
JP4513150B2 (en) High frequency piezoelectric vibrator
JP2002190717A (en) High frequency piezoelectric device
JP2001326554A (en) Piezoelectric vibrator
JPH0124368B2 (en)
JP2005260692A (en) Piezoelectric vibrating bar, piezoelectric vibrator and piezo-oscillator
JP2003283292A (en) Piezoelectric resonator and filter, duplexer and communication device using the same
CN116346078B (en) Surface-mounted quartz crystal resonator with modal suppression function
JP2004236008A (en) Piezo-electric oscillating member, piezo-electric device using the same, and cell phone unit and electric apparatus using piezo-electric device
JP2004304448A (en) Crystal diaphragm
JP2001024470A (en) Extremely high frequency at cut crystal oscillatory

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20051213

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Effective date: 20051213

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20051213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20081210