JPS5847316A - Thickness slip piezoelectric oscillator and its production - Google Patents

Thickness slip piezoelectric oscillator and its production

Info

Publication number
JPS5847316A
JPS5847316A JP14588481A JP14588481A JPS5847316A JP S5847316 A JPS5847316 A JP S5847316A JP 14588481 A JP14588481 A JP 14588481A JP 14588481 A JP14588481 A JP 14588481A JP S5847316 A JPS5847316 A JP S5847316A
Authority
JP
Japan
Prior art keywords
thickness
piezoelectric element
crystal
main
drive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14588481A
Other languages
Japanese (ja)
Inventor
Hitoshi Ikeno
均 池野
Hirofumi Yanagi
柳 弘文
Tetsuo Konno
哲郎 今野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seikosha KK
Original Assignee
Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seikosha KK filed Critical Seikosha KK
Priority to JP14588481A priority Critical patent/JPS5847316A/en
Publication of JPS5847316A publication Critical patent/JPS5847316A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0504Holders; Supports for bulk acoustic wave devices
    • H03H9/0528Holders; Supports for bulk acoustic wave devices consisting of clips
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/177Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator of the energy-trap type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/19Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator consisting of quartz

Abstract

PURPOSE:To obtain an oscillator having a reduced amount of leakage of vibrating energy with an easy way of production, by forming a driving electrode on the main surface opposite to a thickness slip piezoelectric oscillator with the center part of the main surface formed into a convex surface and the outer circumference part formed into a level difference surface, respectively and holding the oscillator at the outer circumference edge part of the level difference surface. CONSTITUTION:Photoresists 2 and 2A are coated on the entire surfaces of main surfaces 1a and 1b of an AT-cut quartz bar 1 of a thickness slip piezoelectric element. Then the circumferences of the surfaces 1a and 1b are covered with a mask, and only the center part of each surface is exposed to light and developed to cake the photoresist. Thus resist films 3 and 4 are formed at the center parts of the main surfaces. Then the bar 1 is soaked into an etching solution, and the bare part containing no resist film is corroded to form level difference surfaces 5 and 6. Then the driving electrodes 7 and 8 plus the lead-out electrodes 7a and 8a extending to the outer circumference are formed by the vacuum vapor deposition after the exfoliation of films 3 and 4. These electrodes 7a and 8a on the surfaces 5 and 6 of the bar 1 are held with conduction by holding springs 10 and 11. The springs 10 and 11 are stuck to an airtight terminal 12. Thus a crystal oscillator 9 is obtained. The bar 1 is approximate to a biconvex type to reduce the leakage of energy for the oscillator 9.

Description

【発明の詳細な説明】 本発明は厚与すペリ圧電振動子およびその製法に関する
本のであるO ATカット水晶振動子などの厚みすべり圧電振動子は、
外周部にて水晶片を保持バネなどにて保持しており、こ
の保持部からの振動エネルギの漏洩を少なくするため水
晶片にベベリング加工、コンベックス加工などを行い、
外周を薄肉として↑昼勤エネルギを主面の中央部に集中
させている。
[Detailed Description of the Invention] The present invention is a book related to a peri-piezoelectric vibrator and its manufacturing method.
The crystal piece is held on the outer periphery by a holding spring, etc., and in order to reduce the leakage of vibration energy from this holding part, the crystal piece is beveled, convexed, etc.
The outer periphery is made thinner to concentrate daytime energy in the center of the main surface.

これらの加工は研寄装置などにて行うため極めて煩雑で
あり、特にコンベックス加工の場合水晶片の主面を研磨
するため発振周波数に直接影響し、研磨状態や厚みのチ
ェックをきびしく行う必要があった0 本発明は上記欠点を除去するものであり、製造が容易で
あり量産に適しており、外周保持部からの振動エネルギ
の漏洩の少ない厚みすべり圧電振動子およびその製法を
提供するものである0以下本発明の実施例を図面を参照
して説明するOまず第1図にもとづいて本発明の圧電擾
動子O製法の一実施例を詳細に説明する。
These processes are extremely complicated as they are performed using polishing equipment, and in particular, in the case of convex processing, the main surface of the crystal piece is polished, which directly affects the oscillation frequency, and the polishing condition and thickness must be carefully checked. The present invention eliminates the above drawbacks, and provides a thickness-slip piezoelectric vibrator that is easy to manufacture, suitable for mass production, and has little leakage of vibration energy from the outer periphery holding part, and a method for manufacturing the same. Embodiments of the present invention will now be described with reference to the drawings. First, an embodiment of the piezoelectric agitator manufacturing method of the present invention will be described in detail with reference to FIG.

囚において1は厚みすべり圧電素子であり、−例として
ATカットの水晶片であシ、主振動の発振周波数が4M
Hz帯の厚さ0.40前後、直径6〜8龍穆度の円板状
をしている。この水晶片1の主面1a、Ib全面に03
)のように耐酸被膜であるフォトレジスト2,2Aを塗
布する。ついで通常のフォトプロセスに従って露光、現
像し、フォトレジストを固化させ(Qのようにレジスト
膜5,4を水晶片1の主面1a、Ibの中央部に形成し
である。
In the case, 1 is a thickness-slip piezoelectric element, for example, it is an AT-cut crystal piece, and the oscillation frequency of the main vibration is 4M.
It has a disc shape with a thickness of around 0.40 in the Hz band and a diameter of 6 to 8 degrees. 03 on the entire main surface 1a and Ib of this crystal blank 1.
) Photoresists 2 and 2A, which are acid-resistant films, are applied. Next, the photoresist is exposed and developed according to a normal photo process to solidify the photoresist (resist films 5 and 4 are formed at the center of the main surfaces 1a and Ib of the crystal piece 1 as shown in Q).

レジスト膜3,4は、固化させるときマスクにて周囲を
覆い中央部のみ露光することにょシ水晶片1の主面1a
、Ibの中央部に形成される。なお一方のレジスト膜は
一方の主面の少なくとも中央部に形成してあればよく、
全面に形成した場合は後述する、レジスト膜3,4は水
晶片1を腐蝕するフッ酸、フッ化アンモンなどのエツチ
ング液に腐蝕されない耐酸被膜を固化させたものである
When solidifying the resist films 3 and 4, the main surface 1a of the crystal piece 1 should be covered with a mask and only the central part exposed.
, Ib. Note that it is sufficient that one resist film is formed at least in the center of one main surface.
When formed on the entire surface, the resist films 3 and 4, which will be described later, are solidified acid-resistant films that are not corroded by etching solutions such as hydrofluoric acid and ammonium fluoride that corrode the crystal piece 1.

そしてレジスト膜3,4を形成した水晶片1を前述の7
ツ酸などのエツチング液に浸漬すると、0のようにレジ
スト膜の形成していない裸部が腐蝕され段差面5,6が
形成される。この段差面の腐蝕深さは本例では0,1〜
0.2■程度が適当である0ついで(ト)のようにレジ
ストp145.4を剥離したあと、(ト)のように駆動
電極7,8を真空蒸着などにより形成する。駆動電極7
,8は図示のように外周端に延びる引出し電極7a、8
mを同時に形成してもよく、マた中央に透孔を有する環
状電極(図示せず。)などでもよい。さらに駆動電極は
段差面に至るものでもよい。この水晶片1は、両主面の
中央部が凸面であシ外周部が段差面5,6と汝っておシ
、両凸レンズ状に研磨されたパイ;ンペックス型水晶片
と近似される水晶片である0つぎに平凸レンズ状に研磨
されたプラノコンペックス型水晶片と近似される水晶片
について第1図(C’/−(F5にて説明する。iは水
晶片1と同様の水晶片1人にレジスト膜3A、4Aを形
成したものである・レジスト膜5Aは一方の主面の中央
部に形成してあシ、レジスト膜4Aは他方の主面の全面
に形成しである。レジスト膜3A、4Aは本例では印刷
などにより形成したものである0この水晶片1人を7ツ
酸などのエツチング液に浸漬するとレジスト膜の形成し
ていな一裸部が腐蝕され、(ハ)′のように段N 面S
 Aη・形成される。この場合他方の主面は全面レジス
ト膜4Aで覆われているため腐蝕されない。ついでdの
ようにレジスト膜を剥離し、C1′のように駆動電極7
A、8Aを形成する。これらの駆動電、甑のように引出
し゛成極を持たない場合(・よりイヤなどを接続して電
界を印加する。
Then, the crystal blank 1 on which the resist films 3 and 4 were formed was placed in the above-mentioned 7
When immersed in an etching solution such as tonic acid, the bare portions on which no resist film is formed, as shown in FIG. 0, are corroded and step surfaces 5 and 6 are formed. In this example, the corrosion depth of this stepped surface is 0.1~
Approximately 0.2 mm is appropriate.Then, after peeling off the resist p145.4 as in (g), drive electrodes 7 and 8 are formed by vacuum evaporation or the like as in (g). Drive electrode 7
, 8 are extraction electrodes 7a, 8 extending to the outer peripheral edge as shown in the figure.
m may be formed at the same time, or may be a ring-shaped electrode (not shown) having a through hole in the center. Furthermore, the drive electrode may reach the stepped surface. This crystal piece 1 has a convex central part on both main surfaces, and stepped surfaces 5 and 6 on the outer periphery, and is a crystal similar to a piezo-type crystal piece polished into a biconvex lens shape. Next, a crystal piece that is approximated as a plano-compex type crystal piece polished into a plano-convex lens shape will be explained in Figure 1 (C'/- (F5). i is a crystal similar to crystal piece 1. Resist films 3A and 4A are formed on one side.The resist film 5A is formed on the center of one main surface, and the resist film 4A is formed on the entire surface of the other main surface. In this example, the resist films 3A and 4A are formed by printing or the like. When one of these crystal pieces is immersed in an etching solution such as chloric acid, the bare part where the resist film is not formed is corroded ( )' as shown in step N and surface S.
Aη・formed. In this case, the other main surface is completely covered with the resist film 4A and is therefore not corroded. Next, the resist film is peeled off as shown in d, and the drive electrode 7 is removed as shown in C1'.
A, form 8A. If these drive voltages do not have a drawer or polarization, such as a kettle, an electric field should be applied by connecting a wire or the like.

この水晶片1Aは、一方の主面の中央部が凸面となりで
おシ、外Icti部、が段差面5Aとなっている。
This crystal blank 1A has a convex central portion on one principal surface, and a step surface 5A on the outer Icti portion.

このため水晶片1Aば重速のように平凸レンズ状のプラ
ノコンペックス型水晶片と近似される水晶片である。
For this reason, the crystal piece 1A is a crystal piece that is similar to a plano-convex lens-like plano-convex type crystal piece, like the crystal piece 1A.

第1囚ωは段差面を板数段形成した水晶片1Bの列を示
す。この水晶ハは段差面5B、6Bを形成した(ト)の
状態から大径のレジスト膜を形成し、再びエツチング液
に浸ムt゛シ段す3面5C,6Cを形成したものt′あ
る。水晶片1Bはよシバイコンペックス状水晶片に近い
4肚をもつ。水晶片1Bにも適宜な形状の駆動、−極(
l、7i示せず。)が形成される。
The first column ω indicates a row of crystal blanks 1B having stepped surfaces formed in several stages. This crystal is obtained by forming a large-diameter resist film from the state shown in (G) in which stepped surfaces 5B and 6B are formed, and then immersing it in the etching solution again to form three stepped surfaces 5C and 6C. . Crystal piece 1B has four arms similar to those of a compex-like crystal piece. The crystal blank 1B also has a drive of an appropriate shape, - pole (
l, 7i not shown. ) is formed.

上記した水晶片1.IA、IBは、保持バネなどによシ
外周端部を保持される。−例として水晶片1の保持状態
を第3Mに示す。同図において、圧電振動子である水晶
振動子9eよ、水晶片1、この水晶片を保持する保持バ
ネ10,11.  これらの保持バネが固層される気密
端子12.この気密端子とともに封止容為を構成するキ
ャップ(図示せず。)などから構成される。気密端子1
2の端子ピンの上端に保持バネ10.11が固着され、
この保持バネの上部に水晶片1が保持され4電接着剤な
どにより固着され、引出し電極7a、8mがそれぞれ保
持バネ10.11に]i%している。
Above mentioned crystal piece 1. The outer peripheral ends of IA and IB are held by a holding spring or the like. - As an example, the state in which the crystal blank 1 is held is shown in 3rd M. In the figure, a crystal resonator 9e which is a piezoelectric vibrator, a crystal piece 1, holding springs 10, 11, . Hermetic terminal 12 to which these retaining springs are fixed. It is composed of a cap (not shown) and the like that constitute a sealing container together with this airtight terminal. Airtight terminal 1
A retaining spring 10.11 is fixed to the upper end of the terminal pin 2,
The crystal piece 1 is held on the upper part of this holding spring and fixed with a four-electrode adhesive or the like, and the extraction electrodes 7a and 8m are connected to the holding spring 10 and 11, respectively.

なお水晶片の保持はこれに眼らない。Note that this does not matter when it comes to holding the crystal piece.

この水晶振動子9は、水晶片10対向する主面の中央部
が凸面となっており外周部が段差面5゜6となっている
ためパイコンベックス型水晶片と同様に振動エネルギを
水晶片の中央部に集中で−き、保持部は薄肉となってお
シ振動エネルギの漏洩を少なくできる。また水晶片1の
中央部の凸面は、主面1a、1bがそのまま残っており
、水晶片の厚さで決まる厚みすベシ振」の発振周波数は
段差面を形成する前の状態から宝化していない。。
In this crystal resonator 9, the central part of the main surface facing the crystal blank 10 is a convex surface, and the outer peripheral part has a stepped surface of 5°6, so that the vibration energy is transferred to the crystal blank like the piconvex crystal blank. The vibration energy can be concentrated in the center, and the holding part has a thin wall to reduce leakage of vibration energy. In addition, the main surfaces 1a and 1b of the convex surface at the center of the crystal blank 1 remain as they are, and the oscillation frequency of the "thickness oscillation" determined by the thickness of the crystal blank has changed from the state before forming the stepped surface. do not have. .

このように水晶片を加工する前後におい゛C発振周波数
は変化しないため、最初にJfみを正確に設定しておく
だけでよく、このため大波生産する場合に特に好適であ
る。
In this way, since the C oscillation frequency does not change before and after processing the crystal piece, it is only necessary to set Jf accurately at the beginning, and this is particularly suitable for producing large waves.

また段差面をエツチング処理により形成しているため、
研磨などによる加工と異なり圧電素子に加工歪が残らず
、エージングにより周波数′:に6iIが少ない。
In addition, since the stepped surface is formed by etching,
Unlike machining such as polishing, no machining strain remains on the piezoelectric element, and due to aging, there is less 6iI in the frequency ':.

なおレジスト膜はriJfe、被膜に限らず、水晶片を
腐蝕スるフッ酸、フッ化アンモンなどのエツチング液に
病蝕されない金属膜外どでもよい。この場合は王水など
により金1@膜を剥離除去し、その後躯シ1ノ電極を形
成すればよい。
Note that the resist film is not limited to riJfe or a film, but may be a metal film or other film that is not attacked by etching solutions such as hydrofluoric acid and ammonium fluoride that corrode crystal pieces. In this case, the gold 1@ film may be peeled off using aqua regia or the like, and then an electrode may be formed on the body.

つぎに本発明の圧電振動子の製法の他の′/!砲列を第
2図を参照して説す1する。
Next, we will discuss other methods for manufacturing the piezoelectric vibrator of the present invention! The gun row will be explained with reference to FIG.

まず近似プラノコンペックス型水晶振励子の製法につい
て述べる。
First, we will describe the method for manufacturing an approximate planocompex type crystal resonator.

囚において、13は圧電素子である水晶片であり、前記
実施例の水晶片1と略同−形状のものであシ、主面13
a、15bが対向17ている0この水晶片に(B)のよ
うにます後1(駆動電極となる金属膜14,15をスパ
ッタリング、真空蒸着などの手法によシ形成し、その上
部に耐酸物質よりなるフォトレジストを塗布する。金属
膜14,15は水晶片13に密着してクロム層を形成し
、その上層に金層を形成し、た二層の膜である。そして
主面13bに形成した金属膜15は、水晶片を保持する
部分に対応して切欠部15bとなっている。
In the figure, 13 is a crystal piece which is a piezoelectric element, and has approximately the same shape as the crystal piece 1 of the above embodiment.
A and 15b are facing each other 17. After that, as shown in (B), metal films 14 and 15 which will become drive electrodes are formed by sputtering, vacuum deposition, etc. A photoresist made of a substance is applied.The metal films 14 and 15 are two-layer films, in which a chromium layer is formed in close contact with the crystal piece 13, and a gold layer is formed on top of the chromium layer. The formed metal film 15 has a notch 15b corresponding to the portion that holds the crystal piece.

ついで通常のフォトプロセスに従って露光、現像し、フ
ォトレジストを固化させ、に)のように耐酸被膜17.
18を形成する。主面13aのフォトレジスト16を露
光するとき外周部をマスクにて覆い、主面13bのフォ
トレジスト17を露光するとき全面を露光することによ
り、主面15aには中央部に耐酸被膜17が形成され、
主面13bには全面に耐酸被膜18が形成される。この
あと水晶片13を王水などの金属エツチング液に浸漬1
2.0のように耐酸被膜の形成していない裸部の金属膜
が除去され、駆動電極14A、15Aとなる。つぎKこ
の水晶片をフッ酸、フッ化アンモンなどの圧電素子エツ
チング液に浸漬し、(ト)のように圧電素子の棟部を腐
蝕し、主面13a側に段差面19を形成する。主面15
b側は全面が耐酸被膜18にて覆われているため腐蝕さ
れない。このあと耐酸被膜剥離剤を用いて0のように耐
酸被膜を除去する。これにより駆動電極14A、15A
が露出する。
Next, the photoresist is solidified by exposure and development according to a normal photo process, and an acid-resistant film 17.
form 18. By covering the outer periphery with a mask when exposing the photoresist 16 on the main surface 13a and exposing the entire surface when exposing the photoresist 17 on the main surface 13b, an acid-resistant film 17 is formed in the center of the main surface 15a. is,
An acid-resistant coating 18 is formed on the entire main surface 13b. After this, the crystal piece 13 is immersed in a metal etching solution such as aqua regia.
As in No. 2.0, the bare metal film on which the acid-resistant film is not formed is removed to become drive electrodes 14A and 15A. Next, this crystal piece is immersed in a piezoelectric element etching solution such as hydrofluoric acid or ammonium fluoride to corrode the ridge of the piezoelectric element as shown in (g), thereby forming a step surface 19 on the main surface 13a side. Main surface 15
Since the entire surface of the b side is covered with the acid-resistant coating 18, it will not be corroded. After that, the acid-resistant film is removed using an acid-resistant film remover as shown in step 0. As a result, the drive electrodes 14A, 15A
is exposed.

なお耐酸被膜を設けず水晶片に所定形状の駆動電極を直
接スパッタリングなどにより形成してもよい。
Note that drive electrodes of a predetermined shape may be directly formed on the crystal piece by sputtering or the like without providing an acid-resistant coating.

このようにして作られた水晶片13は第4〜5図に示さ
れるように保持バネ20.21にその外周端部を保持さ
れ水晶振動子22となる。背面側の駆動電極15Aは保
持バネ20に導通状態に固着され、正面側の駆動電極1
4Aa保持バネ21にワイヤ25により接続される。第
2図(6)に示さ1れる金属膜15の切欠部15bは第
5図に示すように保持バネ21と駆動電極15Aとの接
続を防止するものである。
As shown in FIGS. 4 and 5, the crystal piece 13 made in this manner is held at its outer peripheral end by a holding spring 20, 21 to form a crystal resonator 22. The drive electrode 15A on the back side is fixed to the holding spring 20 in a conductive state, and the drive electrode 15A on the front side
It is connected to the 4Aa holding spring 21 by a wire 25. The notch 15b of the metal film 15 shown in FIG. 2(6) prevents the connection between the holding spring 21 and the drive electrode 15A as shown in FIG.

つぎに再び第2図を参照し、近似パイコンベックス型水
晶振動子の製法を述べる0 第2図<dの水晶片13Aは、前述の近似プラノコンペ
ックス型水晶振動子と同様に第2図囚、@の行程を経て
全面に金属膜14B、15Bおよびフォトレジストが形
成しである。そしてフォトレジストを露光、現像し固化
させ、耐酸被膜17A18Aを形成する。これらの耐酸
被膜は共に中央部にのみ形成しである。なお引出し電極
を残すときは17m、18aに示す耐酸被膜の延長部も
残しておく。この水晶片15Aを金属エツチング液に浸
漬し、さらに圧電素子エツチング液に浸漬する。このよ
うにして作られた水晶片13Aは第6図に示すように両
面に段差面19A、20Aが形成される。なお第6図示
の水晶片13Aは、引出し電極として金属膜の延長部1
4a、15mを持つものであシ、これは第2図dに示さ
れる耐酸被膜の延長部17a、18Bを残してエツチン
グをしたものである0この水晶片13Aは、対向する両
主面に段差面19A、2OAが形成され、中央部が凸面
となっているため、両凸レンズ状のパイコンベックス型
水晶片に近似される。
Next, with reference to FIG. 2 again, the manufacturing method of the approximate pyconvex type crystal resonator will be described. , @ steps, metal films 14B, 15B and photoresist are formed on the entire surface. The photoresist is then exposed, developed, and solidified to form an acid-resistant film 17A18A. Both of these acid-resistant coatings are formed only on the central portion. Note that when leaving the extraction electrode, the extensions of the acid-resistant coating shown at 17m and 18a are also left. This crystal blank 15A is immersed in a metal etching solution, and then further immersed in a piezoelectric element etching solution. As shown in FIG. 6, the crystal piece 13A made in this manner has stepped surfaces 19A and 20A formed on both sides. Note that the crystal piece 13A shown in FIG.
4a, 15m, which is etched by leaving the extensions 17a, 18B of the acid-resistant coating shown in FIG. Since the surfaces 19A and 2OA are formed and the central portion is a convex surface, it is approximated to a biconvex lens-shaped pyconvex crystal piece.

第2図@’に示す水晶片13Bは、一方の主面に形成さ
れた金属保護膜14Cの中央部に透孔14Cが形成され
たものである。この水晶片13Bを前述の行程に従って
処理を行うと、水晶片の一方の駆動電極を中央部に透孔
を有する環状電極とすることができる。
The crystal blank 13B shown in FIG. 2 @' has a through hole 14C formed in the center of a metal protective film 14C formed on one main surface. When this crystal piece 13B is processed according to the steps described above, one drive electrode of the crystal piece can be made into an annular electrode having a through hole in the center.

上記した水晶片13A、13Bも第4,5図示の水晶片
13と同様に外周端部にて保持される。
The crystal pieces 13A and 13B described above are also held at their outer peripheral ends similarly to the crystal pieces 13 shown in the fourth and fifth figures.

第7図は本発明の圧電振動子のさらに他の実施例を示す
ものである。
FIG. 7 shows still another embodiment of the piezoelectric vibrator of the present invention.

同図において水晶振動子24は、水晶片25を保持部材
26.27にて保持しており、基板(図示せず。)に直
接固定され、封止容器(図示セチ)により封入されるも
のである。水晶片25は直方体状の形状をしておシ、両
主面の長手方向の中央部が凸面となっておシ、外周部が
段差面28.29となっている近似パイコンベックス型
水晶片である0そして中央部には駆動電極50.30A
が形成しである。この水晶片25は直方体形状であるた
め、大きな水晶板に水晶片を連続して形成し、一度に多
数の水晶片のエツチング処理を行い、最後に一つづつ分
離するバッチ処理に適している。
In the figure, the crystal resonator 24 has a crystal piece 25 held by holding members 26 and 27, is directly fixed to a substrate (not shown), and is sealed in a sealed container (not shown). be. The crystal piece 25 is an approximate pyconvex type crystal piece having a rectangular parallelepiped shape, with a convex central part in the longitudinal direction of both main surfaces, and a step surface 28,29 on the outer periphery. There is a drive electrode 50.30A in the center.
is formed. Since this crystal piece 25 has a rectangular parallelepiped shape, it is suitable for batch processing in which crystal pieces are continuously formed on a large crystal plate, a large number of crystal pieces are etched at once, and finally separated one by one.

つぎに本発明のさらに他の実施例を第8図を参照して説
明する。
Next, still another embodiment of the present invention will be described with reference to FIG.

同図において圧電素子である水晶片は略直方体形状をし
ておシ、その長手方向の中央部が凸面となっており外周
部が段差面となっている。そして段差面のさらに外周に
保持部を一体的に設けたものである。
In the figure, a crystal piece, which is a piezoelectric element, has a substantially rectangular parallelepiped shape, and its central portion in the longitudinal direction is a convex surface, and its outer peripheral portion is a stepped surface. Further, a holding portion is integrally provided on the outer periphery of the stepped surface.

第8図において、3.1は厚みすベシ圧電振動子である
ATカット水晶振動子であシ、略直方体形状をしている
。水晶振動子31は水晶片32の対向する主面り21L
、 32bK電極53,34を設け、これらの電極を設
けていない主面32m、32bの裸部なエツチング処理
によシ段差面35,36としたものである。電極33.
34は真空蒸着、スパッタリング−などによシ設けられ
るものであシ、主面52 a、 52 b の中央部に
対向して設けられた駆動電極55 a、 34 a、主
面32a、32b  の両端部に対向して設けられた保
持電極33b、35c、34b。
In FIG. 8, 3.1 is an AT-cut crystal resonator which is a thickness-beam piezoelectric resonator and has a substantially rectangular parallelepiped shape. The crystal resonator 31 has a main surface 21L facing the crystal piece 32.
, 32bK electrodes 53, 34 are provided, and stepped surfaces 35, 36 are formed by etching the bare portions of the main surfaces 32m, 32b where these electrodes are not provided. Electrode 33.
Reference numeral 34 is provided by vacuum evaporation, sputtering, etc. Drive electrodes 55a, 34a are provided opposite the central portions of the main surfaces 52a, 52b, and both ends of the main surfaces 32a, 32b. Holding electrodes 33b, 35c, and 34b provided opposite to each other.

34cおよび主面32aにおいて駆動電極55aとI保
持電極53cとを接続する引出し電極33d。
34c and an extraction electrode 33d connecting the drive electrode 55a and the I holding electrode 53c on the main surface 32a.

主面52bにおいて駆動電極34mと保持電極54bと
を接続する引出し電極34dからなる。この水晶振動子
51は保持電接部によシ直接基板(図示せずo)K固着
し使用可能である。
It consists of an extraction electrode 34d that connects the drive electrode 34m and the holding electrode 54b on the main surface 52b. This crystal oscillator 51 can be used by being directly fixed to a substrate (not shown) K by a holding electrical contact.

とこで第9図を参照し、この水晶振動子1の製法につい
て述べる。
Now, with reference to FIG. 9, the manufacturing method of this crystal resonator 1 will be described.

(2)は水晶板32の側面図番示し、32m、52bは
対向する主面である。そして主面52 a、  52 
bにω)のように電極33.34を真空蒸着、スパッタ
リングなどによシ形成する。電極として本実施例ではク
ロムと金とを使用しており、まずクロムを蒸着したあと
金を蒸着し二層に形成している。
(2) shows the side view number of the crystal plate 32, and 32m and 52b are the opposing main surfaces. and main surfaces 52 a, 52
In b and ω), electrodes 33 and 34 are formed by vacuum evaporation, sputtering, etc. In this embodiment, chromium and gold are used as electrodes, and chromium is first vapor-deposited and then gold is vapor-deposited to form two layers.

つぎに電極53.54を設けた水晶板32をエツチング
液に浸漬する。このエツチング液はフッ酸またはフッ化
アンモン液を60度C前後に温めたものであり、水晶を
腐蝕するが、金、クロムなどはほとんど腐蝕しないもの
である。電極35.54を設けた水晶板32をこのエツ
チング液に1〜2時間浸漬しておくと、電極部は電極が
保護膜となり水晶板は腐蝕されず、電極を設けていない
裸部の水晶板が腐蝕される。本実施例は4MHz帯の水
晶−振動子であシ水晶板32の厚さが約Q、41Ell
であシ、腐蝕の深さを片面から約0.1 IIIとし、
この腐蝕面を段差面55.56としている。そしてこの
腐蝕深さによシ水晶振動子31の発振周波数を調整する
ことも可能でおる。
Next, the crystal plate 32 provided with the electrodes 53 and 54 is immersed in an etching solution. This etching solution is made by heating hydrofluoric acid or ammonium fluoride solution to around 60 degrees Celsius, and corrodes crystal, but hardly corrodes gold, chromium, etc. When the crystal plate 32 provided with the electrodes 35 and 54 is immersed in this etching solution for 1 to 2 hours, the electrodes become a protective film and the crystal plate is not corroded, leaving the bare crystal plate without electrodes. is corroded. This embodiment uses a 4 MHz band crystal resonator, and the thickness of the crystal plate 32 is approximately Q, 41Ell.
The depth of corrosion is approximately 0.1 mm from one side.
This corroded surface is defined as a step surface 55.56. It is also possible to adjust the oscillation frequency of the crystal resonator 31 depending on the corrosion depth.

この9ようにして製造された水晶振動子51は、駆動電
極33a、!i4aを設けである中央部が凸面であシ、
保持電極3!ib、54b、55c、34cに連続する
周辺部が段差面35,5<Sとなシ薄肉となっている。
The crystal resonator 51 manufactured as described above has drive electrodes 33a, ! The central part where i4a is provided is a convex surface,
Holding electrode 3! The peripheral portions continuous to ib, 54b, 55c, and 34c are thin with stepped surfaces 35,5<S.

このため主面が両凸面であるパイコンベックス型の水晶
振動子と近位的に同じ形状とな)、周辺の保持部からの
振動エネルギの漏れを小さくするととができる。そして
パイコンベックス型水晶振動子の場合、発振周波数を決
定する水晶片の厚みを研磨により変化させ両凸面を形成
しているが、本発明の水晶振動子31は中央部の駆動電
極部の水晶板32の厚さを変化させずに周辺をエツチン
グ処理により段差面35.36とし近似凸面を形成して
いるため、水晶板32の厚みを最初に′精度よく合せて
おけばよい。このため多数の水晶振動子を一度に製造す
る場合に最適である。また主面を研磨し凸面とする場合
と比較し、この水晶振動子51も加工歪が全く残らない
Therefore, it has the same proximal shape as a pyconvex type crystal resonator whose main surface is biconvex), and it is possible to reduce the leakage of vibration energy from the surrounding holding parts. In the case of a piconvex type crystal resonator, the thickness of the crystal piece that determines the oscillation frequency is changed by polishing to form a biconvex surface, but in the crystal resonator 31 of the present invention, the crystal piece of the central drive electrode part is formed with a biconvex surface. Since the periphery of the crystal plate 32 is etched to form stepped surfaces 35 and 36 to form an approximate convex surface without changing the thickness of the crystal plate 32, the thickness of the crystal plate 32 can be precisely matched at first. Therefore, it is most suitable for manufacturing a large number of crystal resonators at once. Furthermore, compared to the case where the main surface is polished to have a convex surface, this crystal resonator 51 also has no processing distortion at all.

第10〜11図に本発明のさらに他の実施例を説明する
と、水晶振動子41はエツチング処理前の状態を示し、
水晶片42はX軸方向に長手の略直方体のATカット水
晶振動子である。そして水晶片420対向する主面であ
るX軸−2一平面4,7! a142bの長手方向の中
央部には駆動WL極43,44が設けてあり、これらの
駆動電極に連続して引出し電極43a、44aが両端の
保持部まで形成しである。駆動電極45は一方のX軸−
Y軸端面42cに接するとともに他方のX軸−Y軸端面
42dから距離dだけ離して形成しである。また駆動電
極44は他方のX軸−Y′軸端面42dに接するととも
に一方のX軸−Y′軸端面42cから距離dだけ離して
形成しである。すなわた駆動電極45,44は第11図
に示されるように水晶片42の両生面に互いに距111
dだけずれて形成しである。そしてずれた駆動電極43
,44の端部を連結する傾斜面42e、42fとX軸−
Y′軸端面42 C,42dとのなす角をVとし、水晶
片42の厚さをtとしたとき、tan/= t/dとな
り、θが2軸方向に略5度となるようにdを設定しであ
る。すなわち水晶振動子41の発振周波数が4MHz帯
の場合、厚さtは0.4鶴であ’)、tan5  = 
0.084であるため距離dは0.0336II11と
一設定される。また発振周波数が8 M Hz帯の場合
、厚さtはQ、20であシ、距離dは0.016813
1と設定される。
Another embodiment of the present invention will be described with reference to FIGS. 10 and 11. A crystal resonator 41 is shown in a state before etching treatment,
The crystal piece 42 is a substantially rectangular AT-cut crystal resonator elongated in the X-axis direction. And the plane 4, 7 on the X axis -2 which is the main surface facing the crystal piece 420! Driving WL poles 43, 44 are provided at the center in the longitudinal direction of a142b, and extraction electrodes 43a, 44a are formed continuously from these driving electrodes up to the holding portions at both ends. The drive electrode 45 is located on one of the X-axis -
It is formed in contact with the Y-axis end surface 42c and at a distance d from the other X-axis-Y-axis end surface 42d. Further, the drive electrode 44 is formed in contact with the other X-axis-Y'-axis end surface 42d and at a distance d from one X-axis-Y'-axis end surface 42c. That is, as shown in FIG.
It is formed to be shifted by d. And the shifted drive electrode 43
, 44 and the inclined surfaces 42e and 42f connecting the ends of the X-axis
When the angle formed by the Y'-axis end faces 42C and 42d is V, and the thickness of the crystal piece 42 is t, tan/=t/d, and d is adjusted so that θ is approximately 5 degrees in the two axis directions. is set. That is, when the oscillation frequency of the crystal resonator 41 is in the 4 MHz band, the thickness t is 0.4 mm), tan5 =
Since it is 0.084, the distance d is set to 0.0336II11. In addition, when the oscillation frequency is 8 MHz band, the thickness t is Q, 20, and the distance d is 0.016813.
It is set to 1.

このように駆動電極45,44を設けた水晶片42をエ
ツチング液に浸漬すると、主面42a。
When the crystal piece 42 provided with the drive electrodes 45 and 44 in this manner is immersed in an etching solution, the main surface 42a.

42bの裸部が腐蝕され段差面45.46となるととも
にX軸−Y軸端面42 c、  42 dも腐蝕される
。そしてX軸−Y軸端面は保護膜である駆動電極43.
44がずれて設けであるため腐蝕され4g斜’、7xi
42 e、  42 f (第12図示。)となる。
The bare portion of 42b is corroded to form stepped surfaces 45 and 46, and the X-axis and Y-axis end surfaces 42c and 42d are also corroded. The X-axis and Y-axis end faces are drive electrodes 43, which are protective films.
Since 44 is installed out of alignment, it is corroded and the 4g oblique', 7xi
42 e, 42 f (shown in Figure 12).

このようにして製造された水晶振動子41は、輪五【己
系の振動との結合を弱めることができ、純粋な厚みすべ
り撮動となり、水晶片42を小型化する場合特に大きな
効果がある。
The crystal resonator 41 manufactured in this way can weaken the coupling with the vibration of the self-system, resulting in pure thickness-slide imaging, which is particularly effective when miniaturizing the crystal piece 42. .

なお水晶片の形状、直方体状のものを示した力(その他
適宜の形状でもよい。
Note that the shape of the crystal piece is a rectangular parallelepiped (other suitable shapes may be used).

また1小動電iは対向する主面の両面に設けたが、一方
の面だけに設けたものでもよい。
Further, although one small electrodynamic i was provided on both sides of the opposing main surfaces, it may be provided only on one surface.

以上述べたように本発明によれば、厚みすベシ振動の振
動エネルギを圧電素子の中央部に集中でき、保持部から
の4ttkbエネルギの漏洩の少ない厚みすべり圧電振
動子を極めて容易に提供できる。
As described above, according to the present invention, the vibration energy of the thickness shear vibration can be concentrated in the center part of the piezoelectric element, and a thickness shear piezoelectric vibrator with less leakage of 4ttkb energy from the holding part can be extremely easily provided.

しかもエツチング処理により圧電素子を加工するため加
工φが残らず、周波数エージング特性の安定した厚みす
べり圧゛1振動子が提供できる。また圧電素子の主面を
変化ゾせずに外周部を段差面により薄肉にできるため、
発振周波数が加工の前後において変化せず、最初に主面
の厚さを精度よ〈設定しておけば同一精度のものが大量
に安定I7て供給できるなどの大きな効果がある。
Moreover, since the piezoelectric element is processed by etching, no machining φ remains, and a thickness-shear pressure 1 vibrator with stable frequency aging characteristics can be provided. In addition, the outer periphery can be made thinner due to the stepped surface without changing the main surface of the piezoelectric element.
The oscillation frequency does not change before and after machining, and if the thickness of the main surface is set to a certain level of accuracy at the beginning, it has great effects such as being able to stably supply a large quantity of parts with the same accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製法の一実施例を示す工程図第2図は
他の実施例を示す工程図、第3図は本発明の圧電振動子
の一実施例の斜視図、第4図は他の実施例の正面図、第
5図はその一部省略背面図。 第6図は保持部を省略したさらに他の実施例の斜視図、
第7図はさらに他の実施例の斜視図、第8図はさらに他
の実施例の斜視図、:前9図はその製法の工程図、第1
0図はさらに別の実施例の正面図、第11図は第10図
XI−XI線断面図、第12図はその斜視図である。 1、IA、IB、13.1!IA、13B、25.  
ろ2,42・・・・・・・・・水晶片  6,4.ろA
、4A・・・・・・レジスト膜5、6.5A、 19.
19A、 2OA、 28.29.35,3445.4
6・・・・・・段差面 7.8,7A、8A、14A、15A、 30,30A
、33a。 54a、43,44・・・・・・駆にI電極17.18
,17A、18A・・・・・・耐酸抜脱14a、15a
、  只d、34d、43a、44&・・・引出し部9
、22.24.51.41・・・・・・水晶振動子。 以  上 出禰へ 沫弐会仕   精 工 令 代理人 −yP理士 最  上   務第2図 ;tb      34      Jb第10図  
       第11図
FIG. 1 is a process diagram showing one embodiment of the manufacturing method of the present invention. FIG. 2 is a process diagram showing another embodiment. FIG. 3 is a perspective view of one embodiment of the piezoelectric vibrator of the present invention. 5 is a front view of another embodiment, and FIG. 5 is a partially omitted rear view thereof. FIG. 6 is a perspective view of still another embodiment in which the holding part is omitted;
Fig. 7 is a perspective view of still another embodiment, Fig. 8 is a perspective view of still another embodiment;
0 is a front view of yet another embodiment, FIG. 11 is a sectional view taken along line XI-XI in FIG. 10, and FIG. 12 is a perspective view thereof. 1, IA, IB, 13.1! IA, 13B, 25.
Lo 2, 42...Crystal piece 6, 4. RoA
, 4A...Resist film 5, 6.5A, 19.
19A, 2OA, 28.29.35, 3445.4
6...Step surface 7.8, 7A, 8A, 14A, 15A, 30, 30A
, 33a. 54a, 43, 44... I electrode 17.18 on drive
, 17A, 18A... Acid extraction resistance 14a, 15a
, just d, 34d, 43a, 44 &... drawer part 9
, 22.24.51.41...Crystal resonator. That's all for Idene. Munikai Shi Seiko Rei Agent - YP Rishishi Mogami Tsumugi Figure 2; tb 34 Jb Figure 10
Figure 11

Claims (1)

【特許請求の範囲】 1、 厚みすべり振動を行う圧電素子の対向する主面の
少な(とも−面は中央部が凸面であり外周部が段差面で
あり、上記主面の少なくとも一面に駆動電極を設けてあ
り、上記段差面の外周端部にて保持していることを特徴
とする厚みすべ抄圧電振動子。 2、特許請求の範囲第1項において、一方の主面は中央
部が凸面であり外周部が段差面であり、他方の主面は平
担面であることを特徴とする厚みすべり圧電振動子。 3、特許請求の範!4841項において、両方の主面の
中央部が凸面であり外周部が段差面であることを特徴と
する厚みすべり圧′f:振動子。 4、  @許賎求の範囲第1項において、段差面は複数
段設けであることを特徴とする厚みすべり圧電振動子。 5、厚みすべり振動を行う圧電素子の対向する主面の少
なくとも一面は中央部とこの中央部より外周に向けて延
出する引出し部とが凸面であるとともに上記引出し部を
除く外周部が段差面であり、少なくとも上記凸面に駆動
電極を形成してあシ、上記引出部の外周部にて保持して
いることを特徴とする厚みすべり圧電振動子。 6、特許請求の範囲第5項において、主面の他面は平担
面であり、−面の引出し部に対向する外周端部を除く略
全面に駆動電極が設けであることを特徴とする厚みすペ
シ圧電振動子。 2、特許請求の範囲第5項において、両方の主面に凸面
と段差面とが形成しであることを特徴とする厚みすべり
圧電振動子。 8、厚みすペシ振動を行う圧電素子の対向する主面の一
面には中央部に他面には少なくとも中央部にこの圧電素
子を腐蝕するエツチング液のレジスト膜を形成し、上記
エツチング液中に上記圧電素子を浸漬[2、−ヒ妃圧呪
素子のレジスト膜を形成していない裸部をη(蝕し上記
主面に対し段冴面とし、上記レジスト膜を除去したあと
上記圧電素子の主面に駆動電極を形成することを特徴と
する厚みすべ沙圧′t1.振萄子の製法。 2 厚みすべり振動を行う圧電素子の対向する主面の一
面には中央部に他面には少なくとも中央部に超fJJJ
電槙をit向して形成し、上記圧%、2子を腐蝕すると
ともに上記駆(u1′心極な腐蝕しないエツチング液中
にこの圧電素子を浸漬し、上記駆動電極を保護膜としH
記圧電素子の駆動電極を形成していない裸部を腐f′1
lLz、駆動電極面と裸部の腐蝕面との間に9差を形成
することをyF徴とする厚みすべり圧1で振動子の製法
。 10、特許請求の範囲第7項において、駆動電極の上部
に耐酸被fゑを形成【、、て、!lすることを特徴とす
る厚みすべり王゛式振妨子の製法。
[Claims] 1. A piezoelectric element that performs thickness-shear vibration has two opposing principal surfaces (both surfaces have a convex central portion and a stepped surface on the outer periphery, and a driving electrode is provided on at least one of the principal surfaces. 2. In claim 1, one main surface has a convex central portion. A thickness-shear piezoelectric vibrator characterized in that the outer peripheral part is a stepped surface and the other main surface is a flat surface. Thickness slip pressure 'f: vibrator characterized by a convex surface and a stepped surface on the outer periphery. 4. A thickness slip characterized by having a plurality of stepped surfaces in the first term of the range of @permission request. Piezoelectric vibrator. 5. At least one of the opposing principal surfaces of the piezoelectric element that performs thickness-shear vibration has a central portion and a drawn-out portion extending toward the outer periphery from the central portion, and the outer periphery excluding the drawn-out portion is a convex surface. A thickness-slide piezoelectric vibrator, characterized in that the part is a stepped surface, and a drive electrode is formed on at least the convex surface and is held at the outer periphery of the drawer part. 6. Claim No. 5. The thin piezoelectric vibrator according to item 5, wherein the other main surface is a flat surface, and drive electrodes are provided on substantially the entire surface except for the outer peripheral end facing the lead-out portion of the - surface. 2. A thickness shear piezoelectric vibrator according to claim 5, characterized in that a convex surface and a stepped surface are formed on both main surfaces. 8. Opposing piezoelectric elements that perform thickness shear vibration. A resist film of an etching solution that corrodes the piezoelectric element is formed on one main surface in the center and on the other surface at least in the center, and the piezoelectric element is immersed in the etching solution [2. The bare portion of the element on which the resist film is not formed is etched by η (eroding) to form a stepped surface with respect to the main surface, and after the resist film is removed, a drive electrode is formed on the main surface of the piezoelectric element. Thickness shear pressure 't1. Method of manufacturing a vibrator. 2 A piezoelectric element that performs thickness shear vibration has a super-fJJJ in the center on one side of the opposing main surfaces, and on the other side at least in the center.
A piezoelectric element is formed facing it, and the piezoelectric element is etched under the above pressure, and the piezoelectric element is immersed in an etching solution that does not corrode the drive electrode (u1'), and the drive electrode is used as a protective film.
Corrosion of the bare part of the piezoelectric element that does not form the drive electrode f′1
lLz, a method for manufacturing a vibrator with a thickness and a slip pressure of 1, where the yF characteristic is to form a 9 difference between the drive electrode surface and the corroded surface of the bare part. 10. In claim 7, an acid-resistant coating is formed on the upper part of the drive electrode [,,te,! A method for manufacturing a thickness-slip type shaker which is characterized by the following characteristics:
JP14588481A 1981-09-16 1981-09-16 Thickness slip piezoelectric oscillator and its production Pending JPS5847316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14588481A JPS5847316A (en) 1981-09-16 1981-09-16 Thickness slip piezoelectric oscillator and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14588481A JPS5847316A (en) 1981-09-16 1981-09-16 Thickness slip piezoelectric oscillator and its production

Publications (1)

Publication Number Publication Date
JPS5847316A true JPS5847316A (en) 1983-03-19

Family

ID=15395273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14588481A Pending JPS5847316A (en) 1981-09-16 1981-09-16 Thickness slip piezoelectric oscillator and its production

Country Status (1)

Country Link
JP (1) JPS5847316A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60172425U (en) * 1984-04-23 1985-11-15 ティーディーケイ株式会社 piezoelectric resonator
JPH0230207A (en) * 1988-07-20 1990-01-31 Asahi Denpa Kk Crystal resonator and its manufacture
JPH0257009A (en) * 1988-08-23 1990-02-26 Yokogawa Electric Corp Piezoelectric resonator
JP2001230655A (en) * 2000-02-18 2001-08-24 Toyo Commun Equip Co Ltd Piezoelectric vibrator
JP2001230654A (en) * 2000-02-16 2001-08-24 Matsushita Electric Ind Co Ltd Piezoelectric vibrating element and producing method therefor
JP2002314162A (en) * 2001-04-12 2002-10-25 Toyo Commun Equip Co Ltd Crystal substrate and its manufacturing method
JP2006108949A (en) * 2004-10-01 2006-04-20 Nippon Dempa Kogyo Co Ltd Crystal-controlled oscillator
JP2006352828A (en) * 2005-05-16 2006-12-28 Epson Toyocom Corp Piezoelectric substrate and method of manufacturing the same
JP2008187322A (en) * 2007-01-29 2008-08-14 Epson Toyocom Corp Manufacturing method of mesa type piezoelectric vibrating element
JP2010062723A (en) * 2008-09-02 2010-03-18 Epson Toyocom Corp At-cut crystal vibrating piece, at-cut crystal vibrator and oscillator
JP2010109526A (en) * 2008-10-29 2010-05-13 Epson Toyocom Corp Crystal vibration piece, and method of manufacturing the same
JP2010258931A (en) * 2009-04-28 2010-11-11 Kyocera Kinseki Corp Method for manufacturing crystal vibrator
JP2011205516A (en) * 2010-03-26 2011-10-13 Seiko Epson Corp Piezoelectric vibrating element and piezoelectric vibrator
JP2012038417A (en) * 2011-11-21 2012-02-23 Suncall Corp Magnetic head suspension
EP2456069A1 (en) 2010-11-19 2012-05-23 Seiko Epson Corporation Piezoelectric resonator element and piezoelectric resonator
JP2012135043A (en) * 2005-05-16 2012-07-12 Seiko Epson Corp Vibrating reed
JP2013197916A (en) * 2012-03-21 2013-09-30 Seiko Epson Corp Vibration element, oscillator, electronic device and electronic apparatus
US8614607B2 (en) 2011-03-18 2013-12-24 Seiko Epson Piezoelectric vibration element, piezoelectric vibrator, piezoelectric oscillator, and electronic device
JP2014110467A (en) * 2012-11-30 2014-06-12 Kyocera Crystal Device Corp Crystal oscillator
JP2014143588A (en) * 2013-01-24 2014-08-07 Daishinku Corp Crystal oscillator and manufacturing method thereof
US9030078B2 (en) 2011-03-09 2015-05-12 Seiko Epson Corporation Vibrating element, vibrator, oscillator, and electronic device
JP2015105919A (en) * 2013-12-02 2015-06-08 富士通株式会社 Corrosion sensor, method for manufacturing corrosion sensor, corrosion sensor unit, and corrosion monitoring system
US9431995B2 (en) 2014-07-31 2016-08-30 Seiko Epson Corporation Resonator element, resonator, resonator device, oscillator, electronic device, and mobile object
JP2016195427A (en) * 2016-07-01 2016-11-17 京セラクリスタルデバイス株式会社 Crystal vibration element
US9503045B2 (en) 2015-01-19 2016-11-22 Seiko Epson Corporation Resonator element, resonator, oscillator, electronic apparatus, and moving object

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60172425U (en) * 1984-04-23 1985-11-15 ティーディーケイ株式会社 piezoelectric resonator
JPH0230207A (en) * 1988-07-20 1990-01-31 Asahi Denpa Kk Crystal resonator and its manufacture
JPH0257009A (en) * 1988-08-23 1990-02-26 Yokogawa Electric Corp Piezoelectric resonator
JP2001230654A (en) * 2000-02-16 2001-08-24 Matsushita Electric Ind Co Ltd Piezoelectric vibrating element and producing method therefor
JP2001230655A (en) * 2000-02-18 2001-08-24 Toyo Commun Equip Co Ltd Piezoelectric vibrator
JP4665282B2 (en) * 2000-02-18 2011-04-06 エプソントヨコム株式会社 AT cut crystal unit
JP2002314162A (en) * 2001-04-12 2002-10-25 Toyo Commun Equip Co Ltd Crystal substrate and its manufacturing method
JP4558433B2 (en) * 2004-10-01 2010-10-06 日本電波工業株式会社 Crystal oscillator
JP2006108949A (en) * 2004-10-01 2006-04-20 Nippon Dempa Kogyo Co Ltd Crystal-controlled oscillator
JP2006352828A (en) * 2005-05-16 2006-12-28 Epson Toyocom Corp Piezoelectric substrate and method of manufacturing the same
JP2012135043A (en) * 2005-05-16 2012-07-12 Seiko Epson Corp Vibrating reed
JP2008187322A (en) * 2007-01-29 2008-08-14 Epson Toyocom Corp Manufacturing method of mesa type piezoelectric vibrating element
JP2010062723A (en) * 2008-09-02 2010-03-18 Epson Toyocom Corp At-cut crystal vibrating piece, at-cut crystal vibrator and oscillator
JP2010109526A (en) * 2008-10-29 2010-05-13 Epson Toyocom Corp Crystal vibration piece, and method of manufacturing the same
JP2010258931A (en) * 2009-04-28 2010-11-11 Kyocera Kinseki Corp Method for manufacturing crystal vibrator
JP2011205516A (en) * 2010-03-26 2011-10-13 Seiko Epson Corp Piezoelectric vibrating element and piezoelectric vibrator
EP2456069A1 (en) 2010-11-19 2012-05-23 Seiko Epson Corporation Piezoelectric resonator element and piezoelectric resonator
US8766514B2 (en) 2010-11-19 2014-07-01 Seiko Epson Corporation Piezoelectric resonator element and piezoelectric resonator
US9231184B2 (en) 2010-11-19 2016-01-05 Seiko Epson Corporation Piezoelectric resonator element and piezoelectric resonator
US9030078B2 (en) 2011-03-09 2015-05-12 Seiko Epson Corporation Vibrating element, vibrator, oscillator, and electronic device
US8614607B2 (en) 2011-03-18 2013-12-24 Seiko Epson Piezoelectric vibration element, piezoelectric vibrator, piezoelectric oscillator, and electronic device
US9093634B2 (en) 2011-03-18 2015-07-28 Seiko Epson Corporation Piezoelectric vibration element, piezoelectric vibrator, piezoelectric oscillator, and electronic device
US9948275B2 (en) 2011-03-18 2018-04-17 Seiko Epson Corporation Piezoelectric vibration element, piezoelectric vibrator, piezoelectric oscillator, and electronic device
JP2012038417A (en) * 2011-11-21 2012-02-23 Suncall Corp Magnetic head suspension
JP2013197916A (en) * 2012-03-21 2013-09-30 Seiko Epson Corp Vibration element, oscillator, electronic device and electronic apparatus
JP2014110467A (en) * 2012-11-30 2014-06-12 Kyocera Crystal Device Corp Crystal oscillator
JP2014143588A (en) * 2013-01-24 2014-08-07 Daishinku Corp Crystal oscillator and manufacturing method thereof
JP2015105919A (en) * 2013-12-02 2015-06-08 富士通株式会社 Corrosion sensor, method for manufacturing corrosion sensor, corrosion sensor unit, and corrosion monitoring system
US9431995B2 (en) 2014-07-31 2016-08-30 Seiko Epson Corporation Resonator element, resonator, resonator device, oscillator, electronic device, and mobile object
US9716484B2 (en) 2014-07-31 2017-07-25 Seiko Epson Corporation Resonator element, resonator, resonator device, oscillator, electronic device, and mobile object
US9503045B2 (en) 2015-01-19 2016-11-22 Seiko Epson Corporation Resonator element, resonator, oscillator, electronic apparatus, and moving object
JP2016195427A (en) * 2016-07-01 2016-11-17 京セラクリスタルデバイス株式会社 Crystal vibration element

Similar Documents

Publication Publication Date Title
JPS5847316A (en) Thickness slip piezoelectric oscillator and its production
EP2043259B1 (en) Methods for manufacturing piezoelectric vibrating pieces
JP5059399B2 (en) Method for manufacturing piezoelectric vibrating piece, piezoelectric vibrating piece and piezoelectric device
JP2973560B2 (en) Processing method of crystal unit
JP5023734B2 (en) Method for manufacturing piezoelectric vibrating piece and piezoelectric vibrating element
JP2009100073A (en) Piezoelectric device and method for manufacturing the same
GB1600706A (en) Subminiature quartz crystal vibrator and method for manufacturing the same
JP6392532B2 (en) Piezoelectric vibrating piece, piezoelectric vibrator, and method of manufacturing piezoelectric vibrating piece
JP2004120351A (en) Manufacturing method of piezoelectric vibration piece
US4232109A (en) Method for manufacturing subminiature quartz crystal vibrator
JP6570388B2 (en) Piezoelectric vibrator element and piezoelectric vibrator
JP2001251154A (en) Manufacture of piezoelectric vibrating reed
JP4324948B2 (en) Manufacturing method of high-frequency piezoelectric vibration device
JPH04130810A (en) Manufacture of at cut crystal oscillating piece
JP6611534B2 (en) Piezoelectric vibrator element and piezoelectric vibrator
JP3734127B2 (en) Piezoelectric vibrator, piezoelectric oscillator, and method of manufacturing piezoelectric vibration element used therefor
JPS643367B2 (en)
JP2023048349A (en) Method for manufacturing vibration element
JPS6038891B2 (en) Manufacturing method of ultra-small crystal unit
JP2010010955A (en) Method for manufacturing piezoelectric vibrator, and piezoelectric vibrator
JPS6353729B2 (en)
JP3157969B2 (en) Manufacturing method of surface acoustic wave device
JP2023048348A (en) Method for manufacturing vibration element
JPH08228122A (en) Frame-shaped crystal oscillator and manufacture thereof
JP2018093541A (en) Piezoelectric vibrating reed and piezoelectric vibrator