JP2004165798A - Structure of piezoelectric vibrating element - Google Patents

Structure of piezoelectric vibrating element Download PDF

Info

Publication number
JP2004165798A
JP2004165798A JP2002326919A JP2002326919A JP2004165798A JP 2004165798 A JP2004165798 A JP 2004165798A JP 2002326919 A JP2002326919 A JP 2002326919A JP 2002326919 A JP2002326919 A JP 2002326919A JP 2004165798 A JP2004165798 A JP 2004165798A
Authority
JP
Japan
Prior art keywords
electrode
piezoelectric
substrate
piezoelectric substrate
excitation electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002326919A
Other languages
Japanese (ja)
Inventor
Yasushi Nagano
裕史 永野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP2002326919A priority Critical patent/JP2004165798A/en
Publication of JP2004165798A publication Critical patent/JP2004165798A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structure of a piezoelectric vibrating element whereby leakage of vibrating energy from pad electrodes acting like a support of lead electrodes and a piezoelectric substrate is furthermore reduced than that of a conventional piezoelectric vibrator. <P>SOLUTION: Exciting electrodes 9a, 9b are formed on front and rear sides nearly in the middle of a crystal substrate 8 subjected to AT-cut with a prescribed size in the crystal vibrating element 7, the lead electrode 10a and the pad electrode 11a are led out from the exciting electrode 9a, and the lead electrode 10b and the pad electrode 11b via a side face electrode 12 are led out from the exciting electrode 9b. In this embodiment, four insections 13a, 13b, 13c, 13d are provided to the element 7, the insections being started from the long sides of the crystal substrate 8, directed in the middle of the crystal substrate in parallel with the short sides, and in contact with the side faces of the exciting electrodes 9a, 9b. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は圧電振動素子の構造に関し、特に圧電基板に設けたパッド電極(支持部)からの振動エネルギーの漏洩が低減するよう圧電基板の形状を改善した圧電振動素子の構造に関する。
【0002】
【従来の技術】
上面に凹部を有するパッケージの内底面に水晶振動素子等の圧電振動素子を収容し、パッケージの開口部を蓋にて気密封止した構造の圧電振動子は、各種通信機器の基準周波数発生源等として広く使用されている。
一般に水晶振動子は、ATカットされた水晶基板を用い、エネルギー閉じ込め型の水晶振動子として機能するよう構成され、水晶基板のほぼ中央部の表裏面に所定の面積を有する励振用の電極を対向して形成する。そこで、前記励振用の電極間に外部から電圧を印加すると、励振電極の質量付加効果により所定の振動エネルギーの閉じ込めがおこり、該振動エネルギーは、水晶基板に対して励振電極の中心部を頂点に所定の変位分布を構成する。
【0003】
図7は、従来の水晶振動素子の外観例を示す図である。水晶振動素子1は、所定のサイズにATカットされた水晶基板2のほぼ中央部の表裏面に、所定の面積を有する励振電極3a、及び3bを形成し、該励振電極3aからは、リード電極4a及びパッド電極5aとを導出し、一方、励振電極3bからは、リード電極4bと側面電極6を介してパッド電極5bとを導出している。本水晶振動素子1は、図7に示す如く、励振電極対を水晶基板のほぼ中央部に形成しており、リード電極や水晶基板の支持部であるパッド電極より、振動エネルギーが漏洩しにくい構造となっている。
【0004】
【発明が解決しようとする課題】
近年、携帯電話機等の移動体通信機器の普及に伴い、水晶振動子の更なる高性能化の要求が高まっている。
しかしながら、従来の水晶振動子は、前述したようにリード電極や水晶基板の支持部であるパッド電極より、振動エネルギーが漏洩しにくい構造となっているものの、水晶振動子の高周波化や高Q値化を進める上には、励振電極に生じた主振動の振動エネルギーが、支持部等から漏洩する量を更に低減する必要がある。例えば、特開平11−355088号公報には励振電極の周囲の圧電基板に貫通孔を形成したものが開示されているが、その貫通孔の位置等については詳細に検討されていない。
そこで、本発明は上述したような問題を解決するために為されたものであって、リード電極や圧電基板の支持部であるパッド電極より、振動エネルギーの漏洩を、従来の圧電振動子と比べて更に低減した圧電振動素子の構造を提供する。
【0005】
【課題を解決するための手段】
上記目的を達成するために本発明に係わる圧電振動素子の構造は、以下の構成をとる。
請求項1記載の圧電振動素子の構造は、平面形状が略長方形を呈する圧電基板の両主表面のほぼ中央に略長方形の励振電極を形成し、各励振電極から圧電基板の一方の短辺に向かって延出するリード電極と圧電基板の前記短辺近傍に配置したパッド電極とを有する圧電振動素子であって、前記圧電基板には各長辺を起点とし短辺と平行に延びる2本ずつの切り込みが形成されており、該切り込みはいずれもその一方の側縁が前記励振電極のいずれかの一辺と接するように配置されるよう構成する。
【0006】
請求項2記載の圧電振動素子の構造は、平面形状が略長方形を呈する圧電基板の両主表面のほぼ中央に略長方形の励振電極を形成し、各励振電極から圧電基板の一方の短辺に向かって延出するリード電極と圧電基板の前記短辺近傍に配置したパッド電極とを有する圧電振動素子であって、前記圧電基板には短辺と平行に延びる2つの貫通孔が形成されており、該貫通孔はそれぞれ前記励振電極の対向する二辺と接するように配置されるよう構成する。
【0007】
請求項3記載の圧電振動素子の構造は、平面形状が略長方形を呈する圧電基板の両主表面のほぼ中央に略長方形の励振電極を形成し、各励振電極から圧電基板の一方の短辺に向かって延出するリード電極と圧電基板の前記短辺近傍に配置したパッド電極とを有する圧電振動素子であって、前記圧電基板の少なくとも一方の主表面には各長辺のほぼ中央を起点とし短辺と平行に延びる2条の突起部が圧電基板と一体的に形成されており、該突起部は前記励振電極の領域にまで達するよう構成する。
【0008】
請求項4記載の圧電振動子の基板構造は、前記圧電基板が、ATカット水晶基板であるよう構成する。
【0009】
【発明の実施の形態】
以下、図示した実施例に基づいて本発明を詳細に説明する。
本発明においては、リード電極や水晶基板の支持部であるパッド電極より、振動エネルギーが漏洩することを低減させるため、水晶基板に所定の加工を加えた。第一の実施例においては、水晶基板に、各長辺を起点として短辺方向に励振電極の一辺と接するように切り込みを設け、振動エネルギーの漏洩を低減した。第二の実施例においては、水晶基板に、短辺と平行に励振電極の対向する二辺と接するよう貫通孔を設け、振動エネルギーの漏洩を低減した。一方、第三の実施例においては、水晶基板の長辺のほぼ中心を起点とし、短辺と平行に延びる突起部を圧電基板と一体的に形成し、振動エネルギーの漏洩を低減した。
【0010】
図1は、本発明に係る水晶振動素子の構造の第一の実施例を示す外観図である。水晶振動素子7は、所定のサイズにATカットされた水晶基板8のほぼ中央部の表裏面に、所定の面積を有する励振電極9a、及び9bを形成し、該励振電極9aからは、リード電極10a及びパッド電極11aとを導出し、一方、励振電極9bからは、リード電極10bと側面電極12を介してパッド電極11bとを導出している。本実施例においては、水晶基板8の長辺方向から水晶基板の中央に向かい、励振電極9a、9bの側面に接して4箇所の切り込み13a、13b、13c及び13dを設けた。
【0011】
そこで、本実施例に示したような水晶基板に設けた4箇所の切り込みが、振動エネルギーの漏洩の低減にどのように影響を与えるかを認識するため、有限要素法による振動解析を行い、4箇所のx方向の切り込みの幅dを変化させて、その時の振動変位をシミュレーションにより求めた。
図2は、本発明に係わる水晶振動素子の構造において、第一の実施例における振動解析の結果をグラフに示す。本振動解析に用いたモデルは、水晶基板の厚み寸法が128μm、x方向寸法が2048μm、z方向寸法が1280μmのATカット水晶基板に、x方向寸法が1400μm、z方向の寸法が960μmの領域を有した励振電極を形成し、励振電極の厚みは水晶換算で1μmとした。そこで、水晶基板に切り込みを設けた結果、z方向に残留する水晶基板の寸法lを128μmとし、4箇所のx方向の切り込みの幅dを変化させて振動変位分布を計算した。図2の縦軸は、水晶基板の中心部の振動変位で他の位置での振動変位を割り算した結果である規格化振動変位を示し、横軸は、励振電極の中心部から水晶基板のx方向への距離を示す。
【0012】
図2に示す如く、水晶基板に4箇所の切込みを設けることで、従来の形状の水晶基板と比べて端部での振動変位が減少している。又、シミュレーションの結果、x方向の切り込みの幅dを32μmとした時に、水晶基板端部での振動変位が最も減少するという結果が得られた。
従って、水晶振動子を設計する際に、等価インピーダンスが決められており励振電極の面積に対して制限が与えられている場合等においても、水晶基板に4箇所の切込みを設けることにより、リード電極やパッド電極から振動エネルギーが漏洩することを低減することが可能となる。又、x方向の切り込みの幅dを32μmに近い寸法とすることで、リード電極やパッド電極から振動エネルギーが漏洩することをさらに低減することが可能となる。
【0013】
図3は、本発明に係る水晶振動素子の構造の第二の実施例を示す外観図である。水晶振動素子14は、所定のサイズにATカットされた水晶基板15のほぼ中央部の表裏面に、所定の面積を有する励振電極16a、及び16bを形成し、該励振電極16aからは、リード電極17a及びパッド電極18aとを導出し、一方、励振電極16bからは、リード電極17bと側面電極19を介してパッド電極18bとを導出している。本実施例においては、水晶基板15に形成した前記励振電極16a、16bの両短辺側に接して、励振電極16a、16bの短辺と同一長さで所定の幅を有した2箇所の貫通孔20a、20bを設けた。
【0014】
そこで、本実施例に示したような水晶基板に設けた2箇所の貫通孔が、振動エネルギーの漏洩の低減にどのように影響を与えるかを認識するため、有限要素法による振動解析を行い、2箇所のx方向の貫通孔の幅dを変化させて、その時の振動変位をシミュレーションにより求めた。
図4は、本発明に係わる水晶振動素子の構造において、第二の実施例における振動解析の結果をグラフに示す。本振動解析に用いたモデルは、第一の実施例における振動解析と同様に、水晶基板の厚み寸法が128μm、x方向寸法が2048μm、z方向寸法が1280μmのATカット水晶基板に、x方向寸法が1400μm、z方向の寸法が960μmの領域を有した励振電極を形成し、励振電極の厚みは水晶換算で1μmとした。そこで、貫通孔のz方向の寸法を960μmとし、2箇所のx方向の貫通孔の幅dを変化させて振動変位分布を計算した。図4の縦軸は、水晶基板の中心部の振動変位で他の位置での振動変位を割り算した結果である規格化振動変位を示し、横軸は、励振電極の中心部から水晶基板のx方向への距離を示す。
【0015】
図4に示す如く、水晶基板に2箇所の貫通孔を設けることで、従来の形状の水晶基板と比べて端部での振動変位が減少している。又、シミュレーションの結果、x方向の切り込みの幅dは、何れの寸法にしても水晶基板端部での振動変位の差が認められなかった。
従って、水晶振動子を設計する際に、等価インピーダンスが決められており励振電極の面積に対して制限が与えられている場合等においても、水晶基板に2箇所の貫通孔を設けることにより、リード電極やパッド電極から振動エネルギーが漏洩することを低減することが可能となる。
【0016】
図5は、本発明に係る水晶振動素子の構造の第三の実施例を示す外観図である。水晶振動素子21は、所定のサイズにATカットされた水晶基板22のほぼ中央部の表裏面に、所定の面積を有する励振電極23a、及び23bを形成し、該励振電極23aからは、リード電極24a及びパッド電極25aとを導出し、一方、励振電極23bからは、リード電極24bと側面電極26を介してパッド電極25bとを導出している。本実施例においては、水晶基板22の表裏面の両長辺方向中央部を起点とし夫々水晶基板の短辺と平行に中心部に向かい、水晶基板22の表裏面の夫々に計4箇所の所定の長さの突起部27a、27b、27c、27dを設けた。
【0017】
そこで、本実施例に示したような水晶基板に設けた4箇所の突起部が、振動エネルギーの漏洩の低減にどのように影響を与えるかを認識するため、有限要素法による振動解析を行い、4箇所の突起部の厚みdを変化させて、その時の振動変位をシミュレーションにより求めた。
図6は、本発明に係わる水晶振動素子の構造において、第三の実施例における振動解析の結果をグラフに示す。本振動解析に用いたモデルは、第一の実施例における振動解析と同様に、水晶基板の厚み寸法が128μm、x方向寸法が2048μm、z方向寸法が1280μmのATカット水晶基板に、x方向寸法が1400μm、z方向の寸法が960μmの領域を有した励振電極を形成し、励振電極の厚みは水晶換算で1μmとした。そこで、4箇所の突起部を夫々、z方向の寸法を544μm、x方向の寸法を64μmとし、突起物の厚みdを変化させて振動変位分布を計算した。図6の縦軸は、水晶基板の中心部の振動変位で他の位置での振動変位を割り算した結果である規格化振動変位を示し、横軸は、励振電極の中心部から水晶基板のx方向への距離を示す。
【0018】
図6に示す如く、水晶基板に4箇所の突起物を設けることで、従来の形状の水晶基板と比べて端部での振動変位が減少している。又、シミュレーションの結果、突起物の厚みdは、d=28μmより大きくしても振動エネルギーの閉じ込めの状態はほとんど変化していない。
従って、水晶振動子を設計する際に、等価インピーダンスが決められており励振電極の面積に対して制限が与えられている場合等においても、水晶基板に4箇所の突起物を設けることにより、リード電極やパッド電極から振動エネルギーが漏洩することを低減することが可能となる。
【0019】
【発明の効果】
以上説明したように、本発明によれば以下のような優れた効果が得られる。
請求項1記載の発明は、圧電基板に切込みを設けることで、従来の形状の圧電基板と比べて端部での振動変位が減少し、圧電振動子の電気的特性の向上を図る上で大きな効果を発揮する。
【0020】
請求項2記載の発明は、圧電基板に貫通孔を設けることで、従来の形状の圧電基板と比べて端部での振動変位が減少し、圧電振動子の電気的特性の向上を図る上で大きな効果を発揮する。
【0021】
請求項3記載の発明は、圧電基板に突起物を設けることで、従来の形状の圧電基板と比べて端部での振動変位が減少し、圧電振動子の電気的特性の向上を図る上で大きな効果を発揮する。
【0022】
請求項4記載の発明は、圧電基板としてATカットされた水晶基板を用いることにより、周波数温度特性の優れた圧電振動子を構成することが出来、圧電振動子の電気的特性の向上を図る上で大きな効果を発揮する。
【図面の簡単な説明】
【図1】本発明に係る水晶振動素子の構造の第一の実施例を示す外観図である。
【図2】本発明に係わる水晶振動素子の構造において、第一の実施例における振動解析の結果をグラフに示す。
【図3】本発明に係る水晶振動素子の構造の第二の実施例を示す外観図である。
【図4】本発明に係わる水晶振動素子の構造において、第二の実施例における振動解析の結果をグラフに示す。
【図5】本発明に係る水晶振動素子の構造の第三の実施例を示す外観図である。
【図6】本発明に係わる水晶振動素子の構造において、第三の実施例における振動解析の結果をグラフに示す。
【図7】従来の水晶振動素子の外観例を示す図である。
【符号の説明】
1・・水晶振動素子、 2・・水晶基板、
3a、3b・・励振電極、 4a、4b・・リード電極、
5a、5b・・パッド電極、 6・・側面電極、
7・・水晶振動素子、 8・・水晶基板、
9a、9b・・励振電極、 10a、10b・・リード電極、
11a、11b・・パッド電極、 12・・側面電極、
13a、13b、13c、13d・・切込み、
14・・水晶振動素子、 15・・水晶基板、
16a、 16b・・励振電極、 17a、17b・・リード電極、
18a、18b・・パッド電極、 19・・側面電極、
20a、20b・・貫通孔、 21・・水晶振動素子、
22・・水晶基板、 23a、23b・・励振電極、
24a、24b・・リード電極、 25a、25b・・パッド電極、
26・・側面電極、
27a、27b、27c、27d・・突起物
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a structure of a piezoelectric vibrating element, and more particularly, to a structure of a piezoelectric vibrating element in which the shape of a piezoelectric substrate is improved so that leakage of vibration energy from a pad electrode (support) provided on the piezoelectric substrate is reduced.
[0002]
[Prior art]
A piezoelectric vibrator with a structure in which a piezoelectric vibrating element such as a quartz vibrating element is housed on the inner bottom surface of a package having a concave part on the top surface, and the opening of the package is hermetically sealed with a lid is a reference frequency source for various communication devices Widely used as.
In general, a crystal unit uses an AT-cut crystal substrate, and is configured to function as an energy-trap type crystal unit. An excitation electrode having a predetermined area is opposed to the front and back surfaces of the crystal substrate at a substantially central portion. Formed. Therefore, when a voltage is externally applied between the electrodes for excitation, a predetermined vibration energy is confined due to a mass addition effect of the excitation electrodes, and the vibration energy reaches the vertex at the center of the excitation electrode with respect to the quartz substrate. Construct a predetermined displacement distribution.
[0003]
FIG. 7 is a diagram showing an example of the appearance of a conventional quartz-crystal vibrating element. In the quartz vibrating element 1, excitation electrodes 3a and 3b having a predetermined area are formed on the front and back surfaces of a substantially central portion of a quartz substrate 2 which is AT-cut to a predetermined size, and a lead electrode is formed from the excitation electrode 3a. 4a and the pad electrode 5a are led out, while the pad electrode 5b is led out from the excitation electrode 3b via the lead electrode 4b and the side electrode 6. As shown in FIG. 7, the quartz crystal vibrating element 1 has a structure in which an excitation electrode pair is formed substantially in the center of a quartz substrate, and vibration energy is hardly leaked from a lead electrode or a pad electrode which is a supporting portion of the quartz substrate. It has become.
[0004]
[Problems to be solved by the invention]
2. Description of the Related Art In recent years, with the spread of mobile communication devices such as mobile phones, demands for higher performance quartz oscillators have been increasing.
However, as described above, the conventional crystal resonator has a structure in which vibration energy is less likely to leak than the lead electrode and the pad electrode which is a supporting portion of the crystal substrate, but the higher frequency and higher Q value of the crystal resonator are used. In order to achieve this, it is necessary to further reduce the amount of vibration energy of the main vibration generated in the excitation electrode leaking from the support and the like. For example, Japanese Patent Application Laid-Open No. 11-355088 discloses a piezoelectric substrate in which a through hole is formed in a piezoelectric substrate around an excitation electrode, but the position of the through hole is not studied in detail.
Therefore, the present invention has been made to solve the above-mentioned problem, and compared the leakage of vibration energy from a conventional piezoelectric vibrator through a lead electrode or a pad electrode which is a supporting portion of a piezoelectric substrate. To provide a further reduced piezoelectric vibration element structure.
[0005]
[Means for Solving the Problems]
To achieve the above object, the structure of the piezoelectric vibration element according to the present invention has the following configuration.
In the structure of the piezoelectric vibration element according to the first aspect, a substantially rectangular excitation electrode is formed substantially at the center of both main surfaces of the piezoelectric substrate having a substantially rectangular planar shape, and each excitation electrode is formed on one short side of the piezoelectric substrate. A piezoelectric vibrating element having a lead electrode extending toward the front side and a pad electrode disposed near the short side of the piezoelectric substrate, wherein the piezoelectric substrate has two starting points from each long side and extending in parallel with the short side. Are formed, and each of the cuts is arranged such that one side edge thereof is in contact with any one side of the excitation electrode.
[0006]
In the structure of the piezoelectric vibrating element according to the second aspect, a substantially rectangular excitation electrode is formed substantially at the center of both main surfaces of the piezoelectric substrate having a substantially rectangular planar shape, and from each excitation electrode to one short side of the piezoelectric substrate. A piezoelectric vibrating element having a lead electrode extending toward the substrate and a pad electrode disposed near the short side of the piezoelectric substrate, wherein the piezoelectric substrate is formed with two through holes extending parallel to the short side. The through holes are arranged so as to be in contact with two opposing sides of the excitation electrode.
[0007]
In the structure of the piezoelectric vibration element according to the third aspect, a substantially rectangular excitation electrode is formed substantially at the center of both main surfaces of the piezoelectric substrate having a substantially rectangular planar shape, and each excitation electrode is formed on one short side of the piezoelectric substrate. A piezoelectric vibrating element having a lead electrode extending toward the substrate and a pad electrode disposed near the short side of the piezoelectric substrate, wherein at least one main surface of the piezoelectric substrate has a starting point substantially at the center of each long side. Two protrusions extending parallel to the short side are formed integrally with the piezoelectric substrate, and the protrusions are configured to reach the region of the excitation electrode.
[0008]
The substrate structure of the piezoelectric vibrator according to claim 4 is configured such that the piezoelectric substrate is an AT cut quartz substrate.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.
In the present invention, a predetermined process is applied to the quartz substrate in order to reduce the leakage of vibration energy from the lead electrode and the pad electrode which is a supporting portion of the quartz substrate. In the first embodiment, a cut is provided in the quartz substrate in such a manner that each long side is a starting point and is in contact with one side of the excitation electrode in a short side direction to reduce leakage of vibration energy. In the second embodiment, a through hole is provided in the quartz substrate so as to be in contact with the two opposite sides of the excitation electrode in parallel with the short side, thereby reducing leakage of vibration energy. On the other hand, in the third embodiment, a projection part which starts from substantially the center of the long side of the quartz substrate and extends parallel to the short side is formed integrally with the piezoelectric substrate to reduce leakage of vibration energy.
[0010]
FIG. 1 is an external view showing a first embodiment of the structure of the crystal resonator element according to the present invention. The crystal vibrating element 7 has excitation electrodes 9a and 9b having a predetermined area formed on the front and back surfaces of a substantially central portion of a crystal substrate 8 which has been AT-cut to a predetermined size, and a lead electrode is formed from the excitation electrode 9a. 10a and the pad electrode 11a are led out, while the pad electrode 11b is led out from the excitation electrode 9b via the lead electrode 10b and the side electrode 12. In the present embodiment, four cuts 13a, 13b, 13c and 13d are provided in contact with the side surfaces of the excitation electrodes 9a and 9b from the long side direction of the quartz substrate 8 toward the center of the quartz substrate.
[0011]
Therefore, in order to recognize how the four cuts provided on the quartz substrate as shown in this embodiment affect the reduction of the leakage of the vibration energy, the vibration analysis by the finite element method was performed. The width d of the cut in the x direction at the location was changed, and the vibration displacement at that time was determined by simulation.
FIG. 2 is a graph showing the result of vibration analysis in the first embodiment in the structure of the crystal resonator element according to the present invention. The model used for this vibration analysis is an AT-cut quartz substrate with a thickness of 128 μm, a dimension of 2048 μm in the x direction, and a size of 1280 μm in the z direction on an AT-cut quartz substrate with a region of 1400 μm in the x direction and 960 μm in the z direction. The excitation electrode was formed, and the thickness of the excitation electrode was 1 μm in terms of quartz. Therefore, as a result of providing cuts in the quartz substrate, the size 1 of the quartz substrate remaining in the z direction was set to 128 μm, and the vibration displacement distribution was calculated by changing the width d of the cuts in four places in the x direction. The vertical axis in FIG. 2 shows the normalized vibration displacement obtained by dividing the vibration displacement at other positions by the vibration displacement at the center of the quartz substrate, and the horizontal axis represents x of the quartz substrate from the center of the excitation electrode. Indicates the distance to the direction.
[0012]
As shown in FIG. 2, by providing four cuts in the quartz substrate, the vibration displacement at the end portion is reduced as compared with the conventional quartz substrate. Also, as a result of the simulation, when the width d of the cut in the x direction was set to 32 μm, the result that the vibration displacement at the edge of the quartz substrate was reduced most was obtained.
Therefore, even when the equivalent impedance is determined and the area of the excitation electrode is limited when designing the crystal resonator, the lead electrode can be formed by providing four cuts in the crystal substrate. And leakage of vibration energy from the pad electrode. Further, by setting the width d of the cut in the x direction to a size close to 32 μm, leakage of vibration energy from the lead electrode or the pad electrode can be further reduced.
[0013]
FIG. 3 is an external view showing a second embodiment of the structure of the crystal resonator element according to the present invention. The quartz vibrating element 14 has excitation electrodes 16a and 16b having a predetermined area formed on the front and back surfaces of a substantially central portion of a quartz substrate 15 which has been AT-cut to a predetermined size, and a lead electrode is formed from the excitation electrode 16a. 17a and the pad electrode 18a are led out, while the pad electrode 18b is led out from the excitation electrode 16b via the lead electrode 17b and the side surface electrode 19. In this embodiment, two through-holes having the same length as the short sides of the excitation electrodes 16a and 16b and having a predetermined width are in contact with both short sides of the excitation electrodes 16a and 16b formed on the quartz substrate 15. Holes 20a and 20b were provided.
[0014]
Therefore, in order to recognize how the two through holes provided in the quartz substrate as shown in the present embodiment affect the reduction of the leakage of the vibration energy, a vibration analysis by the finite element method was performed. The width d of the two through holes in the x direction was changed, and the vibration displacement at that time was determined by simulation.
FIG. 4 is a graph showing a result of vibration analysis in the second embodiment in the structure of the crystal resonator element according to the present invention. The model used in the vibration analysis is the same as the vibration analysis in the first embodiment, except that the thickness of the quartz substrate is 128 μm, the dimension in the x direction is 2048 μm, and the dimension in the x direction is 1280 μm. Formed an excitation electrode having an area of 1400 μm and a dimension in the z direction of 960 μm, and the thickness of the excitation electrode was 1 μm in terms of quartz. Thus, the vibration displacement distribution was calculated by setting the size of the through hole in the z direction to 960 μm and changing the width d of the two through holes in the x direction. The vertical axis in FIG. 4 shows the normalized vibration displacement obtained by dividing the vibration displacement at another position by the vibration displacement at the center of the quartz substrate, and the horizontal axis represents x of the quartz substrate from the center of the excitation electrode. Indicates the distance to the direction.
[0015]
As shown in FIG. 4, by providing two through-holes in the quartz substrate, the vibration displacement at the end is reduced as compared with the conventional quartz substrate. As a result of the simulation, no difference in the vibration displacement at the edge of the quartz substrate was recognized regardless of the size of the cut width d in the x direction.
Therefore, even when the equivalent impedance is determined and the area of the excitation electrode is limited when designing the crystal resonator, the lead is provided by providing two through holes in the crystal substrate. Leakage of vibration energy from the electrodes and pad electrodes can be reduced.
[0016]
FIG. 5 is an external view showing a third embodiment of the structure of the crystal resonator element according to the present invention. The crystal vibrating element 21 has excitation electrodes 23a and 23b having a predetermined area formed on the front and back surfaces of a substantially central portion of a crystal substrate 22 which is AT-cut to a predetermined size, and a lead electrode is formed from the excitation electrode 23a. 24a and the pad electrode 25a are led out, while the pad electrode 25b is led out from the excitation electrode 23b via the lead electrode 24b and the side electrode 26. In the present embodiment, starting from the center of each of the long sides of the front and back surfaces of the quartz substrate 22 as starting points, each goes toward the center in parallel with the short side of the quartz substrate, and a total of four predetermined positions are respectively provided on the front and back surfaces of the quartz substrate 22. The projections 27a, 27b, 27c, and 27d having the lengths are provided.
[0017]
Therefore, in order to recognize how the four projections provided on the quartz substrate as shown in the present embodiment affect the reduction of the leakage of the vibration energy, a vibration analysis by the finite element method was performed. By changing the thickness d of the four protrusions, the vibration displacement at that time was obtained by simulation.
FIG. 6 is a graph showing the result of vibration analysis in the third embodiment in the structure of the crystal resonator element according to the present invention. The model used in the vibration analysis is the same as the vibration analysis in the first embodiment, except that the thickness of the quartz substrate is 128 μm, the dimension in the x direction is 2048 μm, and the dimension in the x direction is 1280 μm. Formed an excitation electrode having an area of 1400 μm and a dimension in the z direction of 960 μm, and the thickness of the excitation electrode was 1 μm in terms of quartz. Accordingly, the vibration displacement distribution was calculated by changing the thickness d of the protrusions at 544 μm in the z direction and 64 μm in the x direction for the four protrusions. The vertical axis in FIG. 6 shows the normalized vibration displacement obtained by dividing the vibration displacement at another position by the vibration displacement at the center of the quartz substrate, and the horizontal axis represents x of the quartz substrate from the center of the excitation electrode. Indicates the distance to the direction.
[0018]
As shown in FIG. 6, by providing four projections on the quartz substrate, the vibration displacement at the end portion is reduced as compared with the conventional quartz substrate. Further, as a result of the simulation, even if the thickness d of the protrusion is larger than d = 28 μm, the state of confining the vibration energy hardly changes.
Therefore, even when the equivalent impedance is determined when the crystal resonator is designed and the area of the excitation electrode is restricted, the lead is provided by providing four projections on the crystal substrate. Leakage of vibration energy from the electrodes and pad electrodes can be reduced.
[0019]
【The invention's effect】
As described above, according to the present invention, the following excellent effects can be obtained.
According to the first aspect of the present invention, by providing the cuts in the piezoelectric substrate, the vibration displacement at the end portion is reduced as compared with the conventional shape of the piezoelectric substrate, which is great in improving the electrical characteristics of the piezoelectric vibrator. It is effective.
[0020]
According to the second aspect of the present invention, by providing a through hole in the piezoelectric substrate, vibration displacement at an end portion is reduced as compared with a piezoelectric substrate having a conventional shape, and the electric characteristics of the piezoelectric vibrator are improved. It has a great effect.
[0021]
According to the third aspect of the present invention, by providing protrusions on the piezoelectric substrate, vibration displacement at an end portion is reduced as compared with the conventional shape of the piezoelectric substrate, and the electric characteristics of the piezoelectric vibrator are improved. It has a great effect.
[0022]
According to the fourth aspect of the invention, by using an AT-cut quartz substrate as the piezoelectric substrate, a piezoelectric vibrator having excellent frequency temperature characteristics can be formed, and the electrical characteristics of the piezoelectric vibrator can be improved. It has a great effect.
[Brief description of the drawings]
FIG. 1 is an external view showing a first embodiment of the structure of a crystal resonator element according to the present invention.
FIG. 2 is a graph showing a result of vibration analysis in the first embodiment in the structure of the crystal resonator element according to the present invention.
FIG. 3 is an external view showing a second embodiment of the structure of the crystal resonator element according to the present invention.
FIG. 4 is a graph showing the results of vibration analysis in the second embodiment in the structure of the crystal resonator element according to the present invention.
FIG. 5 is an external view showing a third embodiment of the structure of the crystal resonator element according to the present invention.
FIG. 6 is a graph showing a result of vibration analysis in the third embodiment in the structure of the crystal resonator element according to the present invention.
FIG. 7 is a view showing an example of the appearance of a conventional quartz vibrating element.
[Explanation of symbols]
1. Crystal oscillator element 2. Crystal substrate,
3a, 3b ... excitation electrode, 4a, 4b ... lead electrode,
5a, 5b pad electrode, 6 side electrode,
7. Crystal oscillator, 8. Crystal substrate,
9a, 9b ... excitation electrode, 10a, 10b ... lead electrode,
11a, 11b pad electrode, 12 side electrode,
13a, 13b, 13c, 13d ... cut,
14. Crystal oscillator element, 15 Crystal substrate,
16a, 16b ... excitation electrode, 17a, 17b ... lead electrode,
18a, 18b pad electrode, 19 side electrode,
20a, 20b ... through-hole, 21 ... crystal resonator element,
22 ··· quartz substrate, 23a, 23b ··· excitation electrode,
24a, 24b ··· lead electrode, 25a, 25b · · pad electrode,
26 ・ ・ Side electrode,
27a, 27b, 27c, 27d...

Claims (4)

平面形状が略長方形を呈する圧電基板の両主表面のほぼ中央に略長方形の励振電極を形成し、各励振電極から圧電基板の一方の短辺に向かって延出するリード電極と圧電基板の前記短辺近傍に配置したパッド電極とを有する圧電振動素子であって、
前記圧電基板には各長辺を起点とし短辺と平行に延びる2本ずつの切り込みが形成されており、該切り込みはいずれもその一方の側縁が前記励振電極のいずれか一辺と接するように配置されていることを特徴とする圧電振動素子の構造。
A substantially rectangular excitation electrode is formed at substantially the center of both main surfaces of the piezoelectric substrate having a substantially rectangular planar shape, and a lead electrode extending from each excitation electrode toward one short side of the piezoelectric substrate and the piezoelectric substrate are formed of the same. A piezoelectric vibrating element having a pad electrode disposed near the short side,
The piezoelectric substrate is formed with two cuts extending from each long side as a starting point and extending in parallel with the short side, and each of the cuts is such that one side edge thereof is in contact with any one side of the excitation electrode. A structure of a piezoelectric vibrating element, which is arranged.
平面形状が略長方形を呈する圧電基板の両主表面のほぼ中央に略長方形の励振電極を形成し、各励振電極から圧電基板の一方の短辺に向かって延出するリード電極と圧電基板の前記短辺近傍に配置したパッド電極とを有する圧電振動素子であって、
前記圧電基板には短辺と平行に延びる2つの貫通孔が形成されており、該貫通孔はそれぞれ前記励振電極の対向する二辺と接するように配置されていることを特徴とする圧電振動素子の構造。
A substantially rectangular excitation electrode is formed at substantially the center of both main surfaces of the piezoelectric substrate having a substantially rectangular planar shape, and a lead electrode extending from each excitation electrode toward one short side of the piezoelectric substrate and the piezoelectric substrate are formed of the same. A piezoelectric vibrating element having a pad electrode disposed near the short side,
A piezoelectric vibrating element, wherein two through holes extending in parallel with the short side are formed in the piezoelectric substrate, and the through holes are respectively arranged so as to be in contact with two opposing sides of the excitation electrode. Structure.
平面形状が略長方形を呈する圧電基板の両主表面のほぼ中央に略長方形の励振電極を形成し、各励振電極から圧電基板の一方の短辺に向かって延出するリード電極と圧電基板の前記短辺近傍に配置したパッド電極とを有する圧電振動素子であって、
前記圧電基板の少なくとも一方の主表面には各長辺のほぼ中央を起点とし短辺と平行に延びる2条の突起部が圧電基板と一体的に形成されており、該突起部は前記励振電極の領域にまで達していることを特徴とする圧電振動素子の構造。
A substantially rectangular excitation electrode is formed at substantially the center of both main surfaces of the piezoelectric substrate having a substantially rectangular planar shape, and a lead electrode extending from each excitation electrode toward one short side of the piezoelectric substrate and the piezoelectric substrate are formed of the same. A piezoelectric vibrating element having a pad electrode disposed near the short side,
On at least one main surface of the piezoelectric substrate, two protrusions are formed integrally with the piezoelectric substrate, starting from substantially the center of each long side and extending in parallel with the short sides. The structure of the piezoelectric vibrating element, which reaches the region of (1).
前記圧電基板が、ATカット水晶基板であることを特徴とする請求項1乃至3のいずれかに記載の圧電振動素子の構造。The structure of the piezoelectric vibration element according to claim 1, wherein the piezoelectric substrate is an AT-cut quartz substrate.
JP2002326919A 2002-11-11 2002-11-11 Structure of piezoelectric vibrating element Pending JP2004165798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002326919A JP2004165798A (en) 2002-11-11 2002-11-11 Structure of piezoelectric vibrating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002326919A JP2004165798A (en) 2002-11-11 2002-11-11 Structure of piezoelectric vibrating element

Publications (1)

Publication Number Publication Date
JP2004165798A true JP2004165798A (en) 2004-06-10

Family

ID=32805722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002326919A Pending JP2004165798A (en) 2002-11-11 2002-11-11 Structure of piezoelectric vibrating element

Country Status (1)

Country Link
JP (1) JP2004165798A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101123423B (en) * 2006-08-09 2010-09-08 爱普生拓优科梦株式会社 AT cut quartz crystal resonator element and method for manufacturing the same
EP2458734A2 (en) 2010-11-30 2012-05-30 Seiko Epson Corporation Piezoelectric vibrator element, piezoelectric module, and electronic device
JP2013012965A (en) * 2011-06-30 2013-01-17 Nippon Dempa Kogyo Co Ltd Piezoelectric vibration piece and piezoelectric device
US8791766B2 (en) 2011-08-18 2014-07-29 Seiko Epson Corporation Resonating element, resonator, electronic device, electronic apparatus, moving vehicle, and method of manufacturing resonating element
US8970316B2 (en) 2011-08-19 2015-03-03 Seiko Epson Corporation Resonating element, resonator, electronic device, electronic apparatus, and mobile object
US9048810B2 (en) 2011-06-03 2015-06-02 Seiko Epson Corporation Piezoelectric vibration element, manufacturing method for piezoelectric vibration element, piezoelectric resonator, electronic device, and electronic apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101123423B (en) * 2006-08-09 2010-09-08 爱普生拓优科梦株式会社 AT cut quartz crystal resonator element and method for manufacturing the same
EP2458734A2 (en) 2010-11-30 2012-05-30 Seiko Epson Corporation Piezoelectric vibrator element, piezoelectric module, and electronic device
US8963402B2 (en) 2010-11-30 2015-02-24 Seiko Epson Corporation Piezoelectric vibrator element, piezoelectric module, and electronic device
US9048810B2 (en) 2011-06-03 2015-06-02 Seiko Epson Corporation Piezoelectric vibration element, manufacturing method for piezoelectric vibration element, piezoelectric resonator, electronic device, and electronic apparatus
US9923544B2 (en) 2011-06-03 2018-03-20 Seiko Epson Corporation Piezoelectric vibration element, manufacturing method for piezoelectric vibration element, piezoelectric resonator, electronic device, and electronic apparatus
JP2013012965A (en) * 2011-06-30 2013-01-17 Nippon Dempa Kogyo Co Ltd Piezoelectric vibration piece and piezoelectric device
US8791766B2 (en) 2011-08-18 2014-07-29 Seiko Epson Corporation Resonating element, resonator, electronic device, electronic apparatus, moving vehicle, and method of manufacturing resonating element
US8970316B2 (en) 2011-08-19 2015-03-03 Seiko Epson Corporation Resonating element, resonator, electronic device, electronic apparatus, and mobile object
US9225314B2 (en) 2011-08-19 2015-12-29 Seiko Epson Corporation Resonating element, resonator, electronic device, electronic apparatus, and mobile object

Similar Documents

Publication Publication Date Title
US7368857B2 (en) Piezoelectric resonator element, piezoelectric, resonator, and piezoelectric oscillator
US7301258B2 (en) Piezoelectric resonator element, piezoelectric resonator, and piezoelectric oscillator
CN107210723B (en) Crystal vibrating piece and crystal vibrating device
TWI233257B (en) Piezoelectric vibrating plate, piezoelectric apparatus using piezoelectric vibrating plate, and portable phone and electronic device using piezoelectric apparatus
JP2004260718A (en) Tuning fork type vibration pieces, manufacturing method of tuning fork type vibration pieces, and piezoelectric device
KR20000005836A (en) Piezoelectric Resonator
JP2004200777A (en) Piezoelectric substrate of mesa structure, piezoelectric vibration element, piezoelectric vibrator, and piezoelectric oscillator
JP2006094154A (en) Piezoelectric vibration chip and piezoelectric device
JP6569874B2 (en) Quartz crystal resonator and manufacturing method thereof
JP2004165798A (en) Structure of piezoelectric vibrating element
JPH0884044A (en) High frequency piezoelectric vibration device
JP5988125B1 (en) Quartz crystal resonator and crystal oscillation device
JP2000031781A (en) Piezoelectric vibrator
JP2004266595A (en) Piezoelectric device
JP2001257558A (en) Piezoelectric vibrator
JP2005260692A (en) Piezoelectric vibrating bar, piezoelectric vibrator and piezo-oscillator
JP2003273703A5 (en)
US8212458B2 (en) Flexural-mode tuning-fork type quartz crystal resonator
JP2004236008A (en) Piezo-electric oscillating member, piezo-electric device using the same, and cell phone unit and electric apparatus using piezo-electric device
JP2003234635A (en) Crystal filter
JP4613498B2 (en) Piezoelectric vibrating piece, piezoelectric vibrator and piezoelectric oscillator
JP2012156591A (en) Piezoelectric vibration piece, piezoelectric vibrator and electronic device
JP2003309446A (en) Piezoelectric vibrator
JP2004207913A (en) Crystal vibrator
JPH06209225A (en) Piezoelectric vibrator for overtone oscillation