JP2008123961A - Battery pack, battery deterioration measuring device, and battery deterioration measuring method - Google Patents

Battery pack, battery deterioration measuring device, and battery deterioration measuring method Download PDF

Info

Publication number
JP2008123961A
JP2008123961A JP2006309411A JP2006309411A JP2008123961A JP 2008123961 A JP2008123961 A JP 2008123961A JP 2006309411 A JP2006309411 A JP 2006309411A JP 2006309411 A JP2006309411 A JP 2006309411A JP 2008123961 A JP2008123961 A JP 2008123961A
Authority
JP
Japan
Prior art keywords
voltage
cell
battery
charging
battery cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006309411A
Other languages
Japanese (ja)
Inventor
Isao Suzuki
功 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2006309411A priority Critical patent/JP2008123961A/en
Publication of JP2008123961A publication Critical patent/JP2008123961A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable to precisely carry out measurement of deterioration of a battery cell in a short time. <P>SOLUTION: In the case of measuring deterioration rate of the battery cell, when a charge current supplied to the battery cell during the time of constant current charging is a first charging current value Ia, a first voltage measuring treatment to obtain a first cell voltage Va is carried out. Then, in the case it changes to a second charge current value Ib lower than the first charge current value Ia, a second voltage measuring treatment to obtain a second cell voltage Vb is carried out. Based on the first cell voltage Va and the second cell voltage Vb obtained like this, the internal resistance of the battery cell is calculated and deterioration judgment treatment to judge the deterioration rate of the battery cell is carried out. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、各種電子機器の駆動電源として使用される、二次電池などの電池セルを内蔵した電池パック、及びその電池パック内の電池セルの劣化を測定する電池劣化測定装置、並びに電池セルの劣化を測定する電池劣化測定方法に関する。   The present invention relates to a battery pack incorporating a battery cell such as a secondary battery, which is used as a driving power source for various electronic devices, a battery deterioration measuring device for measuring deterioration of a battery cell in the battery pack, and a battery cell The present invention relates to a battery deterioration measuring method for measuring deterioration.

従来、リチウムイオン二次電池などの二次電池については、充電や放電についての適切な制御や保護が必要であり、電池セルと共に制御回路や保護回路を電池パック内に内蔵させて構成させてある。その場合、制御回路による充電や放電の制御としては、予め、電池パックに内蔵させた電池セルの満充電時の電圧や電流などの特性値を記憶させておき、その記憶させた特性値に相当する値を検出した場合に、充電を停止させる制御を行うようにしてある。放電時の制御についても、同様に放電終止電圧などを、電池セルの特性値により記憶させておき、この電圧になると放電を停止させるようにしてある。   Conventionally, for secondary batteries such as lithium ion secondary batteries, appropriate control and protection for charging and discharging are necessary, and a control circuit and a protection circuit are built in a battery pack together with a battery cell. . In that case, as control of charging and discharging by the control circuit, characteristic values such as voltage and current at the time of full charge of the battery cell built in the battery pack are stored in advance and correspond to the stored characteristic values. When a value to be detected is detected, control for stopping charging is performed. Regarding the control at the time of discharging, similarly, the discharge end voltage and the like are stored by the characteristic value of the battery cell, and the discharge is stopped when this voltage is reached.

ところで、電池パック内の電池セルについては、充電や放電を繰り返すことで、特性が劣化する。この電池特性の劣化状態は、電池セルの内部抵抗を測定することで、検出が可能である。従来の電池セルの内部抵抗の測定処理例としては、例えば、電池セルの閉路電圧と開放電圧の差と、充電電流から測定することが知られている。   By the way, about the battery cell in a battery pack, a characteristic deteriorates by charging and discharging repeatedly. The deterioration state of the battery characteristics can be detected by measuring the internal resistance of the battery cell. As a conventional measurement processing example of the internal resistance of the battery cell, for example, it is known to measure from the difference between the closed voltage and the open voltage of the battery cell and the charging current.

特許文献1には、電池の充電電流を停止させて、開放電圧を測定して、電池寿命を判断する手法についての記載がある。
特開2002−230547号公報
Japanese Patent Application Laid-Open No. 2004-228561 describes a method for determining the battery life by stopping the charging current of the battery and measuring the open-circuit voltage.
JP 2002-230547 A

ところで、上述した手法で、電池セルの劣化を測定しる処理では、短時間に正確な電池セルの劣化を測定することは困難であった。即ち、電池セルへの充電を停止させて、電池セルを充電回路に対して開放状態として、開放電圧を測定しようとすると、開放状態とした直後は電圧の変動が大きく、開放状態としてから数時間経過した後でないと、正確な開放電圧が測定できないという問題があった。開放状態とした直後の具体的な電圧の変動例については、後述する実施の形態の中で、本発明の処理と対比して説明するが、短時間に正確な開放電圧の測定は困難であり、このような従来手法で、二次電池の内部抵抗を短時間に測定することは困難であった。   By the way, in the process of measuring the deterioration of the battery cell by the above-described method, it is difficult to accurately measure the deterioration of the battery cell in a short time. That is, when charging the battery cell is stopped and the battery cell is opened with respect to the charging circuit and an attempt is made to measure the open circuit voltage, the voltage fluctuation is large immediately after the open circuit, and several hours after the open circuit is opened. There has been a problem that an accurate open-circuit voltage cannot be measured unless it has elapsed. A specific voltage fluctuation example immediately after the open state will be described in comparison with the processing of the present invention in the embodiment described later, but it is difficult to accurately measure the open circuit voltage in a short time. Thus, it has been difficult to measure the internal resistance of the secondary battery in a short time by such a conventional method.

本発明はかかる点に鑑み、電池の劣化の測定が短時間に正確に行えるようにすることを目的とする。   In view of this point, an object of the present invention is to enable accurate measurement of battery deterioration in a short time.

かかる課題を解決するため本発明は、電池セルの劣化率を測定する場合に、電池セルへの定電流充電中に供給される充電電流が、第1の充電電流値の場合に、第1のセル電圧を得る第1の電圧測定処理を行う、そして、第1の充電電流値よりも低い第2の充電電流値に変化した場合に、第2のセル電圧を得る第2の電圧測定処理を行う。このようにして得た第1のセル電圧と第2のセル電圧とに基づいて、電池セルの内部抵抗を算出して、電池セルの劣化率を判断する劣化判断処理とを行う。   In order to solve such a problem, when measuring the deterioration rate of a battery cell, the present invention provides the first charging current supplied during constant current charging to the battery cell when the charging current value is the first charging current value. A first voltage measurement process for obtaining a cell voltage is performed, and a second voltage measurement process for obtaining a second cell voltage when the second charging current value is lower than the first charging current value. Do. Based on the first cell voltage and the second cell voltage obtained in this way, the internal resistance of the battery cell is calculated, and a deterioration determination process for determining the deterioration rate of the battery cell is performed.

本発明によると、第1のセル電圧値と第2のセル電圧値のいずれも、電池セルに対して充電電流が流れた状態で測定した値であり、それぞれの測定に使用した第1の充電電流値と第2の充電電流値とを、ある程度差の大きな電流値とすることで、電池セルの内部抵抗の算出が正確に行える。従って、本発明によると、電池セルを充電回路に対して開放状態とすることなく、電池セルの内部抵抗の算出が正確に行えるようになる。   According to the present invention, each of the first cell voltage value and the second cell voltage value is a value measured in a state where a charging current flows to the battery cell, and the first charging used for each measurement. By setting the current value and the second charging current value to a current value having a large difference to some extent, the internal resistance of the battery cell can be accurately calculated. Therefore, according to the present invention, the internal resistance of the battery cell can be accurately calculated without opening the battery cell to the charging circuit.

本発明によれば、電池セルを充電回路に接続した閉路状態としたままで、正確な電池セルの内部抵抗の算出が行え、その正確な内部抵抗に基づいて、正確な電池セルの劣化率の判断が可能となる。この場合、電池セルを充電回路に接続した閉路状態としたままで測定できることで、従来のように、開放状態として長時間放置する必要がなく、短時間に正確な測定が可能となる。   According to the present invention, it is possible to accurately calculate the internal resistance of the battery cell while keeping the battery cell connected to the charging circuit, and to accurately calculate the deterioration rate of the battery cell based on the accurate internal resistance. Judgment is possible. In this case, since the measurement can be performed while the battery cell is in the closed state connected to the charging circuit, it is not necessary to leave the battery cell in the open state for a long time as in the conventional case, and accurate measurement can be performed in a short time.

以下、本発明の一実施の形態の例を、添付図面を参照して説明する。
図1は、本例の電池パック20と、その電池パック20に接続される充電装置10の構成例を示したブロック図である。電池パック20としては、例えばパーソナルコンピュータ装置などの各種電子機器の駆動電源として使用されるものである。電池パック20内には、二次電池セル31〜36を複数個(ここでは6個)内蔵させてある。二次電池セル31〜36としては、ここではリチウムイオン二次電池を使用してある。また、図1では6個のセルを2個ずつ並列にして、3組直列接続させた、いわゆる2並列3直列のセル構成としてある。6個の電池セル31〜36は、基本的には同じ特性及び容量のものが使用される。なお、電池パック20に内蔵させるセルの数は一例を示したものであり、図1に示したような6個に限定されず、接続状態についても、図1に示したような接続構成に限定されない。
Hereinafter, an example of an embodiment of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a block diagram illustrating a configuration example of the battery pack 20 of the present example and the charging device 10 connected to the battery pack 20. The battery pack 20 is used as a drive power source for various electronic devices such as personal computer devices. A plurality of (six in this case) secondary battery cells 31 to 36 are built in the battery pack 20. Here, lithium ion secondary batteries are used as the secondary battery cells 31 to 36. Moreover, in FIG. 1, it is set as the so-called 2 parallel 3 series cell structure which made 6 cells 2 pieces parallel, and connected 3 sets in series. The six battery cells 31 to 36 basically have the same characteristics and capacity. The number of cells incorporated in the battery pack 20 is an example, and is not limited to six as shown in FIG. 1, and the connection state is also limited to the connection configuration as shown in FIG. Not.

充電装置10としては、商用交流電源を得る電源プラグ11を備え、充電回路12内で、この電源プラグ11から供給される商用交流電源を変圧及び整流して、直流低圧電源とし、その直流低圧電源を使用して、電池セルを充電させるための充電電流を得る。充電回路12の出力端子である正極端子13と負極端子14は、それぞれ電池パック20の正極端子21と負極端子22とに接続されて、電池パック20内の電池セル31〜36に充電電流を供給する。   The charging device 10 includes a power plug 11 for obtaining a commercial AC power source. The commercial AC power source supplied from the power plug 11 is transformed and rectified in the charging circuit 12 to obtain a DC low voltage power source. Is used to obtain a charging current for charging the battery cell. The positive terminal 13 and the negative terminal 14, which are output terminals of the charging circuit 12, are connected to the positive terminal 21 and the negative terminal 22 of the battery pack 20, respectively, and supply charging current to the battery cells 31 to 36 in the battery pack 20. To do.

この場合、充電装置10から電池パック20に充電電流を供給する際には、定電圧充電モードでの充電と、定電流充電モードでの充電とを行える構成としてある。さらに、定電圧充電モードでの充電時には、充電電流を複数段階に可変できる構成としてあり、後述する電池セルの劣化率測定のための充電電流可変処理が可能としてある。充電電流を複数段階に可変させる構成としては、例えばトリクル充電を行うための構成を利用してもよい。即ち、例えば電池電圧が低い場合に、二次電池セルを安全に充電させるために、トリクルチャージ(予備充電)を小電流で行うことが可能な充電装置として構成してある場合に、その小電流での充電を、後述する電池セルの劣化率測定のために利用してもよい。このような受電電流を小電流とする処理は、電池パック20側から充電装置10側への充電電流値を設定させるデータの伝送で可能である。具体的には、例えば、電池パック20側から充電装置10側へ、一時的にトリクル充電モードとする指令を送って、電池セルの劣化率測定のための充電電流可変処理を行い、その後、通常の充電モードに戻す指令を送ることが可能である。   In this case, when a charging current is supplied from the charging device 10 to the battery pack 20, the charging in the constant voltage charging mode and the charging in the constant current charging mode can be performed. Furthermore, at the time of charging in the constant voltage charging mode, the charging current can be varied in a plurality of stages, and a charging current varying process for measuring the deterioration rate of the battery cell described later is possible. As a configuration for changing the charging current in a plurality of stages, for example, a configuration for performing trickle charging may be used. That is, for example, when the battery voltage is low, in order to safely charge the secondary battery cell, when the charging device is configured to perform trickle charging (preliminary charging) with a small current, the small current You may utilize the charge in for measuring the deterioration rate of the battery cell mentioned later. Such processing for reducing the received current to a small current can be performed by transmitting data for setting a charging current value from the battery pack 20 side to the charging device 10 side. Specifically, for example, a command to temporarily set the trickle charging mode is sent from the battery pack 20 side to the charging device 10 side, and the charging current variable processing for measuring the deterioration rate of the battery cell is performed. It is possible to send a command to return to the charging mode.

充電装置10は、通信端子15,16を備えて、電池パック20側の中央制御ユニット(CPU)27と通信を行いながら、充電を行う構成としてある。即ち、充電装置10に電池パック20を接続した際には、充電装置10の正極端子13と負極端子14とが、電池パック20の正極端子21と負極端子22とに接続されると共に、充電装置10の通信端子15,16が、電池パック20の通信端子23,24と接続される構成としてあり、電池パック20側の中央制御ユニット27からの指令を充電回路12が受信して、その指令に基づいた状態(モード)で充電電流を供給する。   The charging device 10 includes communication terminals 15 and 16 and is configured to perform charging while communicating with a central control unit (CPU) 27 on the battery pack 20 side. That is, when the battery pack 20 is connected to the charging apparatus 10, the positive terminal 13 and the negative terminal 14 of the charging apparatus 10 are connected to the positive terminal 21 and the negative terminal 22 of the battery pack 20, and the charging apparatus 10 communication terminals 15 and 16 are connected to the communication terminals 23 and 24 of the battery pack 20, and the charging circuit 12 receives a command from the central control unit 27 on the battery pack 20 side. The charging current is supplied based on the state (mode).

なお、図1の例では、充電装置10として、単体の充電装置として示してあるが、例えば、電池パック20が接続される電子機器(パーソナルコンピュータ装置など)の本体側に、この充電装置10に相当する回路を内蔵させるようにしてもよい。   In the example of FIG. 1, the charging device 10 is illustrated as a single charging device. However, for example, the charging device 10 is connected to the main body side of an electronic device (such as a personal computer device) to which the battery pack 20 is connected. A corresponding circuit may be incorporated.

次に、電池パック20の構成について説明する。電池パック20内のセルの接続構成としては、既に説明したように、2並列3直列のセル構成であり、電池パック20の正極端子21は、充放電制御用電界効果トランジスタ(FET)25,26を介して、電池セル31,32の正極に接続してある。電池セル31,32の負極は、電池セル33,34の正極に接続してあり、電池セル33,34の負極は、電流検出用抵抗器37を介して、電池パック20の負極端子22に接続してある。充放電制御用の2つの電界効果トランジスタ25,26は、接続方向を相互に逆としてあり、一方のトランジスタ25のオンオフで放電を制御し、他方のトランジスタ26のオンオフで充電を制御する構成としてある。この充放電制御用の2つの電界効果トランジスタ25,26のオンオフは、充放電制御部29の制御で実行される。   Next, the configuration of the battery pack 20 will be described. As already described, the connection configuration of the cells in the battery pack 20 is a two-parallel three-series cell configuration, and the positive electrode terminal 21 of the battery pack 20 is a field effect transistor (FET) 25, 26 for charge / discharge control. Is connected to the positive electrodes of the battery cells 31 and 32. The negative electrodes of the battery cells 31 and 32 are connected to the positive electrodes of the battery cells 33 and 34, and the negative electrodes of the battery cells 33 and 34 are connected to the negative electrode terminal 22 of the battery pack 20 via the current detection resistor 37. It is. The two field effect transistors 25 and 26 for charge / discharge control have connection directions opposite to each other. The discharge control is performed by turning on / off one transistor 25 and the charge is controlled by turning on / off the other transistor 26. . The two field effect transistors 25 and 26 for charge / discharge control are turned on / off by the control of the charge / discharge control unit 29.

また、充放電制御部29は、各電池セル31〜36のセル電圧を測定する構成としてある。即ち、並列に接続された電池セル31,32の正極側の接続点に、抵抗器38の一端が接続してある。また、電池セル31,32の負極側と、電池セル33,34の正極側の接続点に、抵抗器39の一端が接続してある。また、電池セル33,34の負極側と、電池セル35,36の正極側の接続点に、抵抗器40の一端が接続してある。さらに、電池セル35,36の負極側の接続点に、抵抗器41の一端が接続してある。   Moreover, the charge / discharge control part 29 is set as the structure which measures the cell voltage of each battery cell 31-36. That is, one end of the resistor 38 is connected to the connection point on the positive electrode side of the battery cells 31 and 32 connected in parallel. In addition, one end of a resistor 39 is connected to a connection point between the negative electrode side of the battery cells 31 and 32 and the positive electrode side of the battery cells 33 and 34. In addition, one end of the resistor 40 is connected to a connection point between the negative electrode side of the battery cells 33 and 34 and the positive electrode side of the battery cells 35 and 36. Furthermore, one end of the resistor 41 is connected to the connection point on the negative electrode side of the battery cells 35 and 36.

そして、各抵抗器38,39,40,41の他端に得られる電圧を、充放電制御部29で測定して、各電池セルのセル電圧を判断する構成としてある。ここでは、並列接続された2個の電池セルを単位として、セル電圧を測定する構成としてある。以下の説明では、並列接続された2個の電池セルの電圧を、セルブロック電圧と称する。測定されたセル電圧のデータは、中央制御ユニット27に送る。中央制御ユニット27では、電流検出用抵抗器37の両端の電圧についても測定して、抵抗器37を流れる電流についても測定するようにしてある。   And the voltage obtained by the other end of each resistor 38,39,40,41 is measured by the charging / discharging control part 29, and it is set as the structure which judges the cell voltage of each battery cell. Here, the cell voltage is measured in units of two battery cells connected in parallel. In the following description, the voltage of two battery cells connected in parallel is referred to as a cell block voltage. The measured cell voltage data is sent to the central control unit 27. In the central control unit 27, the voltage across the current detection resistor 37 is also measured, and the current flowing through the resistor 37 is also measured.

そして、中央制御ユニット27では、充放電制御部29から送られた各セル電圧と、電流検出用抵抗器37の両端電圧で検出した充電電流とを判断して、充電状態や放電状態を監視する。   Then, the central control unit 27 determines each cell voltage sent from the charge / discharge control unit 29 and the charge current detected by the voltage across the current detection resistor 37, and monitors the charge state and the discharge state. .

中央制御ユニット27には、メモリ28が接続してある。メモリ28は、例えば不揮発性メモリで構成する。メモリ28には、電池パック20内に用意されている電池セル31〜36の特性に関するデータが記憶させてある。即ち、電池セルの満充電時のセル電圧、放電終止電圧、許容される充電電流、放電電流などの特性が記憶させてある。また、電池セルの劣化率の判断に必要なデータや、劣化率の算出に必要な計算式のデータについても記憶させてある。そして、劣化率の判断をした場合には、その判断した劣化率の記憶データ(又は劣化率から判断される満充電量のデータ)を随時更新させるようにしてある。劣化率の判断処理の詳細については後述する。   A memory 28 is connected to the central control unit 27. The memory 28 is composed of, for example, a nonvolatile memory. The memory 28 stores data relating to the characteristics of the battery cells 31 to 36 prepared in the battery pack 20. That is, characteristics such as a cell voltage when the battery cell is fully charged, a discharge end voltage, an allowable charging current, and a discharging current are stored. Further, data necessary for determining the deterioration rate of the battery cell and data of a calculation formula necessary for calculating the deterioration rate are also stored. When the deterioration rate is determined, stored data of the determined deterioration rate (or data of the full charge amount determined from the deterioration rate) is updated as needed. Details of the deterioration rate determination process will be described later.

中央制御ユニット27で電池セル31〜36の劣化率を判断した場合には、その劣化率に基づいて、電池セルの満充電量を削減するようにしてある。電池セルの満充電量を削減することで、充電時には、その削減された満充電量になったことを中央制御ユニット27が検出すると、充電制御用の電界効果トランジスタ26をオフ状態として、充電を停止させる制御を行うようにしてある。また、電池セル31〜36の劣化率の判断で、判断された劣化率(劣化率)が、予め決められた閾値以下の劣化率になったと判断した場合には、電池劣化を示すデータを通信端子23,24を介して外部に出力して、接続される電子機器側の表示部などに、電池劣化を告知して、電池の交換を促す表示をさせるようにしてもよい。   When the central control unit 27 determines the deterioration rate of the battery cells 31 to 36, the full charge amount of the battery cell is reduced based on the deterioration rate. By reducing the full charge amount of the battery cell, when the central control unit 27 detects that the reduced full charge amount is reached at the time of charging, the charge control field effect transistor 26 is turned off to perform charging. Control to stop is performed. In addition, when the deterioration rate of the battery cells 31 to 36 is determined to be a deterioration rate that is equal to or lower than a predetermined threshold, data indicating battery deterioration is communicated. The battery may be output to the outside via the terminals 23 and 24, and a display unit or the like on the connected electronic device side may be notified of battery deterioration and displayed to prompt the user to replace the battery.

なお、図1の構成では、電池パック内のヒューズなどの保護回路については省略してあるが、この種の電池パックの保護回路として一般的な発熱温度抵抗付ヒューズなどを配置して、電池セルの異常時にヒューズを溶断させて、電池パックが使用できないように構成してもよい。   In the configuration of FIG. 1, a protection circuit such as a fuse in the battery pack is omitted. However, a general fuse with a heating temperature resistor or the like is arranged as a protection circuit for this type of battery pack, so that the battery cell The battery pack may not be used by fusing the fuse when an abnormality occurs.

次に、図2のフローチャートを参照して、本例の電池パック20に充電を行う際に行われる、電池セルの内部抵抗測定処理例について説明する。本例の内部抵抗測定処理は、中央制御ユニット27の制御及び判断で実行される。
ここでは、充電開始前の電池セルの電圧が比較的低い電圧であるとし、定電流充電モードで充電を行うものとする。定電流モードで充電を開始させ、電流値Iaの定電流を、充電装置10から電池パック20に供給する。この定電流での充電を開始させると、その状態での充電の開始から20分以上経過したとき、充放電制御部29で検出された各セルブロックの電圧を判断し、それぞれのセルブロック電圧が予め設定された一定範囲内か否か判断する(ステップS11)。この例では、セルブロック電圧として、3.9Vを超えて、4.15V未満の範囲内であるか否か判断する。この電圧範囲は、満充電時のセル電圧(セルブロック電圧)と、放電終止電圧との間から選定した電圧範囲である。充電開始から20分経過して、この電圧範囲にあるということは、比較的安定した定電流充電状態であると言える。
Next, with reference to the flowchart of FIG. 2, an example of a battery cell internal resistance measurement process performed when the battery pack 20 of the present example is charged will be described. The internal resistance measurement process of this example is executed by the control and determination of the central control unit 27.
Here, it is assumed that the voltage of the battery cell before the start of charging is a relatively low voltage, and charging is performed in the constant current charging mode. Charging is started in the constant current mode, and a constant current having a current value Ia is supplied from the charging device 10 to the battery pack 20. When charging at this constant current is started, the voltage of each cell block detected by the charge / discharge control unit 29 is judged when 20 minutes or more have elapsed from the start of charging in that state, and each cell block voltage is It is determined whether or not the predetermined range is set (step S11). In this example, it is determined whether or not the cell block voltage exceeds 3.9V and is less than 4.15V. This voltage range is a voltage range selected from a cell voltage (cell block voltage) at full charge and a discharge end voltage. If it is within this voltage range after 20 minutes from the start of charging, it can be said that it is a relatively stable constant current charging state.

このステップS11での判断で、一定範囲内であると判断した場合には、本例の内部抵抗測定処理に移る。まず、現在の充電電流値Iaの正確な値を測定して、メモリ28に記憶させる(ステップS12)。そして、その充電電流が供給された状態で、各セルブロックの電圧(閉路電圧)Vaを測定し、同じくメモリ28に記憶させる(ステップS13)。   If it is determined in step S11 that the value is within a certain range, the process proceeds to the internal resistance measurement process of this example. First, an accurate value of the current charging current value Ia is measured and stored in the memory 28 (step S12). Then, in the state where the charging current is supplied, the voltage (closed circuit voltage) Va of each cell block is measured and stored in the memory 28 (step S13).

次に、電池パック20内の中央制御ユニット27から、充電装置10の充電回路12側に指令を送り、充電電流値を、現在の電流値Iaから、約1/3の電流値の電流値Ibに変更させる(ステップS14)。この低下させた電流値Ibとしては、充電装置10がトリクル充電用に用意された充電電流値としてもよい。その後、充電電流を測定して、供給される充電電流値Ibの正確な値を測定し、メモリ28に記憶させる(ステップS15)。そして、その充電電流が供給された状態で、各セルブロックの電圧(閉路電圧)Vbを測定し、同じくメモリ28に記憶させる(ステップS16)。ここまでの測定が終わると、電池パック20内の中央制御ユニット27から、充電装置10の充電回路12側に指令を送り、充電電流値を、元の電流値Iaに戻る(ステップS17)。なお、ステップS14で充電電流値Ibに変更してから、ステップS17で充電電流値Iaに戻すまでの間は、充電電流値Ib及びセルブロックの電圧Vbの測定に必要な時間だけでよい。   Next, a command is sent from the central control unit 27 in the battery pack 20 to the charging circuit 12 side of the charging device 10, and the charging current value is changed from the current value Ia to the current value Ib that is about 1/3 of the current value Ia. (Step S14). The reduced current value Ib may be a charging current value prepared by the charging device 10 for trickle charging. Thereafter, the charging current is measured, and an accurate value of the supplied charging current value Ib is measured and stored in the memory 28 (step S15). Then, with the charging current supplied, the voltage (closed circuit voltage) Vb of each cell block is measured and stored in the memory 28 (step S16). When the measurement so far is finished, a command is sent from the central control unit 27 in the battery pack 20 to the charging circuit 12 side of the charging apparatus 10, and the charging current value is returned to the original current value Ia (step S17). It should be noted that only the time required for measuring the charging current value Ib and the voltage Vb of the cell block is sufficient after the charging current value Ib is changed in step S14 until the charging current value Ia is returned in step S17.

そして、中央制御ユニット27内では、メモリ28に記憶された各データを使用して、各セルブロックごとの内部抵抗を算出する(ステップS18)。内部抵抗を算出する計算式については後述する。そして、算出した内部抵抗値より、各セルブロックを構成する電池セルの劣化率を算出する(ステップS19)。電池セルの劣化率を算出すると、その劣化率に基づいて、各電池セルの満充電量についての、メモリ28のデータを更新する(ステップS20)。   In the central control unit 27, the internal resistance for each cell block is calculated using each data stored in the memory 28 (step S18). A calculation formula for calculating the internal resistance will be described later. And the deterioration rate of the battery cell which comprises each cell block is calculated from the calculated internal resistance value (step S19). When the deterioration rate of the battery cell is calculated, the data in the memory 28 about the full charge amount of each battery cell is updated based on the deterioration rate (step S20).

図3は、このような処理を行った場合の充電電流とセル電圧の変化例を示した図である。但し、図3は変化状態の概念を示した図であり、図3の横軸の時間軸は、実時間と一致するとは限らない。図3(a)は充電電流の例を示し、図3(b)はセル電圧(充電電圧)の例を示す。まずタイミングt1で、充電電流値Iaで充電を開始させて、所定時間経過したタイミングt2になると、充電電流値Ibに変化させる。この充電電流値Ibは、電流値Iaの約1/3の電流値となるように所定電流ΔIだけ低下させたものである。   FIG. 3 is a diagram showing an example of changes in charging current and cell voltage when such processing is performed. However, FIG. 3 is a diagram showing the concept of the change state, and the time axis of the horizontal axis in FIG. 3 does not always coincide with the real time. FIG. 3A shows an example of the charging current, and FIG. 3B shows an example of the cell voltage (charging voltage). First, at timing t1, charging is started at the charging current value Ia, and at timing t2 when a predetermined time has elapsed, the charging current value is changed to Ib. The charging current value Ib is reduced by a predetermined current ΔI so as to be about 1/3 of the current value Ia.

そして、図3(b)に示すように、充電電流を電流値Iaから電流値Ibに変化させる直前のセル電圧Vaを測定し、さらに電流値Ibでのセル電圧Vbを測定する。このセル電圧Vbの測定が終わると、図3(a)に示すように、タイミングt3で充電電流を電流値Iaに戻し、元の状態での充電を再開させる。その後、満充電状態であると中央制御ユニット27で判断されるまで、充電を継続させる。但し、電流値Iaでの定電流充電は、ある程度のセルブロック電圧までとし、それ以降は定電圧充電などの別の充電モードとしてもよい。   Then, as shown in FIG. 3B, the cell voltage Va immediately before changing the charging current from the current value Ia to the current value Ib is measured, and the cell voltage Vb at the current value Ib is further measured. When the measurement of the cell voltage Vb is completed, as shown in FIG. 3A, the charging current is returned to the current value Ia at the timing t3, and the charging in the original state is resumed. Thereafter, charging is continued until the central control unit 27 determines that the battery is fully charged. However, the constant current charging at the current value Ia may be performed up to a certain cell block voltage, and thereafter, another charging mode such as constant voltage charging may be used.

次に、図2のフローチャートのステップS18での、各セルブロックの内部抵抗算出処理例について説明する。図2のフローチャートで説明した処理では、2つの充電電流値Ia,Ibと、それぞれでの充電中のセルブロック電圧Va,Vbが測定される。セルブロック電圧Va,Vbについては、充電電流が供給される状態でのセル電圧であるので、閉路電圧(即ち開放状態でない電圧)である。この充電電流値Ia,Ibと、セルブロック電圧Va,Vbを使用して、中央制御ユニット27では、以下の演算式で、各セルブロックの内部抵抗Impを算出する。   Next, an example of internal resistance calculation processing for each cell block in step S18 of the flowchart of FIG. 2 will be described. In the process described with reference to the flowchart of FIG. 2, two charging current values Ia and Ib and cell block voltages Va and Vb during charging are measured. Since the cell block voltages Va and Vb are cell voltages in a state where a charging current is supplied, they are closed circuit voltages (that is, voltages not in an open state). Using the charging current values Ia and Ib and the cell block voltages Va and Vb, the central control unit 27 calculates the internal resistance Imp of each cell block by the following arithmetic expression.

[数1]
(Va−Vb)/(Ia−Ib)=Imp
[Equation 1]
(Va−Vb) / (Ia−Ib) = Imp

そして、劣化率については、初期状態での各セルブロックの内部抵抗をImp NEWとすると、次式で算出される。   The deterioration rate is calculated by the following equation, assuming that the internal resistance of each cell block in the initial state is Imp NEW.

[数2]
Imp/Imp NEW=劣化率
[Equation 2]
Imp / Imp NEW = Deterioration rate

このようにして劣化率を算出できることで、電池パック20が内蔵する各電池セル31〜36の満充電量を正確に測定することができる。しかも本例の場合には、短時間で内部抵抗を正確に測定することができる。   Since the deterioration rate can be calculated in this way, the full charge amount of each of the battery cells 31 to 36 built in the battery pack 20 can be accurately measured. Moreover, in this example, the internal resistance can be accurately measured in a short time.

ここで、本例の処理で短時間で電池セルの内部抵抗の測定が可能な点を、従来の開放電圧を測定して、電池セルの内部抵抗の測定する場合と対比して説明する。
図4(a)は、背景技術の欄で説明した、従来から知られている、電池セルの閉路電圧と開放電圧の差と、充電電流から測定する場合の特性例を示したものである。この図4(a)に示すように、一定の電流で充電して、ある程度充電されて、セル電圧V11となった状態で、充電電流を遮断する。この充電電流の遮断を行って、電池セルを開放状態(即ち閉路状態でない状態)とすることで、セル電圧は電圧V12に急激に低下する。しかしながら、その後は、時間をかけて電圧V12から徐々にセル電圧が低下し、充電電流の遮断から数時間(例えば2時間)が経過して、ようやくセル電圧が安定する。
Here, the fact that the internal resistance of the battery cell can be measured in a short time by the processing of this example will be described in comparison with the case of measuring the internal resistance of the battery cell by measuring the conventional open-circuit voltage.
FIG. 4A shows a characteristic example in the case of measuring from the difference between the closed voltage and the open voltage of the battery cell and the charging current, which has been conventionally known, as described in the background art section. As shown in FIG. 4A, the charging current is cut off in a state where the battery is charged with a constant current, charged to a certain degree and becomes the cell voltage V11. By cutting off the charging current and bringing the battery cell into an open state (that is, a state where the battery cell is not in a closed state), the cell voltage rapidly decreases to the voltage V12. However, after that, the cell voltage gradually decreases from the voltage V12 over time, and after several hours (for example, 2 hours) have passed since the charging current was cut off, the cell voltage finally becomes stable.

図4(b)は、各セルの内部の等価回路を示したものである。このように、抵抗R1と、コンデンサC1及び抵抗R2の並列回路との直列回路で、セルの内部の回路を示すことができる。この等価回路において、電池セルが閉路状態から開放状態に変化すると、抵抗R1による電圧降下は、充電電流の遮断後、直ちに表れる。この抵抗R1による電圧降下が、図4(a)に示す電圧V11から電圧V12への降下である。   FIG. 4B shows an equivalent circuit inside each cell. Thus, the circuit inside the cell can be shown by a series circuit of the resistor R1 and the parallel circuit of the capacitor C1 and the resistor R2. In this equivalent circuit, when the battery cell changes from a closed state to an open state, a voltage drop due to the resistor R1 appears immediately after the charging current is cut off. The voltage drop due to the resistor R1 is a drop from the voltage V11 to the voltage V12 shown in FIG.

一方、等価回路で示されるコンデンサC1は、充電電流が遮断されると放電を開始し、その放電が行われている間、電圧が徐々に降下する。この電圧の降下が、例えば数時間かけて行われる。   On the other hand, the capacitor C1 shown in the equivalent circuit starts discharging when the charging current is interrupted, and the voltage gradually decreases while the discharging is being performed. This voltage drop is performed over several hours, for example.

図5(a)、本例での電池セルの内部抵抗の測定時の特性例を示したものである。この図5(a)に示すように、一定の電流で充電して、ある程度充電されて、セル電圧V21となった状態で、充電電流を約1/3に低下させる。この充電電流の低下で、セル電圧V22に降下するが、その降下したセル電圧V22が維持される。   FIG. 5 (a) shows an example of characteristics when measuring the internal resistance of the battery cell in this example. As shown in FIG. 5A, the charging current is reduced to about 1/3 in a state where the battery is charged with a constant current and charged to some extent to become the cell voltage V21. With this decrease in charging current, the voltage drops to the cell voltage V22, but the lowered cell voltage V22 is maintained.

このように降下したセル電圧V22が一定状態で維持されるのは、図5(b)に示した等価回路に示したように、充電電流が低下しても、充電電流の供給が継続しているために、等価回路内のコンデンサC1からの放電が生じず、抵抗R1による降下が発生するだけのためである。   The cell voltage V22 thus lowered is maintained in a constant state as shown in the equivalent circuit shown in FIG. 5B even when the charging current decreases, the charging current continues to be supplied. This is because the discharge from the capacitor C1 in the equivalent circuit does not occur, and only a drop due to the resistor R1 occurs.

実際に測定した例を示すと、図4に示した従来処理(即ち電池セルを閉路状態から開放状態に変化させた場合)の電圧・電流変化例を図6(a)に示し、図5に示した本例の処理での内部抵抗の測定時の電圧・電流変化例を図6(b)に示す。
図6(a)に示すように、従来処理での充電電流Ixを遮断すると、セル電圧Vxは遮断時に急激に低下した後、傾斜した直線αで示すように、長時間かけて徐々に低下する。
An example of actual measurement is shown in FIG. 6A as an example of voltage / current change in the conventional process shown in FIG. 4 (that is, when the battery cell is changed from a closed state to an open state). FIG. 6B shows an example of voltage / current change when measuring the internal resistance in the processing of this example shown.
As shown in FIG. 6A, when the charging current Ix in the conventional process is cut off, the cell voltage Vx drops sharply at the time of cutting, and then gradually decreases over a long period of time as shown by the inclined straight line α. .

これに対して、本例の場合には、図6(b)に示すように、充電電流Iyを低下させると、セル電圧Vyは変化時に急激に低下した後、水平な直線βで示すように、その電圧値を維持し、短時間で正確なセル電圧の測定ができる。図6(b)の例では、充電電流を低下させてから、約100秒で一定のセル電圧に安定している。   On the other hand, in the case of this example, as shown in FIG. 6B, when the charging current Iy is decreased, the cell voltage Vy rapidly decreases at the time of change, and then as shown by the horizontal straight line β. The voltage value can be maintained, and an accurate cell voltage can be measured in a short time. In the example of FIG. 6B, the cell voltage is stabilized at a constant cell voltage in about 100 seconds after the charging current is reduced.

このように本例の処理を行うことで、充電中に、電池セルの内部抵抗を短時間に正確に測定することができ、電池セルの劣化率を短時間に正確に算出でき、劣化率を考慮した正確な充電残量の判断が可能になる。   By performing the processing of this example in this way, the internal resistance of the battery cell can be accurately measured in a short time during charging, the deterioration rate of the battery cell can be accurately calculated in a short time, and the deterioration rate can be calculated. It is possible to accurately determine the remaining charge in consideration.

また、電池セルの内部抵抗を測定するために使用する小充電電流として、充電装置が備えるトリクル充電用の充電電流とすることで、既存の充電装置を使用して電池セルの内部抵抗の正確な測定が行え、充電装置側で充電電流を変更させるための特別な構成を用意する必要がなく、既存の充電装置を使用して簡単に測定が行える。   In addition, as a small charging current used for measuring the internal resistance of the battery cell, the charging current for trickle charging provided in the charging device is used, so that the internal resistance of the battery cell can be accurately measured using the existing charging device. Measurement can be performed, and it is not necessary to prepare a special configuration for changing the charging current on the charging device side, and measurement can be easily performed using an existing charging device.

なお、上述した実施の形態においては、電池パック内に内蔵させるセルとして、リチウムイオン二次電池で構成される二次電池を使用したが、ニッケル水素二次電池などのその他の二次電池セルを内蔵した電池パックにおいて、劣化率を内部抵抗から判断する場合にも本発明は適用可能である。   In the embodiment described above, a secondary battery constituted by a lithium ion secondary battery is used as a cell incorporated in the battery pack. However, other secondary battery cells such as a nickel hydride secondary battery are used. In the built-in battery pack, the present invention can also be applied when the deterioration rate is determined from the internal resistance.

また、上述した実施の形態では、電池パック内の制御部で、電池の内部抵抗を算出して、劣化率を判断する構成としたが、セル電圧や充電電流のデータが得られれば、充電回路側で電池セルの劣化率を算出するようにしてもよい。充電回路が、パーソナルコンピュータ装置などの電子機器本体に内蔵されている場合には、例えば、その電子機器本体の制御プログラムに、図2のフローチャートに示した処理を実行する内部抵抗算出を行うプログラムを追加するような処理を行うようにしてもよい。   In the above-described embodiment, the control unit in the battery pack calculates the internal resistance of the battery and determines the deterioration rate. However, if the cell voltage and the charging current data are obtained, the charging circuit The battery cell deterioration rate may be calculated on the side. When the charging circuit is built in the main body of an electronic device such as a personal computer device, for example, a program for calculating an internal resistance for executing the processing shown in the flowchart of FIG. An additional process may be performed.

本発明の一実施の形態の例による電池パックと、それに接続される充電回路の構成例を示すブロック図である。It is a block diagram which shows the structural example of the battery pack by the example of one embodiment of this invention, and the charging circuit connected to it. 本発明の一実施の形態の例による測定処理例を示すフローチャートである。It is a flowchart which shows the example of a measurement process by the example of one embodiment of this invention. 本発明の一実施の形態による測定時の波形変化例を示す特性図である。It is a characteristic view which shows the example of a waveform change at the time of the measurement by one embodiment of this invention. 開放状態として電池セルの内部抵抗を測定する場合の例を示す説明図である。It is explanatory drawing which shows the example in the case of measuring the internal resistance of a battery cell as an open state. 本発明の一実施の形態の例による電池セルの内部抵抗を測定例を示す説明図である。It is explanatory drawing which shows the example of a measurement of the internal resistance of the battery cell by the example of one embodiment of this invention. 本発明の一実施の形態の例による電圧変化例を示す特性図である。It is a characteristic view which shows the example of a voltage change by the example of one embodiment of this invention.

符号の説明Explanation of symbols

10…充電装置、11…電源プラグ、12…充電回路、13…正極端子、14…負極端子、15,16…通信端子、20…電池パック、21…正極端子、22…負極端子、23,24…通信端子、25,26…充放電制御用電界効果トランジスタ(FET)、27…中央制御ユニット(CPU)、28…メモリ、29…充放電制御部、31,32,33,34,35,36…電池セル、37…電流検出用抵抗器、38,39,40,41…セル電圧検出用抵抗器   DESCRIPTION OF SYMBOLS 10 ... Charger, 11 ... Power plug, 12 ... Charging circuit, 13 ... Positive electrode terminal, 14 ... Negative electrode terminal, 15, 16 ... Communication terminal, 20 ... Battery pack, 21 ... Positive electrode terminal, 22 ... Negative electrode terminal, 23, 24 ... Communication terminal, 25, 26 ... Field effect transistor (FET) for charge / discharge control, 27 ... Central control unit (CPU), 28 ... Memory, 29 ... Charge / discharge controller, 31, 32, 33, 34, 35, 36 ... Battery cell, 37 ... Current detection resistor, 38, 39, 40, 41 ... Cell voltage detection resistor

Claims (6)

電池セルと、
前記電池セルの充電及び/又は放電を制御する充放電制御スイッチと、
前記電池セルの電圧を測定する電圧測定部と、
前記電池セルの充電電流を測定する電流測定部と、
前記充放電制御スイッチを制御し、前記電圧測定部及び前記電流測定部の測定結果を判断する制御部とを備えた電池パックであり、
前記制御部は、前記電池セルへの定電流充電中に供給される充電電流が、第1の充電電流値の場合に、前記電圧測定部で測定した電圧値から第1のセル電圧を得、前記第1の充電電流値よりも低い第2の充電電流値に変化した場合に、前記電圧測定部で測定した電圧値から第2のセル電圧を得、前記第1のセル電圧と前記第2のセル電圧とに基づいて、前記電池セルの内部抵抗を算出して、前記電池セルの劣化率を判断することを特徴とする
電池パック。
A battery cell;
A charge / discharge control switch for controlling charging and / or discharging of the battery cell;
A voltage measuring unit for measuring the voltage of the battery cell;
A current measuring unit for measuring a charging current of the battery cell;
A battery pack including a control unit that controls the charge / discharge control switch and determines a measurement result of the voltage measurement unit and the current measurement unit;
The control unit obtains a first cell voltage from a voltage value measured by the voltage measurement unit when a charging current supplied during constant current charging to the battery cell is a first charging current value, When the second charging current value is lower than the first charging current value, a second cell voltage is obtained from the voltage value measured by the voltage measuring unit, and the first cell voltage and the second cell voltage are obtained. A battery pack characterized in that an internal resistance of the battery cell is calculated on the basis of the cell voltage and a deterioration rate of the battery cell is determined.
請求項1記載の電池パックにおいて、
前記電子セルとして複数の電池セルを備えて、その複数の電池セルを並列又は直列で配置した電池パック構成とし、
前記電圧測定部での電池セルの電圧測定は、所定個のセル単位のブロックごとに測定することを特徴とする
電池パック。
The battery pack according to claim 1, wherein
Provided with a plurality of battery cells as the electronic cell, a battery pack configuration in which the plurality of battery cells are arranged in parallel or in series,
The voltage measurement of the battery cell in the said voltage measurement part is measured for every block of a predetermined cell unit, The battery pack characterized by the above-mentioned.
請求項1記載の電池パックにおいて、
前記制御部は、前記電池セルの劣化率の判断に基づいて、前記電池セルの充電残量を算出し、その算出した充電残量に基づいた充電又は放電の制御を行うことを特徴とする
電池パック。
The battery pack according to claim 1, wherein
The control unit calculates a remaining charge amount of the battery cell based on a determination of a deterioration rate of the battery cell, and controls charge or discharge based on the calculated remaining charge amount. pack.
請求項1記載の電池パックにおいて、
前記制御部は、電池パックに接続された充電装置に対して、トリクル充電モードの設定を指示して、前記第1の充電電流値から前記第2の充電電流値に変化させることを特徴とする
電池パック。
The battery pack according to claim 1, wherein
The control unit instructs the charging device connected to the battery pack to set a trickle charging mode, and changes the first charging current value to the second charging current value. Battery pack.
電池セルの劣化を測定する電池劣化測定装置において、
前記電池セルの電圧を測定する電圧測定部と、
前記電池セルの充電電流を測定する電流測定部と、
前記電池セルへの定電流充電中に供給される充電電流が、第1の充電電流値の場合に、前記電圧測定部で測定した電圧値から第1のセル電圧を得、前記第1の充電電流値よりも低い第2の充電電流値に変化した場合に、前記電圧測定部で測定した電圧値から第2のセル電圧を得、前記第1のセル電圧と前記第2のセル電圧とに基づいて、前記電池セルの内部抵抗を算出して、前記電池セルの劣化率を判断する制御部とを備えることを特徴とする
電池劣化測定装置。
In a battery deterioration measuring device that measures the deterioration of battery cells,
A voltage measuring unit for measuring the voltage of the battery cell;
A current measuring unit for measuring a charging current of the battery cell;
When the charging current supplied during constant current charging to the battery cell is a first charging current value, a first cell voltage is obtained from the voltage value measured by the voltage measuring unit, and the first charging is performed. When the second charging current value is lower than the current value, a second cell voltage is obtained from the voltage value measured by the voltage measuring unit, and the first cell voltage and the second cell voltage are obtained. And a control unit that calculates an internal resistance of the battery cell and determines a deterioration rate of the battery cell.
電池セルの劣化を測定する電池劣化測定方法において、
前記電池セルへの定電流充電中に供給される充電電流が、第1の充電電流値の場合に、第1のセル電圧を得る第1の電圧測定処理と、
前記第1の充電電流値よりも低い第2の充電電流値に変化した場合に、第2のセル電圧を得る第2の電圧測定処理と、
前記第1のセル電圧と前記第2のセル電圧とに基づいて、前記電池セルの内部抵抗を算出して、前記電池セルの劣化率を判断する劣化判断処理とを行うことを特徴とする
電池パックの制御方法。
In a battery deterioration measuring method for measuring battery cell deterioration,
A first voltage measurement process for obtaining a first cell voltage when a charging current supplied during constant current charging to the battery cell is a first charging current value;
A second voltage measurement process for obtaining a second cell voltage when the second charging current value is lower than the first charging current value;
A deterioration determination process for calculating an internal resistance of the battery cell based on the first cell voltage and the second cell voltage and determining a deterioration rate of the battery cell is performed. How to control the pack.
JP2006309411A 2006-11-15 2006-11-15 Battery pack, battery deterioration measuring device, and battery deterioration measuring method Pending JP2008123961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006309411A JP2008123961A (en) 2006-11-15 2006-11-15 Battery pack, battery deterioration measuring device, and battery deterioration measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006309411A JP2008123961A (en) 2006-11-15 2006-11-15 Battery pack, battery deterioration measuring device, and battery deterioration measuring method

Publications (1)

Publication Number Publication Date
JP2008123961A true JP2008123961A (en) 2008-05-29

Family

ID=39508475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006309411A Pending JP2008123961A (en) 2006-11-15 2006-11-15 Battery pack, battery deterioration measuring device, and battery deterioration measuring method

Country Status (1)

Country Link
JP (1) JP2008123961A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010109868A1 (en) * 2009-03-27 2010-09-30 伊藤忠商事株式会社 Battery pack
JP2011015522A (en) * 2009-07-01 2011-01-20 Toyota Motor Corp Battery control system and vehicle
EP2568569A2 (en) 2011-09-12 2013-03-13 Panasonic Corporation Charger
JP2013150417A (en) * 2012-01-18 2013-08-01 Toyota Motor Corp Apparatus, method and program for diagnosing vehicular battery
WO2014147725A1 (en) 2013-03-18 2014-09-25 三菱電機株式会社 Apparatus and method for estimating electric storage device degradation
WO2021019848A1 (en) * 2019-07-30 2021-02-04 日置電機株式会社 Measurement apparatus and measurement method for power storage device
JP2021021686A (en) * 2019-07-30 2021-02-18 日置電機株式会社 Device and method for measuring power storage device
JP2021021685A (en) * 2019-07-30 2021-02-18 日置電機株式会社 Device and method for inspecting power storage device
WO2021145437A1 (en) * 2020-01-17 2021-07-22 日置電機株式会社 Device, measurement device, method, and measurement method
CN113917343A (en) * 2021-09-30 2022-01-11 蜂巢能源科技有限公司 Battery module state detection method and device, electronic equipment and storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0984277A (en) * 1995-09-18 1997-03-28 Nissan Motor Co Ltd Method and apparatus for controlling charging of battery
JPH10214643A (en) * 1996-11-29 1998-08-11 Hitachi Ltd Charging method of secondary battery
JP2005341759A (en) * 2004-05-28 2005-12-08 Fuji Heavy Ind Ltd Battery management device of hybrid vehicle
JP2006010501A (en) * 2004-06-25 2006-01-12 Auto Network Gijutsu Kenkyusho:Kk Battery status administration system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0984277A (en) * 1995-09-18 1997-03-28 Nissan Motor Co Ltd Method and apparatus for controlling charging of battery
JPH10214643A (en) * 1996-11-29 1998-08-11 Hitachi Ltd Charging method of secondary battery
JP2005341759A (en) * 2004-05-28 2005-12-08 Fuji Heavy Ind Ltd Battery management device of hybrid vehicle
JP2006010501A (en) * 2004-06-25 2006-01-12 Auto Network Gijutsu Kenkyusho:Kk Battery status administration system

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010232103A (en) * 2009-03-27 2010-10-14 Itochu Corp Battery pack
WO2010109868A1 (en) * 2009-03-27 2010-09-30 伊藤忠商事株式会社 Battery pack
JP2011015522A (en) * 2009-07-01 2011-01-20 Toyota Motor Corp Battery control system and vehicle
JP2011250688A (en) * 2009-07-01 2011-12-08 Toyota Motor Corp Battery control system and vehicle
US8390253B2 (en) 2009-07-01 2013-03-05 Toyota Jidosha Kabushiki Kaisha Battery control system and vehicle
US8629655B2 (en) 2009-07-01 2014-01-14 Toyota Jidosha Kabushiki Kaisha Battery control system and vehicle
US9178380B2 (en) 2011-09-12 2015-11-03 Panasonic Intellectual Property Management Co., Ltd. Charger apparatus capable of determining deterioration of second battery
EP2568569A2 (en) 2011-09-12 2013-03-13 Panasonic Corporation Charger
JP2013150417A (en) * 2012-01-18 2013-08-01 Toyota Motor Corp Apparatus, method and program for diagnosing vehicular battery
US9599676B2 (en) 2013-03-18 2017-03-21 Mitsubishi Electric Corporation Apparatus and method for estimating power storage device degradation
WO2014147725A1 (en) 2013-03-18 2014-09-25 三菱電機株式会社 Apparatus and method for estimating electric storage device degradation
WO2021019848A1 (en) * 2019-07-30 2021-02-04 日置電機株式会社 Measurement apparatus and measurement method for power storage device
JP2021021686A (en) * 2019-07-30 2021-02-18 日置電機株式会社 Device and method for measuring power storage device
JP2021021685A (en) * 2019-07-30 2021-02-18 日置電機株式会社 Device and method for inspecting power storage device
JP7217681B2 (en) 2019-07-30 2023-02-03 日置電機株式会社 Measuring apparatus and measuring method for power storage device
JP7328820B2 (en) 2019-07-30 2023-08-17 日置電機株式会社 Inspection apparatus and inspection method for power storage device
US11988717B2 (en) 2019-07-30 2024-05-21 Hioki E.E. Corporation Measurement apparatus of power storage device and measurement method
WO2021145437A1 (en) * 2020-01-17 2021-07-22 日置電機株式会社 Device, measurement device, method, and measurement method
CN113917343A (en) * 2021-09-30 2022-01-11 蜂巢能源科技有限公司 Battery module state detection method and device, electronic equipment and storage medium
CN113917343B (en) * 2021-09-30 2023-08-08 蜂巢能源科技有限公司 Battery module state detection method and device, electronic equipment and storage medium

Similar Documents

Publication Publication Date Title
JP2008123961A (en) Battery pack, battery deterioration measuring device, and battery deterioration measuring method
TWI398069B (en) Battery pack, method of charging secondary battery and battery charger
JP5638779B2 (en) Secondary battery characteristic detection method and secondary battery device
JP4183004B2 (en) Battery pack
TWI249870B (en) Battery apparatus and discharge controlling method of battery apparatus
US20070103113A1 (en) Methods of charging battery packs for cordless power tool systems
JP2010124629A (en) Battery pack
JP2008253129A (en) Method for quick charging lithium-based secondary battery and electronic equipment using same
EP1796243A2 (en) Methods of charging battery packs for cordless power tool systems
JP2011053088A (en) Method for computing residual capacity of secondary battery and secondary battery device
JP5040733B2 (en) Method for estimating chargeable / dischargeable power of battery
JP2009133675A (en) Battery pack and method of calculating internal impedance
JP3929264B2 (en) Secondary battery charging device and method thereof
CN102612656A (en) Power supply apparatus
JP4817647B2 (en) Secondary battery life judgment method.
US20110025272A1 (en) Charging method, charging device, and battery pack
JP2013135510A (en) Determination method of charging current and battery pack
EP3627166A1 (en) Battery capacity estimation apparatus and method, and battery management apparatus provided with same and method thereof
JP2007267498A (en) Charger, charging system and electric apparatus
JP2001292534A (en) Determining apparatus for deterioration of lithium ion battery
JP5094301B2 (en) Pack battery control method
JP2009097954A (en) Battery pack and residual capacity correction method of secondary battery
JP2005312239A (en) Charging method for secondary battery and battery pack
JP2009112180A (en) Battery pack and control method thereof
JP2011038878A (en) Deterioration degree determination method for secondary battery and secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121009