JP2011038878A - Deterioration degree determination method for secondary battery and secondary battery - Google Patents

Deterioration degree determination method for secondary battery and secondary battery Download PDF

Info

Publication number
JP2011038878A
JP2011038878A JP2009185773A JP2009185773A JP2011038878A JP 2011038878 A JP2011038878 A JP 2011038878A JP 2009185773 A JP2009185773 A JP 2009185773A JP 2009185773 A JP2009185773 A JP 2009185773A JP 2011038878 A JP2011038878 A JP 2011038878A
Authority
JP
Japan
Prior art keywords
secondary battery
capacity
discharge
consumption rate
deterioration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009185773A
Other languages
Japanese (ja)
Inventor
Masao Yamaguchi
昌男 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2009185773A priority Critical patent/JP2011038878A/en
Publication of JP2011038878A publication Critical patent/JP2011038878A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a deterioration degree determination method which determines the degree of deterioration or actual capacitance (the maximum charging capacity) of a secondary battery simply and with high precision without totally discharging the secondary battery. <P>SOLUTION: A capacitance consumption rate C is calculated from a discharged capacitance Cdc from the fully charged state which is determined by accumulating the discharging current of the secondary battery and the initial capacitance Cint of the secondary battery, and a table showing the relationship between the predetermined open circuit voltage OCV of the secondary battery and the remaining capacity rate SOC of the secondary battery is referred to, thereby determining the remaining capacity rate SOC of the secondary battery from the open circuit voltage OCV of the secondary battery when the capacitance consumption rate C is determined. The degree of degradation or actual capacitance of the secondary battery is determined from the remaining capacity rate SOC and the capacitance consumption rate C. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、二次電池を完全放電させることなく、その劣化度や実力容量を求めることのできる二次電池の劣化度判定方法および二次電池装置に関する。   The present invention relates to a secondary battery deterioration degree determination method and a secondary battery apparatus that can determine the degree of deterioration and the capacity of a secondary battery without completely discharging the secondary battery.

二次電池に充電可能な最大容量(実力容量;満充電容量)は、その使用(充放電)に伴って次第に劣化することが否めない。従って二次電池を各種装置の電源として使用する上で、その劣化度や実力容量を正確に把握し得ることが望ましい。ちなみに二次電池の劣化度は、例えば予め求められている二次電池の初期時における満充電容量(初期容量)と、二次電池の充放電に伴って学習される学習容量(実力容量)との比(百分率)として求められる。   It cannot be denied that the maximum capacity (effective capacity; full charge capacity) that can be charged in the secondary battery gradually deteriorates with use (charge / discharge). Therefore, it is desirable to be able to accurately grasp the degree of deterioration and the capacity when using the secondary battery as a power source for various devices. By the way, the deterioration degree of the secondary battery is, for example, the full charge capacity (initial capacity) at the initial stage of the secondary battery obtained in advance and the learning capacity (actual capacity) learned along with charging / discharging of the secondary battery. It is calculated | required as a ratio (percentage).

尚、二次電池の学習容量は、基本的には完全に放電した二次電池を満充電まで充電した際に充電電流を積算した充電容量として、或いは満充電状態にある二次電池を放電終止まで放電させた際に放電電流を積算した放電容量として求められる。しかしこの場合には、一旦、二次電池を完全放電させる必要があるので、二次電池を放電終止状態まで使い切ると不具合が生じる用途に用いるような場合には問題がある。   Note that the learning capacity of the secondary battery is basically the charge capacity obtained by integrating the charging current when the fully discharged secondary battery is fully charged, or the secondary battery in the fully charged state is completely discharged. It is calculated | required as a discharge capacity which integrated the discharge current when it was made to discharge to. However, in this case, since it is necessary to discharge the secondary battery once, there is a problem in the case where the secondary battery is used for an application in which a problem occurs when the secondary battery is used up to a discharge end state.

この点、例えば特許文献1には、完全放電状態または満充電状態に至ることなく充放電が繰り返される二次電池の学習容量(実力容量)を求めるべく、該二次電池の充電容量の積算値が予め求められている容量、具体的にはその時点で求められている学習容量に達する都度、これを1サイクルとして当該学習容量を所定量(所定割合)だけ低減し、学習容量(実力容量)を逐次補正することが提唱されている。   In this regard, for example, in Patent Document 1, in order to obtain a learning capacity (effective capacity) of a secondary battery that is repeatedly charged and discharged without reaching a fully discharged state or a fully charged state, an integrated value of the charged capacity of the secondary battery is obtained. Each time reaches the capacity that has been obtained in advance, specifically, the learning capacity that has been obtained at that time, the learning capacity is reduced by a predetermined amount (predetermined ratio) with this as one cycle, and the learning capacity (capacity) It has been proposed to sequentially correct the above.

特開2002−236154号公報JP 2002-236154 A

しかしながら特許文献1に開示される手法は、二次電池を放電終止状態まで使い切ることなくその学習容量を簡単に求め得ると言う利点はある。しかし前述した1サイクル毎に学習容量を補正する上での補正量(サイクル劣化容量)は、厳密には二次電池の種類やその使用環境等によって異なるので、必ずしも正確に二次電池の実力容量(学習容量)を求め得るとは言えない。   However, the technique disclosed in Patent Document 1 has an advantage that the learning capacity can be easily obtained without using up the secondary battery to the end-of-discharge state. However, since the correction amount (cycle deterioration capacity) for correcting the learning capacity for each cycle described above varies strictly depending on the type of secondary battery and its use environment, the capacity capacity of the secondary battery is not necessarily accurate. It cannot be said that (learning capacity) can be obtained.

本発明はこのような事情を考慮してなされたもので、その目的は、二次電池を完全放電させることなく、その劣化度や実力容量を簡易に、しかも正確に求めることのできる二次電池の劣化度判定方法および二次電池装置を提供することにある。   The present invention has been made in consideration of such circumstances, and its purpose is to provide a secondary battery that can easily and accurately determine its degree of deterioration and ability capacity without completely discharging the secondary battery. It is providing the degradation degree determination method and secondary battery apparatus of this invention.

本発明は、二次電池の残容量率(残容量/実力容量)SOCと該二次電池の開放端子電圧OCVとが所定の相関関係を有し、その相関関係は電池性能が劣化しても維持されること、また二次電池が完全放電に至る前の満充電状態からの放電容量Cdc自体は電池性能の低下とは無関係であり、該放電容量Cdcと残容量との合計が前記二次電池の実力容量であることに着目している。   In the present invention, the remaining capacity ratio (remaining capacity / effective capacity) SOC of the secondary battery has a predetermined correlation with the open-circuit voltage OCV of the secondary battery, and the correlation is maintained even if the battery performance deteriorates. The discharge capacity Cdc from the fully charged state before the secondary battery is fully discharged is irrelevant to the deterioration of the battery performance, and the sum of the discharge capacity Cdc and the remaining capacity is the secondary battery. It pays attention to the capacity of the battery.

そこで前述した目的を達成するべく、本発明に係る二次電池の劣化度判定方法は、二次電池の放電電流を積算して求められる満充電状態からの放電容量Cdcと該二次電池の初期満充電容量Cintとから容量消費率Cを算出し、一方、予め求められた前記二次電池の開放端子電圧OCVと該二次電池の残容量率SOCとの関係を示すテーブルを参照して、前記容量消費率Cを求めた時点での前記二次電池の開放端子電圧OCVから該二次電池の残容量率SOCを求め、この残容量率SOCと前記容量消費率Cとから前記二次電池の劣化度または実力容量を求めることを特徴としている。   Therefore, in order to achieve the above-described object, the method of determining the deterioration level of the secondary battery according to the present invention includes the discharge capacity Cdc from the fully charged state obtained by integrating the discharge current of the secondary battery and the initial value of the secondary battery. The capacity consumption rate C is calculated from the full charge capacity Cint, while referring to a table showing the relationship between the previously obtained open battery voltage OCV of the secondary battery and the remaining capacity SOC of the secondary battery, The remaining capacity rate SOC of the secondary battery is obtained from the open terminal voltage OCV of the secondary battery at the time of obtaining the capacity consumption rate C, and the secondary battery is obtained from the remaining capacity rate SOC and the capacity consumption rate C. It is characterized in that the degree of deterioration or the capacity of the product is obtained.

ちなみに前記放電容量Cdcは、前記二次電池が完全放電状態に至る前の放電停止時に求められる。また前記容量消費率Cは、満充電状態から前記二次電池の放電が停止した時点までの放電容量Ccdに基づいて算出されるものであって、前記二次電池の開放端子電圧OCVは、上記放電停止から所定時間を経過した時点で求められるものである。   Incidentally, the discharge capacity Cdc is obtained when the discharge is stopped before the secondary battery reaches the complete discharge state. The capacity consumption rate C is calculated based on the discharge capacity Ccd from the fully charged state to the time when the discharge of the secondary battery stops, and the open terminal voltage OCV of the secondary battery is calculated as described above. It is obtained when a predetermined time has passed since the discharge was stopped.

また本発明に係る二次電池装置は、二次電池と、この二次電池の充放電電流を検出する電流検出手段と、前記二次電池の端子電圧を検出する電圧検出手段と、予め求められた前記二次電池の開放端子電圧OCVと該二次電池の残容量率SOCとの関係を記憶したテーブルと、このテーブルを参照して前記二次電池の放電電流と端子電圧とに基づいて前記二次電池の劣化度または実力容量を求める演算・制御手段とを具備し、
前記演算・制御手段は、前記二次電池の放電電流を積算して満充電状態からの放電容量Cdcを求める第1の処理手段と、求められた放電容量Cdcと前記二次電池の初期満充電容量Cintとから該二次電池の容量消費率Cを算出する第2の処理手段と、前記容量消費率Cを求めた時点における前記二次電池の開放電圧OCVに従って前記テーブルを参照して該二次電池の残容量率SOCを求める第3の処理手段と、求められた残容量率SOCと前記容量消費率Cとから前記二次電池の劣化度または実力容量を求める第4の処理手段とを備えることを特徴としている。
A secondary battery device according to the present invention is obtained in advance, a secondary battery, current detection means for detecting a charge / discharge current of the secondary battery, and voltage detection means for detecting a terminal voltage of the secondary battery. Further, the table storing the relationship between the open terminal voltage OCV of the secondary battery and the remaining capacity ratio SOC of the secondary battery, and referring to the table, the discharge current and the terminal voltage of the secondary battery Computation / control means for obtaining the deterioration degree or capacity of the secondary battery,
The calculation / control means includes a first processing means for calculating a discharge capacity Cdc from a fully charged state by integrating the discharge current of the secondary battery, the obtained discharge capacity Cdc and the initial full charge of the secondary battery. The second processing means for calculating the capacity consumption rate C of the secondary battery from the capacity Cint, and the table according to the open battery voltage OCV of the secondary battery at the time when the capacity consumption rate C is obtained. Third processing means for determining the remaining capacity ratio SOC of the secondary battery, and fourth processing means for determining the deterioration level or the actual capacity of the secondary battery from the determined remaining capacity ratio SOC and the capacity consumption rate C It is characterized by providing.

好ましくは前記演算・制御手段は、更に前記二次電池の満充電を検出して前記第1の処理手段を作動させる第1の制御手段と、完全放電状態に至る前の前記二次電池の放電停止を検出して前記第2の処理手段を作動させる第2の制御手段と、前記二次電池の放電停止から所定時間の経過後に該二次電池の開放電圧OCVを求めて前記第3の処理手段を作動させる第3の制御手段とを備えて構成される。   Preferably, the calculation / control unit further detects a full charge of the secondary battery and activates the first processing unit, and discharges the secondary battery before reaching a fully discharged state. Second control means for detecting a stop and operating the second processing means; and a third process for obtaining an open-circuit voltage OCV of the secondary battery after a lapse of a predetermined time from the stop of discharge of the secondary battery. And third control means for operating the means.

本発明によれば、例えば二次電池が完全放電に至る前の或る状態まで放電させた際の該二次電池の放電容量Cdcと該二次電池の初期満充電容量Cintとから容量消費率Cを算出すると共に、予め求められた開放端子電圧OCVと残容量率SOCとの関係を示すテーブルを参照して上記容量消費率Cを算出した状態における前記二次電池の開放端子電圧OCVに従って該二次電池の残容量率SOCを求めるだけで、この残容量率SOCと前記容量消費率Cとから前記二次電池の劣化度を、ひいてはその実力容量を簡易に、しかも精度良く求めることができる。   According to the present invention, for example, the capacity consumption rate is calculated from the discharge capacity Cdc of the secondary battery and the initial full charge capacity Cint of the secondary battery when the secondary battery is discharged to a certain state before full discharge. C is calculated, and according to the open terminal voltage OCV of the secondary battery in the state where the capacity consumption rate C is calculated with reference to a table showing the relationship between the open terminal voltage OCV and the remaining capacity rate SOC determined in advance. By simply obtaining the remaining capacity rate SOC of the secondary battery, the degree of deterioration of the secondary battery, and hence its actual capacity, can be obtained easily and accurately from the remaining capacity rate SOC and the capacity consumption rate C. .

しかも二次電池を完全放電させることなく、二次電池の劣化度または実力容量(満充電容量)を精度良く求めることができるので、二次電池を放電終止状態まで使い切ると不具合が生じるような場合に該二次電池の劣化度を判定する上で好適である。   In addition, it is possible to accurately determine the degree of deterioration of the secondary battery or the actual capacity (full charge capacity) without completely discharging the secondary battery, so there is a problem if the secondary battery is used up to the end of discharge. Further, it is suitable for determining the degree of deterioration of the secondary battery.

本発明の一実施形態に係る二次電池装置の概略構成図。The schematic block diagram of the secondary battery apparatus which concerns on one Embodiment of this invention. 図1に示す二次電池装置における制御・演算部の構成を示す図。The figure which shows the structure of the control and calculating part in the secondary battery apparatus shown in FIG. 本発明に係る二次電池の劣化度判定方法を示すものであって、図1に示す二次電池装置において実施される二次電池の劣化度判定の処理手順の一例を示す図。The figure which shows the deterioration degree determination method of the secondary battery which concerns on this invention, Comprising: The figure which shows an example of the process sequence of the deterioration degree determination of the secondary battery implemented in the secondary battery apparatus shown in FIG. 二次電池の開放端子電圧OCVと残容量率SOCとの関係を示す図。The figure which shows the relationship between the open terminal voltage OCV of a secondary battery, and remaining capacity rate SOC.

以下、図面を参照して本発明に係る二次電池の劣化度判定方法および二次電池装置について説明する。
図1は本発明の一実施形態に係る二次電池装置の概略構成図であって、10は二次電池装置としてのパック電池、20は前記パック電池10が着脱自在に装着されるパーソナルコンピュータ(PC)や携帯端末等の負荷機器である。パック電池(二次電池装置)10は、基本的には二次電池(BAT)11と、該二次電池11の充放電を制御する制御部(マイクロプロセッサユニット;MPU)12とを備えて構成され、負荷機器20に装着して使用される。
Hereinafter, a secondary battery deterioration degree determination method and a secondary battery device according to the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a secondary battery device according to an embodiment of the present invention, in which 10 is a pack battery as a secondary battery device, and 20 is a personal computer to which the pack battery 10 is detachably attached. PC) or a load device such as a portable terminal. The battery pack (secondary battery device) 10 basically includes a secondary battery (BAT) 11 and a control unit (microprocessor unit; MPU) 12 that controls charging / discharging of the secondary battery 11. It is used by being mounted on the load device 20.

尚、負荷機器20としては、例えば電動アシスト自転車のようなものであっても良い。また前記パック電池10における二次電池11は、例えば2600mAh/セル程度のリチウムイオン電池からなる複数の電池セルを2個ずつ並列に接続すると共に、これらの並列接続された電池セルを3段直列に接続した、いわゆる3直2並タイプのものからなる。尚、ここでは3直2並タイプの二次電池11を例に説明するが、電池セルの並列接続数および直列接続段数は、電池仕様として与えられる定格出力電圧および定格出力電流容量に応じて決定すれば良いものである。   Note that the load device 20 may be a power-assisted bicycle, for example. In addition, the secondary battery 11 in the battery pack 10 connects a plurality of battery cells made of lithium ion batteries of about 2600 mAh / cell, for example, in parallel, and these battery cells connected in parallel are arranged in three stages in series. It consists of a so-called three-line, two-line type connected. Here, a description will be given by taking a three-series, two-parallel type secondary battery 11 as an example, but the number of battery cells connected in parallel and the number of stages connected in series are determined according to the rated output voltage and the rated output current capacity given as battery specifications. It is good.

さてパック電池10における二次電池11の充放電路には、その充放電を制御するFET等のスイッチ素子13が直列に介装されると共に、充放電電流を検出する電流検出部14が直列に介挿されている。また前記パック電池10における制御部(MPU)12は、その主体部である、いわゆるマイコンによる充電制御手段としての制御・演算部15と、前記二次電池11の端子電圧、具体的には各段の電池セルの端子電圧(セル電圧)をそれぞれ検出する電圧検出部16、および前記負荷機器20との間で情報通信する通信処理部17と、後述するテーブル18とを具備して構成される。尚、このテーブル18は、メモリー素子に保存されて与えられるものであって、後述するように予め求められた前記二次電池11の開放端子電圧OCVと、該二次電池11の残容量率(残容量/実力容量)SOCとの関係を記述したものである。   Now, in the charging / discharging path of the secondary battery 11 in the battery pack 10, a switching element 13 such as an FET for controlling the charging / discharging is interposed in series, and a current detecting unit 14 for detecting the charging / discharging current is connected in series. It is inserted. The control unit (MPU) 12 in the battery pack 10 is a main part, that is, a control / calculation unit 15 as a so-called microcomputer charging control means, a terminal voltage of the secondary battery 11, specifically, each stage. The voltage detection part 16 which each detects the terminal voltage (cell voltage) of this battery cell, the communication processing part 17 which communicates information between the said load apparatuses 20, and the table 18 mentioned later are comprised. The table 18 is given by being stored in a memory element. As will be described later, the open terminal voltage OCV of the secondary battery 11 obtained in advance and the remaining capacity ratio of the secondary battery 11 ( (Remaining capacity / Actual capacity) The relationship with SOC is described.

そして前記制御・演算部15は、基本的にはサーミスタ等の温度検出素子19にて検出される前記二次電池11の温度(電池温度)、前記電圧検出部16にて検出されるセル電圧、および前記電流検出部14にて検出される充放電電流に応じて前記スイッチ素子13をオン・オフ制御すると共に、通信処理部17を介して前記負荷機器20側に制御指令を与えて前記二次電池11に対する充電電圧や充電電流を制御する役割を担う。このような基本機能に加えて前記制御・演算部15は、後述するように二次電池11の劣化度を求めると共に、該二次電池11の実力容量を求め、これを前記負荷機器20側に通知する機能を備える。   The control / calculation unit 15 basically includes the temperature of the secondary battery 11 (battery temperature) detected by the temperature detection element 19 such as a thermistor, the cell voltage detected by the voltage detection unit 16, The switch element 13 is controlled to be turned on / off according to the charging / discharging current detected by the current detection unit 14, and a control command is given to the load device 20 side via the communication processing unit 17 to perform the secondary operation. It plays the role of controlling the charging voltage and charging current for the battery 11. In addition to such basic functions, the control / calculation unit 15 obtains the degradation level of the secondary battery 11 and obtains the actual capacity of the secondary battery 11 as described later, and sends this to the load device 20 side. Provide a notification function.

一方、前記負荷機器20は、基本的には外部電力(図示せず;商用電源)を受けて該負荷機器20の本体部である負荷21を駆動すると共に、前記パック電池10に対して電力を供給して前述した二次電池11を充電する制御・電源部22を備えて構成される。また制御・電源部22は、例えば外部電力の供給が途絶えたとき、前記パック電池10の二次電池11から供給される電力にて前記負荷21を駆動する役割を担う。ちなみに前記制御・電源部22による二次電池11の充電は、該二次電池11がリチウムイオン電池である場合には、例えば最大電流(一般的には0.5〜1C程度)および最大電圧(一般的には約4.2V/セル程度)をそれぞれ規制した定電流・定電圧充電により行われる。   On the other hand, the load device 20 basically receives external power (not shown; commercial power supply) and drives the load 21 which is the main body of the load device 20 and supplies power to the battery pack 10. A control / power supply unit 22 for supplying and charging the secondary battery 11 described above is provided. The control / power supply unit 22 plays a role of driving the load 21 with power supplied from the secondary battery 11 of the battery pack 10 when, for example, supply of external power is interrupted. Incidentally, the secondary battery 11 is charged by the control / power supply unit 22 when the secondary battery 11 is a lithium ion battery, for example, the maximum current (generally about 0.5 to 1 C) and the maximum voltage ( In general, the charging is performed by constant-current / constant-voltage charging that regulates about 4.2 V / cell).

尚、制御・電源部22は、前記パック電池10における通信処理部17との間で、例えばデータラインSDAおよびクロックラインSCLを介してSMBUS方式にて情報通信する機能を備える。前記パック電池10の制御部(MPU)12は上記情報通信機能を利用して前記制御・電源部22の作動を制御し、該制御・電源部22による前記二次電池11の充電電圧や充電電流を可変設定する。この制御・電源部22の制御により前記二次電池11に対する充電が制御される。   The control / power supply unit 22 has a function of performing information communication with the communication processing unit 17 in the battery pack 10 by, for example, the SMBUS method via the data line SDA and the clock line SCL. The control unit (MPU) 12 of the battery pack 10 controls the operation of the control / power supply unit 22 using the information communication function, and the control / power supply unit 22 charges the secondary battery 11 with a charging voltage or a charging current. Is variably set. The charging of the secondary battery 11 is controlled by the control of the control / power supply unit 22.

さて本発明に係る二次電池装置(パック電池)10が有する特徴的な機能、即ち、二次電池11の劣化度を判定する機能は、前記制御・演算部15によって実現される。制御・演算部15に設けられる劣化度の判定機能は、例えば図2にその概念を示すように、
<1> 前記二次電池11の放電電流Iを積算して満充電状態からの放電容量Cdcを求める積算容量算出手段(第1の処理手段)15aと、
<2> 求められた放電容量Cdcと前記二次電池11の予め求められている初期容量Cintとから該二次電池11の容量消費率Cを算出する容量消費率算出手段(第2の処理手段)15b、
<3> 前記容量消費率Cを求めた時点における前記二次電池11の開放端子電圧OCVを求め、この開放端子電圧OCVに従って前記テーブル18を参照して前記二次電池11の残容量率SOCを求める残容量率検出手段(第3の処理手段)15cと、
<4> 求められた残容量率SOCと前記容量消費率Cとから前記二次電池の劣化度または実力容量を求める劣化度判定手段(第4の処理手段)15dとにより実現される。
The characteristic function of the secondary battery device (pack battery) 10 according to the present invention, that is, the function of determining the deterioration degree of the secondary battery 11 is realized by the control / calculation unit 15. The degradation / determination function provided in the control / calculation unit 15 is, for example, as shown in FIG.
<1> Integrated capacity calculation means (first processing means) 15a for integrating the discharge current I of the secondary battery 11 to obtain the discharge capacity Cdc from the fully charged state;
<2> Capacity consumption rate calculating means (second processing means) for calculating the capacity consumption rate C of the secondary battery 11 from the obtained discharge capacity Cdc and the initial capacity Cint obtained in advance of the secondary battery 11 15b,
<3> The open terminal voltage OCV of the secondary battery 11 at the time of obtaining the capacity consumption rate C is obtained, and the remaining capacity ratio SOC of the secondary battery 11 is obtained by referring to the table 18 according to the open terminal voltage OCV. A remaining capacity rate detection means (third processing means) 15c to be obtained;
<4> It is realized by a deterioration degree determination means (fourth processing means) 15d for obtaining the deterioration degree or the actual capacity of the secondary battery from the obtained remaining capacity rate SOC and the capacity consumption rate C.

尚、前記演算・制御部15は、更に
<5> 前記二次電池11が満充電まで充電されたことを検出して前記積算容量算出手段(第1の処理手段)15aを作動させる満充電検出手段(第1の制御手段)15eと、
<6> 前記二次電池11の放電停止を検出して前記容量消費率算出手段(第2の処理手段)15bを作動させる放電停止検出手段(第2の制御手段)15fと、
<7> 前記二次電池11の放電停止から経過時間を監視し、所定時間経過後に該二次電池11の開放電圧OCVを求めて前記残容量率検出手段(第3の処理手段)15cを作動させる経過時間判定手段(第3の制御手段)15gとを備える。
そして前記演算・制御部15は、これらの第1〜第3の制御手段15a,15b,15cの制御の下で前述した第1〜第4の処理手段15a,15b,15c,15dの作動をそれぞれ制御することで、例えば図3に示す処理手順に従って前記二次電池11の劣化度を判定し、更には必要に応じて該二次電池11の実力容量(最大充電容量)を求めるものとなっている。
The calculation / control unit 15 further includes
<5> Full charge detection means (first control means) 15e for detecting that the secondary battery 11 has been fully charged and operating the integrated capacity calculation means (first processing means) 15a;
<6> Discharge stop detection means (second control means) 15f for detecting discharge stop of the secondary battery 11 and operating the capacity consumption rate calculation means (second processing means) 15b;
<7> Elapsed time from the stop of discharge of the secondary battery 11 is monitored, and after the predetermined time has elapsed, the open-circuit voltage OCV of the secondary battery 11 is obtained and the remaining capacity ratio detection means (third processing means) 15c is operated. And an elapsed time determination means (third control means) 15g.
The arithmetic / control unit 15 performs the operations of the first to fourth processing units 15a, 15b, 15c, and 15d described above under the control of the first to third control units 15a, 15b, and 15c, respectively. By controlling, for example, the degree of deterioration of the secondary battery 11 is determined according to the processing procedure shown in FIG. 3, and further, the capacity (maximum charge capacity) of the secondary battery 11 is obtained as necessary. Yes.

ここで先ず前記テーブル18に記述される二次電池11の開放端子電圧OCVと、該二次電池11の残容量率SOCとの関係について説明する。二次電池11の残容量率SOCを予め電池仕様として定められた満充電容量(既定値)Cfullを基準として求めた場合、該二次電池11の開放端子電圧OCVとの関係は、例えば図4(a)に示すように二次電池11が新しい場合[特性α]と、使用に伴って電池性能が劣化した場合[特性β]とで変化する。尚、二次電池11が新しい場合の特性αが0%を越えてマイナス領域に達しているのは、前記満充電容量(既定値)Cfullよりも実際に充電可能な容量が大きい為であり、また電池性能が劣化した場合の特性βが0%に到達しないのは、前記満充電容量(既定値)Cfullよりも実際に充電可能な容量が小さい為である。   First, the relationship between the open terminal voltage OCV of the secondary battery 11 described in the table 18 and the remaining capacity ratio SOC of the secondary battery 11 will be described. When the remaining capacity ratio SOC of the secondary battery 11 is obtained based on the full charge capacity (predetermined value) Cfull determined in advance as a battery specification, the relationship with the open terminal voltage OCV of the secondary battery 11 is, for example, FIG. As shown to (a), it changes with [characteristic (alpha)] when the secondary battery 11 is new, and [characteristic (beta)] when battery performance deteriorates with use. The reason why the characteristic α when the secondary battery 11 is new exceeds 0% and reaches the minus region is that the chargeable capacity is actually larger than the full charge capacity (default value) Cfull. The reason why the characteristic β when the battery performance is deteriorated does not reach 0% is that the actually chargeable capacity is smaller than the full charge capacity (predetermined value) Cfull.

しかし二次電池11を満充電から完全放電に至るまでの全放電容量に着目して二次電池11の残容量率SOCを求めた場合、二次電池11の開放端子電圧OCVとの関係は図4(b)に示すように電池性能の変化に拘わらず一定となる[特性γ]。しかもこの場合、残容量と残容量率との関係が正常に保たれる。ちなみに上記満充電から完全放電に至るまでの全放電容量は、二次電池11の最大充電容量(実力容量)そのものに等しい。従って予め二次電池11の開放端子電圧OCVと、該二次電池11の残容量率(残容量/実力容量)SOCとの関係を求めておけば、二次電池11の開放端子電圧OCVを計測することで該開放端子電圧OCVから前記二次電池11の残容量率(残容量/実力容量)SOCを求めることができる。前述したテーブル18は、このような二次電池11の開放端子電圧OCVと該二次電池11の残容量率(残容量/実力容量)SOCとの関係を、例えば表形式として、或いは特性カーブ(対応曲線)等して登録したものである。   However, when the remaining capacity ratio SOC of the secondary battery 11 is obtained by paying attention to the total discharge capacity from the full charge to the complete discharge of the secondary battery 11, the relationship with the open terminal voltage OCV of the secondary battery 11 is shown in FIG. As shown in FIG. 4B, it becomes constant regardless of the change in battery performance [characteristic γ]. In addition, in this case, the relationship between the remaining capacity and the remaining capacity rate is maintained normally. Incidentally, the total discharge capacity from the full charge to the complete discharge is equal to the maximum charge capacity (capacity) of the secondary battery 11 itself. Therefore, if the relationship between the open terminal voltage OCV of the secondary battery 11 and the remaining capacity ratio (remaining capacity / capacity) SOC of the secondary battery 11 is obtained in advance, the open terminal voltage OCV of the secondary battery 11 is measured. Thus, the remaining capacity ratio (remaining capacity / capacity) SOC of the secondary battery 11 can be obtained from the open terminal voltage OCV. The table 18 described above shows the relationship between the open terminal voltage OCV of the secondary battery 11 and the remaining capacity ratio (remaining capacity / effective capacity) SOC of the secondary battery 11, for example, in the form of a table or a characteristic curve ( Corresponding curve) etc.

このようなテーブル18を参照して前記演算・制御部15にて実行される二次電池の劣化度判定処理を、図3に示す処理手順に沿って説明する。演算・制御部15においては、先ず二次電池11の充放電電流から該二次電池11が充電中であるか、或いは放電中であるかを判定する<ステップS1,S2>。この判定は充放電電流が流れているか否か、また充放電電流が流れている場合にはその極性を調べることによって行われる。そして充電中である場合には、前述した満充電検出手段(第1の制御手段)15eを作動させて二次電池11が満充電に達したか否かを判定し<ステップS3>、満充電に達したならば劣化度判定の為の初期設定として放電容量Cdcを零[0]とし、また制御フラグFを[1]に設定する<ステップS4>。この初期設定処理によって二次電池11の劣化度を判定する為の準備が整えられる。尚、満充電に達したならば、前述した演算・制御部15による充放電制御の下でその充電が停止される。   The secondary battery deterioration degree determination process executed by the calculation / control unit 15 with reference to the table 18 will be described in accordance with the processing procedure shown in FIG. The calculation / control unit 15 first determines whether the secondary battery 11 is being charged or discharged from the charge / discharge current of the secondary battery 11 <steps S1 and S2>. This determination is made by examining whether or not a charge / discharge current is flowing, and if the charge / discharge current is flowing, the polarity thereof is checked. If charging is in progress, the above-described full charge detection means (first control means) 15e is operated to determine whether or not the secondary battery 11 has reached full charge <step S3>, and full charge is performed. Is reached, the discharge capacity Cdc is set to zero [0] as an initial setting for determining the degree of deterioration, and the control flag F is set to [1] <step S4>. Preparations for determining the degree of deterioration of the secondary battery 11 are made by this initial setting process. When full charge is reached, the charge is stopped under charge / discharge control by the calculation / control unit 15 described above.

しかる後、今度は前記二次電池11が放電中であるか否かを判定する<ステップS2>。そして二次電池11が放電中である場合には、前述した積算容量算出手段(第1の処理手段)15aを作動させてその放電電流を積算して該二次電池11の放電容量Cdcを求める<ステップS5>。この処理は前記放電停止検出手段(第2の制御手段)15fによって前記二次電池11の放電停止が検出されるまで繰り返し行われる<ステップS2,S5>。この結果、積算容量算出手段(第1の処理手段)15aにより二次電池11が満充電から、完全放電に至る前の放電停止時までの放電容量Cdcが求められることになる。   Thereafter, it is determined whether or not the secondary battery 11 is being discharged <step S2>. When the secondary battery 11 is discharging, the integrated capacity calculating means (first processing means) 15a described above is operated to integrate the discharge current to obtain the discharge capacity Cdc of the secondary battery 11. <Step S5>. This process is repeated until the discharge stop of the secondary battery 11 is detected by the discharge stop detection means (second control means) 15f <steps S2 and S5>. As a result, the accumulated capacity calculating means (first processing means) 15a obtains the discharge capacity Cdc from when the secondary battery 11 is fully charged to when the discharge is stopped before reaching full discharge.

さて上述した如くして二次電池11の放電停止が検出されると、今度は前記経過時間判定手段(第3の制御手段)15gによって放電停止からの経過時間が監視される。そして、例えば放電停止から所定時間(例えば1時間)が経過して二次電池11の内部状態が安定し、かつ該二次電池11の端子電圧が規定の電圧範囲にあることが確認され、更に前述した制御フラグFが[1]である場合には<ステップS6>、前述した容量消費率算出手段(第2の処理手段)15b、残容量率検出手段(第3の処理手段)15c、および劣化度判定手段(第4の処理手段)15dを順次作動させて以下に示すようにして二次電池11の劣化度の判定処理を実行する。   When the discharge stop of the secondary battery 11 is detected as described above, the elapsed time from the discharge stop is monitored by the elapsed time determination means (third control means) 15g. Then, for example, it is confirmed that the internal state of the secondary battery 11 is stable after a lapse of a predetermined time (for example, 1 hour) from the stop of discharge, and the terminal voltage of the secondary battery 11 is within a specified voltage range. When the control flag F described above is [1] <Step S6>, the capacity consumption rate calculating means (second processing means) 15b, the remaining capacity rate detecting means (third processing means) 15c, and The deterioration degree determination means (fourth processing means) 15d is sequentially operated to execute the deterioration degree determination process for the secondary battery 11 as described below.

具体的には先ず前述した如く求められた前記二次電池11が満充電から放電停止時までの放電容量Cdcに基づいて、該二次電池の容量消費率Cを算出する。この容量消費率Cは、予め求められている二次電池11の使用開始時における最大充電容量Cintを初期容量として、
容量消費率C=放電容量Cdc÷初期容量Cint
つまり
C=Cdc[mAh]/Cint[mAh]×100[%]
として計算される<ステップS7>。
Specifically, first, the capacity consumption rate C of the secondary battery 11 is calculated based on the discharge capacity Cdc of the secondary battery 11 obtained from the full charge until the discharge is stopped as described above. The capacity consumption rate C is obtained by using the maximum charge capacity Cint at the start of use of the secondary battery 11 obtained in advance as an initial capacity.
Capacity consumption rate C = discharge capacity Cdc ÷ initial capacity Cint
That is, C = Cdc [mAh] / Cint [mAh] × 100 [%]
Is calculated as <Step S7>.

一方、二次電池11の放電停止から一定時間が経過した後の該二次電池11の開放端子電圧OCVを計測し、この開放端子電圧OCVに従って前述したテーブル18を参照することで該開放端子電圧OCVと所定の相関関係にある該二次電池11の残容量率SOC[%]を求める<ステップS8>。この残容量率SOCは、二次電池11の放電が停止した時点において該二次電池11に残されている容量と、該二次電池11の真の最大充電容量(実力容量;未知)との比を示すものである。   On the other hand, the open terminal voltage OCV of the secondary battery 11 after a fixed time has elapsed since the secondary battery 11 stopped discharging is measured, and the open terminal voltage is referred to by referring to the table 18 described above according to the open terminal voltage OCV. A remaining capacity ratio SOC [%] of the secondary battery 11 having a predetermined correlation with the OCV is obtained <step S8>. This remaining capacity ratio SOC is the capacity remaining in the secondary battery 11 at the time when the discharge of the secondary battery 11 is stopped, and the true maximum charge capacity (effective capacity; unknown) of the secondary battery 11. The ratio is shown.

そこで次に上述した如く求められた残容量率SOCと、前述した如く算出された容量消費率Cとに従って二次電池11の劣化度Dを
劣化度D=容量消費率C[%]÷(100−残容量率SOC)[%]
として計算する<ステップS9>。ちなみに二次電池11の残容量率SOCは、二次電池11の実力容量Ctrueと該二次電池11に残されている容量(残容量)との比を示すものであり、二次電池11の残容量は該二次電池11の実力容量Ctrueから前述した如く求められた満充電からの放電容量Cdcを差し引いたものである。従って二次電池11の残容量率SOCは、
残容量率[%]=(実力容量−放電容量)/実力容量×100[%]
なる意味を持つ。
Therefore, the deterioration degree D of the secondary battery 11 is determined according to the remaining capacity rate SOC obtained as described above and the capacity consumption rate C calculated as described above. Degradation degree D = capacity consumption rate C [%] ÷ (100 -Remaining capacity ratio SOC) [%]
<Step S9>. Incidentally, the remaining capacity ratio SOC of the secondary battery 11 indicates a ratio between the actual capacity Ctrue of the secondary battery 11 and the capacity (remaining capacity) remaining in the secondary battery 11. The remaining capacity is obtained by subtracting the discharge capacity Cdc from the full charge obtained as described above from the actual capacity Ctrue of the secondary battery 11. Therefore, the remaining capacity ratio SOC of the secondary battery 11 is
Remaining capacity rate [%] = (Ability capacity-Discharge capacity) / Ability capacity x 100 [%]
It has a meaning.

これ故、100[%]から残容量率SOCを差し引いて求められる真の放電容量率は
(100−残容量率)[%]=(放電容量/実力容量)[%]
として表すことができる。
この結果、前述した如く計算される劣化度Dは、
劣化度=容量消費率[%]÷(100−残容量率)[%]
=(放電容量/初期容量)÷(放電容量/実力容量)
=実力容量/初期容量
となり、二次電池11の劣化度そのものを示すことになる。
Therefore, the true discharge capacity ratio obtained by subtracting the remaining capacity ratio SOC from 100 [%] is (100−remaining capacity ratio) [%] = (discharge capacity / capacity) [%]
Can be expressed as
As a result, the degradation degree D calculated as described above is
Degree of degradation = capacity consumption rate [%] ÷ (100-remaining capacity rate) [%]
= (Discharge capacity / initial capacity) / (discharge capacity / capacity)
= Effective capacity / initial capacity, which indicates the degree of deterioration of the secondary battery 11 itself.

そしてこのようにして二次電池11の劣化度を求めたならば、例えばその劣化度を前述した負荷機器20に出力し、前述した制御フラグを[1]に設定して劣化度判定処理を終了する。尚、上述した如くして劣化度が求められたならば、この劣化度を前記初期容量Cintに乗じることで、その時点での二次電池11の実力容量(真の最大充電容量)Ctrueを求め、これを出力するようにしても良い。   If the deterioration level of the secondary battery 11 is obtained in this way, for example, the deterioration level is output to the load device 20 described above, and the control flag is set to [1] to end the deterioration level determination process. To do. If the degree of deterioration is obtained as described above, the actual capacity (true maximum charge capacity) Ctrue of the secondary battery 11 at that time is obtained by multiplying the degree of deterioration by the initial capacity Cint. This may be output.

具体的には二次電池11の初期容量Cintが2000mAhであって、劣化度判定時における放電容量Cdcが500mAhとして求められ、またこのときの開放端子電圧OCVから前述したテーブル18を参照して該二次電池11の残容量率SOCが33.3%として求められた場合、容量消費率Cは
容量消費率C=500[mAh]/2000[mAh]×100=25[%]
として求められる。
Specifically, the initial capacity Cint of the secondary battery 11 is 2000 mAh, and the discharge capacity Cdc at the time of deterioration degree determination is obtained as 500 mAh, and the above-mentioned table 18 is referred to from the open terminal voltage OCV at this time. When the remaining capacity rate SOC of the secondary battery 11 is obtained as 33.3%, the capacity consumption rate C is: capacity consumption rate C = 500 [mAh] / 2000 [mAh] × 100 = 25 [%]
As required.

一方、開放電圧OCVに基づいて求められた残容量率SOC(=33.3%)から、そのときの実力容量をxとして
残容量率SOC=(x−500[mAh])/x×100[%]=33.3[%]
が求められ、劣化度Dが
D=容量消費率[%]÷(100−残容量率)[%]
=25[%]÷(100−33.3)[%]=75[%]
として計算される。そしてこの劣化度から二次電池11の実力容量xが
75[%]=x[mAh]/2000[mAh]×100[%]
x[mAh]=1500[mAh]
として算出することが可能となる。
On the other hand, from the remaining capacity rate SOC (= 33.3%) determined based on the open circuit voltage OCV, the actual capacity at that time is x, and the remaining capacity rate SOC = (x−500 [mAh]) / xx100 [ %] = 33.3 [%]
Degradation degree D is calculated as follows: D = capacity consumption rate [%] ÷ (100−remaining capacity rate) [%]
= 25 [%] ÷ (100-33.3) [%] = 75 [%]
Is calculated as From this degree of deterioration, the actual capacity x of the secondary battery 11 is 75 [%] = x [mAh] / 2000 [mAh] × 100 [%]
x [mAh] = 1500 [mAh]
Can be calculated as

以上のように本発明においては、二次電池11を満充電状態から放電させ、完全放電に至る前に放電を停止した時点までの放電容量Cdcと、その放電停止時における二次電池11の開放端子電圧OCVに基づいてテーブル18を参照して該二次電池11の残容量率SOCを求めるだけで、簡易に、しかも正確に二次電池11の劣化度を判定(検出)することができる。更にはその時点における二次電池11の実力容量Ctrueを簡易に求めることができるので、その実用的利点が絶大である。また上述したように簡易に、信頼性良く二次電池の劣化度を判定することができるので、さほど前記演算・処理部15での処理負担増を招くことがない等の効果が奏せられる。   As described above, in the present invention, the secondary battery 11 is discharged from the fully charged state, and the discharge capacity Cdc until the time when the discharge is stopped before reaching the complete discharge, and the opening of the secondary battery 11 when the discharge is stopped. By simply referring to the table 18 based on the terminal voltage OCV and obtaining the remaining capacity ratio SOC of the secondary battery 11, the degree of deterioration of the secondary battery 11 can be determined (detected) easily and accurately. Furthermore, since the actual capacity Ctrue of the secondary battery 11 at that time can be easily obtained, its practical advantage is tremendous. Further, as described above, since the degree of deterioration of the secondary battery can be determined easily and reliably, there is an effect that the processing load on the calculation / processing unit 15 is not so much increased.

尚、本発明は上述した実施形態に限定されるものではない。例えば二次電池装置(パック電池)を電源アダプタに装着する等して充電した後、これを電源として使用し、二次電池の残容量が低下したときに再充電に供するような、例えば電動アシスト自転車に適用すれば、パック電池が完全放電する前に再充電の必要性を知らしめることができるので、その利点が絶大である。その他、本発明はその要旨を逸脱しない範囲で種々変形して実施することができる。   The present invention is not limited to the embodiment described above. For example, after charging a secondary battery device (pack battery) by attaching it to a power adapter, etc., this is used as a power source and used for recharging when the remaining capacity of the secondary battery decreases, for example, electric assist When applied to a bicycle, the battery pack can be informed of the need for recharging before it is completely discharged, so the advantage is tremendous. In addition, the present invention can be variously modified and implemented without departing from the scope of the invention.

11 二次電池
14 電流検出部
15 演算・制御部
15a 積算容量算出手段(第1の処理手段)
15b 容量消費率算出手段(第2の処理手段)
15c 残容量率検出手段(第3の処理手段)
15d 劣化度判定手段(第4の処理手段)
15e 満充電検出手段(第1の制御手段)
15f 放電停止検出手段(第2の制御手段)
15g 経過時間判定手段(第3の制御手段)
16 電圧検出部
18 テーブル
DESCRIPTION OF SYMBOLS 11 Secondary battery 14 Current detection part 15 Calculation / control part 15a Integrated capacity calculation means (1st processing means)
15b Capacity consumption rate calculating means (second processing means)
15c Remaining capacity rate detection means (third processing means)
15d Deterioration degree determination means (fourth processing means)
15e Full charge detection means (first control means)
15f Discharge stop detection means (second control means)
15g elapsed time judging means (third control means)
16 Voltage detector 18 Table

Claims (5)

二次電池の放電電流を積算して求められる満充電状態からの放電容量Cdcと該二次電池の初期容量Cintとから容量消費率Cを算出し、
一方、予め求められた前記二次電池の開放端子電圧OCVと該二次電池の残容量率SOCとの関係を示すテーブルを参照して、前記容量消費率Cを求めた時点での前記二次電池の開放端子電圧OCVから該二次電池の残容量率SOCを求め、この残容量率SOCと前記容量消費率Cとから前記二次電池の劣化度または実力容量を求めることを特徴とする二次電池の劣化度判定方法。
The capacity consumption rate C is calculated from the discharge capacity Cdc from the fully charged state obtained by integrating the discharge current of the secondary battery and the initial capacity Cint of the secondary battery,
On the other hand, referring to a table showing the relationship between the open terminal voltage OCV of the secondary battery obtained in advance and the remaining capacity ratio SOC of the secondary battery, the secondary battery at the time when the capacity consumption rate C is obtained. The remaining capacity rate SOC of the secondary battery is obtained from the open terminal voltage OCV of the battery, and the deterioration level or the actual capacity of the secondary battery is obtained from the remaining capacity rate SOC and the capacity consumption rate C. A method for determining the deterioration level of a secondary battery.
前記放電容量Cdcは、前記二次電池が完全放電状態に至る前の放電停止時に求められるものである請求項1に記載の二次電池の劣化度判定方法。   The secondary battery deterioration degree determination method according to claim 1, wherein the discharge capacity Cdc is obtained when the secondary battery stops discharging before reaching a fully discharged state. 前記容量消費率Cは、満充電状態から前記二次電池の放電が停止した時点までの放電容量Ccdに基づいて算出されるものであって、前記二次電池の開放端子電圧OCVは、上記放電停止から所定時間を経過した時点で求められるものである請求項1に記載の二次電池の劣化度判定方法。   The capacity consumption rate C is calculated based on the discharge capacity Ccd from the fully charged state to the time when the discharge of the secondary battery stops, and the open terminal voltage OCV of the secondary battery is The method for determining a degree of deterioration of a secondary battery according to claim 1, which is obtained when a predetermined time has elapsed since the stop. 二次電池と、この二次電池の充放電電流を検出する電流検出手段と、前記二次電池の端子電圧を検出する電圧検出手段と、予め求められた前記二次電池の開放端子電圧OCVと該二次電池の残容量率SOCとの関係を記憶したテーブルと、このテーブルを参照して前記二次電池の放電電流と端子電圧とに基づいて前記二次電池の劣化度または実力容量を求める演算・制御手段とを具備し、
前記演算・制御手段は、前記二次電池の放電電流を積算して満充電状態からの放電容量Cdcを求める第1の処理手段と、求められた放電容量Cdcと前記二次電池の初期容量Cintとから該二次電池の容量消費率Cを算出する第2の処理手段と、前記容量消費率Cを求めた時点における前記二次電池の開放端子電圧OCVに従って前記テーブルを参照して該二次電池の残容量率SOCを求める第3の処理手段と、求められた残容量率SOCと前記容量消費率Cとから前記二次電池の劣化度または実力容量を求める第4の処理手段とを備えることを特徴とする二次電池装置。
A secondary battery; current detection means for detecting a charge / discharge current of the secondary battery; voltage detection means for detecting a terminal voltage of the secondary battery; and an open terminal voltage OCV of the secondary battery obtained in advance. A table storing the relationship with the remaining capacity ratio SOC of the secondary battery, and referring to this table, the deterioration level or the actual capacity of the secondary battery is obtained based on the discharge current and the terminal voltage of the secondary battery. Computation and control means,
The arithmetic / control means integrates the discharge current of the secondary battery to obtain a discharge capacity Cdc from a fully charged state, the obtained discharge capacity Cdc and the initial capacity Cint of the secondary battery. Second processing means for calculating the capacity consumption rate C of the secondary battery from the above, and referring to the table according to the open terminal voltage OCV of the secondary battery at the time of obtaining the capacity consumption rate C Third processing means for obtaining the remaining capacity rate SOC of the battery, and fourth processing means for obtaining the degree of deterioration or the actual capacity of the secondary battery from the obtained remaining capacity rate SOC and the capacity consumption rate C. A secondary battery device.
前記演算・制御手段は、更に前記二次電池の満充電を検出して前記第1の処理手段を作動させる第1の制御手段と、完全放電状態に至る前の前記二次電池の放電停止を検出して前記第2の処理手段を作動させる第2の制御手段と、前記二次電池の放電停止から所定時間の経過後に該二次電池の開放電圧OCVを求めて前記第3の処理手段を作動させる第3の制御手段とを備えたものである請求項4に記載の二次電池装置。   The calculation / control means further detects a full charge of the secondary battery and activates the first processing means, and stops the discharge of the secondary battery before reaching a fully discharged state. A second control means for detecting and operating the second processing means; and a third processing means for obtaining an open circuit voltage OCV of the secondary battery after elapse of a predetermined time from the stop of discharge of the secondary battery. The secondary battery device according to claim 4, further comprising third control means to be operated.
JP2009185773A 2009-08-10 2009-08-10 Deterioration degree determination method for secondary battery and secondary battery Pending JP2011038878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009185773A JP2011038878A (en) 2009-08-10 2009-08-10 Deterioration degree determination method for secondary battery and secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009185773A JP2011038878A (en) 2009-08-10 2009-08-10 Deterioration degree determination method for secondary battery and secondary battery

Publications (1)

Publication Number Publication Date
JP2011038878A true JP2011038878A (en) 2011-02-24

Family

ID=43766812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009185773A Pending JP2011038878A (en) 2009-08-10 2009-08-10 Deterioration degree determination method for secondary battery and secondary battery

Country Status (1)

Country Link
JP (1) JP2011038878A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012212510A (en) * 2011-03-30 2012-11-01 Mitsubishi Heavy Ind Ltd Battery system
JP2013207844A (en) * 2012-03-27 2013-10-07 Nec Corp Battery management device, battery device, disk array device, and battery management method
CN104101837A (en) * 2013-04-03 2014-10-15 比亚迪股份有限公司 On-line calculation method for current total capacity of battery
JP2015059814A (en) * 2013-09-18 2015-03-30 カヤバ工業株式会社 Soc estimation device and soc estimation method
CN104749529A (en) * 2015-04-01 2015-07-01 上海理工大学 Calibration method of charge and discharge characteristics of lithium battery and charge and discharge characteristics calibration apparatus
CN108398648A (en) * 2018-03-02 2018-08-14 万帮充电设备有限公司 Analyze the method, apparatus and charging pile of cell decay rate

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012212510A (en) * 2011-03-30 2012-11-01 Mitsubishi Heavy Ind Ltd Battery system
JP2013207844A (en) * 2012-03-27 2013-10-07 Nec Corp Battery management device, battery device, disk array device, and battery management method
US8942075B2 (en) 2012-03-27 2015-01-27 Nec Corporation Battery management device, battery apparatus, disk array apparatus and battery management method
CN104101837A (en) * 2013-04-03 2014-10-15 比亚迪股份有限公司 On-line calculation method for current total capacity of battery
JP2015059814A (en) * 2013-09-18 2015-03-30 カヤバ工業株式会社 Soc estimation device and soc estimation method
CN104749529A (en) * 2015-04-01 2015-07-01 上海理工大学 Calibration method of charge and discharge characteristics of lithium battery and charge and discharge characteristics calibration apparatus
CN104749529B (en) * 2015-04-01 2017-09-12 上海理工大学 The scaling method and charge-discharge characteristic marking apparatus of charging and discharging lithium battery characteristic
CN108398648A (en) * 2018-03-02 2018-08-14 万帮充电设备有限公司 Analyze the method, apparatus and charging pile of cell decay rate

Similar Documents

Publication Publication Date Title
JP5638779B2 (en) Secondary battery characteristic detection method and secondary battery device
JP2011053088A (en) Method for computing residual capacity of secondary battery and secondary battery device
JP5512250B2 (en) Pack battery
JP5971397B2 (en) Battery pack
EP2690743B1 (en) Energy storage system and rechargeable battery control method
JP2011015481A (en) Charge control method, charge control device, and battery pack
JP2010124640A5 (en)
JP2015144562A (en) Charging method of secondary battery, charging control device, and battery pack
WO2011048471A1 (en) Power supply apparatus
JP2006208377A (en) Apparatus and method for monitoring battery pack
JP2009201337A (en) Charger and charging method
JP2012253975A (en) Charging/discharging control method for alkali storage battery, and charging/discharging system
JP2011038878A (en) Deterioration degree determination method for secondary battery and secondary battery
JP2011109840A (en) Charging system which guarantees lifespan of secondary battery
JP2010273413A (en) Device for controlling battery pack
JP2008123961A (en) Battery pack, battery deterioration measuring device, and battery deterioration measuring method
JP4764971B2 (en) Battery level measuring device
JP2003284253A (en) Method of adjusting capacity of secondary battery
JP2009112180A (en) Battery pack and control method thereof
JP4016881B2 (en) Battery level measuring device
JPH11341694A (en) Charging method of secondary battery
JP5165405B2 (en) Charge control circuit, battery pack, and charging system
JP2010230371A (en) System and method for testing secondary battery capacity
JP2005010032A (en) Battery power detecting method, small electrical equipment using the method and battery pack
JP2014010005A (en) Relative residual capacity calculation method for secondary battery, and pack battery