JP2010273413A - Device for controlling battery pack - Google Patents

Device for controlling battery pack Download PDF

Info

Publication number
JP2010273413A
JP2010273413A JP2009121634A JP2009121634A JP2010273413A JP 2010273413 A JP2010273413 A JP 2010273413A JP 2009121634 A JP2009121634 A JP 2009121634A JP 2009121634 A JP2009121634 A JP 2009121634A JP 2010273413 A JP2010273413 A JP 2010273413A
Authority
JP
Japan
Prior art keywords
assembled battery
internal state
full charge
charge capacity
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009121634A
Other languages
Japanese (ja)
Other versions
JP5397013B2 (en
Inventor
Kanako Okada
加菜子 岡田
Koichi Akahori
幸一 赤堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009121634A priority Critical patent/JP5397013B2/en
Publication of JP2010273413A publication Critical patent/JP2010273413A/en
Application granted granted Critical
Publication of JP5397013B2 publication Critical patent/JP5397013B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for controlling battery packs, capable of accurately controlling charging or discharging. <P>SOLUTION: The device includes: a full charge capacity detection means 31 for detecting a full charge capacity of each electric cell with respect to a battery pack 2 in which multiple electric cells 2a and 2b as secondary batteries are connected together; a selection means 32 for selecting a specific electric cell from among the electric cells, based on the full charge capacity of each electric cell; a first internal state decision means 33 for computing the internal state characteristic of the specific electric cell, based on the full charge capacity of the specific electric cell and determining the internal state characteristic of the specific electric cell as the internal state characteristic of the battery pack; and a computing means 36 for computing electric energy that is input or output to or from the battery pack, based on the internal state characteristic of the battery pack. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、組電池の制御装置に関するものである。   The present invention relates to a control device for an assembled battery.

複数の単電池(セル)を接続してなる組電池において、単電池毎の残存容量が最小の単電池を基準にして組電池の充放電制御を実行する組電池の充放電制御方法が知られている(特許文献1)。   A battery pack charge / discharge control method for executing battery pack charge / discharge control based on a battery having the smallest remaining capacity for each battery in a battery pack formed by connecting a plurality of battery cells (cells) is known. (Patent Document 1).

特開2003−244860号公報JP 2003-244860 A

上記従来技術においては単電池の満充電容量を不変の値として取り扱い、残存容量の小さい単電池に応じた充放電制御をしているが、実際の単電池は経時劣化などにより満充電容量の値が変動する。このため、不用意に過充電又は過放電してしまったり、あるいは充電状態(SOC,State of Charge)にバラツキが生じたりして、正確な充放電制御が行えないという問題があった。   In the above prior art, the full charge capacity of the unit cell is treated as an invariable value, and charge / discharge control is performed according to the unit cell with a small remaining capacity, but the actual unit cell has a full charge capacity value due to deterioration over time etc. Fluctuates. For this reason, there has been a problem that accurate charge / discharge control cannot be performed due to inadvertent overcharge or overdischarge, or variation in the state of charge (SOC).

本発明が解決しようとする課題は、充電又は放電を正確に制御できる組電池の制御装置を提供することである。 The problem to be solved by the present invention is to provide a control device for an assembled battery that can accurately control charging or discharging.

本発明は、まず単電池の満充電容量を検出し、検出された満充電容量に基づきこれら複数の単電池から特定の単電池を選択し、当該選択された単電池の満充電容量に基づいて当該単電池の内部状態特性を算出する。そして、この特定の単電池の内部状態特性を組電池の内部状態特性として判定し、さらに当該組電池の内部状態特性に基づいて組電池に入力又は出力可能な電力量を算出することによって、上記課題を解決する。   The present invention first detects the full charge capacity of a single cell, selects a specific single cell from the plurality of single cells based on the detected full charge capacity, and based on the full charge capacity of the selected single cell. The internal state characteristics of the unit cell are calculated. And by determining the internal state characteristics of this specific cell as the internal state characteristics of the assembled battery, and further calculating the amount of power that can be input to or output from the assembled battery based on the internal state characteristics of the assembled battery, Solve the problem.

本発明によれば、特定の単電池の満充電容量に基づいて検出された組電池の内部状態特性に応じて当該組電池に入力または出力可能な電力量を算出するので、単電池の満充電容量がばらついていても組電池に対する充電または放電制御を正確に実行することができる。   According to the present invention, the amount of electric power that can be input to or output from the battery pack is calculated according to the internal state characteristics of the battery pack detected based on the full charge capacity of the specific battery cell. Even if the capacity varies, the charging or discharging control for the assembled battery can be executed accurately.

本発明の一実施の形態を適用した組電池システムを示すブロック図である。It is a block diagram which shows the assembled battery system to which one embodiment of this invention is applied. 電池の開放電圧の取得方法の一例を示すグラフである。It is a graph which shows an example of the acquisition method of the open circuit voltage of a battery. 電池の開放電圧から充電状態SOCを算出する方法の一例を示すグラフである。It is a graph which shows an example of the method of calculating charge condition SOC from the open circuit voltage of a battery. 図1の切換回路35における判定基準X1を説明するためのグラフである。3 is a graph for explaining a determination criterion X1 in the switching circuit 35 of FIG. 図1の切換回路35における判定基準X2を説明するためのグラフである。3 is a graph for explaining a determination criterion X2 in the switching circuit 35 of FIG. 図1の制御装置3の制御手順を示すフローチャートである。It is a flowchart which shows the control procedure of the control apparatus 3 of FIG. 実施例及び比較例についての電流積算容量に対する入力(充電)可能電力量の算出結果を示すグラフである。It is a graph which shows the calculation result of the electric energy which can be input (charge) with respect to the current integration capacity about an example and a comparative example. 実施例及び比較例についての電流積算容量に対する出力(放電)可能電力量の算出結果を示すグラフである。It is a graph which shows the calculation result of the output (discharge) electric energy with respect to the current integration capacity about an Example and a comparative example. 図1の制御装置3の制御手順の他の例を示すフローチャートである。It is a flowchart which shows the other example of the control procedure of the control apparatus 3 of FIG. 図1の制御装置3の制御手順のさらに他の例を示すフローチャートである。6 is a flowchart showing still another example of the control procedure of the control device 3 of FIG. 1.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

《第1実施形態》
図1は、本発明の一実施の形態を適用した組電池システムを示すブロック図であり、たとえば電気自動車やハイブリッド自動車に搭載される駆動モータを電池負荷1とし、このモータを組電池2の電力で力行運転したり、モータを回生運転してその発電電力を組電池に充電したりする組電池システムを説明する。ただし、本発明の組電池の制御装置の電池負荷は、自動車用モータ以外の電気駆動装置にも広く適用することができる。
<< First Embodiment >>
FIG. 1 is a block diagram showing an assembled battery system to which an embodiment of the present invention is applied. For example, a drive motor mounted in an electric vehicle or a hybrid vehicle is a battery load 1, and this motor is used as electric power of the assembled battery 2. The assembled battery system that performs power running operation or regenerates the motor and charges the assembled battery with the generated power will be described. However, the battery load of the assembled battery control device of the present invention can be widely applied to electric drive devices other than motors for automobiles.

電池負荷1は、モータコントローラなどの負荷コントローラ11により駆動制御され、外部から入力された負荷駆動要求に応じて電池負荷1を駆動する。このとき、組電池2からの放電電力の供給を受けて電池負荷1の力行運転を制御したり、あるいは電池負荷1の回生運転を制御してその発電電力を組電池2に充電したりする。   The battery load 1 is driven and controlled by a load controller 11 such as a motor controller, and drives the battery load 1 in response to a load driving request input from the outside. At this time, power supply operation of the battery load 1 is controlled by receiving supply of discharge power from the battery pack 2, or regenerative operation of the battery load 1 is controlled to charge the battery pack 2 with the generated power.

なお、電池負荷1が交流駆動式負荷である場合は、組電池2と電池負荷1との間に組電池2の直流電力を交流電力に変換するインバータを設け、電池負荷1が直流駆動式負荷である場合は、組電池2と電池負荷1との間にDC/DCコンバータを設けるが、図1においてその図示を省略する。   When the battery load 1 is an AC drive load, an inverter that converts the DC power of the battery pack 2 into AC power is provided between the battery pack 2 and the battery load 1, and the battery load 1 is a DC drive load. In this case, a DC / DC converter is provided between the assembled battery 2 and the battery load 1, but the illustration thereof is omitted in FIG.

本例の組電池2は、二次電池である複数の単電池2a,2bを直列および/または並列に接続してなる直流バッテリであり、図1に示す具体例では、便宜的に2つの単電池2a,2bを直列に接続して組電池2を構成した例を示す。組電池2の両極端子は電池負荷1の入出力端子にそれぞれ接続され、これにより電池負荷1が力行運転する場合は組電池2からの電力が電池負荷1に放電される一方で、電池負荷1が回生運転する場合は電池負荷1からの発電電力が組電池2に充電される。   The assembled battery 2 of this example is a DC battery formed by connecting a plurality of unit cells 2a and 2b, which are secondary batteries, in series and / or in parallel. In the specific example shown in FIG. An example in which the battery pack 2 is configured by connecting batteries 2a and 2b in series is shown. The bipolar terminals of the assembled battery 2 are respectively connected to the input / output terminals of the battery load 1, whereby when the battery load 1 is in a power running operation, the power from the assembled battery 2 is discharged to the battery load 1, while the battery load 1 When the regenerative operation is performed, the assembled battery 2 is charged with the generated power from the battery load 1.

本例の組電池の制御装置3は、各単電池2a,2bの電圧を検出する電圧センサ311a,311bと、組電池2と電池負荷1との間の主回路に流れる電流を検出する電流センサ312と、組電池2の総電圧を検出する電圧センサ341と、満充電容量検出回路31と、選択回路32と、第1内部状態判定回路33と、第2内部状態判定回路34と、切換回路35と、算出回路36とを備える。   The battery pack control device 3 of this example includes voltage sensors 311a and 311b that detect the voltages of the single cells 2a and 2b, and a current sensor that detects current flowing in the main circuit between the battery pack 2 and the battery load 1. 312, a voltage sensor 341 that detects the total voltage of the assembled battery 2, a full charge capacity detection circuit 31, a selection circuit 32, a first internal state determination circuit 33, a second internal state determination circuit 34, and a switching circuit 35 and a calculation circuit 36.

電圧センサ311a,311bは、各単電池2a,2bの両端子間の電圧を検出するように接続され、その検出信号は満充電容量検出回路31へ出力される。また、電圧センサ341は、組電池2の両端子間の電圧、すなわち当該組電池2を構成する単電池2aの一方極の端子と単電池2bの他方極の端子の間の電圧を検出するように接続され、その検出信号は第2内部状態判定回路34へ出力される。   The voltage sensors 311a and 311b are connected so as to detect the voltage between both terminals of each single cell 2a and 2b, and the detection signal is output to the full charge capacity detection circuit 31. The voltage sensor 341 detects a voltage between both terminals of the assembled battery 2, that is, a voltage between one terminal of the unit cell 2a constituting the assembled battery 2 and the other terminal of the unit cell 2b. The detection signal is output to the second internal state determination circuit 34.

電流センサ312は、組電池2の主回路に接続され、その検出信号は満充電容量検出回路31及び第2内部状態判定回路34のそれぞれへ出力される。   The current sensor 312 is connected to the main circuit of the assembled battery 2, and the detection signal is output to the full charge capacity detection circuit 31 and the second internal state determination circuit 34.

満充電容量検出回路31、選択回路32、第1内部状態判定回路33、第2内部状態判定回路34、切換回路35、および算出回路36は、演算プログラムが組み込まれたCPU又はMPUなどの演算装置や周辺の電子回路で構成することができる。なおこれらの各回路31〜36は、本例の演算処理内容の理解を容易にするために便宜的に分けただけのものであるから、複数の回路を一の回路で構成してもよい。要するに、制御装置3全体として以下の機能を備えればよく、回路のそれぞれが厳密な意味で以下の機能のそれぞれを発揮する必要はない。   The full charge capacity detection circuit 31, the selection circuit 32, the first internal state determination circuit 33, the second internal state determination circuit 34, the switching circuit 35, and the calculation circuit 36 are an arithmetic unit such as a CPU or MPU in which an arithmetic program is incorporated. Or a peripheral electronic circuit. Note that these circuits 31 to 36 are merely separated for convenience in order to facilitate understanding of the contents of the arithmetic processing in this example, and therefore, a plurality of circuits may be configured as one circuit. In short, the control device 3 as a whole only needs to have the following functions, and each of the circuits does not need to exhibit each of the following functions in a strict sense.

満充電容量検出回路31は、組電池2を構成する単電池2a,2bそれぞれの満充電容量を検出する。ここでいう満充電容量とは、充電状態SOCが100%である場合の電池容量Ahであり、単電池の劣化度合いにより変動する電池の内部状態を表わす特性である。満充電容量Qmaxは種々の方法により検出することができ、ここではその一例を示す。 The full charge capacity detection circuit 31 detects the full charge capacity of each of the single cells 2 a and 2 b constituting the assembled battery 2. The full charge capacity here is the battery capacity Ah when the state of charge SOC is 100%, and is a characteristic representing the internal state of the battery that varies depending on the degree of deterioration of the unit cell. The full charge capacity Qmax can be detected by various methods, and an example is shown here.

すなわち、測定すべき単電池を時間taからtbまで充電又は放電させたときの、充電又は放電開始前の充電状態SOCaと、充電又は放電終了時の充電状態SOCbとを開放電圧Va,Vbを測定することにより算出する。一方、上記充電又は放電時に単電池に流れた電流Iを時間taからtbまで定積分して充電容量又は放電容量(∫I(t)dt,(ただし左記積分は時間taからtbまでの定積分))を算出する。   That is, when the unit cell to be measured is charged or discharged from time ta to tb, the open state voltage Va, Vb is measured for the charge state SOCa before the start of charge or discharge and the charge state SOCb at the end of charge or discharge. To calculate. On the other hand, the current I flowing through the cell at the time of charging or discharging is definitely integrated from time ta to tb, and the charge capacity or discharge capacity (∫I (t) dt, where the left integral is the definite integral from time ta to tb. )) Is calculated.

充電又は放電による充電状態の変化(SOCb−SOCa)は、その単電池に対してなされた充電又は放電により生じたものであることから、流れた電流の時間積算値である充電容量又は放電容量を充電状態の変化で除算した値が、充電状態SOC=100%のときの電池容量、すなわち満充電容量Qmaxとなる。 Since the change in the state of charge (SOCb-SOCa) due to charging or discharging is caused by charging or discharging performed on the unit cell, the charging capacity or discharging capacity that is the time integrated value of the flowing current is calculated. The value divided by the change in the state of charge is the battery capacity when the state of charge SOC = 100%, that is, the full charge capacity Qmax .

[式1]
max=∫I(t)dt/(SOCb−SOCa)
なお、右辺分子は時間taからtbまでの定積分である。
[Formula 1]
Q max = ∫I (t) dt / (SOCb−SOCa)
The numerator on the right side is a definite integral from time ta to tb.

ちなみに、上記充電状態SOCは単電池2a,2bの開放電圧を検出し、これと開放電圧−SOCマップとから求めることができる。すなわち、ここでいう開放電圧とは、1)単電池が無負荷状態である場合に実測して得られる開放電圧V1、2)充放電時にサンプリングされた電流値及び電圧値から得られるI−V特性の外挿、すなわちパワー演算により推定される開放電圧V2、または3)充放電時に実測された電流値及び総電圧値に基づいて、開放電圧V3=(総電圧)+(電流値)×(温度及び劣化補正された内部抵抗)により推定される開放電圧V3のいずれも採用することができる。   Incidentally, the state of charge SOC can be obtained from the open voltage of the single cells 2a and 2b and the open voltage-SOC map. That is, the open circuit voltage here is 1) an open circuit voltage V1 obtained by actual measurement when the unit cell is in an unloaded state, and 1) an IV obtained from a current value and a voltage value sampled at the time of charge / discharge. Extrapolation of characteristics, that is, open-circuit voltage V2 estimated by power calculation, or 3) open-circuit voltage V3 = (total voltage) + (current value) × (current value and total voltage value actually measured during charge / discharge Any of the open-circuit voltage V3 estimated by the temperature and the deterioration-corrected internal resistance) can be adopted.

上記1)の開放電圧の計測は無負荷時に行うものであるため、自動車を起動する際の無負荷時(強電系統をONする前)やキーをOFFする際に計測することができる。これに対して、上記2)や3)の開放電圧は無負荷時でなくても計測することができるので、これらを適宜選択して開放電圧を取得する。   Since the measurement of the open circuit voltage of 1) is performed when there is no load, it can be measured at the time of no load when starting the automobile (before turning on the high power system) or when the key is turned off. On the other hand, since the open voltage of 2) and 3) can be measured even when there is no load, the open voltage is acquired by appropriately selecting them.

一例として上記2)の開放電圧V2の取得手順について説明する。図2は電池の開放電圧の取得方法の一例を示すグラフ、図3は電池の開放電圧から充電状態SOCを算出する方法の一例を示すグラフである。   As an example, the procedure for obtaining the open circuit voltage V2 in 2) above will be described. FIG. 2 is a graph showing an example of a method for obtaining the open circuit voltage of the battery, and FIG. 3 is a graph showing an example of a method for calculating the state of charge SOC from the open circuit voltage of the battery.

この開放電圧V2は、自動車の走行時などにおいて単電池2a,2bの電流変化を捉え、図2に示すように電流値I及び電圧値Vを、図1に示す電流センサ312及び電圧センサ311a,311bを用いて複数サンプリングする。同図の丸×印が計測されたサンプリング点であり、このI−V特性のサンプリングデータをIV座標において一次回帰演算して特性直線L(=R・I+V2)を求める。特性直線Lと縦軸(電圧軸)との交点が開放電圧V2となる。上述した充電又は放電開始時の開放電圧Vaと、充電又は放電終了時の開放電圧Vbとのそれぞれを求める。   This open circuit voltage V2 captures changes in the current of the cells 2a and 2b when the vehicle is running, and the current value I and the voltage value V as shown in FIG. 2, and the current sensor 312 and voltage sensor 311a, Multiple sampling is performed using 311b. The circles x in the figure are the measured sampling points, and the characteristic straight line L (= R · I + V2) is obtained by performing linear regression calculation on the IV data sampling data in the IV coordinates. The intersection of the characteristic line L and the vertical axis (voltage axis) is the open circuit voltage V2. The open circuit voltage Va at the start of charging or discharging described above and the open circuit voltage Vb at the end of charging or discharging are obtained.

単電池の開放電圧と充電状態SOCとの相関関係は、単電池の温度や劣化度が変化しても不変の関係である。図3は単電池の開放電圧とSOCとの相関関係を示すグラフであり、単電池2a,2bのそれぞれについてこのマップが制御装置3のメモリ領域に格納されている。そして、図2に示す一次回帰演算により求められた開放電圧Va,Vbから、図3に示す開放電圧−SOCマップを参照して充電状態SOCa,SOCbを求める。   The correlation between the open-circuit voltage of the cell and the state of charge SOC is unchanged even if the temperature or the degree of deterioration of the cell changes. FIG. 3 is a graph showing the correlation between the open-circuit voltage of the single cell and the SOC, and this map is stored in the memory area of the control device 3 for each of the single cells 2a and 2b. Then, the charging states SOCa and SOCb are obtained from the open circuit voltages Va and Vb obtained by the linear regression calculation shown in FIG. 2 with reference to the open circuit voltage-SOC map shown in FIG.

なお、満充電容量は上記式1以外にも、たとえば単電池に流れる電流Iを、充電状態の時間微分値d(SOC)/dtで除算して求めることもでき(たとえば本願出願人による特開2006−292492号公報参照)、その算出方法には何ら限定されない。   In addition to the above formula 1, the full charge capacity can also be obtained, for example, by dividing the current I flowing through the single cell by the time differential value d (SOC) / dt of the charged state (for example, JP No. 2006-292492), and the calculation method is not limited at all.

図1に戻り、選択回路32は、満充電検出回路31で検出された各単電池2a,2bの満充電容量Qmaxに基づいて、複数の単電池2a,2bから特定の単電池を選択する。本例では満充電容量Qmaxが最小の単電池を選択する。たとえば、単電池2aの満充電容量が単電池2bの満充電容量より小さい場合は単電池2aを選択する。なお、満充電容量が最小である一つの単電池を選択する以外にも、たとえば満充電容量が最小である複数個の単電池を選択し、その平均値などを代用してもよい。 Returning to FIG. 1, the selection circuit 32 selects a specific single cell from the plurality of single cells 2 a and 2 b based on the full charge capacity Q max of each single cell 2 a and 2 b detected by the full charge detection circuit 31. . In this example, a single cell having a minimum full charge capacity Qmax is selected. For example, when the full charge capacity of the single battery 2a is smaller than the full charge capacity of the single battery 2b, the single battery 2a is selected. In addition to selecting a single cell having the minimum full charge capacity, for example, a plurality of single cells having the minimum full charge capacity may be selected and the average value thereof may be used instead.

第1内部状態判定回路33は、選択回路32により選択された特定の単電池、すなわち本例では満充電容量が最小の単電池2aの当該満充電容量に基づいて、当該最小の単電池2aの内部状態特性を算出し、この最小の単電池2aの内部状態特性を組電池2の内部状態特性として判定する。   The first internal state determination circuit 33 is based on the full charge capacity of the specific single battery selected by the selection circuit 32, that is, the single battery 2a having the minimum full charge capacity in this example. The internal state characteristic is calculated, and the minimum internal state characteristic of the cell 2 a is determined as the internal state characteristic of the assembled battery 2.

単電池の内部状態特性とは、当該単電池の充電状態SOC、残存容量、消費容量または開放電圧などを採用することができる。単電池の開放電圧は、図2に示すI−Vサンプリングの一次回帰演算により求めることができ、開放電圧が求まれば図3に示す相関図からSOCを求めることができる。また、単電池の残存容量は、満充電容量検出回路31により求められた満充電容量Qmaxに、開放電圧Vからマップを介して求められる充電状態SOCを乗算して算出することができる。また、単電池の消費容量は、上記満充電容量Qmaxから上記残存容量を減算することで算出することができる。 As the internal state characteristics of the unit cell, the state of charge SOC, the remaining capacity, the consumed capacity or the open circuit voltage of the unit cell can be adopted. The open circuit voltage of the unit cell can be obtained by the primary regression calculation of IV sampling shown in FIG. 2, and if the open circuit voltage is obtained, the SOC can be obtained from the correlation diagram shown in FIG. Further, the remaining capacity of the unit cell can be calculated by multiplying the full charge capacity Q max obtained by the full charge capacity detection circuit 31 by the state of charge SOC obtained from the open voltage V via a map. Further, the consumed capacity of the unit cell can be calculated by subtracting the remaining capacity from the full charge capacity Qmax .

組電池の内部状態特性の判定とは、後述する算出回路36において算出される組電池2の入出力可能電力量を、どのような特性値を代表的に用いて算出するかを判定する意味である。本例では、満充電容量Qmaxが最小の単電池2aの当該満充電容量Qmaxに基づいて算出される上記充電状態SOC、残存容量、消費容量または開放電圧といった内部状態特性を組電池2の内部状態特性とし、これを、切換回路35を介して算出回路36へ出力する。 The determination of the internal state characteristics of the assembled battery means that what characteristic value is representatively used to calculate the input / output possible electric energy of the assembled battery 2 calculated by the calculation circuit 36 described later. is there. In this example, the internal state characteristics such as the state of charge SOC, the remaining capacity, the consumed capacity, or the open voltage calculated based on the full charge capacity Q max of the single battery 2a having the minimum full charge capacity Q max are represented by the assembled battery 2. The internal state characteristics are set and output to the calculation circuit 36 via the switching circuit 35.

一方、第2内部状態判定回路34は、組電池2を一つの単電池とみなして組電池全体の内部状態特性を判定する。本例では、上記満充電容量検出回路31の説明において開放電圧の取得から充電状態SOCの算出方法として記載したものと同様にして、組電池2の充電状態SOCを取得する。そして、この充電状態SOCを組電池全体の内部状態特性とし、切換回路35を介して算出回路36へ出力する。   On the other hand, the second internal state determination circuit 34 determines the internal state characteristics of the entire assembled battery by regarding the assembled battery 2 as one single cell. In this example, the charge state SOC of the assembled battery 2 is acquired in the same manner as described in the description of the full charge capacity detection circuit 31 as the calculation method of the charge state SOC from the acquisition of the open circuit voltage. Then, the state of charge SOC is set as an internal state characteristic of the entire assembled battery, and is output to the calculation circuit 36 via the switching circuit 35.

このようにして、第1内部状態判定回路33により満充電容量が最小の単電池2aの当該満充電容量Qmaxに基づいて算出される充電状態SOC、残存容量、消費容量または開放電圧といった内部状態特性が組電池2の内部状態特性として出力される一方で、第2内部状態判定回路34により組電池2を一つの単電池とみなして求められた組電池全体の充電状態SOCが出力される。 Thus, state of charge SOC of the full charge capacity by the first internal state determining circuit 33 is calculated based on the full charge capacity Q max of the smallest unit cell 2a, the remaining capacity, the internal state such capacity consumed or open circuit voltage While the characteristic is output as the internal state characteristic of the assembled battery 2, the second internal state determination circuit 34 outputs the state of charge SOC of the entire assembled battery obtained by regarding the assembled battery 2 as one unit cell.

切換回路35は、後段の算出回路36へ出力する組電池2の内部状態特性を、第1内部状態判定回路33による内部状態特性と、第2内部状態判定回路34による内部状態特性とのいずれか一方に切り換える。本例では、第2内部状態判定回路34で求められた組電池2全体の充電状態SOCが所定範囲X1%〜X2%にある場合は、第2内部状態判定回路34による内部状態特性、すなわち組電池2全体の充電状態SOCを算出回路36へ出力するように切り換える。逆に、組電池2全体の充電状態SOCがX1%未満である場合やX2%を越える場合は、第1内部状態判定回路33による内部状態特性、すなわち、満充電容量が最小の単電池2aの当該満充電容量Qmaxに基づいて算出される上記充電状態SOC、残存容量、消費容量または開放電圧といった内部状態特性を算出回路36へ出力する。 The switching circuit 35 outputs the internal state characteristic of the assembled battery 2 to be output to the calculation circuit 36 at the subsequent stage, either the internal state characteristic by the first internal state determination circuit 33 or the internal state characteristic by the second internal state determination circuit 34. Switch to one. In this example, when the state of charge SOC of the entire assembled battery 2 obtained by the second internal state determination circuit 34 is within a predetermined range X1% to X2%, the internal state characteristics by the second internal state determination circuit 34, that is, the set Switching is performed so that the state of charge SOC of the entire battery 2 is output to the calculation circuit 36. On the contrary, when the state of charge SOC of the entire assembled battery 2 is less than X1% or exceeds X2%, the internal state characteristics by the first internal state determination circuit 33, that is, the single battery 2a having the minimum full charge capacity The internal state characteristics such as the state of charge SOC, remaining capacity, consumed capacity, or open voltage calculated based on the full charge capacity Q max are output to the calculation circuit 36.

ここで判定基準となる組電池の充電状態SOC=X1とX2は、以下のようにして設定される。図4Aは、切換回路35における判定基準X1の設定方法を説明するためのグラフ、図4Bは同じく判定基準X2の設定方法を説明するためのグラフである。   Here, the state of charge SOC = X1 and X2 of the assembled battery, which is a determination criterion, is set as follows. FIG. 4A is a graph for explaining a setting method of the determination criterion X1 in the switching circuit 35, and FIG. 4B is a graph for similarly explaining a setting method of the determination criterion X2.

前提として、充電状態SOC=100%における組電池2全体の平均電池容量(満充電容量)C2と、同じく充電状態SOC=100%における単電池2aの電池容量(満充電容量)C2aが、単電池2aの劣化等により図4Aの右図に示すようにC2>C2aであるとする。   As a premise, the average battery capacity (full charge capacity) C2 of the entire assembled battery 2 in the state of charge SOC = 100% and the battery capacity (full charge capacity) C2a of the unit cell 2a in the same state of charge SOC = 100% It is assumed that C2> C2a as shown in the right diagram of FIG. 4A due to deterioration of 2a and the like.

組電池2を構成する単電池2aの満充電容量C2aが組電池2全体の平均満充電容量C2より小さい場合に、充電状態SOC=100%から放電を開始すると、図4Aの左図に示すように単電池2aの方が早く下限SOCminに達する。 When the full charge capacity C2a of the unit cell 2a constituting the assembled battery 2 is smaller than the average full charge capacity C2 of the assembled battery 2 as a whole, when discharging starts from the charged state SOC = 100%, as shown in the left diagram of FIG. 4A. The single cell 2a reaches the lower limit SOC min earlier.

ただし、単電池2aが下限SOCminに達してしまうと問題があるが(SOC=Xmin)、下限SOCminより少し手前までの間、すなわち同図において組電池2全体の充電状態SOC=X1までの間については、組電池2全体のSOCを内部状態特性として制御しても、単電池2aのSOCを内部状態特性として制御しても単電池の過放電等の問題は生じない。本例ではこうした観点から、単電池2aが下限SOCminに達するときの組電池の充電状態SOC=Xminに、安全代を加算した充電状態SOC=X1を基準範囲の下限X1として設定する。 However, there is a problem when the unit cell 2a reaches the lower limit SOC min (SOC = Xmin), but until a little before the lower limit SOC min , that is, until the charged state SOC = X1 of the entire assembled battery 2 in FIG. As for the interval, even if the SOC of the entire assembled battery 2 is controlled as the internal state characteristic or the SOC of the single battery 2a is controlled as the internal state characteristic, problems such as overdischarge of the single battery do not occur. In this example, from this point of view, the charging state SOC = X1 obtained by adding the safety allowance to the charging state SOC = Xmin of the assembled battery when the unit cell 2a reaches the lower limit SOC min is set as the lower limit X1 of the reference range.

同様に、組電池2を構成する単電池2aの満充電容量C2aが組電池2全体の満充電容量C2より小さい場合に、充電状態SOC=0%から充電を開始すると、図4Bに示すように単電池2aの方が早く上限SOC100に達する。 Similarly, when charging is started from the charged state SOC = 0% when the full charge capacity C2a of the single battery 2a constituting the assembled battery 2 is smaller than the full charge capacity C2 of the entire assembled battery 2, as shown in FIG. 4B. The unit cell 2a reaches the upper limit SOC 100 earlier.

ただし、単電池2aが上限SOC100に達してしまうと問題があるが(SOC=Xmax)、上限SOC100より少し手前までの間、すなわち同図において組電池2全体の充電状態SOC=X2までの間については、組電池2全体のSOCを内部状態特性として制御しても、単電池2aのSOCを内部状態特性として制御しても単電池の過充電等の問題は生じない。本例ではこうした観点から、単電池2aが上限SOC100に達するときの組電池の充電状態SOC=Xmaxから、安全代を減算した充電状態SOC=X2を基準範囲の上限X2として設定する。 However, there is a problem if the unit cell 2a reaches the upper limit SOC 100 (SOC = Xmax), but until a little before the upper limit SOC 100 , that is, the state of charge of the entire assembled battery 2 in FIG. Even if the SOC of the entire battery pack 2 is controlled as an internal state characteristic or the SOC of the single battery 2a is controlled as an internal state characteristic, problems such as overcharging of the single battery do not occur. In this example, from this point of view, the charging state SOC = X2 obtained by subtracting the safety allowance from the charging state SOC = Xmax of the battery pack when the unit cell 2a reaches the upper limit SOC 100 is set as the upper limit X2 of the reference range.

なお、こうした判定基準X1,X2の設定方法は上述した具体例にのみ限定されず、経験的又は設計思想に基づいて設定してもよい。   Note that the method of setting the determination criteria X1 and X2 is not limited to the specific example described above, and may be set based on empirical or design ideas.

算出回路36は、切換回路35を介して入力された組電池の内部状態特性に基づいて、負荷コントローラ11からの放電要求に対しては組電池2から出力可能な電力量を算出し、また負荷コントローラ11からの充電要求に対しては組電池2に入力可能な電力量を算出する。算出された電力量は負荷コントローラ11に出力され、負荷コントローラ11は、受け取った組電池の入出力可能電力量に応じて電池負荷1を制御する。   The calculation circuit 36 calculates the amount of electric power that can be output from the assembled battery 2 in response to the discharge request from the load controller 11 based on the internal state characteristics of the assembled battery input via the switching circuit 35, and the load In response to a charging request from the controller 11, the amount of power that can be input to the battery pack 2 is calculated. The calculated electric energy is output to the load controller 11, and the load controller 11 controls the battery load 1 according to the received input / output possible electric energy of the assembled battery.

次に制御手順を説明する。   Next, the control procedure will be described.

図5は、本例の組電池の制御装置3の制御手順を示すフローチャートである。   FIG. 5 is a flowchart showing the control procedure of the battery pack control device 3 of this example.

まずステップS1では、組電池を一つの単電池とみなして組電池2全体の開放電圧を取得する。この処理は第2内部状態判定回路34で実行され、図2を参照して既述したとおり、充放電開始から充放電終了までに流れた電流を電流センサ312で取得するとともに組電池2の両端電圧を電圧センサ341により取得する。そして、サンプリングされた電流及び電圧を図2に示すようなI−V特性としてプロットし、一次回帰演算により開放電圧V2を算出する。   First, in step S1, the assembled battery is regarded as one unit cell, and the open voltage of the entire assembled battery 2 is acquired. This process is executed by the second internal state determination circuit 34. As already described with reference to FIG. 2, the current sensor 312 acquires the current that flows from the start of charge / discharge until the end of charge / discharge, and both ends of the assembled battery 2 The voltage is acquired by the voltage sensor 341. Then, the sampled current and voltage are plotted as an IV characteristic as shown in FIG. 2, and the open circuit voltage V2 is calculated by linear regression calculation.

ステップS2では、図3に示すような組電池の開放電圧−SOCマップを制御装置3のメモリ領域に格納しておき、ステップS1で求められた開放電圧V2とこのマップから組電池2の充電状態SOCを算出する。   In step S2, an open-circuit voltage-SOC map of the assembled battery as shown in FIG. 3 is stored in the memory area of the control device 3, and the open-circuit voltage V2 obtained in step S1 and the state of charge of the assembled battery 2 are determined from this map. Calculate the SOC.

ステップS3では、ステップS2で求められた組電池2の充電状態SOCがX1〜X2の範囲にあるか否かを判断し、この範囲内にある場合はステップS7へ進み、第2内部状態判定回路34で求められた組電池2全体の充電状態SOCを、切換回路35を介して算出回路36へ出力する。   In step S3, it is determined whether or not the state of charge SOC of the assembled battery 2 obtained in step S2 is in the range of X1 to X2. If it is within this range, the process proceeds to step S7, and the second internal state determination circuit The charge state SOC of the entire assembled battery 2 obtained at 34 is output to the calculation circuit 36 via the switching circuit 35.

図4A及び図4Bを参照して既述したとおり、組電池2全体の充電状態がX1≦SOC≦X2の場合は、単電池2aによる内部状態特性によっても組電池2全体の充電状態によっても過放電や過充電の問題は生じないことから、演算負荷が小さい組電池の充電状態SOCを算出回路36へ出力する。   As described above with reference to FIGS. 4A and 4B, when the charging state of the entire assembled battery 2 is X1 ≦ SOC ≦ X2, it may exceed both the internal state characteristics of the unit cell 2a and the charging state of the entire assembled battery 2. Since the problem of discharge or overcharge does not occur, the state of charge SOC of the assembled battery with a small calculation load is output to the calculation circuit 36.

ステップS7では、算出回路36において、入力された組電池2全体のSOCに基づいて、組電池2から放電可能な電力量及び組電池2に充電可能な電力量を算出し、ステップS8へ進んで、この電力量を負荷コントローラ11へ出力する。これを受けた負荷コントローラ11は、その充放電可能な電力量に基づいて電池負荷1を制御する。   In step S7, the calculation circuit 36 calculates the electric energy that can be discharged from the assembled battery 2 and the electric energy that can be charged in the assembled battery 2 based on the input SOC of the entire assembled battery 2, and the process proceeds to step S8. The electric energy is output to the load controller 11. Receiving this, the load controller 11 controls the battery load 1 based on the chargeable / dischargeable electric energy.

これに対して、ステップS2で求められた組電池2の充電状態SOCがX1〜X2の範囲内にはなく、X1未満かX2超である場合はステップS4へ進む。   On the other hand, when the state of charge SOC of the assembled battery 2 obtained in step S2 is not in the range of X1 to X2, but is less than X1 or exceeds X2, the process proceeds to step S4.

ステップS4では、満充電容量検出回路31により単電池2a,2bごとの満充電容量を検出する。この満充電容量Qmaxの検出は、図2及び図3を参照して既述したとおりI−V特性のプロットから開放電圧Va,Vbを求め、当該開放電圧から充電状態SOCa,SOCbを求め、この充電状態の変化SOCb−SOCaと、流れた電流の時間積算値∫I(t)dtから上記式1に基づいて求めることができる。 In step S4, the full charge capacity detection circuit 31 detects the full charge capacity of each single cell 2a, 2b. As described above with reference to FIG. 2 and FIG. 3, this full charge capacity Q max is detected by obtaining the open-circuit voltages Va and Vb from the plot of the IV characteristic, and obtaining the charge states SOCa and SOCb from the open-circuit voltage. This charge state change SOCb-SOCa and the time integrated value ∫I (t) dt of the flowing current can be obtained based on the above equation 1.

ステップS5では、ステップS4で検出された単電池2a,2bの満充電容量を比較し、最小の満充電容量である単電池(本例では2a)を選択回路32で選択する。そして、第1内部状態判定回路33において、当該選択された単電池2aの満充電容量に基づいて、充電状態SOC、残存容量、消費容量または開放電圧といった内部状態特性を算出し、これを組電池の内部状態特性として、切換回路35を介して算出回路36へ出力する。   In step S5, the full charge capacities of the single cells 2a and 2b detected in step S4 are compared, and the single battery (2a in this example) having the minimum full charge capacity is selected by the selection circuit 32. Then, in the first internal state determination circuit 33, based on the full charge capacity of the selected unit cell 2a, internal state characteristics such as the charge state SOC, the remaining capacity, the consumed capacity or the open voltage are calculated, and this is used as the assembled battery. Is output to the calculation circuit 36 via the switching circuit 35.

ステップS6では、算出回路36において、ステップS5で選択された単電池2aの充電状態SOC、残存容量、消費容量または開放電圧といった内部状態特性に基づいて、組電池2から放電可能な電力量及び組電池2に充電可能な電力量を算出し、ステップS8へ進んで、この電力量を負荷コントローラ11へ出力する。これを受けた負荷コントローラ11は、その充放電可能な電力量に基づいて電池負荷1を制御する。   In step S6, in the calculation circuit 36, based on the internal state characteristics such as the state of charge SOC, the remaining capacity, the consumed capacity or the open circuit voltage of the unit cell 2a selected in step S5, The amount of power that can be charged in the battery 2 is calculated, the process proceeds to step S8, and this amount of power is output to the load controller 11. Receiving this, the load controller 11 controls the battery load 1 based on the chargeable / dischargeable electric energy.

以上のとおり、本実施形態の組電池の制御装置によれば、電池負荷1に対する入出力可能電力量を算出する場合に、単電池2a,2bや組電池2の充電状態SOCではなく、満充電容量Qmaxが小さい単電池2aの当該満充電容量Qmaxに基づいて算出するので、経時劣化等により単電池の満充電容量がばらついてもそれに応じた正確な制御が可能となる。これにより、過充電や過放電が防止され、また単電池の容量バラツキを抑制することができる。 As described above, according to the battery pack control device of the present embodiment, when calculating the input / output possible electric energy for the battery load 1, not the state of charge SOC of the single cells 2a and 2b and the battery pack 2, but full charge. Since the calculation is made based on the full charge capacity Q max of the single battery 2a having a small capacity Q max , even if the full charge capacity of the single battery varies due to deterioration with time or the like, it is possible to perform accurate control accordingly. Thereby, overcharge and overdischarge can be prevented, and the capacity variation of the unit cell can be suppressed.

また、単電池の満充電容量が小さいことによる影響が少ない範囲X1〜X2においては組電池2全体の充電状態SOCに基づいて入出力可能電力量を算出するので、上述した単電池ごとの満充電容量の算出による演算負荷を低減することができる。また、電池負荷1に対して不必要な出力制限を出力することも防止することができる。   In addition, in the range X1 to X2 in which the influence due to the small full charge capacity of the unit cell is small, the input / output possible electric energy is calculated based on the state of charge SOC of the entire assembled battery 2, so The calculation load due to the calculation of the capacity can be reduced. Further, it is possible to prevent unnecessary output restriction from being output to the battery load 1.

なお、本実施形態において、図1に示す第2内部状態判定回路34及び切換回路35を省略するとともに、図5のステップS1〜S3,S7を省略し、組電池2の入出力可能電力量の算出を単電池2aの最小の満充電容量にのみ基づいて実行してもよい。   In the present embodiment, the second internal state determination circuit 34 and the switching circuit 35 shown in FIG. 1 are omitted, and steps S1 to S3 and S7 in FIG. The calculation may be performed based only on the minimum full charge capacity of the unit cell 2a.

図6の実線は最小の満充電容量に基づき、電流積算量に対する入力(充電)可能電力量を算出した例を示し、同図の点線は組電池2全体の充電容量SOCに基づき、電流積算量に対する入力(充電)可能電力量を算出した例を示す。また、図7の実線は最小の満充電容量に基づき、電流積算量に対する出力(放電)可能電力量を算出した例を示し、同図の点線は組電池2全体の充電容量SOCに基づき、電流積算量に対する出力(放電)可能電力量を算出した例を示す。   The solid line in FIG. 6 shows an example of calculating the input (chargeable) power amount with respect to the current integrated amount based on the minimum full charge capacity, and the dotted line in FIG. 6 shows the current integrated amount based on the charge capacity SOC of the entire assembled battery 2. The example which calculated the electric energy which can be input (charge) with respect to is shown. In addition, the solid line in FIG. 7 shows an example in which the output (discharge) possible electric energy with respect to the accumulated current amount is calculated based on the minimum full charge capacity, and the dotted line in the same figure shows the current based on the charge capacity SOC of the entire assembled battery 2. The example which calculated the electric power amount which can be output (discharged) with respect to an integrated amount is shown.

いずれの場合についても、経時劣化等による単電池の満充電容量のばらつきに応じた正確な制御が可能となり、これにより、過充電や過放電が防止され、また単電池の容量バラツキを抑制することができる。   In any case, accurate control according to the variation in the full charge capacity of the unit cell due to deterioration over time, etc. is possible, thereby preventing overcharge and overdischarge and suppressing variation in unit cell capacity. Can do.

《第2実施形態》
図8は、図1の組電池の制御装置3の制御手順の他例を示すフローチャートである。本例の制御手順は、図5に示す第1実施形態の手順に比べてステップS2A及びS3Aが相違し、その他の手順は同じである。このため、図8に図5と同じステップ符号を付して、その説明に関する記載を本例に援用する。
<< Second Embodiment >>
FIG. 8 is a flowchart showing another example of the control procedure of the battery pack control device 3 of FIG. The control procedure of this example is different from the procedure of the first embodiment shown in FIG. 5 in steps S2A and S3A, and the other procedures are the same. For this reason, the same step code | symbol as FIG. 5 is attached | subjected to FIG. 8, and the description regarding the description is used for this example.

また、本例の組電池の制御装置3の構成については、図1に示す第1実施形態のブロック図と同じであるが、切換回路35及び第2内部状態判定回路34における処理内容が相違し、その他の構成については同じである。このため、その説明に関する記載を本例に援用することとし、相違点について以下説明する。   The configuration of the battery pack control device 3 of this example is the same as that of the block diagram of the first embodiment shown in FIG. 1, but the processing contents in the switching circuit 35 and the second internal state determination circuit 34 are different. The other configurations are the same. For this reason, suppose that the description regarding the description is used for this example, and a difference is demonstrated below.

図8のステップS2Aでは、ステップS2で算出された組電池の充電状態SOCに基づいて、組電池を一つの単電池としてみなした場合の入力(充電)可能電力量および出力(放電)可能電力量を算出する。この入出力可能電力量は、たとえば充電状態SOCに初期電池容量を乗算したり、またはそれに温度補正係数を乗算したりすることで算出することができる。   In step S2A of FIG. 8, based on the state of charge SOC of the assembled battery calculated in step S2, the amount of input (chargeable) energy and the amount of output (dischargeable) energy when the assembled battery is regarded as one unit cell. Is calculated. This input / output possible electric energy can be calculated, for example, by multiplying the state of charge SOC by the initial battery capacity or multiplying it by a temperature correction coefficient.

ステップS3Aでは、ステップS2Aで算出された入出力可能電力量が、予め設定された基準値P1以上か否かを判断し、P1以上である場合はステップS7へ進んで組電池2全体のSOCを内部状態特性とする。一方、P1未満である場合はステップS4へ進んで、単電池2a,2bの満充電容量を算出し、これに基づいた入出力可能電力量を算出する。   In step S3A, it is determined whether the input / output possible electric energy calculated in step S2A is greater than or equal to a preset reference value P1, and if it is greater than or equal to P1, the process proceeds to step S7 and the SOC of the entire assembled battery 2 is calculated. Use internal state characteristics. On the other hand, when it is less than P1, it progresses to step S4, the full charge capacity of the cell 2a, 2b is calculated, and the input / output possible electric energy based on this is calculated.

このように組電池の入出力可能電力量によって内部状態特性を切り換えても、上述した第1実施形態と同様の作用効果を奏することになる。   Thus, even if the internal state characteristics are switched depending on the input / output possible electric energy of the assembled battery, the same operational effects as those of the first embodiment described above are obtained.

《第3実施形態》
図9は、図1の組電池の制御装置3の制御手順のさらに他の例を示すフローチャートである。本例の制御手順は、図5に示す第1実施形態の手順に比べてステップS3の処理内容と、ステップS1〜S4の順序が相違し、その他の手順は同じである。このため、図9に図5と同じステップ符号を付して、その説明に関する記載を本例に援用する。
<< Third Embodiment >>
FIG. 9 is a flowchart showing still another example of the control procedure of the battery pack control device 3 of FIG. The control procedure of this example is different from the procedure of the first embodiment shown in FIG. 5 in the processing content of step S3 and the order of steps S1 to S4, and the other procedures are the same. For this reason, the same step code | symbol as FIG. 5 is attached | subjected to FIG. 9, and the description regarding the description is used for this example.

また、本例の組電池の制御装置3の構成については、図1に示す第1実施形態のブロック図と同じであるが、切換回路35における処理内容が相違し、その他の構成については同じである。このため、その説明に関する記載を本例に援用することとし、相違点について以下説明する。   Further, the configuration of the battery pack control device 3 of this example is the same as the block diagram of the first embodiment shown in FIG. 1, but the processing contents in the switching circuit 35 are different, and the other configurations are the same. is there. For this reason, suppose that the description regarding the description is used for this example, and a difference is demonstrated below.

まず図9のステップS4では、図5のステップS4と同様の処理を実行して各単電池2a,2bの満充電容量Qmaxを検出する。 First, in step S4 in FIG. 9, the same processing as in step S4 in FIG. 5 is executed to detect the full charge capacity Q max of each single cell 2a, 2b.

ステップS3Bでは、ステップS4で検出された単電池2a,2bの満充電容量のばらつきが予め設定された基準値α(Ah)以下か否かを判断し、α以下である場合はステップS1→S2→S7と進み、組電池2全体のSOCを内部状態特性とする。   In step S3B, it is determined whether or not the variation in the full charge capacity of the single cells 2a and 2b detected in step S4 is equal to or less than a preset reference value α (Ah). If it is equal to or less than α, steps S1 to S2 are performed. → Proceeding to S7, the SOC of the entire assembled battery 2 is set as the internal state characteristic.

これに対し、単電池の満充電容量のばらつきがα(Ah)を越える場合はステップS5へ進み、ステップS4で検出された単電池の満充電容量が最小の単電池を選択する。そして、ステップS6及びS8にて、この最小の満充電容量に基づいた入出力可能電力量を算出する。   On the other hand, if the variation in the full charge capacity of the single cells exceeds α (Ah), the process proceeds to step S5, and the single cell with the minimum full charge capacity detected in step S4 is selected. In steps S6 and S8, an input / output possible electric energy based on the minimum full charge capacity is calculated.

このように単電池の満充電容量のばらつきの大きさによって内部状態特性を切り換えても、上述した第1実施形態と同様の作用効果を奏することになる。   Thus, even if the internal state characteristics are switched depending on the magnitude of the variation in the full charge capacity of the unit cells, the same effects as those of the first embodiment described above can be obtained.

なお本例においては、ステップS3Bにおいて単電池の満充電容量のばらつきの大きさを内部状態特性の切換基準としたが、これに代えて単電池の残存容量を予め設定された基準値βと比較したり、単電池の開放電圧のばらつきを予め設定された基準値γと比較したりすることで内部状態特性を切り換えてもよい。   In this example, in step S3B, the variation in the full charge capacity of the cells is used as a reference for switching the internal state characteristics. Instead, the remaining capacity of the cells is compared with a preset reference value β. Alternatively, the internal state characteristics may be switched by comparing the variation in open-circuit voltage of the unit cell with a preset reference value γ.

上記満充電容量検出回路31が本発明に係る満充電検出手段に相当し、上記選択回路32が本発明に係る選択手段に相当し、上記第1内部状態判定回路33が本発明に係る第1の内部状態判定手段に相当し、上記第2内部状態判定回路34が本発明に係る第2の内部状態判定手段に相当し、上記切換回路35が本発明に係る切換手段に相当し、上記算出回路36が本発明に係る算出手段に相当する。   The full charge capacity detection circuit 31 corresponds to a full charge detection means according to the present invention, the selection circuit 32 corresponds to a selection means according to the present invention, and the first internal state determination circuit 33 corresponds to a first charge according to the present invention. The second internal state determination circuit 34 corresponds to the second internal state determination unit according to the present invention, the switching circuit 35 corresponds to the switching unit according to the present invention, and the calculation is performed. The circuit 36 corresponds to calculation means according to the present invention.

1…電池負荷
11…負荷コントローラ
2…組電池
2a,2b…単電池
3…制御装置
31…満充電容量検出回路
311a,311b…電圧センサ
312…電流センサ
32…選択回路
33…第1内部状態判定回路
34…第2内部状態判定回路
341…電圧センサ
35…切換回路
36…算出回路
DESCRIPTION OF SYMBOLS 1 ... Battery load 11 ... Load controller 2 ... Assembly battery 2a, 2b ... Single battery 3 ... Control apparatus 31 ... Full-charge capacity detection circuit 311a, 311b ... Voltage sensor 312 ... Current sensor 32 ... Selection circuit 33 ... 1st internal state determination Circuit 34 ... Second internal state determination circuit 341 ... Voltage sensor 35 ... Switching circuit 36 ... Calculation circuit

Claims (9)

二次電池である複数の単電池が接続された組電池に対し、前記単電池の満充電容量を検出する満充電容量検出手段と、
前記単電池の満充電容量に基づいて、前記複数の単電池から特定の単電池を選択する選択手段と、
前記特定の単電池の内部状態特性を前記特定の単電池の満充電容量に基づいて算出し、前記特定の単電池の内部状態特性を前記組電池の内部状態特性として判定する第1の内部状態判定手段と、
前記組電池の内部状態特性に基づいて、組電池に入力又は出力可能な電力量を算出する算出手段と、を備える組電池の制御装置。
A full charge capacity detecting means for detecting a full charge capacity of the single battery with respect to an assembled battery to which a plurality of single batteries as secondary batteries are connected;
Selection means for selecting a specific unit cell from the plurality of unit cells based on the full charge capacity of the unit cell;
The internal state characteristic of the specific cell is calculated based on the full charge capacity of the specific cell, and the internal state characteristic of the specific cell is determined as the internal state characteristic of the assembled battery A determination means;
An assembled battery control device comprising: a calculating unit that calculates an amount of electric power that can be input to or output from the assembled battery based on an internal state characteristic of the assembled battery.
請求項1に記載の組電池の制御装置において、
前記組電池を一つの単電池とみなして組電池全体の内部状態特性を判定する第2の内部状態判定手段と、
前記算出手段へ出力する組電池の内部状態特性を、前記第1の内部状態判定手段及び前記第2の内部状態判定手段によりそれぞれ検出された組電池の内部状態特性のいずれか一方に切り換える切換手段と、をさらに備える組電池の制御装置。
In the assembled battery control device according to claim 1,
A second internal state determination means for determining the internal state characteristics of the entire assembled battery by regarding the assembled battery as one single cell;
Switching means for switching the internal state characteristic of the assembled battery to be output to the calculating means to one of the internal state characteristics of the assembled battery detected by the first internal state determining means and the second internal state determining means, respectively. And an assembled battery control device.
請求項1又は2に記載の組電池の制御装置において、
前記選択手段は、前記満充電容量検出手段により検出された単電池の満充電容量に基づいて、前記複数の単電池のうち満充電容量が最小の単電池を選択する組電池の制御装置。
The control apparatus for an assembled battery according to claim 1 or 2,
The selection unit is a control apparatus for a battery pack that selects a single cell having a minimum full charge capacity among the plurality of single cells based on the full charge capacity of the single cell detected by the full charge capacity detection unit.
請求項1〜3のいずれか一項に記載の組電池の制御装置において、
前記特定の単電池の内部状態特性は、当該単電池のSOC、残存容量、消費容量または開放電圧のいずれかである組電池の制御装置。
In the control apparatus of the assembled battery as described in any one of Claims 1-3,
The control device for a battery pack in which the internal state characteristic of the specific cell is any of SOC, remaining capacity, consumed capacity, or open voltage of the cell.
請求項2〜4のいずれか一項に記載の組電池の制御装置において、
前記第2の内部状態判定手段は、前記組電池を一つの単電池とみなした場合の組電池のSOCを検出し、
前記切換手段は、前記第2の内部状態判定手段により検出された組電池のSOCが所定範囲X1〜X2である場合は、前記第2の内部状態判定手段により判定された組電池の内部状態特性を前記算出手段へ出力する組電池の制御装置。
In the control apparatus of the assembled battery as described in any one of Claims 2-4,
The second internal state determination means detects the SOC of the assembled battery when the assembled battery is regarded as one unit cell,
When the SOC of the assembled battery detected by the second internal state determining unit is within a predetermined range X1 to X2, the switching unit determines the internal state characteristic of the assembled battery determined by the second internal state determining unit. Is a control device for an assembled battery.
請求項2〜4のいずれか一項に記載の組電池の制御装置において、
前記第2の内部状態判定手段は、前記組電池を一つの単電池とみなした場合の組電池の入出力可能電力量を検出し、
前記切換手段は、前記第2の内部状態判定手段により検出された組電池の入出力可能電力量が所定値P1以上の場合は、前記第2の内部状態判定手段により判定された組電池の内部状態特性を前記算出手段へ出力する組電池の制御装置。
In the control apparatus of the assembled battery as described in any one of Claims 2-4,
The second internal state determination means detects the input / output possible electric energy of the assembled battery when the assembled battery is regarded as one unit cell,
When the input / output possible electric energy of the assembled battery detected by the second internal state determining unit is greater than or equal to a predetermined value P1, the switching unit is configured to detect the internal state of the assembled battery determined by the second internal state determining unit. A battery pack control device for outputting state characteristics to the calculating means.
請求項2〜4のいずれか一項に記載の組電池の制御装置において、
前記切換手段は、前記満充電容量検出手段により検出された単電池の満充電容量のばらつきが所定値α以下の場合は、前記第2の内部状態判定手段により判定された組電池の内部状態特性を前記算出手段へ出力する組電池の制御装置。
In the control apparatus of the assembled battery as described in any one of Claims 2-4,
The switching means has an internal state characteristic of the assembled battery determined by the second internal state determination means when the variation of the full charge capacity of the single cells detected by the full charge capacity detection means is not more than a predetermined value α. Is a control device for an assembled battery.
請求項2〜4のいずれか一項に記載の組電池の制御装置において、
前記満充電容量検出手段は、前記単電池の残存容量を検出し、
前記切換手段は、前記満充電容量検出手段により検出された単電池の残存容量のばらつきが所定値β以下の場合は、前記第2の内部状態判定手段により判定された組電池の内部状態特性を前記算出手段へ出力する組電池の制御装置。
In the control apparatus of the assembled battery as described in any one of Claims 2-4,
The full charge capacity detecting means detects a remaining capacity of the unit cell,
The switching means determines the internal state characteristics of the assembled battery determined by the second internal state determination means when the variation in the remaining capacity of the single cells detected by the full charge capacity detection means is equal to or less than a predetermined value β. A battery pack control device for outputting to the calculation means.
請求項2〜4のいずれか一項に記載の組電池の制御装置において、
前記満充電容量検出手段は、前記単電池の開放電圧を検出し、
前記切換手段は、前記満充電容量検出手段により検出された単電池の開放電圧のばらつきが所定値γ以下の場合は、前記第2の内部状態判定手段により判定された組電池の内部状態特性を前記算出手段へ出力する組電池の制御装置。
In the control apparatus of the assembled battery as described in any one of Claims 2-4,
The full charge capacity detection means detects an open voltage of the unit cell,
When the variation in the open-circuit voltage of the single cells detected by the full charge capacity detection unit is equal to or less than a predetermined value γ, the switching unit determines the internal state characteristics of the assembled battery determined by the second internal state determination unit. A battery pack control device for outputting to the calculation means.
JP2009121634A 2009-05-20 2009-05-20 Battery control device Expired - Fee Related JP5397013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009121634A JP5397013B2 (en) 2009-05-20 2009-05-20 Battery control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009121634A JP5397013B2 (en) 2009-05-20 2009-05-20 Battery control device

Publications (2)

Publication Number Publication Date
JP2010273413A true JP2010273413A (en) 2010-12-02
JP5397013B2 JP5397013B2 (en) 2014-01-22

Family

ID=43420994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009121634A Expired - Fee Related JP5397013B2 (en) 2009-05-20 2009-05-20 Battery control device

Country Status (1)

Country Link
JP (1) JP5397013B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012081696A1 (en) * 2010-12-16 2012-06-21 本田技研工業株式会社 Battery control apparatus and battery control method
CN103392133A (en) * 2011-03-07 2013-11-13 株式会社日立制作所 Battery state estimating method and battery management system
JP2014211427A (en) * 2013-04-18 2014-11-13 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Battery management system and driving method thereof
JP2015083928A (en) * 2013-10-25 2015-04-30 株式会社デンソー Full charge capacity calculation device
JP2018119839A (en) * 2017-01-24 2018-08-02 日本電気株式会社 Power storage control device, server, power storage control method and program
CN108602445A (en) * 2016-02-02 2018-09-28 丰田自动车欧洲公司 Control device and method for the rechargeable battery that charges
CN108602443A (en) * 2016-02-02 2018-09-28 丰田自动车欧洲公司 Control device and method for the rechargeable battery that discharges
WO2019116640A1 (en) * 2017-12-13 2019-06-20 住友電気工業株式会社 Battery monitoring device, computer program, and battery monitoring method
WO2019181138A1 (en) * 2018-03-19 2019-09-26 三菱自動車工業株式会社 Device for measuring degree of deterioration of secondary battery
JP2021009061A (en) * 2019-06-28 2021-01-28 パナソニックIpマネジメント株式会社 Storage battery capacity detection method, program, and storage battery capacity detection system
JP2023051291A (en) * 2021-09-30 2023-04-11 横河電機株式会社 Diagnosis device, diagnosis method and diagnosis program
JP7484870B2 (en) 2021-11-01 2024-05-16 トヨタ自動車株式会社 Battery pack deterioration diagnostic device and battery pack deterioration diagnostic method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003244860A (en) * 2002-02-20 2003-08-29 Toyota Motor Corp Method of controlling charge and discharge of battery set
JP2007104856A (en) * 2005-10-07 2007-04-19 Nissan Motor Co Ltd Capacity adjustment device
JP2008059910A (en) * 2006-08-31 2008-03-13 Toyota Motor Corp Control system of secondary battery and hybrid vehicle mounting it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003244860A (en) * 2002-02-20 2003-08-29 Toyota Motor Corp Method of controlling charge and discharge of battery set
JP2007104856A (en) * 2005-10-07 2007-04-19 Nissan Motor Co Ltd Capacity adjustment device
JP2008059910A (en) * 2006-08-31 2008-03-13 Toyota Motor Corp Control system of secondary battery and hybrid vehicle mounting it

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012081696A1 (en) * 2010-12-16 2012-06-21 本田技研工業株式会社 Battery control apparatus and battery control method
CN103314501A (en) * 2010-12-16 2013-09-18 本田技研工业株式会社 Battery control apparatus and battery control method
JP5611368B2 (en) * 2010-12-16 2014-10-22 本田技研工業株式会社 Battery control device, assembled battery charge rate calculation device, battery control method, and assembled battery charge rate calculation method
US9438059B2 (en) 2010-12-16 2016-09-06 Honda Motor Co., Ltd. Battery control apparatus and battery control method
CN103392133A (en) * 2011-03-07 2013-11-13 株式会社日立制作所 Battery state estimating method and battery management system
JPWO2012120620A1 (en) * 2011-03-07 2014-07-07 株式会社日立製作所 Battery state estimation method and battery management system
JP2014211427A (en) * 2013-04-18 2014-11-13 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Battery management system and driving method thereof
JP2015083928A (en) * 2013-10-25 2015-04-30 株式会社デンソー Full charge capacity calculation device
CN108602443A (en) * 2016-02-02 2018-09-28 丰田自动车欧洲公司 Control device and method for the rechargeable battery that discharges
CN108602445A (en) * 2016-02-02 2018-09-28 丰田自动车欧洲公司 Control device and method for the rechargeable battery that charges
JP2019507578A (en) * 2016-02-02 2019-03-14 トヨタ・モーター・ヨーロッパToyota Motor Europe Control device for storage battery discharge and method for discharging storage battery
JP2019512201A (en) * 2016-02-02 2019-05-09 トヨタ・モーター・ヨーロッパToyota Motor Europe Control device for charging storage battery and method of charging storage battery
US11411421B2 (en) 2016-02-02 2022-08-09 Toyota Motor Europe Control device and method for charging a rechargeable battery
US11225166B2 (en) 2016-02-02 2022-01-18 Toyota Motor Europe Control device and method for discharging a rechargeable battery
JP2018119839A (en) * 2017-01-24 2018-08-02 日本電気株式会社 Power storage control device, server, power storage control method and program
JPWO2019116640A1 (en) * 2017-12-13 2021-01-07 住友電気工業株式会社 Battery monitoring device, computer program and battery monitoring method
JP7067566B2 (en) 2017-12-13 2022-05-16 住友電気工業株式会社 Battery monitoring device, computer program and battery monitoring method
WO2019116640A1 (en) * 2017-12-13 2019-06-20 住友電気工業株式会社 Battery monitoring device, computer program, and battery monitoring method
WO2019181138A1 (en) * 2018-03-19 2019-09-26 三菱自動車工業株式会社 Device for measuring degree of deterioration of secondary battery
JP2021009061A (en) * 2019-06-28 2021-01-28 パナソニックIpマネジメント株式会社 Storage battery capacity detection method, program, and storage battery capacity detection system
JP2023051291A (en) * 2021-09-30 2023-04-11 横河電機株式会社 Diagnosis device, diagnosis method and diagnosis program
JP7372295B2 (en) 2021-09-30 2023-10-31 横河電機株式会社 Diagnostic equipment, diagnostic method and diagnostic program
JP7484870B2 (en) 2021-11-01 2024-05-16 トヨタ自動車株式会社 Battery pack deterioration diagnostic device and battery pack deterioration diagnostic method

Also Published As

Publication number Publication date
JP5397013B2 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
JP5397013B2 (en) Battery control device
EP3664247B1 (en) Charging time computation method and charge control device
EP2596375B1 (en) Vehicle control device and vehicle control method
US11214168B2 (en) Deterioration state computation method and deterioration state computation device
JP3964635B2 (en) Memory effect detection method and solution
JP4275078B2 (en) Battery current limit control method
JP4597501B2 (en) Method and apparatus for estimating remaining capacity of secondary battery
US9634498B2 (en) Electrical storage system and equalizing method
WO2011121692A1 (en) Method and apparatus for diagnosing deterioration of secondary battery
EP1914559A2 (en) Battery management system (BMS) and driving method thereof
EP2058891B1 (en) Charging control device for a storage battery
JP2010220380A (en) Device for adjusting capacity of battery pack
JP2003079059A (en) On vehicle battery pack control device
JP3767150B2 (en) Battery remaining capacity detection device
JP5131533B2 (en) Battery charge / discharge control method and charge / discharge control apparatus
JP2009296699A (en) Charging control circuit, power supply, and charging control method
JP6606153B2 (en) Battery state estimation method and battery state estimation device
JP4604619B2 (en) Battery pack capacity adjustment device
JP2001186682A (en) Method of controlling discharge of battery
US11322963B2 (en) Control method for power supply
JP4960656B2 (en) Battery control device and program
JP2003339124A (en) Power supply unit for vehicle
JP2006081334A (en) Charge/discharge controller of battery pack
JP2016014567A (en) Remaining battery capacity calculation system and remaining battery capacity calculation method
JP2020061823A (en) Secondary battery control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131007

R150 Certificate of patent or registration of utility model

Ref document number: 5397013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees