JP4855871B2 - Charger - Google Patents

Charger Download PDF

Info

Publication number
JP4855871B2
JP4855871B2 JP2006235154A JP2006235154A JP4855871B2 JP 4855871 B2 JP4855871 B2 JP 4855871B2 JP 2006235154 A JP2006235154 A JP 2006235154A JP 2006235154 A JP2006235154 A JP 2006235154A JP 4855871 B2 JP4855871 B2 JP 4855871B2
Authority
JP
Japan
Prior art keywords
charging
battery
time
voltage
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006235154A
Other languages
Japanese (ja)
Other versions
JP2008061373A (en
Inventor
茂 小林
浩史 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagano Japan Radio Co Ltd
Original Assignee
Nagano Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagano Japan Radio Co Ltd filed Critical Nagano Japan Radio Co Ltd
Priority to JP2006235154A priority Critical patent/JP4855871B2/en
Publication of JP2008061373A publication Critical patent/JP2008061373A/en
Application granted granted Critical
Publication of JP4855871B2 publication Critical patent/JP4855871B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、充電対象電池(例えば二次電池などの充電可能な電池)を充電する充電装置に関するものである。   The present invention relates to a charging device that charges a battery to be charged (for example, a rechargeable battery such as a secondary battery).

この種の充電装置として、特開平6−38392号公報に開示されている充電装置が知られている。この充電装置は、商用電源からの交流を受けて充電対象電池(被充電電池)に定電流または定電圧を供給する電源部、電源部の動作を制御する充電制御部、充電対象電池の電圧を検出する電圧検出部、充電電流を検出して電流値がほぼゼロになった場合にそれを充電制御部に入力する電流検出部、および充電対象電池の残存容量に応じた定電流充電時間および保護タイマ時間をカウントするタイマー回路を備えて構成されている。この場合、充電装置はリチウムイオン二次電池を充電対象電池としており、またリチウムイオン二次電池はその残存容量が電池電圧とほぼ比例する関係にある。したがって、充電対象電池の電圧を検出する電圧検出部は、充電対象電池の残存容量検出手段として機能する。   As this type of charging device, a charging device disclosed in JP-A-6-38392 is known. This charging device receives an alternating current from a commercial power source and supplies a constant current or a constant voltage to a charging target battery (charged battery), a charging control unit that controls the operation of the power source unit, and a voltage of the charging target battery. Voltage detection unit to detect, current detection unit that detects the charging current and inputs the current value to the charge control unit when the current value becomes almost zero, and constant current charging time and protection according to the remaining capacity of the battery to be charged A timer circuit for counting the timer time is provided. In this case, the charging device uses a lithium ion secondary battery as a battery to be charged, and the lithium ion secondary battery has a relationship in which the remaining capacity is substantially proportional to the battery voltage. Therefore, the voltage detection unit that detects the voltage of the battery to be charged functions as a remaining capacity detection unit of the battery to be charged.

この充電装置では、充電の開始前に、充電制御部が、電圧検出部を介して検出した充電対象電池の電圧に基づいて充電対象電池の残存容量を検出し、検出した残存容量に応じた定電流充電時間および保護タイマ時間を決定してタイマー回路にセットする。その後、電源部による充電対象電池の定電流充電が開始され、またタイマー回路は定電流充電時間および保護タイマ時間のカウントを開始する。充電制御部は、電圧検出部を介して充電対象電池の電圧を検出しつつ、検出している電圧が定電流充電時間のカウント終了までに所定の電圧に達したか否かを検出する。この検出の結果、達していない場合には、充電制御部は、充電対象電池または充電装置に異常が発生したと判断して、電源部の定電流充電を停止させる。一方、達している場合には、充電制御部は、電源部に対して定電圧充電を開始させる。   In this charging device, before the start of charging, the charging control unit detects the remaining capacity of the charging target battery based on the voltage of the charging target battery detected via the voltage detection unit, and determines the fixed capacity according to the detected remaining capacity. The current charging time and the protection timer time are determined and set in the timer circuit. Thereafter, constant current charging of the battery to be charged by the power supply unit is started, and the timer circuit starts counting the constant current charging time and the protection timer time. The charge control unit detects whether or not the detected voltage has reached a predetermined voltage by the end of counting the constant current charging time while detecting the voltage of the charging target battery via the voltage detection unit. As a result of this detection, if not reached, the charging control unit determines that an abnormality has occurred in the battery to be charged or the charging device, and stops constant current charging of the power supply unit. On the other hand, when it has reached, the charge control unit causes the power supply unit to start constant voltage charging.

定電圧充電中においては、充電制御部は、電流検出部を介して充電対象電池の充電電流を検出しつつ、検出している充電電流が保護タイマ時間のカウント終了までにほぼゼロまで低下したか否かを検出する。この検出の結果、ほぼゼロまで低下したときには、充電制御部は、充電対象電池が満充電になったと判断して、電源部による充電対象電池の充電を終了させる。一方、ほぼゼロまで低下しないときには、充電制御部は、強制的に電源部による充電対象電池の充電を終了させる。これにより、未だ満充電状態となっていないもののほぼ満充電に近い状態に充電対象電池を移行させることができ、かつ充電対象電池をより満充電に近い状態にすべく定電圧充電を続行したときに、長期に亘り充電状態が継続されることに起因して発生する弊害(充電対象電池の寿命の低下)を回避することができる。
特開平6−38392号公報(第2−3頁、第1図)
During constant voltage charging, the charge control unit detects the charging current of the battery to be charged via the current detection unit, and whether the detected charging current has dropped to almost zero by the end of the protection timer time count. Detect whether or not. As a result of this detection, when the voltage drops to almost zero, the charging control unit determines that the charging target battery is fully charged, and terminates charging of the charging target battery by the power supply unit. On the other hand, when it does not drop to almost zero, the charging control unit forcibly ends the charging of the charging target battery by the power supply unit. This makes it possible to transfer the battery to be charged to a state close to full charge although it is not yet fully charged, and when constant voltage charging is continued to bring the battery to be charged closer to full charge. In addition, it is possible to avoid an adverse effect (decrease in the life of the battery to be charged) caused by the state of charge being continued for a long time.
JP-A-6-38392 (page 2-3, FIG. 1)

ところで、充電装置に対して、電池容量の大きさが異なる充電対象電池に対して、設定した充電時間で充電対象電池を満充電状態まで充電して充電動作を完了させたいという要望もある。しかしながら、従来の充電装置では、タイマー回路にセットされる定電流充電時間および保護タイマ時間は充電対象電池の残存容量に応じて決定されており、充電対象電池の電池容量が考慮されていない。したがって、この充電装置には、電池容量の大きさが異なる充電対象電池について、設定した時間で満充電状態まで充電して充電動作を完了することができないという解決すべき課題が存在している。   By the way, there is also a demand for the charging device to charge the charging target battery having a different battery capacity to the fully charged state in a set charging time to complete the charging operation. However, in the conventional charging device, the constant current charging time and the protection timer time set in the timer circuit are determined according to the remaining capacity of the battery to be charged, and the battery capacity of the battery to be charged is not taken into consideration. Therefore, this charging device has a problem to be solved that a charging target battery having different battery capacities cannot be fully charged in a set time to complete a charging operation.

本発明は、かかる課題を解決すべくなされたものであり、充電対象電池の電池容量の大きさに拘わらず、設定した充電時間で充電対象電池を満充電状態まで充電して充電動作を完了させ得る充電装置を提供することを主目的とする。   The present invention has been made to solve such a problem. Regardless of the battery capacity of the battery to be charged, the battery to be charged is fully charged in the set charging time to complete the charging operation. The main object is to provide a charging device.

上記目的を達成すべく請求項1記載の充電装置は、充電対象電池に対する充電時の充電電流値を制御可能に構成された電源部と、当該電源部を制御することによって前記充電対象電池に対して定電流充電を実行する電源制御部とを備え、前記電源制御部は、前記定電流充電の開始に先立って容量検出処理を実行して、前記充電対象電池の残存容量および電池容量を検出すると共に、当該検出した残存容量および電池容量と、予め設定された目標充電時間とに基づいて、前記定電流充電時の充電電流値を規定する充電装置であって、前記電源制御部は、前記容量検出処理において、前記充電対象電池への一定の充電電流値での充電と前記電源部からの前記充電対象電池の切り離しとを、当該切り離しの開始から所定時間経過後における前記充電対象電池についての開放電圧の測定を実行しつつ複数回繰り返し、前記測定した複数の開放電圧のうちの少なくとも1つに基づいて当該いずれか1つの開放電圧の測定時における前記充電対象電池の前記残存容量を検出すると共に、前記測定した複数の開放電圧のうちの2つに基づいて当該2つの開放電圧の各測定時における前記充電対象電池の前記残存容量を検出し、当該検出した2つの残存容量の差分、前記2つの開放電圧を測定する間における前記充電対象電池に対する総充電時間、および前記容量検出処理における前記充電電流値に基づいて前記電池容量を算出する。なお、本明細書における「定電流充電」には、充電過程において定電流の電流値を多段に変化させるいわゆる多段定電流充電も含まれる。 In order to achieve the above object, a charging device according to claim 1, wherein a power supply unit configured to be able to control a charging current value at the time of charging the charging target battery, and the charging target battery by controlling the power supply unit. Bei example a power control unit for executing the constant current charging Te, the power supply control unit, the running capacitance detection process prior to the start of constant current charging, detecting the remaining capacity and the battery capacity of the charging target cell And a charging device that defines a charging current value at the time of constant current charging based on the detected remaining capacity and battery capacity and a preset target charging time , wherein the power supply controller In the capacity detection process, the charging of the charging target battery at a constant charging current value and the disconnection of the charging target battery from the power supply unit are performed after a predetermined time has elapsed from the start of the disconnection. The remaining battery of the battery to be charged at the time of measuring any one of the plurality of open-circuit voltages based on at least one of the plurality of open-circuit voltages measured while performing measurement of the open-circuit voltage for the elephant battery And detecting the remaining capacity of the battery to be charged at the time of measuring the two open-circuit voltages based on two of the measured open-circuit voltages, and detecting the two remaining capacities The battery capacity is calculated based on the difference between the two, the total open time for the battery to be charged during the measurement of the two open-circuit voltages, and the charging current value in the capacity detection process . The “constant current charging” in this specification includes so-called multi-stage constant current charging in which the current value of the constant current is changed in multiple stages in the charging process.

また、請求項記載の充電装置は、請求項1記載の充電装置において、前記電源部は前記充電対象電池に対する充電時の充電電圧値を制御可能に構成され、前記電源制御部は、前記定電流充電を実行した後に前記充電対象電池に対して定電圧充電を実行する。 Further, the charging apparatus according to claim 2, wherein, in the charging device according to claim 1 Symbol mounting, the power supply unit is configured to controllably charging voltage value during charging of the charging target cell, the power control unit, the After performing constant current charging, constant voltage charging is performed on the battery to be charged.

請求項1記載の充電装置によれば、電源制御部が、定電流充電処理の開始に先立って容量検出処理を実行して、充電対象電池の残存容量および電池容量を検出すると共に、検出した残存容量および電池容量と、予め設定された目標充電時間とに基づいて、定電流充電時の充電電流値を決定することにより、充電対象電池の電池容量の大きさに拘わらず、設定した目標充電時間で充電対象電池を満充電状態まで充電することができる。   According to the charging device of claim 1, the power supply control unit executes the capacity detection process prior to the start of the constant current charging process to detect the remaining capacity and the battery capacity of the battery to be charged, and the detected remaining power By setting the charging current value during constant current charging based on the capacity and battery capacity and the preset target charging time, the set target charging time regardless of the battery capacity of the battery to be charged The battery to be charged can be charged to a fully charged state.

また、この充電装置によれば、容量検出処理において、電源制御部が、充電対象電池への一定の充電電流値での充電と電源部からの充電対象電池の切り離しとを、切り離しの開始から所定時間経過後における充電対象電池についての開放電圧の測定を実行しつつ複数回繰り返し、測定した複数の開放電圧のうちの少なくとも1つに基づいていずれか1つの開放電圧の測定時における充電対象電池の残存容量を検出することにより、容量検出処理の時間を無駄にすることなく充電対象電池に対する充電を行いつつ、残存容量をリアルタイムに検出することができる。また、開放電圧を測定して充電対象電池の残存容量を検出することにより、電池形状、電極構造および配線に起因して充電電圧を測定する際に発生する内部抵抗の影響をなくすことができると共に満充電近傍で急上昇する過電圧による影響も軽減することができる。 Further, according to this charging apparatus, in the capacity detection process, the power supply control unit performs predetermined charging from the start of the detachment between charging the charging target battery at a constant charging current value and detaching the charging target battery from the power supply unit. The measurement of the open-circuit voltage for the battery to be charged after the elapse of time is repeated a plurality of times, and the charge-target battery at the time of measuring any one of the open-circuit voltages based on at least one of the measured open-circuit voltages By detecting the remaining capacity, it is possible to detect the remaining capacity in real time while charging the battery to be charged without wasting time for the capacity detection process. In addition, by measuring the open voltage and detecting the remaining capacity of the battery to be charged, it is possible to eliminate the influence of the internal resistance that occurs when measuring the charging voltage due to the battery shape, electrode structure and wiring. It is also possible to reduce the influence of overvoltage that rises rapidly near full charge.

また、この充電装置によれば、容量検出処理において、電源制御部が、測定した複数の開放電圧のうちの2つに基づいて、2つの開放電圧の各測定時における充電対象電池の残存容量を検出し、検出した2つの残存容量の差分、2つの開放電圧を測定する間における充電対象電池に対する総充電時間、および容量検出処理における充電電流値に基づいて電池容量を算出することにより、容量検出処理の時間を無駄にすることなく充電対象電池に対する充電を行いつつ、電池容量を検出することができる。 Further, according to this charging apparatus, in the capacity detection process, the power supply control unit determines the remaining capacity of the battery to be charged at each measurement of the two open-circuit voltages based on two of the plurality of open-circuit voltages measured. Detecting the capacity by calculating the battery capacity based on the difference between the detected two remaining capacities, the total charging time for the battery to be charged while measuring the two open-circuit voltages, and the charging current value in the capacity detection process The battery capacity can be detected while charging the battery to be charged without wasting processing time.

また、請求項記載の充電装置によれば、電源制御部が定電流充電処理を実行した後に定電圧充電処理を実行することにより、ほぼ満充電に近い状態の充電対象電池をより満充電に近い状態に移行させつつ、充電終期の電流を低下させて過充電を回避することができるため、充電対象電池の寿命低下を防止することができる。 In addition, according to the charging device of the second aspect , the power supply control unit executes the constant voltage charging process after executing the constant current charging process, so that the charge target battery in a state that is almost fully charged is more fully charged. While shifting to a close state, the current at the end of charging can be reduced to avoid overcharging, so that it is possible to prevent a decrease in the life of the battery to be charged.

以下、添付図面を参照して、本発明に係る充電装置の最良の形態について説明する。なお、充電対象電池の一例として二次電池(具体的には鉛蓄電池)を充電する構成を挙げて説明する。   Hereinafter, the best mode of a charging apparatus according to the present invention will be described with reference to the accompanying drawings. In addition, the structure which charges a secondary battery (specifically lead acid battery) as an example of a charge object battery is given and demonstrated.

図1に示すように、充電装置1は、電源部2、スイッチ部3、電圧測定部4、電源制御部5、記憶部6および計時部7を備え、一例として交流電源8から交流電圧Viを入力して直流電圧Voを生成すると共に電池容量が未知である二次電池9に直流電圧Voを出力しての充電が可能に構成されている。 As shown in FIG. 1, the charging device 1 includes a power supply unit 2, a switch unit 3, a voltage measurement unit 4, a power supply control unit 5, a storage unit 6, and a time measuring unit 7, and an AC voltage Vi from an AC power supply 8 as an example. The DC voltage Vo is inputted to generate the DC voltage Vo and the secondary battery 9 whose battery capacity is unknown can be charged by outputting the DC voltage Vo.

電源部2は、一例としてスイッチング方式(シリーズ方式であってもよい)の電源回路(図示せず)を備えて構成されて、交流電源8から入力端子P1,P2を介して入力している交流電圧Viを直流電圧(二次電池9の充電電圧でもある)Voに変換すると共に、この直流電圧Voを出力端子P3,P4に接続されている二次電池9に出力する。また、電源部2は、電源制御部5の制御下で、充電電圧Voの電圧値を制御可能に構成されると共に、出力電流(二次電池9に対する充電電流でもある)Ioの電流値(充電電流値)を制御可能に構成されている。   As an example, the power supply unit 2 is configured to include a power circuit (not shown) of a switching system (which may be a series system) and is input from the AC power supply 8 through the input terminals P1 and P2. The voltage Vi is converted into a DC voltage (which is also a charging voltage of the secondary battery 9) Vo, and the DC voltage Vo is output to the secondary battery 9 connected to the output terminals P3 and P4. In addition, the power supply unit 2 is configured to be able to control the voltage value of the charging voltage Vo under the control of the power supply control unit 5, and the current value of the output current (which is also a charging current for the secondary battery 9) Io Current value) is controllable.

スイッチ部3は、リレーや、トランジスタなどの半導体スイッチ素子などで構成されて、電源部2と出力端子P3との間に介装されている。また、スイッチ部3は、電源制御部5の制御下で、電源部2と出力端子P3とを電気的に接続するオン状態(導通状態)、および電源部2と出力端子P3とを電気的に切り離すオフ状態(非導通状態)のいずれか一方の状態に移行する。電圧測定部4は、出力端子P3,P4間に接続されて、充電電圧Voの電圧値(二次電池9の充電電圧値)を測定して電圧データDvとして電源制御部5に出力する。   The switch unit 3 is configured by a relay, a semiconductor switch element such as a transistor, and the like, and is interposed between the power supply unit 2 and the output terminal P3. In addition, the switch unit 3 is electrically connected between the power supply unit 2 and the output terminal P3 under the control of the power supply control unit 5 and electrically connected between the power supply unit 2 and the output terminal P3. Transition to one of the off states (non-conducting state) to be disconnected. The voltage measuring unit 4 is connected between the output terminals P3 and P4, measures the voltage value of the charging voltage Vo (charging voltage value of the secondary battery 9), and outputs it as voltage data Dv to the power supply control unit 5.

電源制御部5は、CPU(図示せず)などを含んで構成されている。また、電源制御部5は、記憶部6に記憶されている動作プログラムに従い、充電処理を実行して二次電池9を充電する。この充電処理では、電源制御部5は、二次電池9の容量(残存容量(以下、「SOC」とも」いう。充電量でもある)および電池容量)を検出(算出)する容量検出処理、二次電池9を定電流充電する際の充電条件を決定する充電条件決定処理、電源部2を定電流充電で動作させる定電流充電処理、および電源部2を定電圧充電で動作させる定電圧充電処理を実行する。また、電源制御部5は、制御信号S2を出力することにより、スイッチ部3に対するオンオフ制御処理も実行する。   The power supply control unit 5 includes a CPU (not shown) and the like. In addition, the power supply control unit 5 charges the secondary battery 9 by executing a charging process according to the operation program stored in the storage unit 6. In this charging process, the power supply control unit 5 detects (calculates) a capacity of the secondary battery 9 (remaining capacity (hereinafter also referred to as “SOC”, also referred to as “SOC” and battery capacity) and battery capacity). Charging condition determination processing for determining charging conditions for charging the secondary battery 9 at constant current, constant current charging processing for operating the power supply unit 2 with constant current charging, and constant voltage charging processing for operating the power supply unit 2 with constant voltage charging Execute. Moreover, the power supply control part 5 also performs the on-off control process with respect to the switch part 3 by outputting control signal S2.

記憶部6は、ROMやRAMなどの半導体メモリで構成されている。また、記憶部6には、電源制御部5用の動作プログラム、残存容量の算出式(下記式(1))、電池容量の算出式(下記式(2))、二次電池9の目標電圧Vt、および充電によって上昇した充電電圧Voが目標電圧Vtに最初に達した時点での二次電池9の残存容量(一例として95%)が予め記憶されている。また、記憶部6には、予め設定された二次電池9の目標充電時間T0(充電開始から充電完了までの目標時間。一例として16時間)を規定するデータD0、スイッチ部3に対するオンオフ制御処理におけるオン時間T1(一例として15分)およびオフ時間T2(一例として5分)をそれぞれ規定する各データD1,D2と、定電圧充電処理の時間T3(一例として2時間)を規定するデータD3とが計時部7に対する計時用データDtとして予め記憶されている。また、記憶部6には、容量検出処理において、二次電池9の充電電圧Voを測定する回数(一例として数値「3」)が記憶されている。さらに、記憶部6には、容量検出処理における充電電流Ioの充電電流値I1(一例として5A)と、式(1)に基づいて算出された残存容量についての基準値(一例として80%)とが予め記憶されている。   The storage unit 6 is configured by a semiconductor memory such as a ROM or a RAM. The storage unit 6 also includes an operation program for the power supply control unit 5, a remaining capacity calculation formula (the following formula (1)), a battery capacity calculation formula (the following formula (2)), and a target voltage of the secondary battery 9. Vt and the remaining capacity (as an example, 95%) of the secondary battery 9 when the charging voltage Vo increased by charging reaches the target voltage Vt for the first time are stored in advance. In addition, the storage unit 6 includes data D0 that defines a preset target charging time T0 of the secondary battery 9 (target time from the start of charging to completion of charging; 16 hours as an example), and an on / off control process for the switch unit 3 Data D1 and D2 that respectively define an on-time T1 (15 minutes as an example) and an off-time T2 (5 minutes as an example), and data D3 that defines a constant voltage charging process time T3 (2 hours as an example) Is stored in advance as timing data Dt for the timing unit 7. The storage unit 6 stores the number of times (as an example, a numerical value “3”) for measuring the charging voltage Vo of the secondary battery 9 in the capacity detection process. Further, the storage unit 6 includes a charging current value I1 (5A as an example) of the charging current Io in the capacity detection process, and a reference value (80% as an example) for the remaining capacity calculated based on the formula (1). Is stored in advance.

残存容量(SOC)=A×Vop−B・・・・・・・・・・・・・・・・(1)
ここで、AおよびBは、充電時の温度(本例では、一例として常温(25℃))によって一義的に決定される二次電池9についての定数(電池容量の大きさが異なる二次電池(二次電池9を含む)に共通の定数)である。また、Vopは二次電池9の開放電圧である。この式(1)によれば、残存容量(SOC)と開放電圧Vopとの間に比例関係が存在することになるが、この両者間の比例関係については、長い時間放置された二次電池9の充電開始直後の短期間においては開放電圧Vopが比例関係から外れて低い値を示す場合が多いものの、この短期間以後の充電期間においては、一定の温度で、かつ二次電池9に定電流を連続して(または定電流を周期的に一定時間ずつ)供給するという条件下において、二次電池9の開放電圧Vop[V]と残存容量(SOC)[%]との間に図2に示す比例関係が存在することが実験的に確認されている。このため、このAおよびBについては、充電装置1の使用温度(二次電池9の充電時の温度でもある)において、この充電期間での二次電池9(鉛蓄電池)についての開放電圧Vop[V]と残存容量(SOC)[%]との比例関係を予め測定(実験)することにより、決定することができる。また、二次電池9の開放電圧Vopとは、スイッチ部3をオフ状態に移行させたときの二次電池9の充電電圧(端子電圧)を意味する。
Remaining capacity (SOC) = A x Vop-B (1)
Here, A and B are constants (secondary batteries having different battery capacities) for the secondary battery 9 that are uniquely determined by the temperature at the time of charging (in this example, room temperature (25 ° C.) as an example). (Constant common to the secondary battery 9) . Vop is an open circuit voltage of the secondary battery 9. According to this equation (1), there is a proportional relationship between the remaining capacity (SOC) and the open circuit voltage Vop. The proportional relationship between the two is the secondary battery 9 left for a long time. In the short period immediately after the start of charging, the open circuit voltage Vop often deviates from the proportional relationship and shows a low value. However, in the charging period after this short period, the secondary battery 9 has a constant current at a constant temperature. 2 between the open-circuit voltage Vop [V] and the remaining capacity (SOC) [%] of the secondary battery 9 under the condition that the battery is continuously supplied (or a constant current is periodically supplied at regular intervals). It has been experimentally confirmed that the proportional relationship shown exists. For this reason, for A and B, at the operating temperature of the charging device 1 (which is also the temperature when charging the secondary battery 9), the open-circuit voltage Vop [ V] and the remaining capacity (SOC) [%] can be determined by measuring (experimenting) in advance. Moreover, the open circuit voltage Vop of the secondary battery 9 means the charging voltage (terminal voltage) of the secondary battery 9 when the switch unit 3 is shifted to the off state.

電池容量=I1×ΔT×100/(SOC2−SOC1)・・・・・・(2)
ここで、I1は容量検出処理における充電電流Ioの充電電流値(本例では上記したように5A)であり、(SOC2−SOC1)は時間を空けて検出した2つの残存容量SOC2,SOC1の差分(単位は%)である。また、ΔTは、2つの残存容量SOC2,SOC1のうちの最初の残存容量SOC1を検出した時から、最後の残存容量SOC2を検出した時までの間における、充電電流Ioの二次電池9への充電時間の総和(本発明における総充電時間。単位は時間)である。
Battery capacity = I1 × ΔT × 100 / (SOC2-SOC1) (2)
Here, I1 is the charging current value of the charging current Io in the capacity detection process (in this example, 5A as described above), and (SOC2-SOC1) is the difference between the two remaining capacities SOC2 and SOC1 detected at an interval. (Unit is%). ΔT is the charge current Io to the secondary battery 9 from the time when the first remaining capacity SOC1 of the two remaining capacities SOC2 and SOC1 is detected to the time when the last remaining capacity SOC2 is detected. It is the sum total of charging time (total charging time in the present invention, the unit is time).

計時部7は、電源制御部5から計時用データDtを入力したときに、この計時用データDtで指定された時間を計時すると共に、この指定された時間が経過した時点で、電源制御部5に対して計時完了信号S1を出力する。   When the time data 7 is input from the power controller 5, the timer 7 measures the time specified by the time data Dt, and when the specified time has elapsed, the power controller 5 In response to this, a timing completion signal S1 is output.

次に、充電装置1の動作について、図3〜図5を参照して説明する。   Next, operation | movement of the charging device 1 is demonstrated with reference to FIGS.

まず、各出力端子P3,P4間に二次電池9が接続された状態において、充電装置1が起動されたときには、電圧測定部4が二次電池9についての充電電圧値の測定を開始して、電圧データDvの電源制御部5への出力を開始する。また、電源制御部5が、二次電池9に対する充電動作を開始する。   First, when the charging device 1 is activated in a state where the secondary battery 9 is connected between the output terminals P3 and P4, the voltage measuring unit 4 starts measuring the charging voltage value for the secondary battery 9. Then, output of the voltage data Dv to the power supply control unit 5 is started. Further, the power control unit 5 starts a charging operation for the secondary battery 9.

この充電動作において、電源制御部5は、まず、図4に示すように、容量測定処理(残存容量検出処理および電池容量検出処理)を実行する。この容量測定処理では、電源制御部5は、まず、残存容量検出処理を実行して、二次電池9の残存容量を検出する(ステップ51)。この残存容量検出処理では、電源制御部5は、図5に示すように、まず、記憶部6に記憶されている容量測定処理における充電電流Ioの充電電流値I1を電源部2に設定すると共に、電源部2を作動させる(ステップ61)。これにより、電源部2は、スイッチ部3を介して二次電池9が接続されたときに、二次電池9に対して充電電流Ioを充電電流値I1で供給し得る状態に移行する。   In this charging operation, the power supply controller 5 first executes a capacity measurement process (remaining capacity detection process and battery capacity detection process) as shown in FIG. In this capacity measurement process, the power supply controller 5 first executes a remaining capacity detection process to detect the remaining capacity of the secondary battery 9 (step 51). In this remaining capacity detection process, as shown in FIG. 5, the power supply control unit 5 first sets the charging current value I1 of the charging current Io in the capacity measurement process stored in the storage unit 6 to the power supply unit 2. Then, the power supply unit 2 is operated (step 61). Thereby, when the secondary battery 9 is connected via the switch part 3, the power supply part 2 transfers to the state which can supply the charging current Io with respect to the secondary battery 9 with the charging current value I1.

次いで、電源制御部5は、制御信号S2をスイッチ部3に出力することにより、スイッチ部3をオン状態に移行させる(ステップ62)。これにより、電源部2からスイッチ部3を経由して二次電池9に一定の電流値(充電電流値I1)で充電電流Ioが供給され始め、二次電池9の充電(定電流充電)が開始される。また、電源制御部5は、スイッチ部3をオン状態に移行させるタイミングに同期して、記憶部6に記憶されているデータD1(15分)を計時用データDtとして計時部7に設定して、計時部7による15分の計時を開始させる(ステップ63)。次いで、電源制御部5は、計時完了信号S1の入力の有無を繰り返し検出することにより、計時部7による15分の計時が完了したか否か検出する(ステップ64)。   Next, the power supply control unit 5 outputs the control signal S2 to the switch unit 3 to shift the switch unit 3 to the ON state (step 62). As a result, the charging current Io starts to be supplied from the power supply unit 2 to the secondary battery 9 via the switch unit 3 at a constant current value (charging current value I1), and charging of the secondary battery 9 (constant current charging) is started. Be started. In addition, the power supply control unit 5 sets the data D1 (15 minutes) stored in the storage unit 6 as the timing data Dt in the timing unit 7 in synchronization with the timing of switching the switch unit 3 to the ON state. Then, the time measuring unit 7 starts measuring 15 minutes (step 63). Next, the power supply control unit 5 repeatedly detects whether or not the timing completion signal S1 has been input, thereby detecting whether or not the 15-minute timing by the timing unit 7 has been completed (step 64).

その後、計時部7は、15分の計時を完了し、計時完了信号S1を生成して電源制御部5に出力する。これにより、電源制御部5は、ステップ64において、計時部7による15分の計時の完了を検出し、次いで、制御信号S2のスイッチ部3への出力を停止して、スイッチ部3をオフ状態に移行させる(ステップ65)。これにより、二次電池9が電源部2から切り離されるため、二次電池9に対する充電が停止される。また、電源制御部5は、スイッチ部3をオフ状態に移行させるタイミングに同期して、記憶部6に記憶されているデータD2(5分)を計時用データDtとして計時部7に設定して、計時部7による5分の計時を開始させる(ステップ66)。次いで、電源制御部5は、計時完了信号S1の入力の有無を繰り返し検出することにより、計時部7による5分の計時が完了したか否か検出する(ステップ67)。   Thereafter, the time measuring unit 7 completes the time measurement for 15 minutes, generates a time measurement completion signal S1, and outputs the signal to the power supply control unit 5. As a result, the power supply control unit 5 detects the completion of the 15-minute timing by the timing unit 7 in step 64, and then stops outputting the control signal S2 to the switch unit 3 and turns off the switch unit 3. (Step 65). Thereby, since the secondary battery 9 is disconnected from the power supply unit 2, the charging of the secondary battery 9 is stopped. Further, the power supply control unit 5 sets the data D2 (5 minutes) stored in the storage unit 6 to the time measuring unit 7 as time measuring data Dt in synchronization with the timing of shifting the switch unit 3 to the OFF state. Then, the time measuring unit 7 starts measuring 5 minutes (step 66). Next, the power supply control unit 5 repeatedly detects whether or not the timing completion signal S1 has been input, thereby detecting whether or not the 5-minute timing by the timing unit 7 has been completed (step 67).

その後、計時部7は、5分の計時を完了し、計時完了信号S1を生成して電源制御部5に出力する。これにより、電源制御部5は、ステップ67において、計時部7による5分の計時の完了を検出し、次いで、二次電池9の充電電圧値を測定する(ステップ68)。具体的には、電源制御部5は、計時完了信号S1の入力時点での電圧データDv(計時完了信号S1の入力後に最初に入力した電圧データDv)に基づいて二次電池9の充電電圧値を検出して、記憶部6に記憶させる。この場合、測定された二次電池9の充電電圧値は、スイッチ部3がオフ状態、つまり二次電池9が電源部2から切り離された状態で測定されたものであるため、二次電池9の開放電圧Vopの電圧値(開放電圧値)であり、また切り離しから5分(本発明における所定時間)経過後の充電電圧値(開放電圧値)となる。電源制御部5は、二次電池9についての充電電圧値の測定回数が3回に達したか否かを判別しつつ(ステップ69)、上記ステップ62〜69を繰り返して、二次電池9についての充電電圧値を3回測定し、二次電池9の開放電圧値Vop1,Vop2,Vop3として記憶部6に順次記憶させる。   Thereafter, the time measuring unit 7 completes the time measurement for 5 minutes, generates a time measurement completion signal S1, and outputs the signal to the power supply control unit 5. Thereby, the power supply control part 5 detects completion of time measurement of 5 minutes by the time measuring part 7 in step 67, and then measures the charging voltage value of the secondary battery 9 (step 68). Specifically, the power supply controller 5 determines the charging voltage value of the secondary battery 9 based on the voltage data Dv (voltage data Dv input first after inputting the timing completion signal S1) when the timing completion signal S1 is input. Is stored in the storage unit 6. In this case, the measured charging voltage value of the secondary battery 9 is measured when the switch unit 3 is in an off state, that is, when the secondary battery 9 is disconnected from the power source unit 2. The open-circuit voltage Vop is a voltage value (open-circuit voltage value), and a charge voltage value (open-circuit voltage value) after 5 minutes (a predetermined time in the present invention) has elapsed since disconnection. The power supply controller 5 repeats the above steps 62 to 69 while determining whether or not the number of measurement of the charging voltage value for the secondary battery 9 has reached 3 (step 69). Are measured three times, and are sequentially stored in the storage unit 6 as the open-circuit voltage values Vop1, Vop2, and Vop3 of the secondary battery 9.

次いで、電源制御部5は、二次電池9の残存容量を算出する(ステップ70)。この残存容量の算出において、電源制御部5は、まず、測定した3回分の開放電圧値Vop1,Vop2,Vop3が図3において一点鎖線で示す直線L(充電時間と充電電圧Voとの関係を示す直線)上に位置することを確認する。本例では、上記したように、各開放電圧値Vop1,Vop2,Vop3は20分(=15分+5分)毎に(等時間間隔で)測定され、また二次電池9、特に鉛蓄電池では、充電開始直後の所定期間(例えば数分間)を除く充電期間において、二次電池9に定電流を連続して(または定電流を周期的に同一時間ずつ)供給するという条件下において、二次電池9の開放電圧Vop[V]が時間に比例して上昇する関係が存在することが実験的に確認されている。本例では、充電開始から15分間充電を行っているため、すべての開放電圧値Vop1,Vop2,Vop3が直線L上に位置することになる。   Next, the power control unit 5 calculates the remaining capacity of the secondary battery 9 (step 70). In calculating the remaining capacity, the power supply control unit 5 first shows a straight line L (relationship between the charging time and the charging voltage Vo) in which the measured open-circuit voltage values Vop1, Vop2, and Vop3 are indicated by a one-dot chain line in FIG. Make sure it is on the straight line. In this example, as described above, each open-circuit voltage value Vop1, Vop2, Vop3 is measured every 20 minutes (= 15 minutes + 5 minutes) (at equal time intervals), and in the secondary battery 9, particularly a lead storage battery, Under the condition that a constant current is continuously supplied to the secondary battery 9 (or the constant current is periodically supplied at the same time) in the charging period excluding a predetermined period (for example, several minutes) immediately after the start of charging. It has been experimentally confirmed that there is a relationship in which the open circuit voltage Vop [V] of 9 increases in proportion to time. In this example, since charging is performed for 15 minutes from the start of charging, all open-circuit voltage values Vop1, Vop2, and Vop3 are positioned on the straight line L.

電源制御部5は、各開放電圧値Vop1,Vop2,Vop3が直線L上に位置することを確認した後、上記の式(1)を用いて、最後の開放電圧値Vop3を測定した時点での二次電池9の残存容量を算出して、記憶部6に記憶させる。本例では、一例として、算出した残存容量が40%であるとする。これにより、残存容量検出処理が完了する。   After confirming that each open-circuit voltage value Vop1, Vop2, Vop3 is located on the straight line L, the power supply control unit 5 uses the above formula (1) to measure the last open-circuit voltage value Vop3. The remaining capacity of the secondary battery 9 is calculated and stored in the storage unit 6. In this example, as an example, it is assumed that the calculated remaining capacity is 40%. Thereby, the remaining capacity detection process is completed.

次に、電源制御部5は、図4に示すように、記憶部6から読み出した残存容量についての基準値(80%)と、算出した残存容量(40%)とを比較し(ステップ52)、残存容量が基準値以上のときには電流制限された定電圧充電処理(ステップ57)に移行し、残存容量が基準値未満のときには電池容量検出処理(ステップ53)に移行する。本例では、残存容量が基準値未満であるため、ステップ53に移行して電池容量検出処理を実行する。   Next, as shown in FIG. 4, the power supply control unit 5 compares the reference value (80%) for the remaining capacity read from the storage unit 6 with the calculated remaining capacity (40%) (step 52). When the remaining capacity is greater than or equal to the reference value, the process proceeds to a constant voltage charging process (step 57) in which the current is limited, and when the remaining capacity is less than the reference value, the process proceeds to the battery capacity detection process (step 53). In this example, since the remaining capacity is less than the reference value, the process proceeds to step 53 to execute the battery capacity detection process.

この電池容量検出処理では、電源制御部5は、まず、上記の式(1)を用いて、最初の開放電圧値Vop1を測定した時点での二次電池9の残存容量(SOC1)を算出して、記憶部6に記憶させる。本例では、一例として、算出した残存容量が35%であるとする。次いで、電源制御部5は、上記の式(2)を用いて、二次電池9の電池容量を算出する。この場合、SOC2としては、ステップ51において算出した二次電池9の残存容量(40%)を使用する。また、ΔTは、2つの残存容量SOC2,SOC1のうちの最初の残存容量SOC1を検出した時から、最後の残存容量SOC2を検出した時までの間における、充電電流Ioの二次電池9への供給時間の総和(単位:時間)であり、本例では、30分(0.5時間)である。また、容量検出処理における充電電流Ioの充電電流値I1は5Aである。したがって、算出される二次電池9の電池容量は50Ahとなる。電源制御部5は、算出した二次電池9の電池容量(50Ah)を記憶部6に記憶させて電池容量検出処理を終了する。   In this battery capacity detection process, the power supply controller 5 first calculates the remaining capacity (SOC1) of the secondary battery 9 at the time when the first open-circuit voltage value Vop1 is measured using the above formula (1). And stored in the storage unit 6. In this example, as an example, it is assumed that the calculated remaining capacity is 35%. Next, the power supply control unit 5 calculates the battery capacity of the secondary battery 9 using the above equation (2). In this case, the remaining capacity (40%) of the secondary battery 9 calculated in step 51 is used as the SOC2. ΔT is the charge current Io to the secondary battery 9 from the time when the first remaining capacity SOC1 of the two remaining capacities SOC2 and SOC1 is detected to the time when the last remaining capacity SOC2 is detected. The total supply time (unit: time) is 30 minutes (0.5 hours) in this example. The charging current value I1 of the charging current Io in the capacity detection process is 5A. Therefore, the calculated battery capacity of the secondary battery 9 is 50 Ah. The power supply control unit 5 stores the calculated battery capacity (50 Ah) of the secondary battery 9 in the storage unit 6 and ends the battery capacity detection process.

次いで、電源制御部5は、充電条件決定処理を実行する(ステップ54)。この充電条件決定処理では、電源制御部5は、定電流充電処理において電源部2から二次電池9に供給される充電電流Ioの充電電流値I2を決定(規定)する。具体的には、電源制御部5は、まず、容量測定処理に要した時間(1時間)と、記憶部6に記憶されている目標充電時間T0(16時間)および定電圧充電処理の時間(2時間)とから、定電流充電処理を実行する時間を算出する。この場合、この時間は13時間(=16−(2+1))となる。次に、電源制御部5は、容量測定処理を終了した時点での二次電池9の残存容量(40%)と、定電流充電処理を終了した時点(充電電圧Voが目標電圧Vtに最初に達した時点)での二次電池9の残存容量(95%)と、算出した電池容量(50Ah)とから、定電流充電処理によって充電すべき充電容量を算出する。この場合、この充電容量は、27.5Ah(=50Ah×(95%−40%)/100)となる。最後に、電源制御部5は、算出した充電容量(27.5Ah)を定電流充電処理を実行する時間(13時間)で除算することにより、充電電流値I2を決定する。この場合、充電電流値I2は、2.11A(=27.5Ah/13時間)となる。   Next, the power supply control unit 5 executes a charging condition determination process (step 54). In this charging condition determination process, the power supply control unit 5 determines (specifies) the charging current value I2 of the charging current Io supplied from the power supply unit 2 to the secondary battery 9 in the constant current charging process. Specifically, the power supply control unit 5 firstly, the time (1 hour) required for the capacity measurement process, the target charging time T0 (16 hours) stored in the storage unit 6 and the time of the constant voltage charging process ( 2 hours), the time for executing the constant current charging process is calculated. In this case, this time is 13 hours (= 16− (2 + 1)). Next, the power supply controller 5 sets the remaining capacity (40%) of the secondary battery 9 at the time when the capacity measurement process is finished and the time when the constant current charge process is finished (the charging voltage Vo is first set to the target voltage Vt). From the remaining capacity (95%) of the secondary battery 9 at the time of reaching (at the time reached) and the calculated battery capacity (50 Ah), the charging capacity to be charged by the constant current charging process is calculated. In this case, the charge capacity is 27.5 Ah (= 50 Ah × (95% -40%) / 100). Finally, the power supply control unit 5 determines the charging current value I2 by dividing the calculated charging capacity (27.5 Ah) by the time for executing the constant current charging process (13 hours). In this case, the charging current value I2 is 2.11 A (= 27.5 Ah / 13 hours).

続いて、電源制御部5は、定電流充電処理を実行する。この定電流充電処理では、電源制御部5は、充電条件決定処理で決定した充電電流値I2(2.11A)を電源部2に設定することにより、電源部2に対して一定の電流値(2.11A)での定電流充電を開始させる(ステップ55)。また、電源制御部5は、定電流充電処理を開始するタイミングに同期して、定電流充電処理を実行する時間(13時間)についてのデータを計時用データDtとして計時部7に設定して、計時部7による13時間の計時を開始させる。なお、上記ステップ70、およびステップ52,53,54における各処理は電源制御部5によって極めて短時間(1秒以下)に行われる。このため、この定電流充電処理は、図3に示すように、容量測定処理の完了後、直ちに実行される。その後、電源制御部5は、計時完了信号S1の入力の有無を検出することにより、定電流充電時間が13時間(設定時間T4)に達したか否かを繰り返し検出しつつ(ステップ56)、定電流充電処理を継続する。   Then, the power supply control part 5 performs a constant current charge process. In this constant current charging process, the power supply control unit 5 sets the charging current value I2 (2.11A) determined in the charging condition determination process in the power supply unit 2, thereby providing a constant current value ( The constant current charging in 2.11A) is started (step 55). In addition, the power supply control unit 5 sets data about the time (13 hours) for executing the constant current charging process in the time measuring unit 7 as time measuring data Dt in synchronization with the timing of starting the constant current charging process. The timing of 13 hours by the timing unit 7 is started. Each process in step 70 and steps 52, 53, and 54 is performed by the power supply control unit 5 in a very short time (1 second or less). Therefore, the constant current charging process is executed immediately after the capacity measurement process is completed, as shown in FIG. Thereafter, the power supply control unit 5 repeatedly detects whether or not the constant current charging time has reached 13 hours (set time T4) by detecting whether or not the timing completion signal S1 is input (step 56). Continue the constant current charging process.

定電流充電処理の開始からの経過時間が13時間(設定時間T4)に達したときに、計時部7は電源制御部5に計時完了信号S1を出力する。電源制御部5は、ステップ56において計時完了信号S1の入力を検出し、定電流充電処理を終了させ、次いで、定電圧充電処理を開始する(ステップ57)。上記した13時間の定電流充電処理により、二次電池9の充電電圧Voは目標電圧Vtに達し、かつ二次電池9の残存容量は95%に達する。   When the elapsed time from the start of the constant current charging process reaches 13 hours (set time T4), the timer unit 7 outputs a timing completion signal S1 to the power supply controller 5. The power supply controller 5 detects the input of the timing completion signal S1 in step 56, ends the constant current charging process, and then starts the constant voltage charging process (step 57). Through the constant current charging process for 13 hours, the charging voltage Vo of the secondary battery 9 reaches the target voltage Vt, and the remaining capacity of the secondary battery 9 reaches 95%.

定電圧充電処理では、電源制御部5は、目標電圧Vtを電源部2に対して設定する。これにより、電源部2は、充電電圧Voを目標電圧Vtに維持しつつ、二次電池9に充電電流Ioを供給する定電圧充電動作を開始する。また、電源制御部5は、定電圧充電処理を開始するタイミングに同期して、記憶部6から定電圧充電処理の時間T3(2時間)を読み出すと共に、計時用データDtとして計時部7に設定して、計時部7による2時間の計時を開始させる。その後、電源制御部5は、計時完了信号S1の入力の有無を検出することにより、定電圧充電時間が2時間(時間T3)に達したか否かを繰り返し検出しつつ(ステップ58)、定電圧充電処理を継続する。 In the constant voltage charging process, the power supply control unit 5 sets the target voltage Vt for the power supply unit 2 . Thereby, the power supply unit 2 starts a constant voltage charging operation for supplying the charging current Io to the secondary battery 9 while maintaining the charging voltage Vo at the target voltage Vt. In addition, the power supply control unit 5 reads the time T3 (2 hours) of the constant voltage charging process from the storage unit 6 in synchronization with the start timing of the constant voltage charging process, and sets the time measuring unit 7 as the time measuring data Dt. Then, the time counting unit 7 starts time counting for 2 hours. Thereafter, the power supply control unit 5 repeatedly detects whether or not the constant voltage charging time has reached 2 hours (time T3) by detecting whether or not the timing completion signal S1 is input (step 58). Continue the voltage charging process.

定電圧充電処理の開始からの経過時間が2時間(時間T3)に達したときに、計時部7は電源制御部5に計時完了信号S1を出力する。電源制御部5は、ステップ58において計時完了信号S1の入力を検出し、定電圧充電処理を終了させる。これにより、二次電池9に対する充電動作が16時間で完了する。   When the elapsed time from the start of the constant voltage charging process reaches 2 hours (time T3), the timer 7 outputs a timing completion signal S1 to the power supply controller 5. In step 58, the power supply controller 5 detects the input of the timing completion signal S1, and ends the constant voltage charging process. Thereby, the charging operation for the secondary battery 9 is completed in 16 hours.

このように、この充電装置1によれば、電源制御部5が、定電流充電処理の開始に先立って容量検出処理を実行して、二次電池9の残存容量(定電流充電処理の開始直前の残存容量)および電池容量を検出すると共に、検出した残存容量および電池容量と、予め設定された目標充電時間T0とに基づいて、定電流充電処理における(定電流充電時の)充電電流値を決定することができるため、二次電池9の電池容量の大きさに拘わらず、設定した目標充電時間T0で二次電池9を満充電状態まで充電して充電動作を完了することができる。   Thus, according to this charging apparatus 1, the power supply control part 5 performs a capacity | capacitance detection process prior to the start of a constant current charge process, and the remaining capacity of the secondary battery 9 (immediately before the start of a constant current charge process). Remaining capacity) and battery capacity, and based on the detected remaining capacity and battery capacity and a preset target charging time T0, the charging current value in the constant current charging process (during constant current charging) is determined. Therefore, regardless of the battery capacity of the secondary battery 9, the secondary battery 9 can be charged to a fully charged state at the set target charging time T0 to complete the charging operation.

また、この充電装置1によれば、容量検出処理において、電源制御部5が、二次電池9への一定の充電電流値I1での充電と電源部2からの二次電池9の切り離しとを、切り離しの開始から所定時間(5分)経過後における二次電池9についての開放電圧Vop1,Vop2,Vop3の測定を実行しつつ複数回(一例として3回)繰り返し、測定した複数の開放電圧Vop1,Vop2,Vop3のうちの少なくとも1つに基づいていずれか1つの開放電圧Vop1,Vop2,Vop3の測定時における二次電池9の残存容量を検出することにより、容量検出処理の時間を無駄にすることなく二次電池9に対する充電を行いつつ、残存容量をリアルタイムに検出することができる。また、開放電圧Vop1,Vop2,Vop3を測定して二次電池9の残存容量を検出することにより、電池形状、電極構造および配線に起因して充電電圧を測定する際に発生する内部抵抗の影響をなくすことができると共に満充電近傍で急上昇する過電圧による影響も軽減することができる。   Further, according to the charging device 1, in the capacity detection process, the power supply control unit 5 performs charging of the secondary battery 9 with a constant charging current value I1 and disconnection of the secondary battery 9 from the power supply unit 2. The measurement of the open-circuit voltages Vop1, Vop2, and Vop3 for the secondary battery 9 after the elapse of a predetermined time (5 minutes) from the start of the separation is repeated a plurality of times (as an example, three times), and the measured plurality of open-circuit voltages Vop1 , Vop2 and Vop3, the remaining capacity of the secondary battery 9 at the time of measuring any one of the open-circuit voltages Vop1, Vop2 and Vop3 is detected, thereby wasting the capacity detection processing time. The remaining capacity can be detected in real time while charging the secondary battery 9 without any problem. In addition, by measuring the open voltage Vop1, Vop2, Vop3 and detecting the remaining capacity of the secondary battery 9, the influence of the internal resistance generated when measuring the charging voltage due to the battery shape, electrode structure and wiring Can be eliminated, and the influence of the overvoltage that rapidly increases in the vicinity of the full charge can be reduced.

また、この充電装置1によれば、容量検出処理において、電源制御部5が、測定した複数の開放電圧Vop1,Vop2,Vop3のうちの2つに基づいて、2つの開放電圧(本例では開放電圧Vop1,Vop3)の各測定時における二次電池9の残存容量SOC1,SOC2を検出し、検出した2つの残存容量の差分(SOC2−SOC1)、2つの開放電圧を測定する間における二次電池9に対する総充電時間、および容量検出処理における充電電流値I1に基づいて電池容量を算出することにより、容量検出処理の時間を無駄にすることなく二次電池9に対する充電を行いつつ、電池容量を検出することができる。   Further, according to the charging device 1, in the capacity detection process, the power supply control unit 5 uses the two open voltages (open in this example) based on two of the plurality of measured open voltages Vop1, Vop2, and Vop3. Remaining capacities SOC1 and SOC2 of the secondary battery 9 at each measurement of the voltages Vop1 and Vop3) are detected, and the difference between the detected two remaining capacities (SOC2-SOC1) and the secondary battery during the measurement of the two open-circuit voltages By calculating the battery capacity based on the total charging time for 9 and the charging current value I1 in the capacity detection process, the battery capacity can be increased while charging the secondary battery 9 without wasting the time of the capacity detection process. Can be detected.

また、この充電装置1によれば、電源制御部5が定電流充電処理を実行した後に定電圧充電処理を一定時間(本例では2時間)だけ実行することにより、ほぼ満充電に近い状態の二次電池9をより満充電に近い状態に移行させつつ、充電終期の充電電流値I1を低下させて過充電を回避することができるため、二次電池9の寿命低下を防止することができる。   Moreover, according to this charging device 1, after the power supply control part 5 performs a constant current charge process, a constant voltage charge process is performed only for a fixed time (in this example, 2 hours), so that the battery is almost fully charged. While the secondary battery 9 is shifted to a state close to full charge, the charging current value I1 at the end of charging can be reduced to avoid overcharging, so that the life of the secondary battery 9 can be prevented from being reduced. .

なお、本発明は、上記した実施の形態に限定されず、その構成を適宜変更することができる。例えば、常温(25℃)における定数A,Bで構成された式(1)のみを記憶部6に記憶させた例について上記したが、複数の温度での定数A,Bを実験で算出して記憶部6に記憶させ、充電装置1の使用温度(二次電池9の充電時の温度)に合わせて、使用する式(1)を選択できる構成を採用することもできる。同様にして、二次電池9の目標電圧Vt、充電によって上昇した充電電圧Voが目標電圧Vtに最初に達した時点での二次電池9の残存容量(95%)、二次電池9の目標充電時間T0(16時間)、スイッチ部3に対するオン時間T1(15分)およびオフ時間T2(5分)、定電圧充電処理の時間T3(2時間)、容量検出処理における二次電池9についての充電電圧Voの測定回数(3回)、容量検出処理における充電電流Ioの充電電流値I1(5A)、および式(1)に基づいて算出された残存容量についての基準値(80%)の各値についても、記憶部6に複数記憶させ、任意に選択できる構成を採用することもできる。さらには、図示はしないが、例えば操作パネルやキーボードなどの操作部を設けて、これらの値について任意に設定できる構成を採用することもできる。   In addition, this invention is not limited to above-described embodiment, The structure can be changed suitably. For example, the example in which only the formula (1) composed of the constants A and B at normal temperature (25 ° C.) is stored in the storage unit 6 has been described above, but the constants A and B at a plurality of temperatures are calculated by experiment. It is also possible to adopt a configuration that can be stored in the storage unit 6 and that the expression (1) to be used can be selected in accordance with the use temperature of the charging device 1 (the temperature when the secondary battery 9 is charged). Similarly, the target voltage Vt of the secondary battery 9, the remaining capacity (95%) of the secondary battery 9 when the charging voltage Vo increased by charging first reaches the target voltage Vt, the target of the secondary battery 9. Charge time T0 (16 hours), ON time T1 (15 minutes) and OFF time T2 (5 minutes) for the switch unit 3, constant voltage charging process time T3 (2 hours), and the secondary battery 9 in the capacity detection process Each of the number of measurements of the charging voltage Vo (three times), the charging current value I1 (5A) of the charging current Io in the capacity detection process, and the reference value (80%) for the remaining capacity calculated based on the formula (1) A plurality of values can also be stored in the storage unit 6 and arbitrarily selected. Further, although not shown, it is possible to employ a configuration in which an operation unit such as an operation panel or a keyboard is provided, and these values can be arbitrarily set.

また、最も好ましい例として、容量測定処理において最後に検出した開放電圧値Vop3に基づいて算出した二次電池9の残存容量、つまり定電流充電処理を開始する直前での二次電池9の残存容量を用いて、定電流充電処理の際の充電電流値I2を決定する例について上記したが、容量測定処理における二次電池9への充電時間(スイッチ部3のオン時間T1)が短時間であって、一回の充電時間での二次電池9についての充電電圧Voの上昇分が少ないとき、つまり一回の充電による二次電池9の残存容量の増加分が少ないときには、最後に検出した開放電圧値Vopに代えて、許容できる範囲内で最後から1回または複数回前に検出した開放電圧値Vopに基づいて二次電池9の残存容量を測定し、この残存容量に基づいて定電流充電処理の際の充電電流値I2を決定することもでき、この場合においてもほぼ目標充電時間T0で二次電池9を充電することができる。   As a most preferable example, the remaining capacity of the secondary battery 9 calculated based on the open circuit voltage value Vop3 detected last in the capacity measurement process, that is, the remaining capacity of the secondary battery 9 immediately before starting the constant current charging process. As described above, the charging current value I2 in the constant current charging process is determined using the above, but the charging time (on time T1 of the switch unit 3) to the secondary battery 9 in the capacity measurement process is short. Thus, when the increase in the charging voltage Vo for the secondary battery 9 in one charging time is small, that is, when the increase in the remaining capacity of the secondary battery 9 due to one charging is small, the last detected opening Instead of the voltage value Vop, the remaining capacity of the secondary battery 9 is measured based on the open circuit voltage value Vop detected one or more times before the last within an allowable range, and constant current charging is performed based on the remaining capacity. It can also determine the charging current value I2 during sense, almost the target charging time T0 in this case it is possible to charge the secondary battery 9.

また、好ましい例として、定電流充電処理に続いて定電圧充電処理を実行する構成について上記したが、定電圧充電処理を実行する必要がないときには、定電圧充電処理の時間T3についてゼロ時間を規定するデータD3を用いることにより、定電流充電処理を完了して充電動作を完了することもできる。   Further, as a preferable example, the configuration in which the constant voltage charging process is executed following the constant current charging process has been described above. However, when the constant voltage charging process does not need to be executed, the zero time is defined for the time T3 of the constant voltage charging process. By using the data D3 to be performed, the constant current charging process can be completed and the charging operation can be completed.

また、定電流充電処理について、その開始からの経過時間が設定時間T4(上記例では13時間)に達したときに終了する例について上記したが、この設定時間T4は、二次電池9の充電電圧Voが目標電圧Vtに達する(残存容量が95%に達する)時間でもあるため、電圧測定部4からの電圧データDvに基づいて充電電圧Voを検出しつつ、充電電圧Voが目標電圧Vtに達したときに定電流充電処理を終了させる構成を採用することもできる。   In addition, the constant current charging process has been described with respect to the example in which the elapsed time from the start thereof reaches the set time T4 (13 hours in the above example), but this set time T4 is used to charge the secondary battery 9. Since it is also the time for the voltage Vo to reach the target voltage Vt (the remaining capacity reaches 95%), the charging voltage Vo is detected as the target voltage Vt while detecting the charging voltage Vo based on the voltage data Dv from the voltage measuring unit 4. It is also possible to employ a configuration in which the constant current charging process is terminated when it is reached.

本発明の実施の形態に係る充電装置1の構成図である。It is a lineblock diagram of charging device 1 concerning an embodiment of the invention. 開放電圧Vopと残存容量との関係を示す特性図である。It is a characteristic view which shows the relationship between the open circuit voltage Vop and remaining capacity. 充電処理における充電電流Ioおよび充電電圧Voの時間経過に伴う各変化を示す特性図である。It is a characteristic view which shows each change with time progress of the charging current Io and the charging voltage Vo in a charging process. 電源制御部5の充電動作を説明するためのフローチャートである。4 is a flowchart for explaining a charging operation of a power supply control unit 5; 図4における残存容量検出処理を説明するためのフローチャートである。It is a flowchart for demonstrating the remaining capacity detection process in FIG.

符号の説明Explanation of symbols

1 充電装置
2 電源部
3 スイッチ部
4 電圧測定部
5 電源制御部
6 記憶部
7 計時部
9 二次電池
I2 定電流充電時の充電電流値
Io 充電電流
T0 目標充電時間
Vo 充電電圧
DESCRIPTION OF SYMBOLS 1 Charging device 2 Power supply part 3 Switch part 4 Voltage measurement part 5 Power supply control part 6 Memory | storage part 7 Timekeeping part 9 Secondary battery I2 Charging current value at the time of constant current charging Io Charging current T0 Target charging time Vo Charging voltage

Claims (2)

充電対象電池に対する充電時の充電電流値を制御可能に構成された電源部と、当該電源部を制御することによって前記充電対象電池に対して定電流充電を実行する電源制御部とを備え、前記電源制御部は、前記定電流充電の開始に先立って容量検出処理を実行して、前記充電対象電池の残存容量および電池容量を検出すると共に、当該検出した残存容量および電池容量と、予め設定された目標充電時間とに基づいて、前記定電流充電時の充電電流値を規定する充電装置であって、
前記電源制御部は、前記容量検出処理において、前記充電対象電池への一定の充電電流値での充電と前記電源部からの前記充電対象電池の切り離しとを、当該切り離しの開始から所定時間経過後における前記充電対象電池についての開放電圧の測定を実行しつつ複数回繰り返し、前記測定した複数の開放電圧のうちの少なくとも1つに基づいて当該いずれか1つの開放電圧の測定時における前記充電対象電池の前記残存容量を検出すると共に、前記測定した複数の開放電圧のうちの2つに基づいて当該2つの開放電圧の各測定時における前記充電対象電池の前記残存容量を検出し、当該検出した2つの残存容量の差分、前記2つの開放電圧を測定する間における前記充電対象電池に対する総充電時間、および前記容量検出処理における前記充電電流値に基づいて前記電池容量を算出する充電装置。
E Bei a power supply unit configured to be able to control the charging current value during charging of the charging target cell, and a power control unit for executing the constant current charging to the charging target cell by controlling the power supply unit, before SL power control unit, the running capacitance detection process prior to the start of constant current charging, and detects the remaining capacity and the battery capacity of the charging target cell, a residual capacity and the battery capacity was the detected pre A charging device that defines a charging current value during the constant current charging based on a set target charging time ,
In the capacity detection process, the power control unit performs charging at a constant charging current value to the charging target battery and disconnecting the charging target battery from the power source unit after a predetermined time has elapsed from the start of the disconnection. The battery to be charged at the time of measuring any one of the plurality of open-circuit voltages based on at least one of the plurality of open-circuit voltages measured while performing measurement of the open-circuit voltage for the battery to be charged in And detecting the remaining capacity of the battery to be charged at each measurement of the two open-circuit voltages based on two of the measured open-circuit voltages, and detecting the detected 2 A difference between two remaining capacities, a total charge time for the battery to be charged during the measurement of the two open-circuit voltages, and the charge in the capacity detection process. Charging device for calculating the battery capacity based on the current value.
前記電源部は前記充電対象電池に対する充電時の充電電圧値を制御可能に構成され、
前記電源制御部は、前記定電流充電を実行した後に前記充電対象電池に対して定電圧充電を実行する請求項1記載の充電装置。
The power supply unit is configured to be able to control a charging voltage value at the time of charging the battery to be charged,
The power control unit claim 1 Symbol placement of the charging device executes the constant voltage charging to the charging target cell after performing the constant current charging.
JP2006235154A 2006-08-31 2006-08-31 Charger Active JP4855871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006235154A JP4855871B2 (en) 2006-08-31 2006-08-31 Charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006235154A JP4855871B2 (en) 2006-08-31 2006-08-31 Charger

Publications (2)

Publication Number Publication Date
JP2008061373A JP2008061373A (en) 2008-03-13
JP4855871B2 true JP4855871B2 (en) 2012-01-18

Family

ID=39243508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006235154A Active JP4855871B2 (en) 2006-08-31 2006-08-31 Charger

Country Status (1)

Country Link
JP (1) JP4855871B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106329689A (en) * 2015-06-30 2017-01-11 中兴通讯股份有限公司 Adapter and method of achieving charging thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090243549A1 (en) * 2008-03-31 2009-10-01 Naoki Matsumura Intelligent battery charging rate management
JP4735683B2 (en) * 2008-08-22 2011-07-27 ソニー株式会社 Charging apparatus and charging method
CN101783518A (en) * 2009-01-16 2010-07-21 比亚迪股份有限公司 Battery manager and application method thereof
JP5483588B2 (en) * 2010-08-31 2014-05-07 ニチコン株式会社 Charge control device
AT513335B1 (en) 2012-09-13 2017-10-15 Fronius Int Gmbh Method and device for charging batteries
JP5994859B2 (en) * 2012-09-24 2016-09-21 日産自動車株式会社 Charge control device and charge control method
JP2017099213A (en) * 2015-11-27 2017-06-01 株式会社Jvcケンウッド Charger and charging method
JP6760605B2 (en) * 2017-10-13 2020-09-23 Necプラットフォームズ株式会社 Control devices, electronic devices, control methods, and control programs
JP6981658B2 (en) * 2018-09-19 2021-12-15 Necプラットフォームズ株式会社 Charge control device, charge control method and program
CN111371140B (en) * 2020-03-11 2024-03-29 Oppo广东移动通信有限公司 Charging control method, device, terminal equipment and storage medium

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0360847A (en) * 1989-07-28 1991-03-15 Kawasaki Steel Corp Device for supporting mold in twin directional drawing type horizontal continuous casting machine
JPH04109829A (en) * 1990-08-28 1992-04-10 Matsushita Electric Works Ltd Charger
JP3692617B2 (en) * 1996-05-27 2005-09-07 ソニー株式会社 Charging time calculation method and battery pack

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106329689A (en) * 2015-06-30 2017-01-11 中兴通讯股份有限公司 Adapter and method of achieving charging thereof
CN106329689B (en) * 2015-06-30 2020-12-11 中兴通讯股份有限公司 Adapter and method for realizing charging thereof

Also Published As

Publication number Publication date
JP2008061373A (en) 2008-03-13

Similar Documents

Publication Publication Date Title
JP4855871B2 (en) Charger
JP4805863B2 (en) Charger
AU2017263851B2 (en) Battery state detection system and method
JP4957129B2 (en) Battery control device, battery control method, power supply control device, and electronic device
JP5638779B2 (en) Secondary battery characteristic detection method and secondary battery device
JP6763376B2 (en) Battery control device, power storage system, control method and computer-readable medium
EP2690743B1 (en) Energy storage system and rechargeable battery control method
CN103001299A (en) Charger
WO2019116640A1 (en) Battery monitoring device, computer program, and battery monitoring method
JP2009204401A (en) Internal short circuit detecting device and method of secondary battery
JP6648709B2 (en) Battery module controller
JP2011053088A (en) Method for computing residual capacity of secondary battery and secondary battery device
CN109073712A (en) Battery status detection system and method
JP2014068468A (en) Charge control device
JP5332062B2 (en) Uninterruptible power supply system and battery charging method
JP5250727B1 (en) Battery charge method, charge control circuit and power supply system
JP2011038878A (en) Deterioration degree determination method for secondary battery and secondary battery
JP2020008520A (en) Life determination method of energy storage system, and energy storage system
CN111919355B (en) Power storage system and measurement method
WO2019188889A1 (en) Power storage system and charging control method
JP6040922B2 (en) Charging system
JP4664319B2 (en) Charger
JP2007322353A (en) Battery capacity determining device, method, and battery pack using the same
JP2021023098A (en) Monitoring device of multi-cell battery pack
WO2015076188A1 (en) Multiple-battery power supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111027

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4855871

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250