JP5625432B2 - Piezoelectric vibration element and piezoelectric vibrator - Google Patents

Piezoelectric vibration element and piezoelectric vibrator Download PDF

Info

Publication number
JP5625432B2
JP5625432B2 JP2010072350A JP2010072350A JP5625432B2 JP 5625432 B2 JP5625432 B2 JP 5625432B2 JP 2010072350 A JP2010072350 A JP 2010072350A JP 2010072350 A JP2010072350 A JP 2010072350A JP 5625432 B2 JP5625432 B2 JP 5625432B2
Authority
JP
Japan
Prior art keywords
piezoelectric
thickness
piezoelectric vibration
substrate
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010072350A
Other languages
Japanese (ja)
Other versions
JP2011205516A (en
Inventor
田中 良明
良明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2010072350A priority Critical patent/JP5625432B2/en
Publication of JP2011205516A publication Critical patent/JP2011205516A/en
Application granted granted Critical
Publication of JP5625432B2 publication Critical patent/JP5625432B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

本発明は、圧電振動素子、及び圧電振動子に関し、特に圧電基板の主面に複数段の略楕
円状の突出部を設け、これらに励振電極を形成した圧電振動素子と、この圧電振動素子を
パッケージに収容した圧電振動子に関するものである。
The present invention relates to a piezoelectric vibration element and a piezoelectric vibrator, and in particular, a piezoelectric vibration element in which a plurality of substantially elliptical protrusions are provided on a main surface of a piezoelectric substrate and an excitation electrode is formed thereon, and the piezoelectric vibration element The present invention relates to a piezoelectric vibrator housed in a package.

圧電振動子は小型であること、経年変化が小さいこと、高精度な周波数が容易に得られ
ること等のため、産業用機器、民生用機器の基準周波数源として広く用いられている。近
年、表面実装型圧電振動子の更なる小型化、高性能化が要求されている。
特許文献1には、タンタル酸リチウムX板、ニオブ酸リチウムZ板を用いて、振動部分
と支持部分とが一体化され、振動部分の断面形状がベベル形状やコンベックス形状である
圧電振動子が開示されている。振動子長手方向断面をコンベックス形状にすると、長手方
向端部における相対変位の大きさは、長手方向断面が矩形状の場合に比べて約1/100
となる。
振動子断面形状がコンベックス形状をなす振動子は、振動子断面形状を階段形状にする
ことで近似的に置き換えることができる。階段の断面形状が斜面であれば、より近似度合
いは増す上、階段の段差部分での励振用電極の断線を防ぐことができると開示されている

特許文献2には、両主面の相対向する位置に凸部を設けた、所謂メサ型圧電基板を用い
た圧電振動子が開示されている。メサ型圧電基板に形成する励振電極は、凸部と、凸部を
取り巻く平面部の一部の領域まで広がっている。励振電極を拡大することにより、励振電
極を形成する際に多少電極ずれが生じても不具合とはならず、励振電極の凸部の段差部分
における強度が増した圧電振動子が得られると開示されている。
Piezoelectric vibrators are widely used as reference frequency sources for industrial equipment and consumer equipment because of their small size, small secular change, and easy high-accuracy frequency. In recent years, there has been a demand for further downsizing and higher performance of surface mount piezoelectric vibrators.
Patent Document 1 discloses a piezoelectric vibrator in which a vibrating portion and a supporting portion are integrated using a lithium tantalate X plate and a lithium niobate Z plate, and the cross-sectional shape of the vibrating portion is a bevel shape or a convex shape. Has been. When the longitudinal cross section of the vibrator is formed into a convex shape, the magnitude of the relative displacement at the end in the longitudinal direction is about 1/100 that in the case where the longitudinal cross section is rectangular.
It becomes.
A vibrator having a convex cross-sectional shape can be approximately replaced by changing the cross-sectional shape of the vibrator to a staircase shape. It is disclosed that if the cross-sectional shape of the staircase is a slope, the degree of approximation is further increased and disconnection of the excitation electrode at the stepped portion of the staircase can be prevented.
Patent Document 2 discloses a piezoelectric vibrator using a so-called mesa-type piezoelectric substrate in which convex portions are provided at opposite positions of both main surfaces. The excitation electrode formed on the mesa-type piezoelectric substrate extends to a partial area of the convex part and the flat part surrounding the convex part. It is disclosed that by enlarging the excitation electrode, it is possible to obtain a piezoelectric vibrator having increased strength at the stepped portion of the projection of the excitation electrode without causing a problem even if the electrode is slightly displaced when forming the excitation electrode. ing.

特許文献3には、メサ型水晶振動子が開示されている。図13(a)は平面図、同図(
b)はP−Pにおける断面図、同図(c)はQ−Qにおける断面図、同図(d)、(e)
はそれぞれ長手方向、短手方向からみた振動変位分布を示す図である。水晶基板81の長
手方向(X軸方向)の外形輪郭は、その両端部が半楕円状に加工され、楕円の長径/短径
(長軸/短軸)の比を1.26とする。水晶基板81の両主面は、図13(a)、(b)
、(c)に示すように、中央部82が周縁部より厚さ方向に突出した所謂メサ型に加工さ
れ、且つ中央部82の長手方向の両端部の形状が水晶基板81の外周輪郭形状と同様に半
楕円状に加工されている。この楕円の長径/短径(長軸/短軸)の比も1.26である。
また、中央部82の両面に付着する電極82a、82bの形状は、中央部82と相似形
に形成される。このように構成した水晶振動素子の振動変位分布は、長手方向では図13
(d)の実線84、短手方向のそれは同図(e)に示す実線85に示すような分布となる
。水晶板81の長手方向断面が、矩形状の水晶振動素子の長手方向、及び短手方向夫々の
振動変位分布94、95は、図13(d)、(e)の破線のように分布する。これらを比
較してメサ型水晶振動素子の振動変位分布は、振動変位が中央部により集中することが分
かる。即ち、エネルギー閉じ込め度合いがより深くなり、振動エネルギーの一部が支持部
に漏洩したり、他の輪郭振動へ変換したりして損失される量が少なくなる。そのため、直
列共振抵抗R1が改善され(Q値が改善され)、不要モードも抑圧された水晶振動子が得
られると開示されている。
Patent Document 3 discloses a mesa crystal unit. FIG. 13A is a plan view and FIG.
b) is a cross-sectional view at PP, FIG. 10C is a cross-sectional view at Q-Q, and FIGS.
These are figures which show the vibration displacement distribution seen from the longitudinal direction and the transversal direction, respectively. The outer contour in the longitudinal direction (X-axis direction) of the quartz substrate 81 is processed into a semi-elliptical shape at both ends, and the ratio of the major axis / minor axis (major axis / minor axis) of the ellipse is 1.26. Both main surfaces of the quartz substrate 81 are shown in FIGS.
, (C), the central portion 82 is processed into a so-called mesa shape protruding in the thickness direction from the peripheral portion, and the shape of both end portions in the longitudinal direction of the central portion 82 is the outer contour shape of the quartz substrate 81. Similarly, it is processed into a semi-elliptical shape. The ratio of major axis / minor axis (major axis / minor axis) of this ellipse is also 1.26.
Further, the electrodes 82 a and 82 b attached to both surfaces of the central portion 82 are formed in a similar shape to the central portion 82. The vibration displacement distribution of the crystal resonator element configured as described above is shown in FIG.
The solid line 84 in (d) and that in the short direction are distributed as shown by the solid line 85 shown in FIG. In the longitudinal direction of the quartz plate 81, the vibration displacement distributions 94 and 95 in the longitudinal direction and the transverse direction of the rectangular quartz resonator element are distributed as indicated by broken lines in FIGS. 13 (d) and 13 (e). By comparing these, it can be seen that the vibration displacement distribution of the mesa-type crystal resonator element is concentrated in the central portion. That is, the degree of energy confinement becomes deeper, and a part of the vibration energy leaks to the support part or is converted into another contour vibration, so that the amount lost is reduced. Therefore, it is disclosed that a crystal resonator in which the series resonance resistance R1 is improved (Q value is improved) and unnecessary modes are suppressed can be obtained.

特開平11−355094号公報Japanese Patent Laid-Open No. 11-355094 特開2005−94410公報JP 2005-94410 A 特開2007−158486公報JP 2007-158486 A

しかしながら、特許文献1ではタンタル酸リチウム、ニオブ酸リチウムについ記述され
ているが、水晶に関してコンベックス形状とその振動特性について述べられていない。ま
た、圧電基板の異方性を考慮した基板加工と、励振電極形状についても記述されていない

特許文献2に開示の水晶振動子は、メサ部より大きな励振電極を形成することが開示さ
れているが、メサ部が一段だけではエネルギー閉じ込めが不十分であり、要求を満たすよ
うな高いQ値(低いCI値)の水晶振動子が得られないという問題が起きる場合があった

また、特許文献3に開示の水晶振動子は、特許文献2に開示の水晶振動子よりもQ値は
大きくなるものの、最近要求されるQ値と、スプリアスとを満たすには、歩留まりがあま
りにも低いという問題があった。
本発明は上記問題を解決するためになされたもので、小型化を図ると共にQ値を大きく
し、且つスプリアスを低減した圧電振動子を安価に提供することを目的とする。
However, Patent Document 1 describes lithium tantalate and lithium niobate, but does not describe the convex shape and the vibration characteristics of quartz. Also, neither substrate processing considering the anisotropy of the piezoelectric substrate nor excitation electrode shape is described.
The crystal resonator disclosed in Patent Document 2 discloses that an excitation electrode larger than the mesa portion is formed, but energy confinement is insufficient with only one mesa portion, and a high Q value that satisfies the requirements There may be a problem that a crystal resonator having a low CI value cannot be obtained.
Further, although the crystal resonator disclosed in Patent Document 3 has a larger Q value than the crystal resonator disclosed in Patent Document 2, the yield is too high to satisfy the recently required Q value and spurious. There was a problem of being low.
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a piezoelectric vibrator that is downsized, has a high Q value, and has reduced spurious, at low cost.

本発明は、上記の課題の少なくとも一部を解決するためになされたものであり、以下の
形態又は適用例として実現することが可能である。
SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following forms or application examples.

[適用例1]本発明に係る圧電振動素子は、ATカット水晶基板を用いた圧電振動素子であって、振動領域を備え、長手方向を有する矩形の圧電振動基板と、前記圧電振動基板の表裏主面上の振動領域内に夫々形成された第1の励振電極、及び第2の励振電極と、を備え、少なくとも一方の主面の前記振動領域内には、少なくとも外径側に位置する第1の平面部と、該第1の平面部の内径側に位置し且つ厚さ方向外側へ突出した突部と、を有し、前記突部は、前記第1の平面部よりも厚さ方向外側へ突出した第2の平面部と、前記第2の平面部の内側に位置し且つ厚さ方向外側へ突出した第3の平面部と、を有し、前記第2の平面部の外形は、平面視で、略楕円形状の短径方向の対向する2つの外形輪郭線が夫々対応する位置にある前記圧電振動基板の長辺に沿って欠落した形状であり、前記第3の平面部の外形は、平面視で、略楕円形状であることを特徴とする圧電振動素子である。 [Application Example 1] A piezoelectric vibration element according to the present invention is a piezoelectric vibration element using an AT-cut quartz crystal substrate, and includes a rectangular piezoelectric vibration substrate having a vibration region and having a longitudinal direction, and front and back surfaces of the piezoelectric vibration substrate. A first excitation electrode and a second excitation electrode respectively formed in a vibration region on the main surface, and in the vibration region of at least one main surface, the first excitation electrode is positioned at least on the outer diameter side. And a protrusion that is located on the inner diameter side of the first flat portion and protrudes outward in the thickness direction, and the protrusion is in the thickness direction relative to the first flat portion. a second flat portion which protrudes outward, and a third planar portion which protrudes into and thickness outwardly located inside of the second planar portion has a contour of said second planar portion In the plan view, the piezoelectric elements in which the two outer contour lines facing each other in the minor axis direction of the substantially elliptical shape are in corresponding positions, respectively. The piezoelectric vibration element is characterized in that it has a shape missing along the long side of the vibration substrate, and the outer shape of the third planar portion is substantially elliptical in plan view .

[適用例2]また圧電振動素子は、前記圧電振動基板は、前記長手方向がX軸方向であり、夫々楕円形状の前記第2及び第3の平面部の長径対短径の比が夫々1.26対1.00の関係を満たすことを特徴とする適用例1に記載の圧電振動素子である。 Application Example 2] The piezoelectric vibrating element, said piezoelectric vibrating board, the longitudinal direction Ri X-axis direction der, major axis versus the ratio of the shorter diameter of the second and third planar portions each elliptical respectively The piezoelectric vibration element according to Application Example 1, which satisfies a relationship of 1.26 to 1.00.

圧電振動基板に水晶基板を用いる場合は、水晶結晶の弾性定数の異方性を考慮する必要
がある。弾性定数は切断角度に依存して変化し、ATカット水晶基板では、X方向とZ’
方向との伝搬定数が異なり、振動変位分布の断面形状は楕円形状となる。そのため、振動
変位分布に基づいて、長径と短径を少しずつ小さくした楕円形状を、積層したように圧電
振動基板を形成することにより、大きなQ値を有する圧電振動子を実現することができる
。ATカット水晶基板の場合、この楕円形状の長径対短径の比が1.26であり、この数
値を用いて圧電振動基板を構成すると圧電振動素子のQ値が大きくなり、輪郭系のスプリ
アスを低減することができるという効果がある。
When a quartz crystal substrate is used as the piezoelectric vibration substrate, it is necessary to consider the anisotropy of the elastic constant of the quartz crystal. The elastic constant changes depending on the cutting angle. In AT-cut quartz substrates, the X direction and Z ′
The propagation constant differs from the direction, and the cross-sectional shape of the vibration displacement distribution is elliptical. Therefore, based on the vibration displacement distribution, a piezoelectric vibrator having a large Q value can be realized by forming a piezoelectric vibration substrate such that an elliptical shape in which a major axis and a minor axis are gradually reduced is laminated. In the case of an AT-cut quartz substrate, the ratio of the major axis to the minor axis of this elliptical shape is 1.26. When a piezoelectric vibrating substrate is constructed using this numerical value, the Q value of the piezoelectric vibrating element increases, and the spurious of the contour system is reduced. There is an effect that it can be reduced.

[適用例3]また圧電振動素子は、前記第3の平面部の2つの焦点間を結ぶ線分の中点は、前記振動領域の中心に位置していることを特徴とする適用例1または2に記載の圧電振動素子である。 Application Example 3 In the piezoelectric vibration element, the midpoint of the line segment connecting the two focal points of the third plane portion is located at the center of the vibration region. 2. The piezoelectric vibration element according to 2.

[適用例]また圧電振動素子は、前記第3の平面部の2つの焦点間を結ぶ線分の中点は前記圧電振動基板の長手方向の中心より偏心していることを特徴とする適用例1または2のいずれか1項に記載の圧電振動素子である。 Application Example 4 In the piezoelectric vibration element, the midpoint of the line segment connecting the two focal points of the third plane portion is decentered from the longitudinal center of the piezoelectric vibration substrate. The piezoelectric vibration element according to any one of Examples 1 and 2 .

圧電振動基板の長手方向と直交する幅方向の中心線と、振動領域の長手方向と直交する
幅方向の中心線、つまり第3の平面部の外形輪郭線である略楕円形状の2つの焦点間を結
ぶ線分の中点を通る幅方向の中心線とは、偏心するように圧電振動基板を形成する。この
ように圧電振動基板を形成すると、支持部の影響を受けることなく、振動変位の分布は振
動領域の中心に対し対称となり、圧電振動素子のQ値を大きくするこができると共に、高
次輪郭モードを低減することが可能となるという効果がある。
A center line in the width direction orthogonal to the longitudinal direction of the piezoelectric vibration substrate and a center line in the width direction orthogonal to the longitudinal direction of the vibration region, that is, between the two substantially elliptical focal points that are the outer contour lines of the third plane portion. The piezoelectric vibration substrate is formed so as to be eccentric with respect to the center line in the width direction passing through the midpoint of the line segment connecting the two. When the piezoelectric vibration substrate is formed in this way, the distribution of vibration displacement is symmetric with respect to the center of the vibration region without being affected by the support portion, and the Q value of the piezoelectric vibration element can be increased and higher-order contours can be obtained. There is an effect that the mode can be reduced.

[適用例5]また圧電振動素子は、前記圧電振動基板は、前記長手方向の少なくとも一端に支持部が形成されており、前記支持部の厚さは前記第3の平面の厚さ以上であることを特徴とする適用例1ないし4のいずれか1項に記載の圧電振動素子である。 Application Example 5 In the piezoelectric vibration element, the piezoelectric vibration substrate has a support portion formed at least at one end in the longitudinal direction, and the thickness of the support portion is equal to or greater than the thickness of the third plane portion. The piezoelectric vibration element according to any one of Application Examples 1 to 4, wherein the piezoelectric vibration element is provided.

圧電振動基板の長手方向の少なくとも一端に支持部を形成した圧電振動基板を用いて、圧電振動素子を構成した場合、この圧電振動素子の支持部をパッケージの内底部に固定すれば、圧電振動基板の振動領域に支持の影響が及ばないため、Q値の劣化を防ぐことができるという効果がある。
[適用例6]また圧電振動素子は、前記第3の平面部の厚さをhとし、前記支持部の厚さをHとしたとき、H/h≧1.1なる関係を満足することを特徴とする適用例5に記載の圧電振動素子である。
[適用例7]また圧電振動素子は、前記第3の平面部の厚さをhとし、前記支持部の前記長手方向に沿った幅をwとしたとき、w/h≧3.0なる関係を満足することを特徴とする適用例5または6に記載の圧電振動素子である。
When a piezoelectric vibration element is configured using a piezoelectric vibration substrate having a support portion formed at least at one end in the longitudinal direction of the piezoelectric vibration substrate, the piezoelectric vibration substrate can be obtained by fixing the support portion of the piezoelectric vibration element to the inner bottom portion of the package. Since the influence of the support is not exerted on the vibration region, the Q value can be prevented from deteriorating.
Application Example 6 In the piezoelectric vibration element, when the thickness of the third plane portion is h and the thickness of the support portion is H, the relationship of H / h ≧ 1.1 is satisfied. The piezoelectric vibration element according to Application Example 5 which is characterized.
Application Example 7 In the piezoelectric vibration element, when the thickness of the third plane portion is h and the width of the support portion along the longitudinal direction is w, w / h ≧ 3.0 The piezoelectric vibration element according to Application Example 5 or 6, wherein the piezoelectric vibration element is satisfied.

[適用例]また圧電振動素子は、前記支持部の長手方向の奥行は、前記第3の平面部の厚さに対して大きいことを特徴とする適用例5ないし7のいずれか1項に記載の圧電振動素子である。 Application Example 8 In the piezoelectric vibration element according to any one of Application Examples 5 to 7 , wherein the longitudinal depth of the support portion is larger than the thickness of the third plane portion. It is a piezoelectric vibration element of description.

長手方向の奥行き寸法を第3の平面の厚さ寸法に対して大きくすることにより、エネル
ギー閉じ込めが完全となり、Q値の大きい圧電振動素子を得ることができるという効果が
ある。
Increasing the depth dimension in the longitudinal direction relative to the thickness dimension of the third plane has the effect that energy confinement becomes complete and a piezoelectric vibration element having a large Q value can be obtained.

[適用例]また圧電振動素子は、前記第2の平面部と前記第3の平面部に跨って励振電極を形成し、前記主面上から平面視したとき前記励振電極が矩形であることを特徴とする適用例1ないし8のいずれか1項に記載の圧電振動素子である。 Application Example 9 In the piezoelectric vibration element, an excitation electrode is formed across the second plane portion and the third plane portion, and the excitation electrode is rectangular when viewed from above the main surface. The piezoelectric vibration element according to any one of Application Examples 1 to 8, wherein

容量比を考慮すると振動変位分布に沿った電極形状が望ましいが、圧電振動素子のCI
値をより小さくする場合には、できるだけ大きな矩形状の電極を用いることより、小さな
CI値を得ることができるという効果がある。
Considering the capacitance ratio, the electrode shape along the vibration displacement distribution is desirable, but the CI of the piezoelectric vibration element
When the value is made smaller, there is an effect that a small CI value can be obtained by using a rectangular electrode as large as possible.

[適用例10]本発明の圧電振動子は、適用例1ないし9のいずれか1項に記載の圧電振動素子の前記第1の平面部、前記第2の平面部および前記第3の平面部が基板の周縁に側壁を有するパッケージの内部底面に対面した状態で収容されていることを特徴とする圧電振動子である。 [Application Example 10] A piezoelectric vibrator according to the present invention is the first planar portion, the second planar portion, and the third planar portion of the piezoelectric vibration element according to any one of Application Examples 1 to 9. Is accommodated in a state of facing the inner bottom surface of the package having a side wall on the peripheral edge of the substrate.

適用例1乃至8の何れかに記載の圧電振動素子と、パッケージとを備えた圧電振動子を
構成すると、大きなQ値を有すると共に高次輪郭モードが低減された圧電振動子を得るこ
とができるという効果がある。
When a piezoelectric vibrator including the piezoelectric vibration element according to any one of Application Examples 1 to 8 and a package is configured, a piezoelectric vibrator having a large Q value and a reduced high-order contour mode can be obtained. There is an effect.

本発明に係る圧電振動素子の構成を示した概略図であり、(a)は平面図、(b)は断面図。It is the schematic which showed the structure of the piezoelectric vibration element which concerns on this invention, (a) is a top view, (b) is sectional drawing. 第2の実施例の圧電振動素子の構成を示した図であり、(a)は平面図、(b)は断面図。It is the figure which showed the structure of the piezoelectric vibration element of 2nd Example, (a) is a top view, (b) is sectional drawing. 圧電振動基板の断面図とその要部の寸法。Cross-sectional view of the piezoelectric vibration substrate and dimensions of the main part. 長手方向(X軸方向)の変位と、厚さ方向(Y’軸方向)の変位を示した図で、厚さ比H/hを、(a)は0.85、(b)は1.0、支持部厚さは0.2mmに固定したシミュレーション結果。It is the figure which showed the displacement of a longitudinal direction (X-axis direction) and the displacement of a thickness direction (Y'-axis direction), (a) is 0.85, (b) is 1. 0, simulation results with support thickness fixed at 0.2 mm. 長手方向(X軸方向)の変位と、厚さ方向(Y’軸方向)の変位を示した図で、厚さ比H/hを、(a)は1.16、(b)は1.47、支持部厚さは0.2mmに固定したシミュレーション結果。It is the figure which showed the displacement of a longitudinal direction (X-axis direction) and the displacement of a thickness direction (Y'-axis direction), (a) is 1.16, (b) is 1. 47, Simulation results with support thickness fixed at 0.2 mm. 厚さ比H/hに対しY’軸方向の変位成分和を示した図。The figure which showed the displacement component sum of the Y'-axis direction with respect to thickness ratio H / h. 長手方向(X軸方向)の変位と、厚さ方向(Y’軸方向)の変位を示した図で、厚さ対幅比w/hを、(a)は0.77、(b)は1.55、(c)は1.93、厚さ比H/hは1.1に固定したシミュレーション結果。It is the figure which showed the displacement of a longitudinal direction (X-axis direction) and the displacement of a thickness direction (Y'-axis direction), (a) is 0.77, (b) is thickness / width ratio w / h. Simulation results with 1.55, (c) fixed at 1.93, and thickness ratio H / h fixed at 1.1. 長手方向(X軸方向)の変位と、厚さ方向(Y’軸方向)の変位を示した図で、厚さ対幅比w/hを3.86、厚さ比H/hは1.1に固定したシミュレーション結果。The figure shows the displacement in the longitudinal direction (X-axis direction) and the displacement in the thickness direction (Y′-axis direction). The thickness-to-width ratio w / h is 3.86, and the thickness ratio H / h is 1. Simulation result fixed at 1. 厚さ対幅比w/hに対しY’軸方向の単位当たりの変位成分を示した図。The figure which showed the displacement component per unit of the Y'-axis direction with respect to thickness to width ratio w / h. 第3の実施例の圧電振動素子の構成を示した図であり、(a)は平面図、(b)は断面図。It is the figure which showed the structure of the piezoelectric vibration element of 3rd Example, (a) is a top view, (b) is sectional drawing. 第4の実施例の圧電振動素子の構成を示した図であり、(a)は平面図、(b)は断面図。It is the figure which showed the structure of the piezoelectric vibration element of a 4th Example, (a) is a top view, (b) is sectional drawing. 本発明の圧電振動子の構成を示した断面図。Sectional drawing which showed the structure of the piezoelectric vibrator of this invention. 従来の水晶振動素子の構成を示した図であり、(a)は平面図、(b)、(c)は断面図、(d)、(e)は変位分布を示す図。It is the figure which showed the structure of the conventional quartz-crystal vibration element, (a) is a top view, (b), (c) is sectional drawing, (d), (e) is a figure which shows displacement distribution.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。図1は、本発明の一実施
形態に係る圧電振動素子1の構成を示す概略図であり、同図(a)は平面図、同図(b)
はQ−Qにおける断面図である。圧電振動素子1は、厚み振動をするエネルギー閉じ込め
型圧電振動素子であって、振動領域を備えた矩形の圧電振動基板(以下、圧電基板と称す
)5と、圧電基板5の表裏両主面上の振動領域内に夫々形成された第1の励振電極11a
、及び第2の励振電極11bと、を備えている。
圧電基板5の少なくとも一方の主面には、少なくとも圧電基板5の長手方向の両端部寄
りに位置する第1の平面部5aと、第1の平面部5aよりも圧電基板5の内側(振動領域
の中央)に位置し、且つ振動領域の中央に向かうに従い厚さが増すように外側へ突出した
階段状の突部5Aと、を有している。
突部5Aは、第1の平面部5aよりも圧電基板5の内側(振動領域の中央寄り)に位置
し、且つ第1の平面部5aよりも厚さ方向に突出し、且つ圧電基板5の長手方向に長軸が
延びた略楕円形状の第2の平面部5bと、第2の平面部5bよりもの圧電基板5の内側(
振動領域の中央)に位置し、且つ第2の平面部5bよりも厚さ方向に突出し、且つ圧電基
板5の長手方向に長軸が延びた略楕円形状の第3の平面部5cと、を有している。つまり
、突部5Aは、その一体化された構造を仮に分解した状態にして説明すれば第2の平面部
5bを有する略楕円形状(略楕円柱形状)の第1の突部5A−1の上面中央に、略楕円形
状(略楕円柱形状)である第3の平面部5cを上面とする第2の突部5A−2が積層され
たような階段状を成している。なお、略楕円柱形状とは、圧電基板5の形成する際に生じ
る加工精度に伴う誤差や、圧電基板5の材料の特性として例えばエッチング量の異方特性
などの影響によって理想の楕円形状に対して側面に崩れが生じた形状のものも含む。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic view showing a configuration of a piezoelectric vibration element 1 according to an embodiment of the present invention. FIG. 1 (a) is a plan view and FIG. 1 (b).
These are sectional views in QQ. The piezoelectric vibration element 1 is an energy confinement type piezoelectric vibration element that vibrates in thickness, and has a rectangular piezoelectric vibration substrate (hereinafter referred to as a piezoelectric substrate) 5 having a vibration region, and on both front and back main surfaces of the piezoelectric substrate 5. The first excitation electrode 11a formed in each vibration region
And a second excitation electrode 11b.
At least one main surface of the piezoelectric substrate 5 is provided with at least a first flat portion 5a located near both ends in the longitudinal direction of the piezoelectric substrate 5, and an inner side (vibration region) of the piezoelectric substrate 5 with respect to the first flat portion 5a. And a step-like protrusion 5A protruding outward so as to increase in thickness toward the center of the vibration region.
The protrusion 5A is located on the inner side (near the center of the vibration region) of the piezoelectric substrate 5 than the first flat portion 5a, protrudes in the thickness direction from the first flat portion 5a, and extends in the longitudinal direction of the piezoelectric substrate 5. A substantially elliptical second plane part 5b having a major axis extending in the direction, and the inside of the piezoelectric substrate 5 from the second plane part 5b (
A third plane portion 5c having a substantially elliptical shape located in the center of the vibration region and projecting in the thickness direction from the second plane portion 5b and extending in the longitudinal direction of the piezoelectric substrate 5; Have. In other words, if the protrusion 5A is described in a state where the integrated structure is disassembled, the first protrusion 5A-1 having a substantially elliptical shape (substantially elliptic cylinder shape) having the second flat surface part 5b will be described. In the center of the upper surface, a step shape is formed such that the second protrusion 5A-2 having the upper surface of the third flat surface portion 5c having a substantially elliptic shape (substantially elliptic column shape) is laminated. Note that the substantially elliptical columnar shape is different from an ideal elliptical shape due to an error due to processing accuracy that occurs when the piezoelectric substrate 5 is formed and the characteristics of the material of the piezoelectric substrate 5 such as anisotropic characteristics of the etching amount. Including those with a shape that collapsed on the side.

第2平面部5b、及び第3の平面部5cの外形は、夫々楕円形状の輪郭線の少なくとも
一部を有すると共に、夫々の焦点間を結ぶ線分の中点が、夫々振動領域の中心に位置して
いる。図1に示した圧電振動素子1の例では、圧電基板5の表裏両主面に、第1の平面部
5aならびに突部5Aを形成した形状を示しており、圧電基板5は長手方向の中心線を境
に表裏面が実質的に対称に形成されている。なお、実質的に対象とは、圧電基板5の形成
する際に生じる加工精度に伴う誤差や、圧電基板5の材料の特性として例えばエッチング
量の異方特性などの影響によって生じた非対称形状を無視すれば対象であることを意味す
る。
圧電基板5は、第2の平面部5bの略楕円形状の外形の中点(2つの焦点間を結ぶ線分
の中心)と、第3の平面部5cの略楕円形状の外形の中点とが一致するように形成されて
いる。ここで、略楕円形状の外形とは、楕円形状、或いは楕円形状の少なくとも一部が欠
落した形状を含むものとする。
The outer shapes of the second flat surface portion 5b and the third flat surface portion 5c have at least a part of an elliptical contour line, respectively, and the midpoints of the line segments connecting the respective focal points are respectively in the center of the vibration region. positioned. In the example of the piezoelectric vibration element 1 shown in FIG. 1, a shape in which the first flat surface portion 5 a and the protrusion 5 A are formed on the front and back main surfaces of the piezoelectric substrate 5 is shown. The front and back surfaces are formed substantially symmetrically with respect to the line. It should be noted that the target substantially ignores an error due to processing accuracy that occurs when the piezoelectric substrate 5 is formed, and an asymmetric shape caused by the influence of, for example, an anisotropic characteristic of the etching amount as a material characteristic of the piezoelectric substrate 5. It means that it is a target.
The piezoelectric substrate 5 includes a midpoint of the substantially elliptical outline of the second plane portion 5b (the center of a line segment connecting the two focal points) and a midpoint of the substantially elliptical outline of the third plane portion 5c. Are formed to match. Here, the substantially elliptical outer shape includes an elliptical shape or a shape in which at least a part of the elliptical shape is missing.

図1に示した例では、第3の平面部5cの外形の輪郭は、楕円形状を成しているが、第
2の平面部5bの外形の輪郭は、楕円形状の短径方向において輪郭の一部が欠落している
。すなわち、第2の平面部5bの外形は圧電基板5の長辺より楕円形状(楕円柱形状)に
おける円周のうち短軸の延び方向に位置する一部が圧電基板5の長手方向に沿って直線的
に切り取られたような形状であり、図1の場合では、直線的に切り取られた部分の辺が圧
電基板5の長辺と一致した形状となっている。また、第3の平面部5cの外形の輪郭が、
例えば第の平面部5bと同様に楕円形状の長径方向(長軸方向)において一部が欠落して
いるものも本発明に含まれる。
更に、圧電基板5の長手方向の一方の端部には支持部8が一体的に形成されており、支
持部8の厚さt、つまり圧電基板5の長手方向と直交する厚さは、圧電基板5の振動領域
の中央部(図1(b)の表面の第2の平面部5c及び裏面の第2の平面部5cとの厚さ)
の厚さ以上である。
また、圧電基板5の長手方向と直交する幅方向の圧電基板5の中心線C0に対し、圧電
基板5の長手方向と直交する幅方向の振動領域の中心線C1は、支持部8から遠ざかる方
向にαだけ偏心している。
In the example shown in FIG. 1, the outline of the outer shape of the third plane part 5 c has an elliptical shape, but the outline of the outline of the second plane part 5 b has an outline in the minor axis direction of the elliptical shape. Some are missing. In other words, the outer shape of the second flat portion 5 b is such that a part of the circumference of the circumference of the ellipse shape (elliptical column shape) from the long side of the piezoelectric substrate 5 is located in the extending direction of the short axis along the longitudinal direction of the piezoelectric substrate 5. In the case of FIG. 1, the side of the linearly cut portion coincides with the long side of the piezoelectric substrate 5. In addition, the contour of the outer shape of the third plane portion 5c is
For example, as in the case of the first flat portion 5b, an oval-shaped portion with a part missing in the major axis direction (major axis direction) is also included in the present invention.
Further, a support portion 8 is integrally formed at one end portion of the piezoelectric substrate 5 in the longitudinal direction, and the thickness t of the support portion 8, that is, the thickness orthogonal to the longitudinal direction of the piezoelectric substrate 5 is piezoelectric. Central portion of the vibration region of the substrate 5 (thickness with the second flat surface portion 5c on the front surface and the second flat surface portion 5c on the back surface in FIG. 1B)
It is more than the thickness.
Further, the center line C 1 of the vibration region in the width direction orthogonal to the longitudinal direction of the piezoelectric substrate 5 is separated from the support portion 8 with respect to the center line C 0 of the piezoelectric substrate 5 in the width direction orthogonal to the longitudinal direction of the piezoelectric substrate 5. It is eccentric by α in the direction away from it.

圧電基板5の表裏両主面上には、夫々第1の励振電極11aと、第2の励振電極11b
とが形成されている。第1の励振電極11a、及び第2の励振電極11bは、共に楕円形
状であり、互いに対向している。楕円形状の第1及び第2の励振電極11a、11bの夫
々の焦点間の中点が、略楕円形状の第3の平面部5cの中点とほぼ一致すると共に、第1
及び第2の励振電極11a、11bの長径(長軸)の延び方向と第3の平面部5cの長径
(長軸)の延び方向とが一致するように、第1及び第2の励振電極11a、11bを形成
し、図1の場合は、第3の平面部5cの輪郭形状と第1及び第2の励振電極11a、11
bの輪郭形状とはほぼ相似である。
第1及び第2の励振電極11a、11bからは夫々圧電基板5の支持部8に向けて、第
2の平面部5bと第1の平面部5aの面上を互いに絶縁した状態で引出電極11c、11
dが延出している。
第1及び第2の励振電極11a、11bと、引出電極11c、11dに用いる電極材料
としては、夫々所定の厚さのクロムCr+金Au、或いはニッケルNi+金Au等が用い
られる。
On the front and back main surfaces of the piezoelectric substrate 5, a first excitation electrode 11a and a second excitation electrode 11b are respectively provided.
And are formed. The first excitation electrode 11a and the second excitation electrode 11b are both elliptical and face each other. The midpoint between the respective focal points of the elliptical first and second excitation electrodes 11a and 11b substantially coincides with the midpoint of the third plane portion 5c having a substantially elliptical shape, and the first
In addition, the first and second excitation electrodes 11a are arranged so that the extending direction of the major axis (major axis) of the second excitation electrodes 11a and 11b coincides with the extending direction of the major axis (major axis) of the third plane portion 5c. 11b, and in the case of FIG. 1, the contour shape of the third plane portion 5c and the first and second excitation electrodes 11a, 11 are formed.
The outline shape of b is almost similar.
The first and second excitation electrodes 11a and 11b are directed toward the support portion 8 of the piezoelectric substrate 5, respectively, and the extraction electrodes 11c are insulated from each other on the surfaces of the second plane portion 5b and the first plane portion 5a. , 11
d extends.
As electrode materials used for the first and second excitation electrodes 11a and 11b and the extraction electrodes 11c and 11d, chromium Cr + gold Au, nickel Ni + gold Au, or the like having a predetermined thickness is used.

厚み振動の場合、主振動の周波数は圧電基板5の厚さ(第3の平面部5c間の厚さ)依
存し、圧電基板5の長手方向、短手方向の寸法には依存しない。長手方向、短手方向の寸
法は、主振動の近傍に生じる高次輪郭(幅すべり等)に関係するので、使用温度範囲にお
いてこれら輪郭振動が主振動に結合しないように、輪郭の寸法(長さ、幅)を設定する。
圧電基板5の厚さ方向を階段状のメサ構造とするのは、主振動の振動エネルギーを基板上
の振動領域中央部に閉じ込め、振動エネルギーの基板端部への漏洩と、漏洩した厚み振動
が他のモードに変換され、スプリアスが生じるのを低減させるためである。
図1(b)に示す第1の平面部5a、第2の平面部5b及び第3の平面部5cが呈する
断面形状は、所望する周波数、圧電基板5の寸法を基に、有限要素法を用いてシミュレー
ションして、高次の輪郭振動を避ける平面形状と、断面形状を決定する。
圧電基板にATカット水晶基板を用いた例について説明する。周知のように、ATカッ
ト水晶基板は、結晶軸Y(機械軸)に垂直な水晶板(Y板)を結晶軸X(電気軸)の周り
に約35度15分回転して切り出した水晶基板である。矩形状ATカット水晶基板の長手
方向をX軸、短手方向をZ’軸、厚さ方向をY’軸とする。図1に示す第2の平面部5b
、及び第3の平面部5cの夫々の外形輪郭がなす略楕円形の長径対短径(長軸対短軸)の
比を共に約1.26とする。
In the case of thickness vibration, the frequency of the main vibration depends on the thickness of the piezoelectric substrate 5 (thickness between the third planar portions 5c), and does not depend on the longitudinal and lateral dimensions of the piezoelectric substrate 5. The dimensions in the longitudinal direction and the short direction are related to higher-order contours (width slip, etc.) that occur in the vicinity of the main vibration, so that the contour dimensions (long) prevent these contour vibrations from coupling with the main vibration in the operating temperature range. Width).
The stepwise mesa structure in the thickness direction of the piezoelectric substrate 5 confines the vibration energy of the main vibration to the center of the vibration region on the substrate, and leaks vibration energy to the substrate end and leaked thickness vibration. This is because it is converted to another mode to reduce the occurrence of spurious.
The cross-sectional shapes exhibited by the first flat surface portion 5a, the second flat surface portion 5b, and the third flat surface portion 5c shown in FIG. 1B are based on the desired frequency and the dimensions of the piezoelectric substrate 5, using the finite element method. The plane shape and cross-sectional shape which avoids a high-order contour vibration are determined by simulating.
An example in which an AT-cut quartz substrate is used as the piezoelectric substrate will be described. As is well known, an AT-cut quartz substrate is obtained by rotating a quartz plate (Y plate) perpendicular to the crystal axis Y (mechanical axis) about 35 degrees 15 minutes around the crystal axis X (electric axis). It is. The longitudinal direction of the rectangular AT-cut quartz substrate is the X axis, the short direction is the Z ′ axis, and the thickness direction is the Y ′ axis. 2nd plane part 5b shown in FIG.
, And the ratio of the major axis to minor axis (major axis to minor axis) of the substantially elliptical shape formed by the respective outer contours of the third plane part 5c is about 1.26.

長径対短径(長軸対短軸)の比が1.26となる理由について説明する。エネルギー閉
じ込め理論の振動方程式の中で、振動変位uを表す式に用いられる無電極部、及び電極部
の伝搬定数を夫々k、keとすると、k、keは夫々次式で表すことができる。
k=μ(mπ/h)(1−(f/(mfs))21/2 (1)
ke=μ(mπ/h)((f/(mfe))2−1)1/2 (2)
ここで、定数μは弾性定数と切断角度から決まる値、mは高調波次数、hは水晶基板の
厚さ、fsは無電極部の遮断周波数、feは電極部の周波数である。
水晶は三方晶系(trigonal system)に属する結晶であるため異方性を有し、結晶軸方
向により弾性定数が異なる。ATカット水晶板の場合は、X軸方向に伝搬する波動の弾性
定数と、Z’軸方向に伝搬する波動の弾性定数とが異なる。このため、伝搬定数k、ke
に用いられる定数μもX軸方向伝搬ではμx、Z’軸方向伝搬ではμzとなり、μx/μ
zの比が約1.26となる。このため、ATカット水晶振動子の振動変位分布は、X軸方
向とZ’軸方向とでは変位分布の広がりが異なり、水晶基板と平行方向の断面の形状は、
X軸方向を長径(長軸)、Z’軸方向を短径(短軸)とした楕円状となり、長径/短径の
比μx/μzは、約1.26である。
The reason why the ratio of the major axis to the minor axis (major axis to minor axis) is 1.26 will be described. In the vibration equation of the energy confinement theory, when the propagation constants of the electrodeless portion and the electrode portion used in the equation representing the vibration displacement u are k and ke, respectively, k and ke can be represented by the following equations.
k = μ (mπ / h) (1− (f / (mfs)) 2 ) 1/2 (1)
ke = μ (mπ / h) ((f / (mfe)) 2 −1) 1/2 (2)
Here, the constant μ is a value determined from the elastic constant and the cutting angle, m is the harmonic order, h is the thickness of the quartz substrate, fs is the cutoff frequency of the electrodeless portion, and fe is the frequency of the electrode portion.
Since quartz is a crystal belonging to the trigonal system, it has anisotropy, and its elastic constant varies depending on the crystal axis direction. In the case of an AT-cut quartz plate, the elastic constant of the wave propagating in the X-axis direction is different from the elastic constant of the wave propagating in the Z′-axis direction. For this reason, the propagation constants k and ke
The constant μ used in the above is also μx for X-axis propagation and μz for Z′-axis propagation, and μx / μ
The ratio of z is about 1.26. For this reason, the vibration displacement distribution of the AT-cut quartz resonator differs in the X-axis direction and the Z′-axis direction in the spread of the displacement distribution, and the cross-sectional shape in the direction parallel to the quartz substrate is
The shape is elliptical with the major axis (major axis) in the X axis direction and the minor axis (minor axis) in the Z ′ axis direction, and the ratio μx / μz of the major axis / minor axis is about 1.26.

図1では、第1乃至第3の平面部5a、5b、5cからなる2段構造のメサ型圧電基板
5を用いた圧電振動素子1の例を示したが、更に多くの平面部を有した多段メサ構造の圧
電基板を用いることが望ましい。しかし、圧電基板5の形状寸法(長さ×幅)が、例えば
1mm×0.6mmと小さくなると、多段構造のメサ型圧電基板を製造することは難しく
なる。そこで、要求されるQ値(CI値)等の電気的特性を満たし、主振動近傍のスプリ
アスを規格値以下に抑圧する段数を選択することになる。
また、第1乃至第3の平面部5a、5b、5cの圧電基板5の長手方向外寄りの角部を
結ぶ包絡線は、実績のあるコンベックス状圧電基板から相似の理により設計してもよいし
、有限要素法を用いて計算してもよい。多段メサ型圧電基板についても同様である。
支持部厚さを増すために水晶に代わる材料の厚膜を用いても良い。
FIG. 1 shows an example of the piezoelectric vibration element 1 using the mesa-type piezoelectric substrate 5 having a two-stage structure including the first to third plane portions 5a, 5b, and 5c, but has more plane portions. It is desirable to use a multi-stage mesa structure piezoelectric substrate. However, when the shape dimension (length × width) of the piezoelectric substrate 5 is reduced to, for example, 1 mm × 0.6 mm, it becomes difficult to manufacture a multi-stage mesa piezoelectric substrate. Therefore, the number of stages that satisfies electrical characteristics such as a required Q value (CI value) and suppresses spurious near the main vibration to a standard value or less is selected.
In addition, the envelope connecting the corners of the first to third plane portions 5a, 5b, and 5c in the longitudinal direction of the piezoelectric substrate 5 may be designed by analogy from a proven convex-shaped piezoelectric substrate. However, it may be calculated using a finite element method. The same applies to the multistage mesa piezoelectric substrate.
In order to increase the thickness of the support portion, a thick film made of a material instead of quartz may be used.

図2は、第2の実施の形態の圧電振動素子2の構成を示す概略図であり、同図(a)は
平面図、同図(b)はQ−Qにおける断面図である。図1に示した圧電振動素子1と異な
る点は、圧電基板5の支持部8の表裏面に夫々溝部9を設けたことと、励振電極11a、
11bの形状を矩形状とし、且つ第3の平面部5cのみならず第2の平面部5bの一部に
まで広げたことである。なお、圧電振動素子2を構成する上で必要が無ければ溝部9が無
い構成であっても良い。
支持部8の表裏面に夫々溝部(グルーブ)9を設けるのは、導電性接着剤を用いて、支
持部8をパッケージの底部に接着・固定する際に、導電性接着剤の硬化によって生じる圧
電基板5の歪を緩和するためと、導電性接着剤の塗布時の振動領域、或いは他方の引出電
極への広がりを、溝部9によって抑えるためである。
励振電極11a、11bを図1の圧電振動素子1より大きくしたのは、CI値(等価抵
抗値)を小さくし、発振器に用いる際により発振し易く(発振回路の負性抵抗値がより小
さくてよい)したためである。
2A and 2B are schematic views illustrating the configuration of the piezoelectric vibration element 2 according to the second embodiment, where FIG. 2A is a plan view and FIG. 2B is a cross-sectional view taken along the line QQ. 1 differs from the piezoelectric vibration element 1 shown in FIG. 1 in that groove portions 9 are provided on the front and back surfaces of the support portion 8 of the piezoelectric substrate 5, and excitation electrodes 11a,
That is, the shape of 11b is a rectangular shape and is extended not only to the third plane portion 5c but also to a part of the second plane portion 5b. If the piezoelectric vibration element 2 is not necessary, the groove 9 may be omitted.
The grooves 9 are provided on the front and back surfaces of the support portion 8, respectively, because the conductive adhesive is used to bond and fix the support portion 8 to the bottom of the package. This is to alleviate the distortion of the substrate 5 and to suppress the vibration region during application of the conductive adhesive or the spread to the other extraction electrode by the groove 9.
The reason why the excitation electrodes 11a and 11b are made larger than that of the piezoelectric vibration element 1 in FIG. 1 is that the CI value (equivalent resistance value) is reduced and it is easier to oscillate when used in an oscillator (the negative resistance value of the oscillation circuit is smaller). Because it was good).

図1、2に示す圧電振動基板5の要部の寸法を図3に示すように、長手方向の長さをL
、振動領域中心部の厚さをh、支持部8の厚さをH、圧電振動基板5の長手方向における
支持部8の幅をw、支持部8の上面又は下面(溝部9の上面又は下面ではない)と圧電振
動基板5の長手方向端部の上面又は下面との差厚をdとする。圧電振動基板5の長手方向
の長さLに対する支持部8の幅wの比w/Lを0.2とし、振動領域の中心部の厚さhに
対する支持部8の厚さHの比(以後、厚さ比と称す)H/hを変化させ、圧電基板5に励
起される厚み滑り振動の長手方向(X軸方向)の振動変位と、厚さ方向(Y’軸方向)の
振動変位とを有限要素法を用いてシミュレーションした。
図4(a)は差厚dが零の場合、つまり圧電振動基板5の長手方向端部の厚さと、支持
部8の厚さHとが等しい場合、圧電振動基板5に励起される振動変位の中、長手方向(X
軸方向)の変位と、厚さ方向(Y’軸方向)の変位とを、圧電振動基板5の規格化した位
置(圧電振動基板5の長手方向の一方の端部の位置を0、他方の端部の位置を1とする)
に対して示している。長手方向(X軸方向)の変位分布には高次屈曲振動が重畳し、厚さ
方向(Y’軸方向)の変位も大きい。
図4(b)は厚さ比H/hを1.0とした場合の圧電振動基板5の長手方向(X軸方向
)の変位分布と、厚さ方向(Y’軸方向)の変位分布とを示した図である。支持部8の厚
さ比H/hを大きくしたことにより、長手方向(X軸方向)の変位分布に重畳する高次輪
郭振動の振幅は、図4(a)に示す振幅より小さくなる。また、厚さ方向(Y’軸方向)
の振動変位の振幅も図4(a)の振幅より小さくなることが判明した。
As shown in FIG. 3, the dimensions of the main part of the piezoelectric vibration substrate 5 shown in FIGS.
The thickness of the central portion of the vibration region is h, the thickness of the support portion 8 is H, the width of the support portion 8 in the longitudinal direction of the piezoelectric vibration substrate 5 is w, and the upper or lower surface of the support portion 8 (the upper or lower surface of the groove portion 9). And the difference thickness between the upper surface or the lower surface of the longitudinal end portion of the piezoelectric vibration substrate 5 is defined as d. The ratio w / L of the width w of the support portion 8 to the length L in the longitudinal direction of the piezoelectric vibration substrate 5 is 0.2, and the ratio of the thickness H of the support portion 8 to the thickness h of the central portion of the vibration region (hereinafter referred to as The thickness displacement (referred to as the thickness ratio) is changed, and the vibration displacement in the longitudinal direction (X-axis direction) of the thickness-shear vibration excited by the piezoelectric substrate 5 and the vibration displacement in the thickness direction (Y′-axis direction) Are simulated using the finite element method.
FIG. 4A shows the vibration displacement excited by the piezoelectric vibration substrate 5 when the difference thickness d is zero, that is, when the thickness of the longitudinal end portion of the piezoelectric vibration substrate 5 is equal to the thickness H of the support portion 8. In the longitudinal direction (X
The displacement in the axial direction) and the displacement in the thickness direction (Y′-axis direction) are normalized positions of the piezoelectric vibration substrate 5 (the position of one end in the longitudinal direction of the piezoelectric vibration substrate 5 is 0, the other The edge position is 1)
Against. High-order bending vibration is superimposed on the displacement distribution in the longitudinal direction (X-axis direction), and the displacement in the thickness direction (Y′-axis direction) is also large.
FIG. 4B shows the displacement distribution in the longitudinal direction (X-axis direction) and the displacement distribution in the thickness direction (Y′-axis direction) when the thickness ratio H / h is 1.0. FIG. By increasing the thickness ratio H / h of the support portion 8, the amplitude of the higher-order contour vibration superimposed on the displacement distribution in the longitudinal direction (X-axis direction) becomes smaller than the amplitude shown in FIG. Thickness direction (Y 'axis direction)
It has been found that the amplitude of the vibration displacement is smaller than the amplitude of FIG.

図5(a)は、厚さ比H/hを1.16とした場合の長手方向(X軸方向)の変位分布
と、厚さ方向(Y’軸方向)の変位分布とを、示した図である。支持部8の支持部8の厚
さ比H/hを更に大きくしたことにより、長手方向(X軸方向)の変位分布に重畳する高
次輪郭振動の振幅は、図4(b)に示す振幅より小さくなっている。また、厚さ方向(Y
’軸方向)の振動変位の振幅も図4(b)の振幅より小さくなることが判明した。
図5(b)は、厚さ比H/hを1.47とした場合の長手方向(X軸方向)の変位分布
と、厚さ方向(Y’軸方向)の変位分布とを、示した図である。支持部8の厚さ比H/h
を更に大きくすると、長手方向(X軸方向)の変位分布に重畳する高次輪郭振動の振幅は
、図5(a)に示す振幅より大きくなっている。また、厚さ方向(Y’軸方向)の振動変
位の振幅も図5(a)の振幅より大きくなることが分かった。
図6は、厚さ比H/hを横軸にし、厚さ方向(Y’軸方向)変位成分を縦軸にしたとき
、厚さ比H/hの変化に対するY’軸方向変位成分を示す図である。この図から厚さ比H
/hを1.1以上の設定することによりY’軸方向変位成分を小さく抑えることができる

圧電基板5の厚さ比H/hを1.1以上に形成することは、フォトリソグラフィ技術を
用いたエッチング加工で可能であるがエッチングの加工の段取りと工数とが掛かる。そこ
で、厚さ比H/hを1.0の圧電基板5を製作し、この圧電基板5の支持部8の上下面に
水晶の比重(2.65)より大きい比重の金属、例えば金(比重19.3)等を蒸着等の
手段を用いて薄膜形成することにより、等価的に厚さ比H/hを1.1以上の圧電基板5
を実現することができる。
FIG. 5A shows the displacement distribution in the longitudinal direction (X-axis direction) and the displacement distribution in the thickness direction (Y′-axis direction) when the thickness ratio H / h is 1.16. FIG. By further increasing the thickness ratio H / h of the support portion 8 of the support portion 8, the amplitude of the higher-order contour vibration superimposed on the displacement distribution in the longitudinal direction (X-axis direction) is the amplitude shown in FIG. It is getting smaller. The thickness direction (Y
It has been found that the amplitude of the vibration displacement in the “axial direction” is also smaller than the amplitude of FIG.
FIG. 5B shows the displacement distribution in the longitudinal direction (X-axis direction) and the displacement distribution in the thickness direction (Y′-axis direction) when the thickness ratio H / h is 1.47. FIG. Thickness ratio H / h of support 8
Is further increased, the amplitude of the higher-order contour vibration superimposed on the displacement distribution in the longitudinal direction (X-axis direction) is larger than the amplitude shown in FIG. Further, it was found that the amplitude of the vibration displacement in the thickness direction (Y′-axis direction) is also larger than the amplitude of FIG.
FIG. 6 shows the Y′-axis direction displacement component with respect to the change of the thickness ratio H / h, where the thickness ratio H / h is the horizontal axis and the thickness direction (Y′-axis direction) displacement component is the vertical axis. FIG. From this figure, the thickness ratio H
By setting / h to 1.1 or more, the Y′-axis direction displacement component can be kept small.
It is possible to form the thickness ratio H / h of the piezoelectric substrate 5 to 1.1 or more by etching using a photolithography technique, but it takes time and steps for etching. Therefore, the piezoelectric substrate 5 having a thickness ratio H / h of 1.0 is manufactured, and a metal having a specific gravity greater than the specific gravity (2.65) of quartz, for example, gold (specific gravity) is formed on the upper and lower surfaces of the support portion 8 of the piezoelectric substrate 5. 19.3) or the like is formed into a thin film by means of vapor deposition or the like, so that the equivalent thickness ratio H / h of the piezoelectric substrate 5 of 1.1 or more is obtained.
Can be realized.

次に、振動領域の中心部の厚さhに対する支持部8の長手方向(X軸方向)の幅wの比
(以後、厚さ対幅比と称す)w/hを変化させ、圧電基板5の長手方向(X軸方向)の振
動変位と、厚さ方向(Y’軸方向)の振動変位とを有限要素法を用いてシミュレーション
した。
図7(a)は、厚さ対幅比w/hを0.77とした場合、圧電基板5の長手方向(X軸
方向)の振動変位分布と、厚さ方向(Y’軸方向)の振動変位分とを示す図である。支持
部8の厚さ対幅比w/hが小さいと、長手方向(X軸方向)の変位分布に重畳する高次輪
郭振動の振幅がかなり大きく、また厚さ方向(Y’軸方向)の振動変位分布に重畳する高
次輪郭振動の振幅も大きいことが分かる。
図7(b)は、厚さ対幅比w/hを1.55とした場合の圧電基板5の長手方向(X軸
方向)の振動変位分布と、厚さ方向(Y’軸方向)の振動変位分とを示す図である。支持
部8の厚さ対幅比w/hを大きくすると、長手方向(X軸方向)の変位分布に重畳する高
次輪郭振動の振幅は、図7(a)のそれよりも小さくなるが、まだ大きい。また、厚さ方
向(Y’軸方向)の振動変位分布に重畳する高次輪郭振動の振幅は、図7(a)のそれよ
りも小さくなるが、まだ大きいことが分かる。
図7(c)は、厚さ対幅比w/hを1.99とした場合の圧電基板5の長手方向(X軸
方向)の振動変位分布と、厚さ方向(Y’軸方向)の振動変位分とを示す図である。支持
部8の厚さ対幅比w/hを更に大きくすると、長手方向(X軸方向)の変位分布に重畳す
る高次輪郭振動の振幅は、図7(b)のそれよりもかなり小さくなる。また、厚さ方向(
Y’軸方向)の振動変位分布に重畳する高次輪郭振動の振幅は、図7(b)のそれよりも
かなり小さくなることが分かる。
Next, the ratio of the width w in the longitudinal direction (X-axis direction) of the support portion 8 to the thickness h at the center of the vibration region (hereinafter referred to as the thickness to width ratio) w / h is changed to change the piezoelectric substrate 5. The vibration displacement in the longitudinal direction (X-axis direction) and the vibration displacement in the thickness direction (Y′-axis direction) were simulated using the finite element method.
FIG. 7A shows the vibration displacement distribution in the longitudinal direction (X-axis direction) of the piezoelectric substrate 5 and the thickness direction (Y′-axis direction) when the thickness-to-width ratio w / h is 0.77. It is a figure which shows a vibration displacement part. When the thickness-to-width ratio w / h of the support portion 8 is small, the amplitude of higher-order contour vibration superimposed on the displacement distribution in the longitudinal direction (X-axis direction) is considerably large, and in the thickness direction (Y′-axis direction). It can be seen that the amplitude of the higher-order contour vibration superimposed on the vibration displacement distribution is also large.
FIG. 7B shows the vibration displacement distribution in the longitudinal direction (X-axis direction) of the piezoelectric substrate 5 and the thickness direction (Y′-axis direction) when the thickness-to-width ratio w / h is 1.55. It is a figure which shows a vibration displacement part. When the thickness / width ratio w / h of the support portion 8 is increased, the amplitude of the higher-order contour vibration superimposed on the displacement distribution in the longitudinal direction (X-axis direction) is smaller than that of FIG. Still big. Further, it can be seen that the amplitude of the higher-order contour vibration superimposed on the vibration displacement distribution in the thickness direction (Y′-axis direction) is smaller than that of FIG.
FIG. 7C shows the vibration displacement distribution in the longitudinal direction (X-axis direction) of the piezoelectric substrate 5 and the thickness direction (Y′-axis direction) when the thickness-to-width ratio w / h is 1.99. It is a figure which shows a vibration displacement part. When the thickness / width ratio w / h of the support 8 is further increased, the amplitude of the higher-order contour vibration superimposed on the displacement distribution in the longitudinal direction (X-axis direction) is considerably smaller than that of FIG. . In the thickness direction (
It can be seen that the amplitude of the higher-order contour vibration superimposed on the vibration displacement distribution in the Y′-axis direction) is considerably smaller than that of FIG.

図8は、厚さ対幅比w/hを3.86とした場合の圧電基板5の長手方向(X軸方向)
の振動変位分布と、厚さ方向(Y’軸方向)の振動変位分とを示す図である。支持部8の
厚さ対幅比w/hを更に大きくすると、長手方向(X軸方向)の変位分布に重畳する高次
輪郭振動の振幅は、図7(c)のそれよりも大きくなり、厚さ方向(Y’軸方向)の振動
変位分布に重畳する高次輪郭振動の振幅は、図7(c)のそれよりも大きくなることが分
かる。
図9は、厚さ対幅比w/hを横軸に、厚さ方向(Y’軸方向)の単位当たりの変位成分
を縦軸にしたときの、厚さ対幅比w/hの変化に対するY’軸方向の単位当たりの変位成
分を示す図である。この図から厚さ対幅比w/hを1.9近傍に設定することにより、高
次輪郭振動による影響を抑圧することが可能であるが、厚さ対幅比w/hに余裕が少ない
。厚さ対幅比w/hを3.0以上にすれば、高次輪郭振動による影響を抑圧することがで
き、厚さ方向(Y’軸方向)の振動変位成分を小さくすることができる。
図10は、第3の実施の形態の圧電振動素子3の構成を示す概略図であり、同図(a)
は平面図、同図(b)はQ−Qにおける断面図である。図1及び2に示した圧電振動素子
1、2と異なる点は、圧電基板5の断面の形状である。つまり、第2及び第3の平面部5
b、5cが、圧電基板5の一方の主面のみに形成されている点である。従来のプラノコン
ベックス型圧電基板と同様、切断角度が当初のまま維持されるので温度特性を重視した圧
電振動素子に適している。
FIG. 8 shows the longitudinal direction (X-axis direction) of the piezoelectric substrate 5 when the thickness to width ratio w / h is 3.86.
It is a figure which shows vibration displacement distribution of this, and the vibration displacement part of thickness direction (Y'-axis direction). When the thickness / width ratio w / h of the support 8 is further increased, the amplitude of the higher-order contour vibration superimposed on the displacement distribution in the longitudinal direction (X-axis direction) becomes larger than that of FIG. It can be seen that the amplitude of the higher-order contour vibration superimposed on the vibration displacement distribution in the thickness direction (Y′-axis direction) is larger than that in FIG.
FIG. 9 shows the change of the thickness-to-width ratio w / h when the thickness-to-width ratio w / h is on the horizontal axis and the displacement component per unit in the thickness direction (Y′-axis direction) is on the vertical axis. It is a figure which shows the displacement component per unit of the Y'-axis direction with respect to. From this figure, by setting the thickness to width ratio w / h in the vicinity of 1.9, it is possible to suppress the influence of higher-order contour vibration, but there is little margin in the thickness to width ratio w / h. . If the thickness-to-width ratio w / h is 3.0 or more, the influence of higher-order contour vibration can be suppressed, and the vibration displacement component in the thickness direction (Y′-axis direction) can be reduced.
FIG. 10 is a schematic diagram showing the configuration of the piezoelectric vibration element 3 according to the third embodiment.
Is a plan view, and FIG. 4B is a cross-sectional view taken along the line Q-Q. A difference from the piezoelectric vibration elements 1 and 2 shown in FIGS. 1 and 2 is a cross-sectional shape of the piezoelectric substrate 5. That is, the second and third plane portions 5
The points b and 5c are formed only on one main surface of the piezoelectric substrate 5. As with the conventional plano-convex piezoelectric substrate, the cutting angle is maintained as it is, so it is suitable for a piezoelectric vibration element that emphasizes temperature characteristics.

図11は、第4の実施の形態の圧電振動素子3の構成を示す概略図であり、同図(a)
は平面図、同図(b)はQ−Qにおける断面図である。図1及び2に示した圧電振動素子
1、2と異なる点は、圧電基板5の長手方向の両端部に支持部8a、8bを一体的に形成
した点である。図4に示した例では、引出電極11cは支持部8aに延出させ、引出電極
11dを支持部8bに延出させた両持ち構造の例を示したが、支持部8a、8bの一方の
みに引出電極を延出した片持ち構造であってもよい。
図11に示した圧電基板5の特徴は、圧電基板5の長手方向に対しても対称であり、厚
さ方向に対しても対称な基板とした点である。圧電基板5を対称構造に形成することによ
り、不要振動の発生を抑圧することができる。また、圧電基板5の端部に振動領域より厚
い支持部8a、8bを設けた構造とすることにより、インハーモニックモード(非調和高
次モード)、高次輪郭振動モードの振動を低減することができる。このことはATカット
水晶基板の中央部をエッチング加工で薄板化し、周縁に厚い環状囲繞部を形成した高周波
振動子で実証済みである。
また、支持部8a、8bの上下面に質量の重い金属を付着し、支持部8a、8bのカッ
トオフ周波数を低下させることにより、高次輪郭振動、インハーモニックモードによるス
プリアスを低減することが可能となる。
FIG. 11 is a schematic diagram showing the configuration of the piezoelectric vibration element 3 according to the fourth embodiment.
Is a plan view, and FIG. 4B is a cross-sectional view taken along the line Q-Q. The difference from the piezoelectric vibration elements 1 and 2 shown in FIGS. 1 and 2 is that support portions 8 a and 8 b are integrally formed at both ends in the longitudinal direction of the piezoelectric substrate 5. In the example shown in FIG. 4, an example of a double-supported structure in which the extraction electrode 11 c extends to the support portion 8 a and the extraction electrode 11 d extends to the support portion 8 b is shown, but only one of the support portions 8 a and 8 b is shown. A cantilever structure in which the extraction electrode is extended may be used.
A feature of the piezoelectric substrate 5 shown in FIG. 11 is that the substrate is symmetrical with respect to the longitudinal direction of the piezoelectric substrate 5 and is also symmetrical with respect to the thickness direction. By forming the piezoelectric substrate 5 in a symmetrical structure, generation of unnecessary vibration can be suppressed. Further, by adopting a structure in which the support portions 8a and 8b thicker than the vibration region are provided at the end of the piezoelectric substrate 5, it is possible to reduce the vibration in the inharmonic mode (non-harmonic high-order mode) and the high-order contour vibration mode. it can. This has been demonstrated with a high-frequency vibrator in which the central portion of the AT-cut quartz substrate is thinned by etching and a thick annular surrounding portion is formed on the periphery.
In addition, by attaching heavy metal to the upper and lower surfaces of the support portions 8a and 8b and lowering the cutoff frequency of the support portions 8a and 8b, it is possible to reduce high-order contour vibration and spurious due to the inharmonic mode. It becomes.

図1、2、及び10、11に示した圧電基板5の製造方法の一例は、ウエハー(大型圧
電基板)にフォトリソグラフィ技術とエッチング手法を適用して加工すると、容易に製造
することができる。この場合には、振動領域の中央部の厚さと、支持部8a、8bの厚さ
が等しくなるが、上述の手段により等価的に支持部8の厚さを増し、厚さ比の厚さ比H/
hを1.1以上のすることが可能となる。
水晶基板の例を示したが、本発明は他の圧電基板、例えばランガサイト、タンタル酸リ
チウム、ニオブ酸リチウム等にも適用できることは言うまでもない。ただ、夫々の弾性定
数により振動変位分布が異なるので、用いる圧電基板の弾性定数により楕円形状の長径対
短径の比を決める必要がある。
圧電基板5を加工して第1乃至第3の平面部5a、5b、5cを形成する例を説明した
が、第1乃至第3の平面部5a、5b、5cは平板状の圧電基板に他の材料、例えばCr
、Ni、金等の金属で形成してもよい。
The example of the method for manufacturing the piezoelectric substrate 5 shown in FIGS. 1, 2, 10 and 11 can be easily manufactured by processing a wafer (large piezoelectric substrate) by applying a photolithography technique and an etching technique. In this case, the thickness of the central portion of the vibration region is equal to the thickness of the support portions 8a and 8b. However, the thickness of the support portion 8 is equivalently increased by the above-described means, and the thickness ratio of the thickness ratio is increased. H /
It is possible to set h to 1.1 or more.
Although an example of a quartz substrate has been shown, it goes without saying that the present invention can be applied to other piezoelectric substrates such as langasite, lithium tantalate, lithium niobate, and the like. However, since the vibration displacement distribution varies depending on the elastic constant, it is necessary to determine the ratio of the major axis to the minor axis of the elliptical shape according to the elastic constant of the piezoelectric substrate to be used.
Although the example which processes the piezoelectric substrate 5 and forms the 1st thru | or 3rd plane parts 5a, 5b, 5c was demonstrated, the 1st thru | or 3rd plane parts 5a, 5b, 5c are other than a plate-shaped piezoelectric substrate. Materials such as Cr
, Ni, gold and other metals may be used.

圧電振基板5に第1乃至第3の平面部5a、5b、5cを設け、第2及び第3の平面部
5b、5cの輪郭形状を略楕円形状とし、両略楕円形状の夫々の焦点間を結ぶ中点を、圧
電基板5の振動領域の中心とほぼ一致させるように構成する。この結果、振動変位が振動
領域の中央寄りの分布となり、圧電基板5の周縁では振動変位は極めて小さくなるため、
圧電振動素子のQ値が高まると共に、圧電基板5端部で高次輪郭振動に変換される振動エ
ネルギーが小さくなり、高次輪郭振動の発生が低減されるという効果がある。
圧電基板5に水晶基板を用いる場合は、水晶結晶の弾性定数の異方性を考慮する必要が
ある。弾性定数は切断角度に依存して変化し、ATカット水晶基板では、X方向とZ’方
向との伝搬定数が異なり、振動変位分布の断面形状は楕円形状となる。そのため、振動変
位分布に基づいて、長径と短径を少しずつ小さくした楕円形状を、積層したように圧電振
動基板を形成することにより、大きなQ値を実現することができる。ATカット水晶基板
の場合、この楕円形状の長径対短径の比が1.26であり、この数値を用いて圧電基板5
を構成すると圧電振動素子のQ値が大きくになり、輪郭系のスプリアスを低減することが
できるという効果がある。
The piezoelectric vibration substrate 5 is provided with first to third plane portions 5a, 5b, and 5c, and the outline shape of the second and third plane portions 5b and 5c is substantially elliptical. Is configured so as to substantially coincide with the center of the vibration region of the piezoelectric substrate 5. As a result, the vibration displacement becomes a distribution near the center of the vibration region, and the vibration displacement becomes extremely small at the periphery of the piezoelectric substrate 5,
As the Q value of the piezoelectric vibration element is increased, vibration energy converted into higher order contour vibration at the end of the piezoelectric substrate 5 is reduced, and the occurrence of higher order contour vibration is reduced.
When a quartz substrate is used as the piezoelectric substrate 5, it is necessary to consider the anisotropy of the elastic constant of the quartz crystal. The elastic constant changes depending on the cutting angle. In the AT-cut quartz substrate, the propagation constants in the X direction and the Z ′ direction are different, and the cross-sectional shape of the vibration displacement distribution is an elliptical shape. Therefore, based on the vibration displacement distribution, a large Q value can be realized by forming the piezoelectric vibration substrate so that the elliptical shape in which the major axis and the minor axis are gradually reduced is laminated. In the case of an AT-cut quartz substrate, the ratio of the major axis to the minor axis of this elliptical shape is 1.26, and this value is used to calculate the piezoelectric substrate 5
If this is configured, the Q value of the piezoelectric vibration element is increased, and there is an effect that the spurious of the contour system can be reduced.

圧電基板5の主面上から平面視した形状は、楕円形状の長径と短径を少しずつ小さくし
た楕円形状を積層し、且つ夫々の焦点間を結ぶ線分の中点と、振動領域の中心と、が一致
するように構成することが望ましい。しかし、圧電基板5の平面形状が、例えば1.0m
m×0.6mmと小さくなると、第2の平面部の輪郭形状を完全な楕円形状に形成するこ
とは難しく、短径方向の対向する2つの外形輪郭線の一部が欠落することになる。このよ
うに外形輪郭線の一部が欠落した圧電基板5でも大きなQ値の圧電振動素子を実現するこ
とができるという効果がある。
圧電基板5の平面形状が更に小さくなると、第3の平面部の短径方向の対向する外形輪
郭線の一部が欠落することがある。このような圧電基板5を用いて圧電振動素子を構成し
た場合、従来の平板状の圧電基板5を用いて構成した圧電振動素子のQ値に比べ、より大
きなQ値を得ることができるという効果がある。
The shape of the piezoelectric substrate 5 in plan view from the main surface is formed by stacking elliptical shapes in which the major axis and minor axis of the elliptical shape are gradually reduced, and the midpoint of the line segment connecting the respective focal points, and the center of the vibration region It is desirable to configure so as to match. However, the planar shape of the piezoelectric substrate 5 is, for example, 1.0 m.
When it becomes small as m × 0.6 mm, it is difficult to form the contour shape of the second plane part into a perfect ellipse shape, and a part of two opposing contour lines in the minor axis direction is missing. Thus, there is an effect that it is possible to realize a piezoelectric vibration element having a large Q value even with the piezoelectric substrate 5 from which a part of the outline is missing.
When the planar shape of the piezoelectric substrate 5 is further reduced, a part of the outer contour line that opposes the minor axis direction of the third planar portion may be lost. When a piezoelectric vibration element is configured using such a piezoelectric substrate 5, a larger Q value can be obtained as compared with the Q value of a piezoelectric vibration element configured using a conventional flat piezoelectric substrate 5. There is.

圧電基板5の長手方向と直交する幅方向の中心線C0と、長手方向と直交する振動領域
の幅方向の中心線C1、つまり第3の平面部の外形輪郭線である略楕円形状の2つの焦点
間を結ぶ線分の中点を通る幅方向の中心線とは、偏心するように圧電基板5を形成する。
このように形成すると、支持部の影響を受けることなく、振動変位の分布は振動領域の中
心に対し対称となり、圧電振動素子のQ値を大きくするこができると共に高次輪郭モード
を低減することが可能となるという効果がある。
圧電基板5の長手方向の少なくとも一端に支持部を形成した圧電基板5を用いて圧電振
動素子を構成した場合、この圧電振動素子をパッケージの内底部に固定する際に、圧電基
板5の振動領域に影響を及ぼさないため、Q値の劣化を防ぐことができるという効果があ
る。
容量比を考慮すると振動変位分布に沿った電極形状が望ましいが、圧電振動素子のCI
値をより小さくする場合には、第3の平面部5cのみならず第2の平面部5bにも電極を
形成することが望ましく、例えばできるだけ大きな矩形の電極形状を用いることより、小
さなCI値を得ることができるという効果がある。
The center line C 0 in the width direction orthogonal to the longitudinal direction of the piezoelectric substrate 5 and the center line C 1 in the width direction of the vibration region orthogonal to the longitudinal direction, that is, a substantially elliptical shape that is the outline of the third plane portion. The piezoelectric substrate 5 is formed so as to be eccentric with the center line in the width direction passing through the midpoint of the line segment connecting the two focal points.
When formed in this way, the distribution of vibration displacement is symmetric with respect to the center of the vibration region without being affected by the support portion, so that the Q value of the piezoelectric vibration element can be increased and the high-order contour mode can be reduced. There is an effect that becomes possible.
When a piezoelectric vibration element is configured using the piezoelectric substrate 5 having a support portion formed at least at one end in the longitudinal direction of the piezoelectric substrate 5, the vibration region of the piezoelectric substrate 5 is fixed when the piezoelectric vibration element is fixed to the inner bottom portion of the package. Therefore, the Q value can be prevented from deteriorating.
Considering the capacitance ratio, the electrode shape along the vibration displacement distribution is desirable, but the CI of the piezoelectric vibration element
In order to make the value smaller, it is desirable to form electrodes not only on the third plane part 5c but also on the second plane part 5b. For example, by using as large a rectangular electrode shape as possible, a small CI value can be obtained. There is an effect that can be obtained.

図5は、本発明の圧電振動子15の実施の形態を示す断面図であり、圧電振動子15は
上述の圧電振動素子1〜4の何れかと、パッケージとを備えている。パッケージは、パッ
ケージ本体20と、金属製、ガラス製等の蓋部材21とからなる。パッケージ本体20は
例えばグリーンシートを積層し、内部に空間部を設け、パッケージ本体20の外底面には
接続用の外部端子22が形成されている。パッケージ本体20内部底面に形成したパッド
電極と、外部端子22とは内部導体にて導通が図られている。
パッケージ本体20内部底面に形成したパッド電極に導電性接着剤を塗布し、この上に
圧電振動素子1を載置し、導電性接着剤を硬化させた後、パッケージ本体20の内部を不
活性ガスで満たした後、蓋部材21にて気密封止する。不活性ガスを満たす代わりに内部
を真空封止してもよい。また、導電性接着剤の代わりに金バンプ等を用いて、パッケージ
本体の内部パッド電極と圧電振動素子1とを接合してもよい。
上述の圧電振動素子と、パッケージとを備えた圧電振動子を構成すると、大きなQ値を
有すると共に高次輪郭モードが低減された圧電振動子をうることができるという効果があ
る。
FIG. 5 is a cross-sectional view showing an embodiment of the piezoelectric vibrator 15 according to the present invention, and the piezoelectric vibrator 15 includes any one of the above-described piezoelectric vibration elements 1 to 4 and a package. The package includes a package body 20 and a lid member 21 made of metal or glass. The package body 20 is formed by stacking, for example, green sheets, a space is provided inside, and external terminals 22 for connection are formed on the outer bottom surface of the package body 20. The pad electrode formed on the bottom surface inside the package body 20 and the external terminal 22 are electrically connected by an internal conductor.
A conductive adhesive is applied to the pad electrode formed on the bottom surface inside the package body 20, the piezoelectric vibration element 1 is placed thereon, and the conductive adhesive is cured, and then the inside of the package body 20 is inert gas. Then, the lid member 21 is hermetically sealed. Instead of filling the inert gas, the inside may be vacuum-sealed. Alternatively, the internal pad electrode of the package body and the piezoelectric vibration element 1 may be bonded using gold bumps or the like instead of the conductive adhesive.
When a piezoelectric vibrator including the above-described piezoelectric vibration element and a package is configured, there is an effect that a piezoelectric vibrator having a large Q value and a reduced high-order contour mode can be obtained.

1、2、3、4…圧電振動素子、5…圧電振動基板、5a…第1の平面部、5b…第2の
平面部、5c…第3の平面部、8、8a、8b…支持部、9…溝部、11a…第1の励振
電極、11b…第2の励振電極、11c、11d…引出電極、15…圧電振動子、20パ
ッケージ本体、21蓋部材、22外部端子、23内部導体、t…支持部の厚さ、C0…圧
電基板の中心線、C1…振動領域の中心線、L…圧電基板の長手方向の長さ、h…振動領
域の中心部の厚さ、H…支持部の厚さ、w…支持部の幅
1, 2, 3, 4... Piezoelectric vibration element, 5... Piezoelectric vibration substrate, 5a... First plane portion, 5b... Second plane portion, 5c ... Third plane portion, 8, 8a, 8b. , 9 ... Groove, 11a ... First excitation electrode, 11b ... Second excitation electrode, 11c, 11d ... Extraction electrode, 15 ... Piezoelectric vibrator, 20 package body, 21 lid member, 22 external terminal, 23 internal conductor, t: thickness of the support portion, C0: center line of the piezoelectric substrate, C1: center line of the vibration region, L: length in the longitudinal direction of the piezoelectric substrate, h: thickness of the center portion of the vibration region, H: support portion Thickness, w ... width of support

Claims (10)

ATカット水晶基板を用いた圧電振動素子であって、
振動領域を備え、長手方向を有する矩形の圧電振動基板と、
前記圧電振動基板の表裏主面上の振動領域内に夫々形成された第1の励振電極、及び第2の励振電極と、を備え、
少なくとも一方の主面の前記振動領域内には、少なくとも外径側に位置する第1の平面部と、該第1の平面部の内径側に位置し且つ厚さ方向外側へ突出した突部と、を有し、
前記突部は、前記第1の平面部よりも厚さ方向外側へ突出した第2の平面部と、前記第2の平面部の内側に位置し且つ厚さ方向外側へ突出した第3の平面部と、を有し、
前記第2の平面部の外形は、平面視で、略楕円形状の短径方向の対向する2つの外形輪郭線が夫々対応する位置にある前記圧電振動基板の長辺に沿って欠落した形状であり、
前記第3の平面部の外形は、平面視で、略楕円形状であることを特徴とする圧電振動素子。
A piezoelectric vibration element using an AT-cut quartz substrate,
A rectangular piezoelectric vibration substrate having a vibration region and having a longitudinal direction;
A first excitation electrode formed in a vibration region on the front and back main surfaces of the piezoelectric vibration substrate, respectively, and a second excitation electrode,
In the vibration region of at least one main surface, at least a first flat portion located on the outer diameter side, and a protrusion located on the inner diameter side of the first flat portion and projecting outward in the thickness direction Have
The protrusion includes a second flat surface portion protruding outward in the thickness direction from the first flat surface portion, and a third flat surface located inside the second flat surface portion and protruding outward in the thickness direction. And
The outer shape of the second planar portion is a shape that is missing along the long side of the piezoelectric vibration substrate in which the two outer contour lines facing each other in the minor axis direction in an elliptical shape correspond to each other in plan view. Yes,
The piezoelectric vibration element according to claim 3, wherein an outer shape of the third plane portion is substantially elliptical in plan view.
前記圧電振動基板は、前記長手方向がX軸方向であり、
夫々楕円形状の前記第2及び第3の平面部の長径対短径の比が夫々1.26対1.00の関係を満たすことを特徴とする請求項1に記載の圧電振動素子。
In the piezoelectric vibration substrate, the longitudinal direction is the X-axis direction,
2. The piezoelectric vibration element according to claim 1, wherein a ratio of a major axis to a minor axis of the second and third plane portions each having an elliptical shape satisfies a relationship of 1.26 to 1.00, respectively.
前記第3の平面部の2つの焦点間を結ぶ線分の中点は、前記振動領域の中心に位置していることを特徴とする請求項1または2に記載の圧電振動素子。   3. The piezoelectric vibration element according to claim 1, wherein a midpoint of a line segment connecting the two focal points of the third plane portion is located at the center of the vibration region. 前記第3の平面部の2つの焦点間を結ぶ線分の中点は、前記圧電振動基板の長手方向の中心より偏心していることを特徴とする請求項1または2に記載の圧電振動素子。   3. The piezoelectric vibration element according to claim 1, wherein a midpoint of a line segment connecting the two focal points of the third plane portion is eccentric from a center in a longitudinal direction of the piezoelectric vibration substrate. 前記圧電振動基板は、前記長手方向の少なくとも一端に支持部が形成されており、前記支持部の厚さは前記第3の平面の厚さ以上であることを特徴とする請求項1ないし4のいずれか1項に記載の圧電振動素子。 5. The piezoelectric vibration substrate has a support portion formed at least at one end in the longitudinal direction, and the thickness of the support portion is equal to or greater than the thickness of the third plane portion. The piezoelectric vibration element according to any one of the above. 前記第3の平面部の厚さをhとし、前記支持部の厚さをHとしたとき、H/h≧1.1なる関係を満足することを特徴とする請求項5に記載の圧電振動素子。   6. The piezoelectric vibration according to claim 5, wherein a relationship of H / h ≧ 1.1 is satisfied, where h is a thickness of the third plane portion and H is a thickness of the support portion. element. 前記第3の平面部の厚さをhとし、前記支持部の前記長手方向に沿った幅をwとしたとき、w/h≧3.0なる関係を満足することを特徴とする請求項5または6に記載の圧電振動素子。   6. The relationship of w / h ≧ 3.0 is satisfied, where h is a thickness of the third plane portion and w is a width along the longitudinal direction of the support portion. Or the piezoelectric vibration element of 6. 前記支持部の長手方向の奥行は、前記第3の平面部の厚さに対して大きいことを特徴とする請求項5ないし7のいずれか1項に記載の圧電振動素子。   8. The piezoelectric vibration element according to claim 5, wherein a depth of the support portion in a longitudinal direction is larger than a thickness of the third plane portion. 前記第2の平面部と前記第3の平面部に跨って励振電極を形成し、前記主面上から平面視したとき前記励振電極が矩形であることを特徴とする請求項1ないし8のいずれか1項に記載の圧電振動素子。   The excitation electrode is formed across the second plane part and the third plane part, and the excitation electrode is rectangular when viewed from above the main surface. The piezoelectric vibration element according to claim 1. 請求項1ないし9のいずれか1項に記載の圧電振動素子の前記第1の平面部、前記第2の平面部および前記第3の平面部が、基板の周縁に側壁を有するパッケージの内部底面に対面した状態で収容されていることを特徴とする圧電振動子。   The internal bottom surface of the package in which the first plane portion, the second plane portion, and the third plane portion of the piezoelectric vibration element according to any one of claims 1 to 9 have side walls on the periphery of the substrate. A piezoelectric vibrator characterized in that the piezoelectric vibrator is housed in a state of facing to each other.
JP2010072350A 2010-03-26 2010-03-26 Piezoelectric vibration element and piezoelectric vibrator Expired - Fee Related JP5625432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010072350A JP5625432B2 (en) 2010-03-26 2010-03-26 Piezoelectric vibration element and piezoelectric vibrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010072350A JP5625432B2 (en) 2010-03-26 2010-03-26 Piezoelectric vibration element and piezoelectric vibrator

Publications (2)

Publication Number Publication Date
JP2011205516A JP2011205516A (en) 2011-10-13
JP5625432B2 true JP5625432B2 (en) 2014-11-19

Family

ID=44881649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010072350A Expired - Fee Related JP5625432B2 (en) 2010-03-26 2010-03-26 Piezoelectric vibration element and piezoelectric vibrator

Country Status (1)

Country Link
JP (1) JP5625432B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013162265A (en) * 2012-02-03 2013-08-19 Seiko Epson Corp Vibration element, vibrator, electronic device, oscillator and electronic apparatus
JP5982898B2 (en) * 2012-03-14 2016-08-31 セイコーエプソン株式会社 Vibration element, vibrator, electronic device, oscillator, and electronic device
JP5943187B2 (en) * 2012-03-21 2016-06-29 セイコーエプソン株式会社 Vibration element, vibrator, electronic device, and electronic apparatus
WO2013151048A1 (en) * 2012-04-04 2013-10-10 株式会社村田製作所 Crystal oscillation device
JP5980564B2 (en) * 2012-05-14 2016-08-31 京セラクリスタルデバイス株式会社 Crystal element and crystal device
JP6108708B2 (en) * 2012-07-31 2017-04-05 京セラクリスタルデバイス株式会社 Crystal oscillator
JP6000724B2 (en) * 2012-07-31 2016-10-05 京セラクリスタルデバイス株式会社 Crystal oscillator
JP5918067B2 (en) * 2012-07-31 2016-05-18 京セラクリスタルデバイス株式会社 Crystal oscillator
JP6084068B2 (en) * 2013-02-28 2017-02-22 京セラクリスタルデバイス株式会社 Crystal oscillator
JP6017350B2 (en) * 2013-02-28 2016-10-26 京セラクリスタルデバイス株式会社 Crystal oscillator
JP2014175802A (en) * 2013-03-07 2014-09-22 Sii Crystal Technology Inc Electronic component
JP6086762B2 (en) * 2013-03-08 2017-03-01 京セラクリスタルデバイス株式会社 Crystal oscillator
JP2014176071A (en) * 2013-03-13 2014-09-22 Nippon Dempa Kogyo Co Ltd Piezoelectric vibration piece and piezoelectric device
JP5991566B1 (en) * 2015-01-28 2016-09-14 株式会社村田製作所 Quartz crystal resonator, method of manufacturing the same, and crystal vibration device
JP6575071B2 (en) * 2015-01-29 2019-09-18 セイコーエプソン株式会社 Vibrating piece, vibrator, vibrating device, oscillator, electronic device, and moving object
CN105007056A (en) * 2015-07-22 2015-10-28 成都泰美克晶体技术有限公司 Piezoelectric quartz crystal wafer with single convex structure
CN104993797A (en) * 2015-07-22 2015-10-21 成都泰美克晶体技术有限公司 Novel piezoelectric quartz wafer with dual-convex structure and machining process thereof
JP2017060056A (en) * 2015-09-17 2017-03-23 エスアイアイ・クリスタルテクノロジー株式会社 Piezoelectric vibration piece and piezoelectric vibrator
WO2018021296A1 (en) * 2016-07-28 2018-02-01 京セラ株式会社 Crystal oscillation element, crystal oscillation device, and method for manufacturing crystal oscillation element

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5847316A (en) * 1981-09-16 1983-03-19 Seikosha Co Ltd Thickness slip piezoelectric oscillator and its production
JP3731348B2 (en) * 1998-06-09 2006-01-05 松下電器産業株式会社 Piezoelectric vibrator
JP2005033390A (en) * 2003-07-10 2005-02-03 Citizen Watch Co Ltd Piezoelectric device and manufacturing method for the same
JP4506135B2 (en) * 2003-09-18 2010-07-21 エプソントヨコム株式会社 Piezoelectric vibrator
JP2005151432A (en) * 2003-11-19 2005-06-09 Universal Scientific Industrial Co Ltd Chip for crystal device and manufacturing method thereof
JP2007158486A (en) * 2005-12-01 2007-06-21 Epson Toyocom Corp Crystal resonator element, crystal resonator, and crystal oscillator
JP4771070B2 (en) * 2006-01-12 2011-09-14 エプソントヨコム株式会社 Piezoelectric vibrating piece and piezoelectric device
JP4305542B2 (en) * 2006-08-09 2009-07-29 エプソントヨコム株式会社 AT cut quartz crystal resonator element and manufacturing method thereof
JP5046012B2 (en) * 2007-09-04 2012-10-10 セイコーエプソン株式会社 Vibrating piece, vibrating device, oscillator and electronic device
JP5088686B2 (en) * 2007-11-21 2012-12-05 セイコーエプソン株式会社 Vibrating piece and vibrating device
JP5035750B2 (en) * 2007-11-22 2012-09-26 セイコーエプソン株式会社 Crystal resonator element, crystal resonator, and crystal oscillator
JP5168464B2 (en) * 2007-11-30 2013-03-21 セイコーエプソン株式会社 Vibrating piece, vibrator, and oscillator
JP5123043B2 (en) * 2008-04-26 2013-01-16 京セラクリスタルデバイス株式会社 Crystal oscillator and crystal oscillator

Also Published As

Publication number Publication date
JP2011205516A (en) 2011-10-13

Similar Documents

Publication Publication Date Title
JP5625432B2 (en) Piezoelectric vibration element and piezoelectric vibrator
JP4936221B2 (en) Mesa-type piezoelectric vibrating piece, mesa-type piezoelectric vibrating device, oscillator, and electronic device
JP5708089B2 (en) Piezoelectric vibration element, piezoelectric vibrator, piezoelectric oscillator, and electronic device
JP5982898B2 (en) Vibration element, vibrator, electronic device, oscillator, and electronic device
JP5796355B2 (en) Piezoelectric vibration element, piezoelectric vibrator, electronic device, and electronic apparatus
JP5046012B2 (en) Vibrating piece, vibrating device, oscillator and electronic device
US8736152B2 (en) Piezoelectric vibrating pieces and associated devices exhibiting enhanced electrical field
JP2001244778A (en) High-frequency piezoelectric vibrator
JP2010098531A (en) Piezoelectric vibration piece and piezoelectric device
JP5957997B2 (en) Vibration element, vibrator, electronic device, oscillator, and electronic device
JP5824967B2 (en) Vibration element, vibrator, electronic device, and electronic apparatus
JP2011155628A (en) Vibrating reed, vibrator, oscillator, electronic device, and frequency adjustment method
JP5446941B2 (en) Piezoelectric vibrating piece
JP5699809B2 (en) Piezoelectric vibrating piece
JP2013042440A (en) Piezoelectric vibrating element, piezoelectric vibrator, electronic device and electronic apparatus
JP2012191300A (en) Piezoelectric vibration element, piezoelectric vibrator, piezoelectric oscillator, and electronic device
JP2011041040A (en) Piezoelectric substrate, piezoelectric vibrating element, and piezoelectric device
JP5910092B2 (en) Piezoelectric vibration element, piezoelectric vibrator, electronic device, and electronic apparatus
JP5824958B2 (en) Vibration element, vibrator, electronic device, and electronic apparatus
JP5668392B2 (en) Piezoelectric vibration element, piezoelectric vibrator and piezoelectric oscillator
JP5293852B2 (en) Mesa-type piezoelectric vibrating piece, mesa-type piezoelectric vibrating device, oscillator, and electronic device
JP5413486B2 (en) Vibrating piece, vibrating device, oscillator, and electronic device
JP5943160B2 (en) SC-cut quartz substrate, vibration element, electronic device, oscillator, and electronic equipment
JP2000040938A (en) Ultra high frequency piezoelectric device
JP5887968B2 (en) SC-cut quartz substrate, vibration element, electronic device, oscillator, and electronic equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131226

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20131226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140915

R150 Certificate of patent or registration of utility model

Ref document number: 5625432

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees