WO2015076188A1 - Multiple-battery power supply device - Google Patents

Multiple-battery power supply device Download PDF

Info

Publication number
WO2015076188A1
WO2015076188A1 PCT/JP2014/080138 JP2014080138W WO2015076188A1 WO 2015076188 A1 WO2015076188 A1 WO 2015076188A1 JP 2014080138 W JP2014080138 W JP 2014080138W WO 2015076188 A1 WO2015076188 A1 WO 2015076188A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
secondary batteries
secondary battery
load
battery
Prior art date
Application number
PCT/JP2014/080138
Other languages
French (fr)
Japanese (ja)
Inventor
重美 川瀬
Original Assignee
重美 川瀬
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重美 川瀬 filed Critical 重美 川瀬
Publication of WO2015076188A1 publication Critical patent/WO2015076188A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells

Definitions

  • the present invention relates to a power supply device with a built-in battery in which two or more batteries are mounted, and relates to a multiple battery power supply device related to a method for outputting from a plurality of batteries and a method for charging a plurality of batteries.
  • the output to the load may be a DC voltage or an AC voltage.
  • the standard voltage may be 105V, 200V, or 12V, 24V. Any standard voltage of the country in which the present invention is used may be used.
  • a main power source of a vehicle that performs idling stop, a power storage unit that is electrically connected to the main power source, a charging circuit that is electrically connected to the power storage unit and charges the power storage unit, A starter that is electrically connected to the power storage unit; a power storage unit voltage detection circuit that is electrically connected to the power storage unit and detects a power storage unit voltage; and the charging circuit, the starter, and the power storage unit voltage detection circuit; A control circuit that is electrically connected, and the control circuit charges the power storage unit with the charging circuit until the power storage unit voltage is determined based on a running state of the vehicle.
  • the present invention relates to a power supply device that drives the starter with at least electric power of the power storage unit after idling stop of the vehicle.
  • the power supply device of Patent Document 2 is a power supply device that supplies power to a drive unit while alternately switching between the power supply and the battery, and includes a power supply voltage detection unit that detects a voltage on the power supply side, and a power supply device on the battery side.
  • battery-side voltage detecting means for detecting voltage
  • switching means for switching between a charging circuit for charging the battery from the power source, a discharging circuit for discharging from the battery to the driving unit, and battery-side voltage detecting means
  • Storage means for storing a first voltage set on the basis of the battery side voltage and a second voltage set on the basis of the battery side voltage, and that the power supply side voltage exceeds the first voltage, or It is determined that the power supply side voltage is lower than the second voltage, and the battery is charged from the power supply when the power supply side voltage exceeds the first voltage, and the power supply side voltage is the second voltage.
  • the power supply device of Patent Document 2 the voltage output from the circuit via the power supply device is always kept above a certain level, and when the battery voltage is above a certain level, the amount of charge from the power source is reduced to prevent overcharging. can do. Therefore, according to the present invention, it becomes easy to replace the battery of the existing power supply device with a lithium ion battery or the like, and it is possible to prevent the occurrence of problems due to overcharge or insufficient discharge voltage. As described above, the power supply device of Patent Document 2 has an effect that the transformer unit represented by the DC-DC converter + lithium ion battery or the like can behave the same as the lead battery in the conventional power supply circuit.
  • charging and discharging can be performed individually. For example, when one discharge is performed, the other can be charged. In particular, when two independent secondary batteries are used, charging and discharging can be performed individually, but there is a problem that the number of times of charging and discharging is forgotten and efficient use is not possible. In addition, there is a case where both secondary batteries are forgotten to be charged and both cannot be used. When there are three or more independent secondary batteries, it is usually impossible to manage them.
  • the present invention incorporates a plurality of secondary batteries, and can be operated efficiently without being affected by the state of charge of the secondary battery. For example, even when charged from a solar panel, An object of the present invention is to provide a multiple battery power supply device that can switch batteries without being affected by use.
  • a multiple battery power supply device comprises a plurality of rechargeable secondary batteries, and a load switch that can be intermittently connected between the plurality of secondary batteries and a load.
  • a resistor is connected to each of the plurality of secondary batteries to perform discharge, and when the discharge is performed, individual terminal voltages of the plurality of secondary batteries are measured.
  • the individual terminal voltages of the plurality of secondary batteries are stored.
  • a specific secondary battery is selected as a secondary battery for supplying power to the load from the higher (or lower) terminal voltage stored in the terminal voltage storage circuit, and power is supplied from the secondary battery to the load. .
  • the secondary battery that supplies power to the load is sequentially switched to the secondary battery having the next highest terminal voltage.
  • the plurality of chargeable / dischargeable secondary batteries may be secondary batteries capable of normal charge / discharge.
  • the load switch that can be intermittently connected between the plurality of secondary batteries and the load may be a switch such as a snap switch or a knife switch having a predetermined withstand voltage and current capacity. Any switch that can be intermittently connected between the battery and the load may be used.
  • the resistance discharge circuit is connected to each of the plurality of secondary batteries for discharging, and from the voltage drop of the load resistance at that time, the secondary battery This is to estimate the magnitude of the internal resistance.
  • the energization time is specified as 1 to 10 seconds. Longer time energization becomes more accurate, but the resistance value originally has an error, so the energization time was set within the range of 1 to 10 seconds.
  • the resistance discharge circuit is a parallel circuit in which a secondary battery and a resistor are connected in a one-to-one relationship, and since no other circuit elements are included, it can be regarded as a series circuit.
  • the voltage measuring circuit is a circuit for measuring individual terminal voltages of the plurality of secondary batteries when the resistance discharge circuit is discharging, and measuring the output voltage of the secondary batteries.
  • the measurement of the present invention may be any measurement method that employs a comparative theory that matches the spirit of the invention, and does not require precise measurement.
  • the terminal voltage storage circuit may be any circuit that stores a large or small terminal voltage of each of the plurality of secondary batteries. In this storage, if two secondary batteries are used, which terminal voltage is higher, or if there are three secondary batteries, the magnitude relationship of the three stages of terminal voltages may be known. Further, since the order of increasing potential corresponds to the order of decreasing potential, they are technically the same.
  • the selection circuit selects a secondary battery that supplies power to a load in order from a secondary battery having a higher terminal voltage stored in the terminal voltage storage circuit, and supplies power from the secondary battery to the load.
  • the secondary battery that supplies power to the load is sequentially switched to the secondary battery with the next highest terminal voltage.
  • a multi-battery power supply device comprising: a plurality of rechargeable secondary batteries and a solar panel for photoelectric conversion; A resistance discharge circuit that discharges by connecting a resistance value to each, a terminal voltage storage circuit that stores individual terminal voltages of the plurality of secondary batteries, and the terminal voltage when the charge switch is connected; A selection circuit that selects the secondary battery as a secondary battery that is charged from the solar panel in descending order of the terminal voltage stored in the storage circuit, and when the charge switch is turned on, the terminal voltage storage circuit The secondary battery which receives charge from a solar panel is selected in order with the low terminal voltage memorize
  • the plurality of freely chargeable / dischargeable secondary batteries may be secondary batteries that can be charged and discharged normally.
  • the charge switch is a switch that can be intermittently provided between a plurality of rechargeable secondary batteries and a solar panel, such as a snap switch or a knife switch having a predetermined current capacity, What is necessary is just to be able to interrupt between a secondary battery and load.
  • the resistance discharge circuit is a circuit that discharges by connecting a resistance value to each of the plurality of secondary batteries.
  • the terminal voltage storage circuit stores individual terminal voltages of the plurality of secondary batteries. What is necessary is just to memorize
  • the selection circuit selects the secondary battery as a secondary battery that is charged from the solar panel in descending order of the terminal voltage stored in the terminal voltage storage circuit when the charging switch is connected. When the charging switch is turned on, the circuit is selected as a secondary battery that is charged from the solar panel in descending order of the terminal voltage stored in the terminal voltage storage circuit.
  • the plurality of secondary batteries are two secondary batteries.
  • the plurality of secondary batteries are specified as two, and the control is alternately performed.
  • the multiple battery power supply device includes a plurality of rechargeable secondary batteries and a load switch that is intermittently provided between the plurality of secondary batteries and a load, and supplies power to the load. Therefore, when a load switch is turned on, the resistance discharge circuit discharges by connecting a resistance value to each of the plurality of secondary batteries. When discharging is performed by the resistance discharge circuit, individual terminal voltages of the plurality of secondary batteries are measured by a voltage measurement circuit. Then, the individual terminal voltages of the plurality of secondary batteries are stored in the terminal voltage storage circuit. Further, when selecting a secondary battery that supplies power to the load in descending order of the terminal voltage stored in the terminal voltage storage circuit, and supplying power from the secondary battery to the load, the load voltage falls below a specific voltage. When the selection circuit determines that the battery voltage has decreased, the secondary battery that supplies power to the load is sequentially switched to the secondary battery having the next highest terminal voltage.
  • a secondary battery having a high power supply voltage is selected and used as a power source.
  • the selection circuit determines that the load voltage has dropped below a specific voltage during use of the power supply, the secondary battery that supplies power to the load is switched to the secondary battery having the next higher terminal voltage. Therefore, when the battery voltage decreases, secondary batteries with low battery voltage (low power consumption) are sequentially selected and power supply is continued.
  • the multiple battery power supply device is used from a secondary battery having a large charge amount of power of two or more secondary batteries, stable power supply can be performed.
  • the specific voltage or lower for switching the battery to the secondary battery of the next terminal voltage is a voltage that is 85 to 90% of the rated voltage.
  • the specific voltage or lower Since the time when the load voltage decreases can be regarded as the end point of charging, the utilization rate of discharging / charging is improved.
  • a plurality of battery power supply devices include a plurality of rechargeable secondary batteries, a charge switch that is intermittently provided between the plurality of secondary batteries and a solar panel, and the plurality of secondary batteries.
  • Each of the plurality of secondary batteries is connected to the terminal voltage storage circuit when any one of the switches operates.
  • the charging switch is connected by a selection circuit, the secondary battery is selected as a secondary battery that is charged from the solar panel in descending order of the terminal voltage stored in the terminal voltage storage circuit. Is. Therefore, when any switch of the device operates, the individual terminal voltages of the plurality of secondary batteries are stored in the terminal voltage storage circuit.
  • the secondary battery When a charge switch that can be intermittently inserted between the plurality of secondary batteries and the solar panel is turned on, the secondary battery is charged from the solar panel.
  • the secondary battery is selected as the secondary battery that is charged from the next solar panel in the descending order of the terminal voltage stored in the terminal voltage storage circuit during charging of the secondary battery. Therefore, if there is a secondary battery that has been fully charged, the next secondary battery can be charged.
  • the plurality of secondary batteries are two secondary batteries, in addition to the effect according to any one of claims 1 to 3.
  • the secondary battery is alternately switched, and the control on the load side or the power source side can be simplified.
  • FIG. 1 is a circuit diagram of a secondary battery, a resistor, and a charge / discharge portion of a multiple battery power supply device according to an embodiment of the present invention.
  • FIG. 2 is an overall circuit configuration diagram of the multiple battery power supply device according to the embodiment of the present invention.
  • FIG. 3 is a flowchart of a program executed by the microcomputer that performs the overall operation of the multiple battery power supply apparatus according to the embodiment of the present invention.
  • FIG. 4 is a functional configuration diagram showing the overall functions of the multiple battery power supply device according to the embodiment of the present invention.
  • a secondary battery A and a secondary battery B are secondary batteries that can be charged and discharged.
  • Specific examples of secondary batteries include lead storage batteries, lithium ion secondary batteries, lithium ion polymer secondary batteries, nickel / hydrogen storage batteries, nickel / cadmium storage batteries, nickel / iron storage batteries, nickel / zinc storage batteries, silver oxide / There are zinc storage batteries.
  • the secondary battery A and the secondary battery B are secondary batteries of the same standard.
  • the secondary battery A and the secondary battery B are connected in series with a main power contact MSa and a main power contact MSb constituting the main power switch MS.
  • a main power contact MSa and a main power contact MSb constituting the main power switch MS.
  • the resistor RA and the resistor RB for which 2 to 10 ⁇ are selected are connected to the auxiliary contact SSa or the auxiliary contact SSb of the auxiliary switch SS to the resistor RA and the resistor RB.
  • the two main power contact MSa and the main power contact MSb constituting the main power switch MS are switches that turn on the power depending on whether or not to use the multiple battery power supply device. .
  • the secondary battery A and the secondary battery B are connected in series to the main power contact MSa and the main power contact MSb constituting the main power switch MS, and the auxiliary switch is connected to the resistor RA and the resistor RB with respect to the series connection.
  • a circuit in which auxiliary contacts SSa or auxiliary contacts SSb of SS are connected in series is connected in parallel. Since this parallel circuit has no other circuit elements, it can also be regarded as a series connection.
  • the voltage of the secondary battery A in the series circuit of the main power contact MSa constituting the secondary battery A and the main power switch MS can be detected as one input voltage (terminal C in FIG. 1) of the operational amplifier OP1.
  • the voltage of the secondary battery B in the series circuit of the secondary battery B and the main power contact MSb constituting the main power switch MS can be detected as one input voltage (terminal D in FIG. 1) of the operational amplifier OP2.
  • the voltage detection of the secondary battery A and the secondary battery B can be performed by comparing voltages input to both terminals (terminals A and B in FIG. 1) of the operational amplifier OP0.
  • the load switch SWL is turned on. By turning on the load switch SWL, whether the voltage of the secondary battery A or the secondary battery B whose voltage is detected is high or low is a result of the comparison voltage of both terminals of the operational amplifier OP0. On the other hand, the output of the operational amplifier OP0 is extracted from ("1" or "0").
  • Input when charging the secondary battery A and the secondary battery B is divided into charging from the commercial power source 50 and charging from the solar panel 51 that performs photoelectric conversion.
  • the voltage and current thereof can be any voltage and current. Therefore, when charging from the commercial power source 50, the secondary battery A and the secondary battery B are simultaneously charged. Will do. Moreover, even if a relatively large area is required as in the solar panel 51, the rated voltage and the rated current thereof are lowered. Therefore, the capacity of one panel may be adjusted to one secondary battery to obtain a charging voltage. Many. Therefore, in the case of the solar panel 51, the secondary battery A or the secondary battery B is charged on a one-to-one basis.
  • a resistor RA and a resistor RB are connected in parallel on the secondary battery A side or the secondary battery B side.
  • the resistor RA and the resistor RB monitor the output of the operational amplifier OP0 3 seconds after the main power switch MS is turned on, and the secondary battery A or the secondary battery B within 1 to 10 seconds (usually within 3 to 5 seconds). It is determined whether or not the potential on the side is high, and it is stored in the built-in memory of the microcomputer CPU.
  • the resistance RA and the resistance RB have a small error (RA-RB) that is affected by quality control, and the characteristic error between the resistance RA and the resistance RB is small compared to the standard product. is there.
  • the resistance values of the resistor RA and the resistor RB have a low resistance of about 2 to 10 ⁇ when 12 V is used, and have a power capacity that can be used repeatedly within 10 seconds.
  • the load switch SWL is used when executing a mode in which power is supplied from the secondary battery A and the secondary battery B of the multiple battery power supply device of the present embodiment to the load.
  • a relay Ry- 0 for selecting the secondary battery A or the secondary battery B is connected to the load switch SWL.
  • This relay Ry- 0 switches contacts according to the magnitude of the electromotive force of the secondary battery A and the secondary battery B detected by the operational amplifier OP0. That is, it corresponds to the detection of the magnitude of the voltage drop of the operational amplifier OP1 and the operational amplifier OP2. Therefore, the output of the relay Ry- 0 is not uniquely determined by the load switch SWL, and varies depending on other conditions.
  • the charging switch SWC1 and the charging switch SWC2 that are charged from the solar panel 51 execute a mode for charging the multiple battery power supply device of the present embodiment.
  • the charging circuit of FIG. 1 includes a charging switch SWC0 that charges the secondary battery A and the secondary battery B simultaneously from the commercial power source 50.
  • the relay Ry- 1 is operated by the charging switch SWC1
  • the relay Ry- 2 is operated by the charging switch SWC2.
  • the relay Ry- 1 and the relay Ry- 2 can be operated at the same time by the charge switch SWC1.
  • the relay R y-0 is operated by the charge switch SWC0.
  • the secondary battery A or the secondary battery B whose output voltage is estimated to be low is estimated to be charged. Select as.
  • the voltage detection outputs of the secondary battery A and the secondary battery B are input to the operational amplifier OP0, where it is determined which output is larger. It is concluded by comparing the input terminal voltage of the operational amplifier OP0 which is larger or smaller between the secondary battery A and the secondary battery B.
  • the fact that the voltage drop of the operational amplifier OP1 has increased in the discharged state is that the voltage drop at one terminal of the operational amplifier OP1 is detected, and the terminal input VZ1 of the constant voltage circuit CO1 is compared, and the voltage drop terminal input An increase in the amount is detected.
  • the increase in the voltage drop of the operational amplifier OP2 in the discharge state detects a voltage drop at one terminal of the operational amplifier OP2, and compares the terminal inputs VZ2 of the constant voltage circuit CO1 and the constant voltage circuit CO2. An increase in terminal input due to a voltage drop is detected.
  • the constant voltage circuit CO1 and the constant voltage circuit CO2 include three resistors R1, R2, R3, and a Zener diode ZD, and form a simple constant voltage circuit as shown in FIG. That is, the power supply voltage + Vcc is applied to the series circuit of the resistor R1, the resistor R2, and the resistor R3.
  • the Zener diode ZD voltage is calculated at a ratio of R3 / (R2 + R3), and becomes the terminal input VZ1 and the terminal input VZ2 of the operational amplifier OP1 and the operational amplifier OP2.
  • the output voltage of the secondary battery A or the secondary battery B is input to the other input of the operational amplifier OP1 and the operational amplifier OP2. Therefore, the outputs of the operational amplifier OP1 and the operational amplifier OP2 are output from “1” to “0” when the voltages of the secondary battery A and the secondary battery B are lower than the constant voltage input.
  • Outputs of the operational amplifiers OP0 to OP2 are sent to the photocoupler PH1.
  • the photocoupler PH1 and the photocoupler PH2 are for insulating the control signal, and the signal does not change even when the individual circuit configurations are viewed. That is, the outputs of the operational amplifiers OP1 to OP3 are directly input to the microcomputer CPU via the photocoupler PH1, that is, without changing “0” or “1”, and are processed by the microcomputer CPU.
  • Outputs of the operational amplifiers OP0 to OP2 are input to the microcomputer CPU via the photocoupler PH1, and the load switch SWL and the charge switches SWC0 to charge switch SWC2 are discharged or charged by the multiple battery power supply device of this embodiment. Is used to indicate. Further, as the output of the microcomputer CPU, the outputs of the relay RY ⁇ 1 , the relay RY ⁇ 2 and the relay RY ⁇ 3 are output via the photocoupler PH2.
  • the microcomputer CPU starts the processing of this routine when the main power switch MS is turned on.
  • the main power switch MS is turned on, the processing of the program of FIG. 3 is started, and the function shown in FIG. 4 consisting of FIG. 1 and FIG.
  • the microcomputer CPU starts the processing of this routine when the main power switch MS is turned on.
  • the main power switch MS is turned on, the processing of the program of FIG. 3 is started, and the function shown in FIG. 4 consisting of FIG. 1 and FIG.
  • the microcomputer CPU starts the processing of this routine when the main power switch MS is turned on.
  • the main power switch MS is turned on, the processing of the program of FIG. 3 is started, and the function shown in FIG. 4 consisting of FIG. 1 and FIG.
  • the microcomputer CPU starts the processing of this routine when the main power switch MS is turned on.
  • the main power switch MS is turned on, the processing of the program of FIG. 3 is started, and the function shown in FIG. 4 consisting of FIG. 1 and FIG.
  • the microcomputer CPU starts the
  • step S2 it is determined whether the load switch SWL is turned on, or in step S3, it is determined by the charge switch SWC0 or the charge switch SWC1 that the multi-battery power supply device of the present embodiment is to be charged. Is used to determine if it is going to be charged. That is, it is determined in step S2 that the load switch SWL is turned on, and it is determined in step S3 that charging is to be performed, or in step S4, it is determined whether charging is to be performed using the commercial power source 50.
  • step S5 When charging is performed using the commercial power supply 50, the selection of the charging voltage and charging current can be arbitrarily set. Therefore, normally, a large charging voltage and charging current can be obtained, and therefore a plurality of chargings are simultaneously started in step S5. For example, charging of all the secondary batteries 52 is started in step S5.
  • step S6 it is determined whether or not the voltage drop of the secondary battery is a voltage Vu corresponding to the completion of charging.
  • step S7 it is determined whether or not the voltage drop is increased to a voltage Vu corresponding to the completion of charging. When the drop rises to the voltage Vu corresponding to the completion of charging, the corresponding secondary battery 52 is charged.
  • step S10 When it is detected in step S2 that the load switch SWL is turned on, the secondary battery 52 whose voltage drop is maintained at the voltage Vu corresponding to the completion of charging is selected in step S10, and the secondary battery 52 is selected in step S11.
  • the battery is used to start supplying output to the load.
  • the routine from step S10 to step S12 is repeatedly executed until the discharge in step S11 decreases to a voltage drop Vd corresponding to the discharge completion state. Then, when the voltage drop is reduced to the voltage Vd corresponding to the completion of discharge in step S12, the secondary battery 52 corresponds to the voltage Vu corresponding to the completion of charging, the voltage drop immediately before the discharge of the secondary battery 52 is completed in step S13. In step S14, the secondary battery 52 is discharged.
  • step S15 when there is no voltage Vd whose voltage drop corresponds to the completion of discharge, it is determined in step S15. Is detected, and the switching of the secondary battery 52 is finished in step S16.
  • step S3 When it is detected that the charging switch SWC0 to the charging switch SWC2 are turned on in step S3, if a battery having a large voltage Vd corresponding to the completion of charging is selected in step S21, the secondary battery 52 is selected in step S22. Charging is started. When a battery having a large voltage drop in a discharged state is selected, it is detected in step S23 that the voltage drop has increased to a voltage Vu corresponding to the completion of charging.
  • step S24 a battery having a voltage Vd having a voltage drop corresponding to completion of discharge is selected next, and charging of the secondary battery 52 is started by the corresponding battery in step S25.
  • step S25 it is determined in step S26 whether the voltage drop has increased the voltage Vu corresponding to the completion of charging.
  • FIG. 1 A plurality of rechargeable secondary batteries 52 such as a secondary battery A or a secondary battery B, a load switch SWL between the secondary battery 52 and a load, and a load switch SWL are turned on.
  • the voltage measurement circuit 55 including the operational amplifier OP0 to the operational amplifier OP2 that measures individual terminal voltages of the secondary battery 52, and the micro that stores the individual terminal voltages of the secondary battery 52 are stored.
  • a terminal voltage storage circuit 56 including a storage unit of the computer CPU and a secondary battery 52 that supplies power to the load in the order of the terminal voltages stored in the terminal voltage storage circuit 56 are selected.
  • the microcomputer CPU sequentially switches the secondary battery 52 that supplies power to the load to the secondary battery 52 of the next terminal voltage when the load voltage drops below a specific voltage.
  • a selection circuit 57 is provided.
  • a secondary battery 52 having a high power supply voltage is selected and used as a power source.
  • the selection circuit 57 determines that the load voltage has dropped below a specific voltage during use of the power supply, the secondary battery 52 that supplies power to the load is switched to the secondary battery 52 having the next highest terminal voltage. . Therefore, when the battery voltage decreases, the secondary battery 52 having a low battery voltage (low power consumption) is sequentially selected and power supply is continued.
  • the multiple battery power supply device is used from the secondary battery 52 having a large charge amount of power of the two or more secondary batteries 52, stable power supply can be performed.
  • the plurality of battery power supply devices are provided with a plurality of rechargeable secondary batteries 52, a load switch SWL that is intermittently provided between the plurality of secondary batteries 52 and the load, and a load switch SWL.
  • a secondary battery A and a resistor RA which discharge by connecting a resistor comprising a resistor RA and a resistor RB to each of the plurality of secondary batteries 52, and a resistor comprising a parallel circuit of the secondary battery B and a resistor RB.
  • a selection circuit 57 including a microcomputer CPU that sequentially switches the battery B to the secondary battery A or the secondary battery B having the next terminal voltage is provided.
  • a plurality of secondary batteries 52 having a high power supply voltage are selected and used as a power source.
  • the selection circuit 57 determines that the load voltage has dropped below a specific voltage during use of the power supply, the secondary battery 52 that supplies power to the load is switched to the secondary battery having the next highest terminal voltage. Therefore, when the battery voltage decreases, the secondary battery 52 having a low battery voltage (low power consumption) is sequentially selected to continue supplying power.
  • the multiple battery power supply device is used from the secondary battery 52 having a large charge amount of power of the two or more secondary batteries 52, stable power supply can be performed.
  • the multi-battery power supply device of the above embodiment includes a plurality of rechargeable secondary batteries 52, charge switches SWC0 to SWC3 that are intermittently provided between the plurality of secondary batteries 52 and the solar panel 51, and charging.
  • the selection circuit 57 which selects as the secondary battery 52 which receives charge from the solar panel 51 in order of the terminal voltage memorize
  • the charging switch includes a plurality of rechargeable secondary batteries 52 and a charge switch that is intermittently provided between the plurality of secondary batteries 52 and the solar panel 51.
  • the selection circuit 57 When turned on, the selection circuit 57 is selected as the secondary battery 52 that is charged from the solar panel 51 in the descending order of the terminal voltage stored in the terminal voltage storage circuit 56.
  • the output from the solar panel 51 is very small compared to the normal load, it can be handled without performing a plurality of charges at the same time.
  • the plurality of secondary batteries 52 of the multiple battery power supply device of the above embodiment are two secondary batteries 52, the secondary batteries 52 are alternately switched, and the load side Or, control on the power supply side can be simplified.
  • the multiple battery power supply device of the above embodiment includes a plurality of rechargeable secondary batteries 52, and charge switches SWC0 to SWC2 that are intermittently connected between the plurality of secondary batteries 52 and the commercial power source 50.
  • a plurality of rechargeable secondary batteries 52 that are selected as secondary batteries 52 that charge all the secondary batteries 52 when the charging switches SWC0 to SWC2 are turned on, and the plurality of secondary batteries 52, Since the charge switches SWC0 to SWC2 that can be intermittently connected to the commercial power source 50 and the charge switches SWC0 to SWC2 are turned on, all the secondary batteries 52 are selected as the secondary batteries 52 to be charged.
  • the charging current can be freely selected, so that high-speed charging can be performed.
  • the secondary battery 52 When power is supplied from the secondary battery 52 to the load by the selection circuit 57, if the load voltage drops below a specific voltage, the secondary battery 52 that is currently supplying power to the load is set to the next terminal voltage.
  • the term “below a specific voltage for switching to the secondary battery 52” means that the voltage is 85 to 90% of the rated voltage of the secondary battery 52.
  • the inventors measured the voltage at the end of the discharge of the secondary battery 52. There are errors depending on the rated voltage and internal resistance of the secondary battery 52, the type of secondary battery and the magnitude of the additional current, and the characteristics of the new and old secondary batteries 52 change. Can not be aggregated.
  • the plurality of secondary batteries A or secondary batteries B that can be freely charged and discharged can be two or more secondary batteries 52.
  • the load switch SWL is openable and closable between a plurality of secondary batteries 52 and their loads.
  • the resistance discharge circuit 53 may be any circuit that discharges by connecting the resistors RA and RB to each of the plurality of secondary batteries 52 when the load switch SWL is energized.
  • the voltage measuring circuit 55 may be a circuit that measures individual terminal voltages of the plurality of secondary batteries 52 when the resistance discharging circuit 53 is discharging. Furthermore, the terminal voltage storage circuit 56 stores individual terminal voltages of the plurality of secondary batteries 52, and the storage form does not specify a special form. The terminal voltage storage circuit 56 only needs to have a function of storing individual terminal voltages of the plurality of secondary batteries 52 when any one of the switches provided in the apparatus operates. .
  • the selection circuit 57 is a secondary battery 52 that supplies power to the load in the order of the terminal voltages stored in the terminal voltage storage circuit 56. When the power is supplied from the secondary battery 52 to the load, a specific voltage is selected. Any circuit that switches the secondary battery 52 that is currently supplying power to the load to the secondary battery 52 of the next terminal voltage when the load voltage decreases below.
  • the selection circuit 57 is a secondary battery 52 as a secondary battery 52 that receives charge from the solar panel 51 in order of increasing terminal voltage stored in the terminal voltage storage circuit 52 when the charging switches SWC0 to SWC2 are connected. Any circuit that selects 52 may be used.
  • the charging switches SWC0 to SWC2 may be any switches that can be intermittently connected between the plurality of secondary batteries 52 and the solar panel 51 that performs photoelectric conversion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

Provided is a multiple-battery power supply device in which a plurality of secondary batteries are embedded, an effective using operation is possible independently of the states of charge of the secondary batteries, and, for example, the batteries can be changed over to each other without being affected by the use of the secondary batteries even when charging from a solar panel occurs. When a connectable and disconnectable load switch (SWL) between chargeable and dischargeable secondary batteries (A, B) and a load is turned on, resistors (RA, RB) are connected to the respective secondary batteries (A, B) and the secondary batteries (A, B) are discharged. When the discharging is performed, the terminal voltages of the respective secondary batteries (A, B) are measured and stored. From the descending order (or ascending order) of the stored terminal voltages, a specific one of the secondary batteries (A, B) is selected as one of the secondary batteries (A, B) for supplying power to the load and the power is supplied to the load from the one of the secondary batteries (A, B). At this time, when a load voltage drops to a specific voltage or less, the one of the secondary batteries (A, B) for supplying the power to the load is changed over to one of the secondary batteries (A, B) having the next higher order of the terminal voltage.

Description

複数電池電源装置Multiple battery power supply
 本発明は、電池2個以上を搭載している電池内臓の電源装置に関するもので、複数電池からの出力方法、複数電池の充電方法に関する複数電池電源装置に関するものである。
 なお、負荷に対する出力はDC電圧でも、AC電圧でもよい。また、電圧についても、標準電圧が105V、200Vであっても、12V、24Vであってもよい。本発明が使用される国の標準電圧であればよい。
The present invention relates to a power supply device with a built-in battery in which two or more batteries are mounted, and relates to a multiple battery power supply device related to a method for outputting from a plurality of batteries and a method for charging a plurality of batteries.
The output to the load may be a DC voltage or an AC voltage. In addition, regarding the voltage, the standard voltage may be 105V, 200V, or 12V, 24V. Any standard voltage of the country in which the present invention is used may be used.
特許文献1としては、アイドリングストップを行う車両の主電源と、前記主電源と電気的に接続される蓄電部と、前記蓄電部と電気的に接続され、前記蓄電部を充電する充電回路と、前記蓄電部と電気的に接続されるスタータと、前記蓄電部と電気的に接続され、蓄電部電圧を検出する蓄電部電圧検出回路と、前記充電回路、スタータ、及び蓄電部電圧検出回路と電気的に接続される制御回路とを備え、前記制御回路は、前記蓄電部電圧が、前記車両の走行状態に基いて決定される蓄電部充電電圧まで、前記蓄電部を前記充電回路で充電し、前記車両のアイドリングストップ後に、少なくとも前記蓄電部の電力で前記スタータを駆動するようにした電源装置に関するものである。 As Patent Document 1, a main power source of a vehicle that performs idling stop, a power storage unit that is electrically connected to the main power source, a charging circuit that is electrically connected to the power storage unit and charges the power storage unit, A starter that is electrically connected to the power storage unit; a power storage unit voltage detection circuit that is electrically connected to the power storage unit and detects a power storage unit voltage; and the charging circuit, the starter, and the power storage unit voltage detection circuit; A control circuit that is electrically connected, and the control circuit charges the power storage unit with the charging circuit until the power storage unit voltage is determined based on a running state of the vehicle. The present invention relates to a power supply device that drives the starter with at least electric power of the power storage unit after idling stop of the vehicle.
特許文献1の電源装置によれば、走行状態が緩やかであれば、蓄電部電圧が低くなるように充電できるので、その間は蓄電部の劣化進行を抑制することができる。したがって、さらなる高信頼性を得ることができる電源装置が得られるという効果を奏する。
また、本電源装置によれば、蓄電部が劣化限界に至る前の、劣化しつつある場合には、蓄電部電圧が低くなるように充電するので、その分、蓄電部の劣化進行を抑制することができる。更に、蓄電部が劣化しつつある際に、敢えて蓄電部電圧が低くなるように充電するので、エンジン再始動は可能であるが、クランキング期間が長くなる。その結果、蓄電部が劣化してエンジンの再始動ができなくなる前に、クランキング期間が長くなることで以って運転者に蓄電部の早期交換を促すことができ、延いては高信頼性を得ることができる電源装置が得られるという効果を奏するものである。
According to the power supply device of Patent Document 1, if the running state is gentle, charging can be performed such that the voltage of the power storage unit is lowered, so that the progress of deterioration of the power storage unit can be suppressed during that time. Therefore, there is an effect that a power supply device that can obtain higher reliability can be obtained.
Further, according to the power supply device, when the power storage unit is deteriorating before reaching the deterioration limit, charging is performed so that the power storage unit voltage is lowered, and accordingly, the progress of deterioration of the power storage unit is suppressed accordingly. be able to. Furthermore, when the power storage unit is deteriorating, charging is performed so that the power storage unit voltage is lowered, so that the engine can be restarted, but the cranking period becomes longer. As a result, the cranking period can be extended before the power storage unit deteriorates and the engine cannot be restarted, thereby prompting the driver to replace the power storage unit at an early stage. Thus, there is an effect that a power supply device capable of obtaining the above can be obtained.
特許文献2の電源装置は、前記電源と前記電池とを交互に切り換えながら駆動部に電力を供給する電源装置であって、前記電源側の電圧を検出する電源側電圧検出手段及び前記電池側の電圧を検出する電池側電圧検出手段と、前記電源から前記電池に充電を行う充電回路と、前記駆動部に前記電池から放電を行う放電回路とを切り換える切換手段と、電池側電圧検出手段によって検出された電池側電圧を基準として設定された第一の電圧及び電池側電圧を基準として設定された第二の電圧を記憶する記憶手段と、電源側電圧が前記第一の電圧を上回ったことまたは電源側電圧が前記第二の電圧を下回ったことを判断し、前記電源側電圧が前記第一の電圧を上回ったときに電源から電池に充電を行い、前記電源側電圧が前記第二の電圧を下回ったときに、電池から放電するように前記切換手段に指令を出力するとともに、前記記憶部の前記第一の電圧及び前記第二の電圧を、前記電池側電圧検出手段によって検出された電池側電圧に基づいて書き換える制御手段と、前記電池に充電される充電電圧及び前記電池から放電される放電電圧を変圧する変圧手段とを有するものである。 The power supply device of Patent Document 2 is a power supply device that supplies power to a drive unit while alternately switching between the power supply and the battery, and includes a power supply voltage detection unit that detects a voltage on the power supply side, and a power supply device on the battery side. Detected by battery-side voltage detecting means for detecting voltage, switching means for switching between a charging circuit for charging the battery from the power source, a discharging circuit for discharging from the battery to the driving unit, and battery-side voltage detecting means Storage means for storing a first voltage set on the basis of the battery side voltage and a second voltage set on the basis of the battery side voltage, and that the power supply side voltage exceeds the first voltage, or It is determined that the power supply side voltage is lower than the second voltage, and the battery is charged from the power supply when the power supply side voltage exceeds the first voltage, and the power supply side voltage is the second voltage. Below Sometimes, a command is output to the switching means to discharge from the battery, and the first voltage and the second voltage of the storage unit are set to the battery side voltage detected by the battery side voltage detection means. Control means for rewriting on the basis of the charging means, and transformer means for transforming a charging voltage charged in the battery and a discharging voltage discharged from the battery.
したがって、特許文献2の電源装置は、電源装置を介して回路出力される電圧が常に一定以上に保たれ、電池電圧が一定以上あるときは、電源からの充電量を少なくして過充電を防止することができる。そのため、本発明は、既存の電源装置の電池をリチウムイオン電池等に置き換えることが容易になり、過充電や放電電圧の不足による不具合の発生を防止することができる。このように、特許文献2の電源装置では、DC-DCコンバータに代表される変圧手段+リチウイオン電池等に、従来の電源回路における鉛電池と同じ振る舞いをさせることができるという効果が得られる。 Therefore, in the power supply device of Patent Document 2, the voltage output from the circuit via the power supply device is always kept above a certain level, and when the battery voltage is above a certain level, the amount of charge from the power source is reduced to prevent overcharging. can do. Therefore, according to the present invention, it becomes easy to replace the battery of the existing power supply device with a lithium ion battery or the like, and it is possible to prevent the occurrence of problems due to overcharge or insufficient discharge voltage. As described above, the power supply device of Patent Document 2 has an effect that the transformer unit represented by the DC-DC converter + lithium ion battery or the like can behave the same as the lead battery in the conventional power supply circuit.
特開2013-179801JP2013-179801A 特開2012-50184JP2012-50184
 このように、特許文献1及び特許文献2は、電源装置のおかれた立場に応じて充放電を行い、かつ、充放電特性を電源装置に応じて変化させている。しかし、特許文献1及び特許文献2のように、特定の用途が決まっている電源装置であれば、その用途を前提として充電及び放電等の特性を決定すればよい。
 しかし、電源装置を特定の目的に拘束されないで使用する場合は、放電特性及び充電特性を如何にすることが望ましいかが判然としない。また、ソーラーパネルから充電する場合と商用電源から充電する場合には、ソーラーパネルの内部インピーダンスが高いから、それを考慮して充電回路を形成しないと効率のよい充電ができないという問題が発生する。
As described above, in Patent Document 1 and Patent Document 2, charging / discharging is performed according to the position of the power supply device, and charge / discharge characteristics are changed according to the power supply device. However, as in Patent Document 1 and Patent Document 2, if the power supply device has a specific use, characteristics such as charging and discharging may be determined on the premise of the use.
However, when the power supply device is used without being restricted to a specific purpose, it is unclear how the discharge characteristics and the charge characteristics are desirable. In addition, when charging from a solar panel and charging from a commercial power source, the internal impedance of the solar panel is high, so that there is a problem that efficient charging cannot be performed unless a charging circuit is formed in consideration thereof.
 即ち、独立した二次電池を2個使用する場合、個々に充電、放電を行うことができ、例えば、1個の放電時に、他を充電することができる。特に、独立した二次電池を2個用いる場合には、個別に充放電を行うことができるが、個々の充電回数、放電回数が忘れられ、効率の良い使用ができないという問題が生ずる。また、両方の二次電池の充電を忘れ、両方が使用できないという問題が生ずることもある。独立した二次電池が3個以上ある場合には、管理できなくなるのが普通である。 That is, when two independent secondary batteries are used, charging and discharging can be performed individually. For example, when one discharge is performed, the other can be charged. In particular, when two independent secondary batteries are used, charging and discharging can be performed individually, but there is a problem that the number of times of charging and discharging is forgotten and efficient use is not possible. In addition, there is a case where both secondary batteries are forgotten to be charged and both cannot be used. When there are three or more independent secondary batteries, it is usually impossible to manage them.
 そこで、本発明は複数の二次電池を内蔵し、前記二次電池の充電状態に左右されることのない効率利用運転ができ、例えば、ソーラーパネルからの充電があっても、二次電池の使用に影響を受けることなく電池の切り替えができる複数電池電源装置の提供を課題とするものである。 Therefore, the present invention incorporates a plurality of secondary batteries, and can be operated efficiently without being affected by the state of charge of the secondary battery. For example, even when charged from a solar panel, An object of the present invention is to provide a multiple battery power supply device that can switch batteries without being affected by use.
 請求項1の発明にかかる複数電池電源装置は、充放電自在な複数個の二次電池と、前記複数個の二次電池と負荷との間に断続自在な負荷スイッチとを具備し、前記負荷スイッチが投入されたとき、前記複数の二次電池の各々に抵抗器を接続して放電を行い、その放電を行っているときに、前記複数個の二次電池の個々の端子電圧を測定し、その前記複数個の二次電池の個々の端子電圧を記憶しておく。前記端子電圧記憶回路に記憶する端子電圧の高い順位(または低い順位)から、負荷に電力を供給する二次電池として特定の二次電池を選択し、当該二次電池から負荷に電力を供給する。このとき、特定の電圧以下に負荷電圧が低下したときには、負荷に電力を供給する二次電池を次に端子電圧の高い順位の二次電池に順次切り替えるものである。なお、ここで、上記充放電自在な複数個の二次電池とは、通常の充放電が可能な二次電池であればよい。 A multiple battery power supply device according to the invention of claim 1 comprises a plurality of rechargeable secondary batteries, and a load switch that can be intermittently connected between the plurality of secondary batteries and a load. When the switch is turned on, a resistor is connected to each of the plurality of secondary batteries to perform discharge, and when the discharge is performed, individual terminal voltages of the plurality of secondary batteries are measured. The individual terminal voltages of the plurality of secondary batteries are stored. A specific secondary battery is selected as a secondary battery for supplying power to the load from the higher (or lower) terminal voltage stored in the terminal voltage storage circuit, and power is supplied from the secondary battery to the load. . At this time, when the load voltage drops below a specific voltage, the secondary battery that supplies power to the load is sequentially switched to the secondary battery having the next highest terminal voltage. Here, the plurality of chargeable / dischargeable secondary batteries may be secondary batteries capable of normal charge / discharge.
 また、上記複数個の二次電池と負荷との間にあって断続自在な負荷スイッチとは、所定の耐電圧と電流容量を有しているスナップスイッチ、ナイフスイッチ等のスイッチであればよく、二次電池と負荷との間を断続できるスイッチであればよい。
 そして、上記抵抗放電回路とは、負荷スイッチが投入されたとき、前記複数の二次電池の各々に抵抗器を接続して放電を行い、そのときの負荷抵抗の電圧降下から、二次電池の内部抵抗の大きさを推定するものである。ここでは、通電時間を1~10秒に特定して行っている。長時間の通電の方が正確になるが、元々抵抗値にも誤差があるので、通電時間を1~10秒の範囲内とした。前記抵抗放電回路は、二次電池と抵抗器が1対1に接続された並列回路であり、他に回路要素が入らないことから直列回路と見做すこともできる。
Further, the load switch that can be intermittently connected between the plurality of secondary batteries and the load may be a switch such as a snap switch or a knife switch having a predetermined withstand voltage and current capacity. Any switch that can be intermittently connected between the battery and the load may be used.
And, when the load switch is turned on, the resistance discharge circuit is connected to each of the plurality of secondary batteries for discharging, and from the voltage drop of the load resistance at that time, the secondary battery This is to estimate the magnitude of the internal resistance. Here, the energization time is specified as 1 to 10 seconds. Longer time energization becomes more accurate, but the resistance value originally has an error, so the energization time was set within the range of 1 to 10 seconds. The resistance discharge circuit is a parallel circuit in which a secondary battery and a resistor are connected in a one-to-one relationship, and since no other circuit elements are included, it can be regarded as a series circuit.
 更に、上記電圧測定回路とは、前記抵抗放電回路で放電を行っているとき、前記複数個の二次電池の個々の端子電圧を測定する回路で、二次電池の出力電圧を測定するものであり、本願発明の測定は、発明の趣旨に合った比較論を採用した測定方法であればよく、精密測定を求めているものではない。
 更にまた、上記端子電圧記憶回路とは、前記複数個の二次電池の個々の端子電圧の大きい、小さいを記憶するものであればよい。この記憶は、2個の二次電池であれば、どちらの端子電圧が高いか、または、3個の二次電池であれば3段階の端子電圧の大小関係が分かればよい。また、電位の高い順は、電位の低い順にも相当するので、それらは技術的に同一である。
 加えて、上記選択回路は、前記端子電圧記憶回路に記憶する端子電圧の高い二次電池から順に負荷に電力を供給する二次電池として選択し、当該二次電池から負荷に電力を供給しているとき、特定の電圧以下に負荷電圧が低下したとき、負荷に電力を供給する二次電池を次に端子電圧の高い二次電池に順次切り替えるものである。
Further, the voltage measuring circuit is a circuit for measuring individual terminal voltages of the plurality of secondary batteries when the resistance discharge circuit is discharging, and measuring the output voltage of the secondary batteries. Yes, the measurement of the present invention may be any measurement method that employs a comparative theory that matches the spirit of the invention, and does not require precise measurement.
Furthermore, the terminal voltage storage circuit may be any circuit that stores a large or small terminal voltage of each of the plurality of secondary batteries. In this storage, if two secondary batteries are used, which terminal voltage is higher, or if there are three secondary batteries, the magnitude relationship of the three stages of terminal voltages may be known. Further, since the order of increasing potential corresponds to the order of decreasing potential, they are technically the same.
In addition, the selection circuit selects a secondary battery that supplies power to a load in order from a secondary battery having a higher terminal voltage stored in the terminal voltage storage circuit, and supplies power from the secondary battery to the load. When the load voltage drops below a specific voltage, the secondary battery that supplies power to the load is sequentially switched to the secondary battery with the next highest terminal voltage.
 請求項2の発明にかかる複数電池電源装置の前記選択回路によって、二次電池から負荷に電力を供給しているとき、特定の電圧以下に負荷電圧が低下すると、現在負荷に電力を供給している二次電池を次の端子電圧の二次電池に切り替える特定の電圧以下とは、二次電池の定格電圧の85~90%の電圧としたものである。
 発明者らは、二次電池の放電の終了時の電圧を測定した。しかし、二次電池の定格電圧及び内部抵抗及び二次電池の種類及び付加電流の大きさによって誤差があり、また、二次電池の新しいものと古いものではその特性が変化するから、特性のバラツキを集約することができなかった。全体として、「二次電池の定格電圧の85~90%の電圧」を「二次電池を充電したその充電の終了時の電圧」であると判断した。この判断は、二次電池の種類等が解析されると、その数値との間に論理が明確になるものと推定されるが、実機において支承のない運転ができた値である。
When power is supplied from the secondary battery to the load by the selection circuit of the multiple battery power supply device according to the invention of claim 2, when the load voltage drops below a specific voltage, power is supplied to the current load. The term “below a specific voltage at which the secondary battery is switched to the secondary battery having the next terminal voltage” means that the voltage is 85 to 90% of the rated voltage of the secondary battery.
The inventors measured the voltage at the end of discharge of the secondary battery. However, there are errors depending on the rated voltage and internal resistance of the secondary battery, the type of secondary battery and the magnitude of the additional current, and the characteristics of the new and old secondary batteries change. Could not be aggregated. Overall, it was judged that “voltage of 85 to 90% of the rated voltage of the secondary battery” was “the voltage at the end of the charge after charging the secondary battery”. This judgment is presumed that the logic becomes clear with the numerical value of the secondary battery when it is analyzed, but it is a value that can be operated without support in the actual machine.
 請求項3の発明にかかる複数電池電源装置は、充放電自在な複数個の二次電池と光-電変換するソーラーパネルとの間にあって断続自在な充電スイッチと、前記複数個の二次電池の各々に抵抗値を接続して放電を行う抵抗放電回路と、前記複数個の二次電池の個々の端子電圧を記憶する端子電圧記憶回路と、前記充電スイッチが接続されているとき、前記端子電圧記憶回路に記憶している端子電圧の低い順にソーラーパネルから充電を受ける二次電池として前記二次電池を選択する選択回路とを具備し、前記充電スイッチが投入されたとき、前記端子電圧記憶回路に記憶された端子電圧の低い順にソーラーパネルから充電を受ける二次電池を選択するものである。
 ここで、上記充放電自在な複数個の二次電池とは、通常の充放電が可能な二次電池であればよい。
According to a third aspect of the present invention, there is provided a multi-battery power supply device comprising: a plurality of rechargeable secondary batteries and a solar panel for photoelectric conversion; A resistance discharge circuit that discharges by connecting a resistance value to each, a terminal voltage storage circuit that stores individual terminal voltages of the plurality of secondary batteries, and the terminal voltage when the charge switch is connected A selection circuit that selects the secondary battery as a secondary battery that is charged from the solar panel in descending order of the terminal voltage stored in the storage circuit, and when the charge switch is turned on, the terminal voltage storage circuit The secondary battery which receives charge from a solar panel is selected in order with the low terminal voltage memorize | stored in this.
Here, the plurality of freely chargeable / dischargeable secondary batteries may be secondary batteries that can be charged and discharged normally.
また、上記充電スイッチは、充放電自在な複数個の二次電池とソーラーパネルとの間にあって断続自在なスイッチであり、所定の電流容量を有しているスナップスイッチ、ナイフスイッチ等のスイッチで、二次電池と負荷との間を断続できればよい。
 そして、上記抵抗放電回路とは、前記複数個の二次電池の各々に抵抗値を接続して放電を行う回路である。
 更に、上記端子電圧記憶回路とは、前記複数個の二次電池の個々の端子電圧を記憶するものである。前記複数個の二次電池の個々の端子電圧の大きい、小さいを記憶するものであればよい。この記憶のタイミングは、最初に何れかのスイッチが操作されたとき、または最初にスイッチ操作された時間から所定の時間内であればよい。この記憶は、2個の二次電池であれば、どちらの端子電圧が高いか、または、3個の二次電池であれば3段階の端子電圧の大小関係が分かればよい。
 更にまた、上記選択回路は、前記充電スイッチが接続されているとき、前記端子電圧記憶回路に記憶している端子電圧の低い順にソーラーパネルから充電を受ける二次電池として前記二次電池を選択する回路であり、前記充電スイッチが投入されたとき、前記端子電圧記憶回路に記憶する端子電圧の低い順にソーラーパネルから充電を受ける二次電池として選択する回路である。
In addition, the charge switch is a switch that can be intermittently provided between a plurality of rechargeable secondary batteries and a solar panel, such as a snap switch or a knife switch having a predetermined current capacity, What is necessary is just to be able to interrupt between a secondary battery and load.
The resistance discharge circuit is a circuit that discharges by connecting a resistance value to each of the plurality of secondary batteries.
Further, the terminal voltage storage circuit stores individual terminal voltages of the plurality of secondary batteries. What is necessary is just to memorize | store the large and small of each terminal voltage of these secondary batteries. The timing of this storage may be within a predetermined time from when any switch is first operated or from the time when the switch is first operated. In this storage, if two secondary batteries are used, which terminal voltage is higher, or if there are three secondary batteries, the magnitude relationship of the three stages of terminal voltages may be known.
Furthermore, the selection circuit selects the secondary battery as a secondary battery that is charged from the solar panel in descending order of the terminal voltage stored in the terminal voltage storage circuit when the charging switch is connected. When the charging switch is turned on, the circuit is selected as a secondary battery that is charged from the solar panel in descending order of the terminal voltage stored in the terminal voltage storage circuit.
 請求項4の発明にかかる複数電池電源装置は、前記複数個の二次電池は2個の二次電池としたものである。
 ここで、前記複数個の二次電池が2個と特定されたものであり、制御は交互動作になる。
According to a fourth aspect of the present invention, the plurality of secondary batteries are two secondary batteries.
Here, the plurality of secondary batteries are specified as two, and the control is alternately performed.
 請求項1の複数電池電源装置は、充放電自在な複数個の二次電池と、前記複数個の二次電池と負荷との間にあって断続自在な負荷スイッチとを具備し、負荷に電力を供給するため負荷スイッチが投入されると、抵抗放電回路は前記複数の二次電池の各々に抵抗値を接続して放電を行う。前記抵抗放電回路で放電を行っているとき、電圧測定回路で前記複数個の二次電池の個々の端子電圧を測定する。そして、複数個の二次電池の個々の端子電圧を端子電圧記憶回路に記憶する。更に、前記端子電圧記憶回路に記憶する端子電圧の高い順に負荷に電力を供給する二次電池として選択し、当該二次電池から負荷に電力を供給しているとき、特定の電圧以下に負荷電圧が低下したと選択回路が判断すると、負荷に電力を供給する二次電池を次に端子電圧の高い二次電池に順次切り替えるものである。 The multiple battery power supply device according to claim 1 includes a plurality of rechargeable secondary batteries and a load switch that is intermittently provided between the plurality of secondary batteries and a load, and supplies power to the load. Therefore, when a load switch is turned on, the resistance discharge circuit discharges by connecting a resistance value to each of the plurality of secondary batteries. When discharging is performed by the resistance discharge circuit, individual terminal voltages of the plurality of secondary batteries are measured by a voltage measurement circuit. Then, the individual terminal voltages of the plurality of secondary batteries are stored in the terminal voltage storage circuit. Further, when selecting a secondary battery that supplies power to the load in descending order of the terminal voltage stored in the terminal voltage storage circuit, and supplying power from the secondary battery to the load, the load voltage falls below a specific voltage. When the selection circuit determines that the battery voltage has decreased, the secondary battery that supplies power to the load is sequentially switched to the secondary battery having the next highest terminal voltage.
 したがって、負荷がこの複数電池電源装置から電力を供給されるには、まず、複数の二次電池から電源電圧の高いものを選択し、それを電源とする。しかし、その電源の使用中に特定の電圧以下に負荷電圧が低下したと選択回路が判断すると、負荷に電力を供給する二次電池を次に端子電圧の高い二次電池に切り替える。よって、電池電圧が低下すると、順次、電池電圧の低い(電力量の少ない)二次電池を選択して電力の供給を継続する。
 このように、複数電池電源装置は、2個以上の二次電池の電力の充電量の多い二次電池から使用するから、安定した電力の供給が行える。
Therefore, in order for the load to be supplied with power from the multiple battery power supply device, first, a secondary battery having a high power supply voltage is selected and used as a power source. However, when the selection circuit determines that the load voltage has dropped below a specific voltage during use of the power supply, the secondary battery that supplies power to the load is switched to the secondary battery having the next higher terminal voltage. Therefore, when the battery voltage decreases, secondary batteries with low battery voltage (low power consumption) are sequentially selected and power supply is continued.
Thus, since the multiple battery power supply device is used from a secondary battery having a large charge amount of power of two or more secondary batteries, stable power supply can be performed.
 請求項2の複数電池電源装置の前記選択回路は、二次電池から負荷に電力を供給しているとき、特定の電圧以下に負荷電圧が低下すると、現在負荷に電力を供給している二次電池を次の端子電圧の二次電池に切り替える特定の電圧以下とは、定格電圧の85~90%の電圧としたものであるから、請求項1に記載の効果に加えて、特定の電圧以下に負荷電圧が低下するときを充電の終了時点として捉えることができるので、放電/充電の利用率がよくなる。 The secondary battery that supplies power to the current load when the load voltage drops below a specific voltage when power is supplied from the secondary battery to the load. The specific voltage or lower for switching the battery to the secondary battery of the next terminal voltage is a voltage that is 85 to 90% of the rated voltage. In addition to the effect of claim 1, the specific voltage or lower Since the time when the load voltage decreases can be regarded as the end point of charging, the utilization rate of discharging / charging is improved.
 請求項3の複数電池電源装置は、充放電自在な複数個の二次電池と、前記複数個の二次電池とソーラーパネルとの間にあって断続自在な充電スイッチと、前記複数個の二次電池の各々に抵抗値を接続して放電を行う抵抗放電回路とを具備し、また、装置の有する何れかのスイッチが動作したとき、端子電圧記憶回路に前記複数個の二次電池の個々の端子電圧を記憶し、選択回路によって前記充電スイッチが接続されているとき、前記端子電圧記憶回路に記憶している端子電圧の低い順にソーラーパネルから充電を受ける二次電池として前記二次電池を選択するものである。
 したがって、装置の有する何れかのスイッチが動作したとき、端子電圧記憶回路に複数個の二次電池の個々の端子電圧を記憶しておく。前記複数個の二次電池とソーラーパネルとの間にあって断続自在な充電スイッチが投入されていると、ソーラーパネルから二次電池を充電する。この二次電池の充電中に端子電圧記憶回路に記憶している端子電圧の低い順に、次のソーラーパネルから充電を受ける二次電池として選択をするものである。よって、充電が完了した二次電池が存在すると、次の二次電池の充電に入ることができる。
A plurality of battery power supply devices according to claim 3 include a plurality of rechargeable secondary batteries, a charge switch that is intermittently provided between the plurality of secondary batteries and a solar panel, and the plurality of secondary batteries. Each of the plurality of secondary batteries is connected to the terminal voltage storage circuit when any one of the switches operates. When the charging switch is connected by a selection circuit, the secondary battery is selected as a secondary battery that is charged from the solar panel in descending order of the terminal voltage stored in the terminal voltage storage circuit. Is.
Therefore, when any switch of the device operates, the individual terminal voltages of the plurality of secondary batteries are stored in the terminal voltage storage circuit. When a charge switch that can be intermittently inserted between the plurality of secondary batteries and the solar panel is turned on, the secondary battery is charged from the solar panel. The secondary battery is selected as the secondary battery that is charged from the next solar panel in the descending order of the terminal voltage stored in the terminal voltage storage circuit during charging of the secondary battery. Therefore, if there is a secondary battery that has been fully charged, the next secondary battery can be charged.
 請求項4の複数電池電源装置は、前記複数個の二次電池は、2個の二次電池としたものであるから、請求項1乃至請求項3の何れか1つに記載の効果に加えて、交互に二次電池の切り替えが行われ、負荷側または電源側の制御が単純化できる。 In the multiple battery power supply device according to claim 4, since the plurality of secondary batteries are two secondary batteries, in addition to the effect according to any one of claims 1 to 3. Thus, the secondary battery is alternately switched, and the control on the load side or the power source side can be simplified.
図1は本発明の実施の形態の複数電池電源装置の二次電池と抵抗器及び充放電部分の回路図である。FIG. 1 is a circuit diagram of a secondary battery, a resistor, and a charge / discharge portion of a multiple battery power supply device according to an embodiment of the present invention. 図2は本発明の実施の形態の複数電池電源装置の全体回路構成図である。FIG. 2 is an overall circuit configuration diagram of the multiple battery power supply device according to the embodiment of the present invention. 図3は本発明の実施の形態の複数電池電源装置の全体動作を行うマイクロコンピュータが行うプログラムのフローチャートである。FIG. 3 is a flowchart of a program executed by the microcomputer that performs the overall operation of the multiple battery power supply apparatus according to the embodiment of the present invention. 図4は本発明の実施の形態の複数電池電源装置の全体機能を示す機能構成図である。FIG. 4 is a functional configuration diagram showing the overall functions of the multiple battery power supply device according to the embodiment of the present invention.
 以下、本発明の実施の形態について、図面に基づいて説明する。なお、実施の形態において、図示の同一記号及び同一符号は、同一または相当する機能部分であるから、ここではその重複する説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that, in the embodiments, the same reference numerals and the same reference numerals are the same or corresponding functional parts, and therefore, redundant description thereof is omitted here.
[実施の形態]
図1及び図2において、二次電池A及び二次電池Bは、充電・放電を行うことのできる二次電池である。二次電池の具体的なものには、鉛蓄電池、リチウムイオン二次電池、リチウムイオンポリマー二次電池、ニッケル・水素蓄電池、ニッケル・カドミウム蓄電池、ニッケル・鉄蓄電池、ニッケル・亜鉛蓄電池、酸化銀・亜鉛蓄電池等がある。通常、二次電池A及び二次電池Bは、同一規格の二次電池が用いられる。
[Embodiment]
1 and 2, a secondary battery A and a secondary battery B are secondary batteries that can be charged and discharged. Specific examples of secondary batteries include lead storage batteries, lithium ion secondary batteries, lithium ion polymer secondary batteries, nickel / hydrogen storage batteries, nickel / cadmium storage batteries, nickel / iron storage batteries, nickel / zinc storage batteries, silver oxide / There are zinc storage batteries. Usually, the secondary battery A and the secondary battery B are secondary batteries of the same standard.
二次電池A及び二次電池Bには、主電源スイッチMSを構成する主電源接点MSa及び主電源接点MSbが直列接続されている。また、例えば、12V使用において、2~10Ωが選択される抵抗RAと抵抗RBは、それら抵抗RAと抵抗RBに補助スイッチSSの補助接点SSaまたは補助接点SSbが接続されている。
主電源スイッチMSを構成する2個の主電源接点MSa及び主電源接点MSbは、この複数電池電源装置を使用するか否かによって電源を入れるスイッチであり、使用する場合には投入が不可欠である。
そして、二次電池A及び二次電池Bには、主電源スイッチMSを構成する主電源接点MSa及び主電源接点MSbに直列接続され、その直列接続に対して、抵抗RAと抵抗RBに補助スイッチSSの補助接点SSaまたは補助接点SSbが直列接続した回路が並列接続されている。この並列回路は、他の回路要素がないことから、直列接続と見做すこともできる。
The secondary battery A and the secondary battery B are connected in series with a main power contact MSa and a main power contact MSb constituting the main power switch MS. For example, in the case of using 12V, the resistor RA and the resistor RB for which 2 to 10Ω are selected are connected to the auxiliary contact SSa or the auxiliary contact SSb of the auxiliary switch SS to the resistor RA and the resistor RB.
The two main power contact MSa and the main power contact MSb constituting the main power switch MS are switches that turn on the power depending on whether or not to use the multiple battery power supply device. .
The secondary battery A and the secondary battery B are connected in series to the main power contact MSa and the main power contact MSb constituting the main power switch MS, and the auxiliary switch is connected to the resistor RA and the resistor RB with respect to the series connection. A circuit in which auxiliary contacts SSa or auxiliary contacts SSb of SS are connected in series is connected in parallel. Since this parallel circuit has no other circuit elements, it can also be regarded as a series connection.
したがって、二次電池Aと主電源スイッチMSを構成する主電源接点MSaの直列回路の二次電池Aの電圧はオペアンプOP1の一方の入力電圧(図1の端子C)として検出できる。また、二次電池Bと主電源スイッチMSを構成する主電源接点MSbの直列回路の二次電池Bの電圧はオペアンプOP2の一方の入力電圧(図1の端子D)として検出できる。
また、二次電池Aと二次電池Bの電圧検出は、オペアンプOP0の両端子(図1の端子A,B)に入力される電圧の比較によって行うことができる。
Therefore, the voltage of the secondary battery A in the series circuit of the main power contact MSa constituting the secondary battery A and the main power switch MS can be detected as one input voltage (terminal C in FIG. 1) of the operational amplifier OP1. The voltage of the secondary battery B in the series circuit of the secondary battery B and the main power contact MSb constituting the main power switch MS can be detected as one input voltage (terminal D in FIG. 1) of the operational amplifier OP2.
Further, the voltage detection of the secondary battery A and the secondary battery B can be performed by comparing voltages input to both terminals (terminals A and B in FIG. 1) of the operational amplifier OP0.
二次電池A及び/または二次電池Bから電力を取り出すには、負荷スイッチSWLを投入する。負荷スイッチSWLの投入により、電圧検出した二次電池Aと二次電池Bの何れの電圧が高いか、低いかは、オペアンプOP0の両端子の比較電圧の結果となるから、その端子電圧の高い方、オペアンプOP0の出力は(“1”または“0”)から出力を取り出す。 In order to extract electric power from the secondary battery A and / or the secondary battery B, the load switch SWL is turned on. By turning on the load switch SWL, whether the voltage of the secondary battery A or the secondary battery B whose voltage is detected is high or low is a result of the comparison voltage of both terminals of the operational amplifier OP0. On the other hand, the output of the operational amplifier OP0 is extracted from ("1" or "0").
二次電池Aと二次電池Bに対する充電する際の入力は、商用電源50からの充電と光-電変換するソーラーパネル51からの充電に分かれる。
商用電源50からの充電であると、その電圧及びその電流が任意の電圧及び電流とすることができるから、商用電源50から充電する場合には、二次電池Aと二次電池Bを同時に充電することになる。
また、ソーラーパネル51のように比較的大きな面積を要しても、その定格電圧及びその定格電流が低くなるから、充電電圧とすべくパネル1個の容量を二次電池1個に合わせる場合が多い。したがって、ソーラーパネル51の場合には、1対1で二次電池Aまたは二次電池Bに充電することとする。
Input when charging the secondary battery A and the secondary battery B is divided into charging from the commercial power source 50 and charging from the solar panel 51 that performs photoelectric conversion.
When charging from the commercial power source 50, the voltage and current thereof can be any voltage and current. Therefore, when charging from the commercial power source 50, the secondary battery A and the secondary battery B are simultaneously charged. Will do.
Moreover, even if a relatively large area is required as in the solar panel 51, the rated voltage and the rated current thereof are lowered. Therefore, the capacity of one panel may be adjusted to one secondary battery to obtain a charging voltage. Many. Therefore, in the case of the solar panel 51, the secondary battery A or the secondary battery B is charged on a one-to-one basis.
電気回路的には、二次電池A側または二次電池B側に抵抗RAと抵抗RBを並列接続している。この抵抗RAと抵抗RBは、主電源スイッチMSの投入の3秒後にオペアンプOP0の出力を監視し、1~10秒以内(通常は3~5秒以内)に二次電池Aまたは二次電池B側の電位が高いか否かを判断し、それをマイクロコンピュータCPUの有している内蔵メモリに格納している。
 なお、抵抗RAと抵抗RBは、品質管理が左右する(RA-RB)の誤差が少ないものであり、かつ、標準品に対しても抵抗RAと抵抗RBとの間に特性誤差が少ないものである。抵抗RAと抵抗RBの抵抗値は、12V使用の場合で、2~10Ω程度の低抵抗であり、10秒以内であれば、繰り返しの使用が可能な電力容量を具備している。
In terms of an electric circuit, a resistor RA and a resistor RB are connected in parallel on the secondary battery A side or the secondary battery B side. The resistor RA and the resistor RB monitor the output of the operational amplifier OP0 3 seconds after the main power switch MS is turned on, and the secondary battery A or the secondary battery B within 1 to 10 seconds (usually within 3 to 5 seconds). It is determined whether or not the potential on the side is high, and it is stored in the built-in memory of the microcomputer CPU.
Note that the resistance RA and the resistance RB have a small error (RA-RB) that is affected by quality control, and the characteristic error between the resistance RA and the resistance RB is small compared to the standard product. is there. The resistance values of the resistor RA and the resistor RB have a low resistance of about 2 to 10Ω when 12 V is used, and have a power capacity that can be used repeatedly within 10 seconds.
負荷スイッチSWLは、本実施の形態の複数電池電源装置の二次電池A及び二次電池Bから負荷に電力を供給するモードを実行する際に使用される。
負荷スイッチSWLには、二次電池Aまたは二次電池Bを選択するリレーRy-0が接続されている。このリレーRy-0は、オペアンプOP0で検出される二次電池Aと二次電池Bの起電力の大小によって接点の切り替えを行っている。即ち、オペアンプOP1及びオペアンプOP2の電圧降下の大小の検出にも該当する。
したがって、リレーRy-0の出力は負荷スイッチSWLによって一義的に決定されるものではなく、他の条件によっても変化する。
The load switch SWL is used when executing a mode in which power is supplied from the secondary battery A and the secondary battery B of the multiple battery power supply device of the present embodiment to the load.
A relay Ry- 0 for selecting the secondary battery A or the secondary battery B is connected to the load switch SWL. This relay Ry- 0 switches contacts according to the magnitude of the electromotive force of the secondary battery A and the secondary battery B detected by the operational amplifier OP0. That is, it corresponds to the detection of the magnitude of the voltage drop of the operational amplifier OP1 and the operational amplifier OP2.
Therefore, the output of the relay Ry- 0 is not uniquely determined by the load switch SWL, and varies depending on other conditions.
また、ソーラーパネル51から充電する充電スイッチSWC1及び充電スイッチSWC2は、本実施の形態の複数電池電源装置に充電を行うモードを実行する。
図1の充電回路には、商用電源50から二次電池A及び二次電池Bを同時に充電する充電スイッチSWC0を有する。具体的には、充電スイッチSWC1によりリレーRy-1が動作し、また、充電スイッチSWC2によりリレーRy-2が動作する。充電スイッチSWC1によりリレーRy-1及びリレーRy-2を同時に動作させるように構成することもできる。そして、充電スイッチSWC0によってリレーRy-0が動作する。
なお、ソーラーパネル51から充電する場合には、二次電池Aまたは二次電池Bの内部充電量が少なくなったと推定される二次電池Aまたは二次電池Bの出力電圧の低いものを充電対象として選択する。
In addition, the charging switch SWC1 and the charging switch SWC2 that are charged from the solar panel 51 execute a mode for charging the multiple battery power supply device of the present embodiment.
The charging circuit of FIG. 1 includes a charging switch SWC0 that charges the secondary battery A and the secondary battery B simultaneously from the commercial power source 50. Specifically, the relay Ry- 1 is operated by the charging switch SWC1, and the relay Ry- 2 is operated by the charging switch SWC2. The relay Ry- 1 and the relay Ry- 2 can be operated at the same time by the charge switch SWC1. Then, the relay R y-0 is operated by the charge switch SWC0.
In addition, when charging from the solar panel 51, the secondary battery A or the secondary battery B whose output voltage is estimated to be low is estimated to be charged. Select as.
二次電池Aと二次電池Bの電圧検出出力は、オペアンプOP0に入力され、そこでいずれの出力が大きいかを判定している。二次電池Aと二次電池Bとの間の何れが大きいか、小さいかは、オペアンプOP0の入力端子電圧の比較によって結論される。また、放電状態でオペアンプOP1の電圧降下が大きくなったことは、オペアンプOP1の一方の端子の電圧降下を検出し、そして、定電圧回路CO1の端子入力VZ1を比較して、電圧降下の端子入力の増大を検出している。同様に、放電状態でオペアンプOP2の電圧降下が大きくなったことは、オペアンプOP2の一方の端子の電圧降下を検出し、そして、定電圧回路CO1及び定電圧回路CO2の端子入力VZ2を比較して、電圧降下の端子入力の増大を検出している。 The voltage detection outputs of the secondary battery A and the secondary battery B are input to the operational amplifier OP0, where it is determined which output is larger. It is concluded by comparing the input terminal voltage of the operational amplifier OP0 which is larger or smaller between the secondary battery A and the secondary battery B. In addition, the fact that the voltage drop of the operational amplifier OP1 has increased in the discharged state is that the voltage drop at one terminal of the operational amplifier OP1 is detected, and the terminal input VZ1 of the constant voltage circuit CO1 is compared, and the voltage drop terminal input An increase in the amount is detected. Similarly, the increase in the voltage drop of the operational amplifier OP2 in the discharge state detects a voltage drop at one terminal of the operational amplifier OP2, and compares the terminal inputs VZ2 of the constant voltage circuit CO1 and the constant voltage circuit CO2. An increase in terminal input due to a voltage drop is detected.
ここで、定電圧回路CO1及び定電圧回路CO2は、3本の抵抗R1、抵抗R2、抵抗R3及びツェナーダイオードZDからなり、図1のように簡単な定電圧回路を構成している。即ち、抵抗R1、抵抗R2、抵抗R3の直列回路には、電源電圧+Vccが印加されている。ツェナーダイオードZDの電圧はR3/(R2+R3)の割合でツェナー電圧が算出され、オペアンプOP1とオペアンプOP2の端子入力VZ1、端子入力VZ2となっている。オペアンプOP1及びオペアンプOP2の他方の入力には、二次電池Aまたは二次電池Bの出力電圧が入力されている。
したがって、オペアンプOP1及びオペアンプOP2の出力は、二次電池Aと二次電池Bの電圧が定電圧入力よりも低いとき、出力を“1”から“0”とするものである。
Here, the constant voltage circuit CO1 and the constant voltage circuit CO2 include three resistors R1, R2, R3, and a Zener diode ZD, and form a simple constant voltage circuit as shown in FIG. That is, the power supply voltage + Vcc is applied to the series circuit of the resistor R1, the resistor R2, and the resistor R3. The Zener diode ZD voltage is calculated at a ratio of R3 / (R2 + R3), and becomes the terminal input VZ1 and the terminal input VZ2 of the operational amplifier OP1 and the operational amplifier OP2. The output voltage of the secondary battery A or the secondary battery B is input to the other input of the operational amplifier OP1 and the operational amplifier OP2.
Therefore, the outputs of the operational amplifier OP1 and the operational amplifier OP2 are output from “1” to “0” when the voltages of the secondary battery A and the secondary battery B are lower than the constant voltage input.
オペアンプOP0乃至オペアンプOP2の出力は、フォトカプラPH1に送られる。フォトカプラPH1とフォトカプラPH2は、制御信号を絶縁するためのものであり、個々の回路構成を見ても信号が変化するものではない。
即ち、オペアンプOP1乃至オペアンプOP3の出力は、フォトカプラPH1を介して、そのまま、即ち、“0”または“1”が変化することなく、マイクロコンピュータCPUの入力となり、マイクロコンピュータCPUで信号処理されて、フォトカプラPH2の出力となる。
Outputs of the operational amplifiers OP0 to OP2 are sent to the photocoupler PH1. The photocoupler PH1 and the photocoupler PH2 are for insulating the control signal, and the signal does not change even when the individual circuit configurations are viewed.
That is, the outputs of the operational amplifiers OP1 to OP3 are directly input to the microcomputer CPU via the photocoupler PH1, that is, without changing “0” or “1”, and are processed by the microcomputer CPU. The output of the photocoupler PH2.
マイクロコンピュータCPUには、オペアンプOP0乃至オペアンプOP2の出力がフォトカプラPH1を介して入力され、また、負荷スイッチSWL、充電スイッチSWC0乃至充電スイッチSWC2が本実施の形態の複数電池電源装置の放電または充電を指示するのに使用されている。また、マイクロコンピュータCPUの出力として、リレーRY-1、リレーRY-2、リレーRY-3の出力をフォトカプラPH2を介して出力としている。 Outputs of the operational amplifiers OP0 to OP2 are input to the microcomputer CPU via the photocoupler PH1, and the load switch SWL and the charge switches SWC0 to charge switch SWC2 are discharged or charged by the multiple battery power supply device of this embodiment. Is used to indicate. Further, as the output of the microcomputer CPU, the outputs of the relay RY −1 , the relay RY −2 and the relay RY −3 are output via the photocoupler PH2.
ここでマイクロコンピュータCPUは、主電源スイッチMSの投入によってこのルーチンの処理が開始される。主電源スイッチMSの投入によって図3のプログラムの処理が開始され、図1及び図2からなる図4に示す機能が動作状態となる。
まず、2個の二次電池A及び二次電池Bを有する場合には、ステップS1で二次電池Aまたは二次電池Bの電圧降下の大きさを入力する。2個以上のときに、その個数だけ電圧の大きさ情報を書き込む。具体的には、各電池の電圧降下を検出して、放電状態が大きいか否かを判別し、電圧の高い順に並べる(対応する)か、低い順に並べる。なお、本発明を実施するに際し、正確な電圧の値が必要ではない。
Here, the microcomputer CPU starts the processing of this routine when the main power switch MS is turned on. When the main power switch MS is turned on, the processing of the program of FIG. 3 is started, and the function shown in FIG. 4 consisting of FIG. 1 and FIG.
First, if there are two secondary batteries A and secondary battery B, the magnitude of the voltage drop of secondary battery A or secondary battery B is input in step S1. When there are two or more, the number of voltage magnitude information is written. Specifically, the voltage drop of each battery is detected to determine whether or not the discharge state is large, and the batteries are arranged in order (corresponding) in descending order of voltage or arranged in order from low to high. It is to be noted that an accurate voltage value is not necessary when implementing the present invention.
ステップS2で負荷スイッチSWLのオンが判断されるか、またはステップS3で本実施の形態の複数電池電源装置に充電しようと充電スイッチSWC0または充電スイッチSWC1で判断されるか、ステップS4で商用電源50を使用して充電しようとしているかが判断される。即ち、ステップS2で負荷スイッチSWLのオンが判断され、ステップS3で充電しようとしていると判断されるか、ステップS4で商用電源50を使用して充電しようとしているかが判断される。 In step S2, it is determined whether the load switch SWL is turned on, or in step S3, it is determined by the charge switch SWC0 or the charge switch SWC1 that the multi-battery power supply device of the present embodiment is to be charged. Is used to determine if it is going to be charged. That is, it is determined in step S2 that the load switch SWL is turned on, and it is determined in step S3 that charging is to be performed, or in step S4, it is determined whether charging is to be performed using the commercial power source 50.
商用電源50を使用して充電しようとする場合、充電電圧及び充電電流の選択が任意に設定できるから、通常、充電電圧及び充電電流が大きく取れるので、ステップS5で同時に複数個充電を開始する。例えば、ステップS5で全二次電池52の充電を開始する。そして、ステップS6で二次電池の電圧降下が充電完了に相当する電圧Vuであるか否かを判断し、ステップS7で電圧降下が充電完了に相当する電圧Vuに上昇したかを判断し、電圧降下が充電完了に相当する電圧Vuに上昇したとき、該当する二次電池52を充電終了とする。 When charging is performed using the commercial power supply 50, the selection of the charging voltage and charging current can be arbitrarily set. Therefore, normally, a large charging voltage and charging current can be obtained, and therefore a plurality of chargings are simultaneously started in step S5. For example, charging of all the secondary batteries 52 is started in step S5. In step S6, it is determined whether or not the voltage drop of the secondary battery is a voltage Vu corresponding to the completion of charging. In step S7, it is determined whether or not the voltage drop is increased to a voltage Vu corresponding to the completion of charging. When the drop rises to the voltage Vu corresponding to the completion of charging, the corresponding secondary battery 52 is charged.
また、ステップS2で負荷スイッチSWLが入ったことが検出されると、ステップS10で電圧降下が充電完了に相当する電圧Vuを維持している二次電池52が選択され、ステップS11でその二次電池を使用して出力が負荷に供給開始される。ステップS11の放電は放電完了状態に相当する電圧降下Vdに低下するまで、ステップS10乃至ステップS12のルーチンを繰り返し実行する。
そして、ステップS12で電圧降下が放電完了に相当する電圧Vdに低下すると、ステップS13で二次電池52の放電が完了する直前の電圧降下が充電完了に相当する電圧Vuに相当する二次電池52が存在しているか判断し、存在しているとき、ステップS14で二次電池52の放電が行われ、ステップS15で電圧降下が放電完了に相当する電圧Vdの存在がないとき、ステップS15でそれが検出され、ステップS16で二次電池52の切り替えを終了する。
When it is detected in step S2 that the load switch SWL is turned on, the secondary battery 52 whose voltage drop is maintained at the voltage Vu corresponding to the completion of charging is selected in step S10, and the secondary battery 52 is selected in step S11. The battery is used to start supplying output to the load. The routine from step S10 to step S12 is repeatedly executed until the discharge in step S11 decreases to a voltage drop Vd corresponding to the discharge completion state.
Then, when the voltage drop is reduced to the voltage Vd corresponding to the completion of discharge in step S12, the secondary battery 52 corresponds to the voltage Vu corresponding to the completion of charging, the voltage drop immediately before the discharge of the secondary battery 52 is completed in step S13. In step S14, the secondary battery 52 is discharged. In step S15, when there is no voltage Vd whose voltage drop corresponds to the completion of discharge, it is determined in step S15. Is detected, and the switching of the secondary battery 52 is finished in step S16.
ステップS3で充電スイッチSWC0乃至充電スイッチSWC2が入ったことが検出されると、ステップS21で電圧降下が充電完了に相当する電圧Vdの大きな電池が選択されると、ステップS22でその二次電池52に対して充電が開始される。放電状態にある電圧降下の大きい電池が選択されると、ステップS23で電圧降下が充電完了に相当する電圧Vuに上昇したことを検知する。 When it is detected that the charging switch SWC0 to the charging switch SWC2 are turned on in step S3, if a battery having a large voltage Vd corresponding to the completion of charging is selected in step S21, the secondary battery 52 is selected in step S22. Charging is started. When a battery having a large voltage drop in a discharged state is selected, it is detected in step S23 that the voltage drop has increased to a voltage Vu corresponding to the completion of charging.
ステップS24で次に電圧降下が放電完了に相当する電圧Vdの大きい電池選択を行い、該当する電池によりステップS25でその二次電池52に充電が開始される。ステップS25で放電状態にある電池が選択されると、ステップS26で電圧降下が充電完了に相当する電圧Vuを上昇したか判定し、充電状態が完了して二次電池52の充電が完了すると、ステップS27で他の電池の存在をみて、存在していないことが確認すると、このルーチンを脱する。 In step S24, a battery having a voltage Vd having a voltage drop corresponding to completion of discharge is selected next, and charging of the secondary battery 52 is started by the corresponding battery in step S25. When a battery in a discharged state is selected in step S25, it is determined in step S26 whether the voltage drop has increased the voltage Vu corresponding to the completion of charging. When the charging state is completed and charging of the secondary battery 52 is completed, If it is confirmed in step S27 that another battery is present, this routine is exited.
図1乃至図3の実施の形態の複数電池電源装置に示した構成を機能的にみると、図4の機能図としてまとめることができる。
充放電自在な複数個の二次電池Aまたは二次電池B等の二次電池52と、二次電池52と負荷との間にあって断続自在な負荷スイッチSWLと、負荷スイッチSWLが投入されているとき、二次電池52の各々に抵抗RAと抵抗RBからなる抵抗器を接続して放電を行う二次電池Aと抵抗RA、二次電池Bと抵抗RBの並列回路からなる抵抗放電回路53と、抵抗放電回路53で放電しているとき、二次電池52の個々の端子電圧を測定するオペアンプOP0乃至オペアンプOP2からなる電圧測定回路55と、二次電池52の個々の端子電圧を記憶するマイクロコンピュータCPUの記憶部を含む端子電圧記憶回路56と、端子電圧記憶回路56に記憶する端子電圧順に負荷に電力を供給する二次電池52として選択し、当該二次電池52から負荷に電力を供給しているとき、特定の電圧以下に負荷電圧が低下すると、負荷に電力を供給する二次電池52を次の端子電圧の二次電池52に順次切り替えるマイクロコンピュータCPUからなる選択回路57を具備するものである。
Functionally, the configuration shown in the multiple battery power supply device of the embodiment of FIGS. 1 to 3 can be summarized as the functional diagram of FIG.
A plurality of rechargeable secondary batteries 52 such as a secondary battery A or a secondary battery B, a load switch SWL between the secondary battery 52 and a load, and a load switch SWL are turned on. A secondary battery A and a resistor RA for discharging by connecting a resistor comprising a resistor RA and a resistor RB to each of the secondary batteries 52; a resistor discharge circuit 53 comprising a parallel circuit of the secondary battery B and a resistor RB; When the resistance discharge circuit 53 is discharging, the voltage measurement circuit 55 including the operational amplifier OP0 to the operational amplifier OP2 that measures individual terminal voltages of the secondary battery 52, and the micro that stores the individual terminal voltages of the secondary battery 52 are stored. A terminal voltage storage circuit 56 including a storage unit of the computer CPU and a secondary battery 52 that supplies power to the load in the order of the terminal voltages stored in the terminal voltage storage circuit 56 are selected. When the power is supplied to the load, the microcomputer CPU sequentially switches the secondary battery 52 that supplies power to the load to the secondary battery 52 of the next terminal voltage when the load voltage drops below a specific voltage. A selection circuit 57 is provided.
 したがって、負荷がこの複数電池電源装置から電力を供給されるには、まず、二次電池52から電源電圧の高いものを選択し、それを電源とする。しかし、その電源の使用中に特定の電圧以下に負荷電圧が低下したと選択回路57が判断すると、負荷に電力を供給する二次電池52を、次に端子電圧の高い二次電池52に切り替える。よって、電池電圧が低下すると、順次、電池電圧の低い(電力量の少ない)二次電池52を選択して電力の供給を継続する。
 このように、複数電池電源装置は、2個以上の二次電池52の電力の充電量の多い二次電池52から使用するから、安定した電力の供給が行える。
Therefore, in order for the load to be supplied with power from the multiple battery power supply device, first, a secondary battery 52 having a high power supply voltage is selected and used as a power source. However, when the selection circuit 57 determines that the load voltage has dropped below a specific voltage during use of the power supply, the secondary battery 52 that supplies power to the load is switched to the secondary battery 52 having the next highest terminal voltage. . Therefore, when the battery voltage decreases, the secondary battery 52 having a low battery voltage (low power consumption) is sequentially selected and power supply is continued.
Thus, since the multiple battery power supply device is used from the secondary battery 52 having a large charge amount of power of the two or more secondary batteries 52, stable power supply can be performed.
このように、複数電池電源装置は、充放電自在な複数個の二次電池52と、複数個の二次電池52と負荷との間にあって断続自在な負荷スイッチSWLと、負荷スイッチSWLが投入されているとき、複数の二次電池52の各々に抵抗RAと抵抗RBからなる抵抗器を接続して放電を行う二次電池Aと抵抗RA、二次電池Bと抵抗RBの並列回路からなる抵抗放電回路53と、前記抵抗放電回路53で放電しているとき、複数個の二次電池52の個々の端子電圧を測定するオペアンプOP0~オペアンプOP2からなる電圧測定回路55と、複数個の二次電池52の個々の端子電圧を記憶するマイクロコンピュータCPUの記憶部を含む端子電圧記憶回路56と、端子電圧記憶回路56に記憶する端子電圧順に負荷に電力を供給する二次電池52として選択し、当該二次電池Aと二次電池Bから負荷に電力を供給しているとき、特定の電圧以下に負荷電圧が低下すると、負荷に電力を供給する二次電池Aまたは二次電池Bを次の端子電圧の二次電池Aまたは二次電池Bに順次切り替えるマイクロコンピュータCPUからなる選択回路57を具備するものである。 As described above, the plurality of battery power supply devices are provided with a plurality of rechargeable secondary batteries 52, a load switch SWL that is intermittently provided between the plurality of secondary batteries 52 and the load, and a load switch SWL. A secondary battery A and a resistor RA, which discharge by connecting a resistor comprising a resistor RA and a resistor RB to each of the plurality of secondary batteries 52, and a resistor comprising a parallel circuit of the secondary battery B and a resistor RB. A discharge circuit 53; a voltage measurement circuit 55 comprising operational amplifiers OP0 to OP2 for measuring individual terminal voltages of the plurality of secondary batteries 52 when the resistance discharge circuit 53 is discharging; and a plurality of secondary circuits A terminal voltage storage circuit 56 including a storage unit of a microcomputer CPU that stores individual terminal voltages of the battery 52, and a secondary battery that supplies power to the load in the order of the terminal voltages stored in the terminal voltage storage circuit 56 When the power is supplied from the secondary battery A and the secondary battery B to the load when the load voltage drops below a specific voltage, the secondary battery A or secondary battery that supplies power to the load is selected. A selection circuit 57 including a microcomputer CPU that sequentially switches the battery B to the secondary battery A or the secondary battery B having the next terminal voltage is provided.
 したがって、負荷がこの複数電池電源装置から電力を供給されるには、まず、複数の二次電池52から電源電圧の高いものを選択し、それを電源とする。しかし、その電源の使用中に特定の電圧以下に負荷電圧が低下したと選択回路57が判断すると、負荷に電力を供給する二次電池52を、次に端子電圧の高い二次電池に切り替える。したがって、電池電圧が低下すると、順次、電池電圧の低い(電力量の少ない)二次電池52を選択して電力の供給を継続する。
 このように、複数電池電源装置は、2個以上の二次電池52の電力の充電量の多い二次電池52から使用するから、安定した電力の供給が行える。
Therefore, in order for the load to be supplied with power from the plurality of battery power supply devices, first, a plurality of secondary batteries 52 having a high power supply voltage are selected and used as a power source. However, when the selection circuit 57 determines that the load voltage has dropped below a specific voltage during use of the power supply, the secondary battery 52 that supplies power to the load is switched to the secondary battery having the next highest terminal voltage. Therefore, when the battery voltage decreases, the secondary battery 52 having a low battery voltage (low power consumption) is sequentially selected to continue supplying power.
Thus, since the multiple battery power supply device is used from the secondary battery 52 having a large charge amount of power of the two or more secondary batteries 52, stable power supply can be performed.
 上記実施の形態の複数電池電源装置は、充放電自在な複数個の二次電池52と、複数個の二次電池52とソーラーパネル51との間にあって断続自在な充電スイッチSWC0乃至SWC3と、充電スイッチSWC0乃至充電スイッチSWC3が投入されているとき、端子電圧記憶回路56に記憶する端子電圧の順にソーラーパネル51から充電を受ける二次電池52として選択する選択回路57とを具備するものである。
このように、充放電自在な複数個の二次電池52と、前記複数個の二次電池52とソーラーパネル51との間にあって断続自在な充電スイッチとを具備しているから、前記充電スイッチが投入されたとき、選択回路57は端子電圧記憶回路56に記憶する端子電圧の低い順にソーラーパネル51から充電を受ける二次電池52として選択される。特に、ソーラーパネル51からの出力は、通常負荷に比較して非常に小さいから、同時に複数個の充電を行うことなく、対応する。
The multi-battery power supply device of the above embodiment includes a plurality of rechargeable secondary batteries 52, charge switches SWC0 to SWC3 that are intermittently provided between the plurality of secondary batteries 52 and the solar panel 51, and charging. When switch SWC0 thru | or charge switch SWC3 are turned on, the selection circuit 57 which selects as the secondary battery 52 which receives charge from the solar panel 51 in order of the terminal voltage memorize | stored in the terminal voltage memory | storage circuit 56 is provided.
As described above, the charging switch includes a plurality of rechargeable secondary batteries 52 and a charge switch that is intermittently provided between the plurality of secondary batteries 52 and the solar panel 51. When turned on, the selection circuit 57 is selected as the secondary battery 52 that is charged from the solar panel 51 in the descending order of the terminal voltage stored in the terminal voltage storage circuit 56. In particular, since the output from the solar panel 51 is very small compared to the normal load, it can be handled without performing a plurality of charges at the same time.
 また、上記実施の形態の複数電池電源装置の前記複数個の二次電池52は、2個の二次電池52としたものであるから、交互に二次電池52の切り替えが行われ、負荷側または電源側の制御が単純化できる。 In addition, since the plurality of secondary batteries 52 of the multiple battery power supply device of the above embodiment are two secondary batteries 52, the secondary batteries 52 are alternately switched, and the load side Or, control on the power supply side can be simplified.
 そして、上記実施の形態の複数電池電源装置は、充放電自在な複数個の二次電池52と、前記複数個の二次電池52と商用電源50との間にあって断続自在な充電スイッチSWC0乃至SWC2と、充電スイッチSWC0乃至SWC2が投入されたとき、全二次電池52を充電する二次電池52として選択する充放電自在な複数個の二次電池52と、前記複数個の二次電池52と商用電源50との間にあって断続自在な充電スイッチSWC0乃至SWC2と、前記充電スイッチSWC0乃至SWC2が投入されたとき、全二次電池52を充電される二次電池52として選択するものであるから、商用電源50から充放電自在な複数個の二次電池52に充電する場合には、充電電流が自由に選択できるから、高速充電を行うことができる。 The multiple battery power supply device of the above embodiment includes a plurality of rechargeable secondary batteries 52, and charge switches SWC0 to SWC2 that are intermittently connected between the plurality of secondary batteries 52 and the commercial power source 50. A plurality of rechargeable secondary batteries 52 that are selected as secondary batteries 52 that charge all the secondary batteries 52 when the charging switches SWC0 to SWC2 are turned on, and the plurality of secondary batteries 52, Since the charge switches SWC0 to SWC2 that can be intermittently connected to the commercial power source 50 and the charge switches SWC0 to SWC2 are turned on, all the secondary batteries 52 are selected as the secondary batteries 52 to be charged. When charging a plurality of rechargeable batteries 52 that are freely chargeable / dischargeable from the commercial power supply 50, the charging current can be freely selected, so that high-speed charging can be performed.
 選択回路57によって、二次電池52から負荷に電力を供給しているとき、特定の電圧以下に負荷電圧が低下すると、現在負荷に電力を供給している二次電池52を次の端子電圧の二次電池52に切り替える特定の電圧以下とは、二次電池52の定格電圧の85~90%の電圧としたものである。
 発明者らは、二次電池52の放電の終了時の電圧を測定した。二次電池52の定格電圧及び内部抵抗及び二次電池の種類及び付加電流の大きさによって誤差があり、また、二次電池52の新しいものと古いものではその特性が変化するから、特性のバラツキを集約することができなかった。しかし、全体として、「二次電池52の定格電圧の85~90%の電圧」を「二次電池52を充電したその充電の終了時の電圧」であると判断した。この判断は、二次電池52の種類等が解析されると、その数値との間に論理が明確になるものと推定されるが、実機において支承のない運転ができた値である。
When power is supplied from the secondary battery 52 to the load by the selection circuit 57, if the load voltage drops below a specific voltage, the secondary battery 52 that is currently supplying power to the load is set to the next terminal voltage. The term “below a specific voltage for switching to the secondary battery 52” means that the voltage is 85 to 90% of the rated voltage of the secondary battery 52.
The inventors measured the voltage at the end of the discharge of the secondary battery 52. There are errors depending on the rated voltage and internal resistance of the secondary battery 52, the type of secondary battery and the magnitude of the additional current, and the characteristics of the new and old secondary batteries 52 change. Could not be aggregated. However, as a whole, it was determined that “the voltage of 85 to 90% of the rated voltage of the secondary battery 52” was “the voltage at the end of the charge when the secondary battery 52 was charged”. This determination is a value that can be operated without support in an actual machine, although it is presumed that the logic becomes clear from the numerical value when the type or the like of the secondary battery 52 is analyzed.
 上記充放電自在な複数個の二次電池Aまたは二次電池Bは、2個以上の二次電池52とすることができる。
 また、上記負荷スイッチSWLは、複数個の二次電池52とその負荷との間にあって開閉自在としたものである。そして、上記抵抗放電回路53は、負荷スイッチSWLが通電状態となったとき、前記複数の二次電池52の各々に抵抗RA、抵抗RBを接続して放電を行う回路であればよい。
The plurality of secondary batteries A or secondary batteries B that can be freely charged and discharged can be two or more secondary batteries 52.
The load switch SWL is openable and closable between a plurality of secondary batteries 52 and their loads. The resistance discharge circuit 53 may be any circuit that discharges by connecting the resistors RA and RB to each of the plurality of secondary batteries 52 when the load switch SWL is energized.
 更に、上記電圧測定回路55は、抵抗放電回路53で放電しているとき、複数個の二次電池52の個々の端子電圧を測定する回路であればよい。更にまた、上記端子電圧記憶回路56は、複数個の二次電池52の個々の端子電圧を記憶するものであり、その記憶形態は特別の形態を特定するものではない。
 また、上記端子電圧記憶回路56は、装置に配設されている何れかのスイッチが動作したとき、複数個の二次電池52の個々の端子電圧を記憶する機能を具備するものであればよい。
Further, the voltage measuring circuit 55 may be a circuit that measures individual terminal voltages of the plurality of secondary batteries 52 when the resistance discharging circuit 53 is discharging. Furthermore, the terminal voltage storage circuit 56 stores individual terminal voltages of the plurality of secondary batteries 52, and the storage form does not specify a special form.
The terminal voltage storage circuit 56 only needs to have a function of storing individual terminal voltages of the plurality of secondary batteries 52 when any one of the switches provided in the apparatus operates. .
 加えて、上記選択回路57は、端子電圧記憶回路56に記憶する端子電圧順に負荷に電力を供給する二次電池52とし、二次電池52から負荷に電力を供給しているとき、特定の電圧以下に負荷電圧が低下すると、現在負荷に電力を供給している二次電池52を次の端子電圧の二次電池52に切り替える回路であればよい。
 また、上記選択回路57は、充電スイッチSWC0~SWC2が接続されているとき、端子電圧記憶回路52に記憶している端子電圧の低い順にソーラーパネル51から充電を受ける二次電池52として二次電池52を選択する回路であればよい。
 そして、上記充電スイッチSWC0~SWC2は、複数個の二次電池52と光-電変換するソーラーパネル51との間にあって断続自在なスイッチであればよい。
In addition, the selection circuit 57 is a secondary battery 52 that supplies power to the load in the order of the terminal voltages stored in the terminal voltage storage circuit 56. When the power is supplied from the secondary battery 52 to the load, a specific voltage is selected. Any circuit that switches the secondary battery 52 that is currently supplying power to the load to the secondary battery 52 of the next terminal voltage when the load voltage decreases below.
The selection circuit 57 is a secondary battery 52 as a secondary battery 52 that receives charge from the solar panel 51 in order of increasing terminal voltage stored in the terminal voltage storage circuit 52 when the charging switches SWC0 to SWC2 are connected. Any circuit that selects 52 may be used.
The charging switches SWC0 to SWC2 may be any switches that can be intermittently connected between the plurality of secondary batteries 52 and the solar panel 51 that performs photoelectric conversion.
A   二次電池
B   二次電池
RA  抵抗
RB  抵抗
SS  補助スイッチ
MS   主電源スイッチ
SWL  負荷スイッチ
OP0~OP2  オペアンプ
SWC0~SWC2  充電スイッチ
CPU  マイクロコンピュータ
PH1、PH2  フォトカプラ
CPU  マイクロコンピュータ
CO1、CO2  定電圧回路
Ry-0~Ry-2  リレー
50  商用電源
51  ソーラーパネル
52  二次電池
53  抵抗放電回路
55  電圧測定回路
56  端子電圧記憶回路
57  選択回路
A secondary battery B rechargeable battery RA resistor RB resistance SS auxiliary switch MS main power switch SWL load switch OP0 ~ OP2 operational amplifier SWC0 ~ SWC2 charging switch CPU microcomputer PH1, PH2 photocoupler CPU microcomputer CO1, CO2 constant voltage circuit Ry - 0 to Ry- 2 relay 50 commercial power supply 51 solar panel 52 secondary battery 53 resistance discharge circuit 55 voltage measurement circuit 56 terminal voltage storage circuit 57 selection circuit

Claims (4)

  1.  充放電自在な複数個の二次電池と、
     前記複数個の二次電池とその負荷との間にあって断続自在な負荷スイッチと、
     前記負荷スイッチが接続されたとき、前記複数の二次電池の各々に抵抗値を接続して放電を行う抵抗放電回路と、
     前記抵抗放電回路で放電しているとき、前記複数個の二次電池の個々の端子電圧を測定する電圧測定回路と、
    前記複数個の二次電池の前記個々の端子電圧を記憶する端子電圧記憶回路と、
     前記端子電圧記憶回路に記憶する端子電圧順に負荷に電力を供給する二次電池とし、前記二次電池から負荷に電力を供給しているとき、特定の電圧以下に負荷電圧が低下すると、現在負荷に電力を供給している二次電池を次の端子電圧の二次電池に切り替える選択回路と
    を具備することを特徴とする複数電池電源装置。
    A plurality of rechargeable secondary batteries,
    A load switch that can be intermittently connected between the plurality of secondary batteries and the load; and
    When the load switch is connected, a resistance discharge circuit that discharges by connecting a resistance value to each of the plurality of secondary batteries;
    A voltage measuring circuit for measuring individual terminal voltages of the plurality of secondary batteries when discharging by the resistive discharge circuit;
    A terminal voltage storage circuit for storing the individual terminal voltages of the plurality of secondary batteries;
    A secondary battery that supplies power to a load in the order of terminal voltages stored in the terminal voltage storage circuit, and when power is supplied from the secondary battery to the load, when the load voltage drops below a specific voltage, the current load And a selection circuit for switching the secondary battery supplying power to the secondary battery having the next terminal voltage.
  2. 前記選択回路によって、二次電池から負荷に電力を供給しているとき、特定の電圧以下に負荷電圧が低下すると、現在負荷に電力を供給している二次電池を次の端子電圧の二次電池に切り替える特定の電圧以下とは、定格電圧の85~90%の電圧としたことを特徴とする請求項1に記載の複数電池電源装置。 When power is supplied from the secondary battery to the load by the selection circuit, if the load voltage drops below a specific voltage, the secondary battery currently supplying power to the load is changed to the secondary voltage of the next terminal voltage. The multi-battery power supply device according to claim 1, wherein the voltage lower than the specific voltage to be switched to the battery is a voltage of 85 to 90% of the rated voltage.
  3.  充放電自在な複数個の二次電池と、
     前記複数個の二次電池と光-電変換するソーラーパネルとの間にあって断続自在な充電スイッチと、
    前記複数個の二次電池の各々に抵抗値を接続して放電を行う抵抗放電回路と、
    何れかのスイッチが動作したとき、前記複数個の二次電池の個々の端子電圧を記憶する端子電圧記憶回路と、
     前記充電スイッチが接続されているとき、前記端子電圧記憶回路に記憶している端子電圧の低い順にソーラーパネルから充電を受ける二次電池として前記二次電池を選択する選択回路と
    を具備することを特徴とする複数電池電源装置。
    A plurality of rechargeable secondary batteries,
    A charge switch that is intermittently provided between the plurality of secondary batteries and a solar panel for photoelectric conversion;
    A resistance discharge circuit for discharging by connecting a resistance value to each of the plurality of secondary batteries;
    A terminal voltage storage circuit for storing individual terminal voltages of the plurality of secondary batteries when any one of the switches operates;
    A selection circuit that selects the secondary battery as a secondary battery that is charged from the solar panel in ascending order of the terminal voltage stored in the terminal voltage storage circuit when the charge switch is connected; A multi-battery power supply device.
  4.  前記複数個の二次電池は、2個の二次電池としたことを特徴とする請求項1乃至請求項3の何れか1つに記載の複数電池電源装置。 The multi-battery power supply device according to any one of claims 1 to 3, wherein the plurality of secondary batteries are two secondary batteries.
PCT/JP2014/080138 2013-11-20 2014-11-14 Multiple-battery power supply device WO2015076188A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013239415A JP2015100220A (en) 2013-11-20 2013-11-20 Multi-battery power unit
JP2013-239415 2013-11-20

Publications (1)

Publication Number Publication Date
WO2015076188A1 true WO2015076188A1 (en) 2015-05-28

Family

ID=53179453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080138 WO2015076188A1 (en) 2013-11-20 2014-11-14 Multiple-battery power supply device

Country Status (2)

Country Link
JP (1) JP2015100220A (en)
WO (1) WO2015076188A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020005369A (en) * 2018-06-26 2020-01-09 三菱ロジスネクスト株式会社 Charging device, charging system, charging method by control device, and program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111555382A (en) * 2020-04-17 2020-08-18 北汽福田汽车股份有限公司 Battery system, control method of battery system and vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159553U (en) * 1988-04-19 1989-11-06
JPH04248329A (en) * 1991-01-24 1992-09-03 Sony Corp Electronic appliance
JPH0680189U (en) * 1993-04-28 1994-11-08 三洋電機株式会社 Capacitance detection device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159553U (en) * 1988-04-19 1989-11-06
JPH04248329A (en) * 1991-01-24 1992-09-03 Sony Corp Electronic appliance
JPH0680189U (en) * 1993-04-28 1994-11-08 三洋電機株式会社 Capacitance detection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020005369A (en) * 2018-06-26 2020-01-09 三菱ロジスネクスト株式会社 Charging device, charging system, charging method by control device, and program

Also Published As

Publication number Publication date
JP2015100220A (en) 2015-05-28

Similar Documents

Publication Publication Date Title
JP6233469B2 (en) Switch failure diagnosis device, power storage device, switch failure diagnosis program, and switch failure diagnosis method
US9444285B2 (en) Charge controller for vehicle
EP2706646B1 (en) Cell balancing system
JP5225559B2 (en) Battery pack abnormality determination method and battery pack
US20180109120A1 (en) Control device, electric storage device, electric storage system, and computer-readable medium
US20140021923A1 (en) Electrical storage system, and control method for electrical storage system
EP2418751B1 (en) Battery charger and battery charging method
US20120176095A1 (en) Electric power management system
CN103001299A (en) Charger
JP2003333762A (en) Voltage level equalization device for battery pack
EP3444625A1 (en) Electricity storage device, electricity storage system, and power supply system
EP2186181A2 (en) Apparatus and method for balancing of battery cell's charge capacity
JP2018133851A (en) Control device, balance correction device, power storage system and device
US9231417B2 (en) Rechargeable electrical device
JP2007325324A (en) Charging system, battery pack and its charging method
JP2008236930A (en) Charging device of secondary battery
JP5664310B2 (en) DC power supply
CN113728489B (en) Battery controller, wireless battery control system, battery pack and battery balancing method
JP2008259293A (en) Charging device of secondary battery
CN108377655B (en) Vehicle-mounted power supply device
CN110828913B (en) Battery charging method and charging system thereof
WO2015076188A1 (en) Multiple-battery power supply device
JP5203270B2 (en) Secondary battery capacity test system and secondary battery capacity test method
JP2009207253A (en) Battery-charging system and battery-charging method
US10951048B2 (en) Charging circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14864303

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14864303

Country of ref document: EP

Kind code of ref document: A1