JP2015083928A - Full charge capacity calculation device - Google Patents

Full charge capacity calculation device Download PDF

Info

Publication number
JP2015083928A
JP2015083928A JP2013221743A JP2013221743A JP2015083928A JP 2015083928 A JP2015083928 A JP 2015083928A JP 2013221743 A JP2013221743 A JP 2013221743A JP 2013221743 A JP2013221743 A JP 2013221743A JP 2015083928 A JP2015083928 A JP 2015083928A
Authority
JP
Japan
Prior art keywords
battery
capacity
full charge
calculated
trip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013221743A
Other languages
Japanese (ja)
Other versions
JP6115446B2 (en
Inventor
河合 利幸
Toshiyuki Kawai
利幸 河合
佐藤 嘉洋
Yoshihiro Sato
嘉洋 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2013221743A priority Critical patent/JP6115446B2/en
Publication of JP2015083928A publication Critical patent/JP2015083928A/en
Application granted granted Critical
Publication of JP6115446B2 publication Critical patent/JP6115446B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a full charge capacity calculation device capable of highly accurately calculating a full charge capacity of a battery mounted on a vehicle.SOLUTION: A full-charge-capacity calculation device includes: remaining-capacity calculation means detecting an open voltage of a battery cell 10a right after a starting switch is turned on and calculating a remaining capacity of the battery cell 10a on the basis of the detected open voltage; charge/discharge-amount calculation means calculating a charge/discharge amount of the battery cell 10a during one trip since a starting switch is turned on until the starting switch is turned off; and a memory 52 storing the remaining capacity of the battery cell 10a calculated by the remaining-capacity calculation means and the charge/discharge amount of the battery cell 10a calculated by the charge/discharge-amount calculation means. On condition that a difference between the remaining capacity calculated by the remaining-capacity calculation means at a time of starting a present trip and the remaining capacity at a time of starting a previous trip stored in the memory 52 is greater than a predetermined value, a full charge capacity of the battery cell 10a is calculated from the difference and the charge/discharge amount during the previous trip stored in the memory 52.

Description

本発明は、車両に搭載される電池の満充電容量を算出する装置に関する。   The present invention relates to an apparatus for calculating a full charge capacity of a battery mounted on a vehicle.

近年、蓄電池の大容量化が求められ、並列及び直列に接続された電池セルを含む電池パックや、電池パックが更に直列に接続された組電池が用いられている。このような電池パックや組電池では、過充電を回避するため、各電池セルや各電池パックの満充電容量を正確に検出することが求められるが、各電池セルや各電池パックの満充電容量は、電池セルの劣化に伴い次第に減少する。   In recent years, storage batteries have been required to have a large capacity, and battery packs including battery cells connected in parallel and in series, and assembled batteries in which battery packs are further connected in series are used. In such battery packs and assembled batteries, it is required to accurately detect the full charge capacity of each battery cell or each battery pack in order to avoid overcharging. However, the full charge capacity of each battery cell or each battery pack is required. Decreases gradually with the deterioration of the battery cells.

そこで、特許文献1では、最も劣化の進んだ電池パックが最初に満充電になるように電池パックの均等化を行い、最も劣化の進んだ電池パックが満充電になると、組電池の充電を停止している。そして、最も劣化の進んだ電池パックの残存容量が0%近くになるまで放電し、各電池パックの残存容量の変化量及び積算放電量から満充電容量を算出して、各電池パックの満充電容量を更新している。   Therefore, in Patent Document 1, the battery packs are equalized so that the most deteriorated battery pack is fully charged first, and when the most deteriorated battery pack is fully charged, charging of the assembled battery is stopped. doing. Then, discharge until the remaining capacity of the battery pack that has been most deteriorated is close to 0%, and the full charge capacity is calculated from the amount of change in the remaining capacity of each battery pack and the accumulated discharge amount. The capacity is being updated.

特開2013−51820号公報JP2013-51820A

上記電池パックを車両に適用した場合、車両の走行中や停止直後は、電池セルの電圧が安定していないため、電池セルの残存容量を正確に求めることができない。そのため、走行中に、残存容量の変化量及び積算放電量から、電池セルの満充電容量を正確に検出することは困難である。   When the battery pack is applied to a vehicle, the remaining capacity of the battery cell cannot be accurately obtained because the voltage of the battery cell is not stable while the vehicle is running or immediately after it is stopped. Therefore, it is difficult to accurately detect the full charge capacity of the battery cell from the amount of change in the remaining capacity and the accumulated discharge amount during traveling.

本発明は、上記実情に鑑み、車両に搭載された電池の満充電容量を高精度に算出することが可能な満充電容量算出装置を提供することを主たる目的とする。   In view of the above circumstances, the present invention has as its main object to provide a full charge capacity calculation device capable of calculating the full charge capacity of a battery mounted on a vehicle with high accuracy.

上記課題を解決するため、請求項1に記載の発明は、車両に搭載された電池の満充電容量を算出する満充電容量算出装置であって、前記車両の始動スイッチがオンされた直後に、前記電池の開放電圧を検出し、検出した前記開放電圧に基づいて、前記電池の残存容量を算出する残存容量算出手段と、前記始動スイッチがオンされてからオフされるまでの1トリップ中に、前記電池の充放電量を算出する充放電量算出手段と、前記残存容量算出手段により算出された前記電池の残存容量、及び前記充放電量算出手段により算出された前記電池の充放電量を記憶する記憶手段と、を備え、前記残存容量算出手段により今回のトリップ開始時に算出された残存容量と、前記記憶手段に記憶されている前回のトリップ開始時の残存容量との差分が所定量よりも大きいことを条件として、前記差分及び前記記憶手段に記憶されている前回トリップ中の充放電量から前記電池の満充電容量を算出する。   In order to solve the above problem, the invention according to claim 1 is a full charge capacity calculation device for calculating a full charge capacity of a battery mounted on a vehicle, immediately after the start switch of the vehicle is turned on. During one trip from when the start switch is turned on to when the start switch is turned off, and a remaining capacity calculation means for calculating the remaining capacity of the battery based on the detected open circuit voltage. A charge / discharge amount calculating means for calculating the charge / discharge amount of the battery, a remaining capacity of the battery calculated by the remaining capacity calculating means, and a charge / discharge amount of the battery calculated by the charge / discharge amount calculating means are stored. Storage means, and the difference between the remaining capacity calculated at the start of the current trip by the remaining capacity calculation means and the remaining capacity at the start of the previous trip stored in the storage means is predetermined. Condition greater than, to calculate the full charge capacity of the battery from the charging and discharging amount in the last trip are stored in the difference and the storage means.

請求項1に記載の発明によれば、車両の始動スイッチがオンされた直後に、電池の開放電圧が検出され、検出された開放電圧に基づいて残存容量が算出される。始動スイッチがオンされた直後は、電池に電流が流れていないため、開放電圧を検出することができる。電池の開放電圧からは、電池の残存容量を高精度に算出することができる。   According to the first aspect of the present invention, immediately after the start switch of the vehicle is turned on, the open circuit voltage of the battery is detected, and the remaining capacity is calculated based on the detected open circuit voltage. Immediately after the start switch is turned on, since no current flows through the battery, the open circuit voltage can be detected. From the open circuit voltage of the battery, the remaining capacity of the battery can be calculated with high accuracy.

また、始動スイッチがオンされてからオフされるまでの1トリップ中に、電池の充放電量が算出される。そして、算出された電池の残存容量及び充放電量が記憶される。さらに、今回のトリップ開始時の残存容量と、記憶されていた前回のトリップ開始時の残存容量との差分が所定値よりも大きいことを条件として、残容量の差分、及び記憶されていた前回トリップ中の充放電量から満充電容量が算出される。   Further, the charge / discharge amount of the battery is calculated during one trip from when the start switch is turned on to when it is turned off. Then, the calculated remaining capacity and charge / discharge amount of the battery are stored. Furthermore, on the condition that the difference between the remaining capacity at the start of this trip and the stored remaining capacity at the start of the previous trip is larger than a predetermined value, the difference in remaining capacity and the previous trip stored The full charge capacity is calculated from the charge / discharge amount inside.

よって、算出された残存容量及び充放電量が始動スイッチのオフ期間でも保持されるため、始動スイッチがオンされた直後に高精度に算出された2つの残存容量の差分、及び充放電量を用いて、電池の満充電容量を算出することができる。このとき、残存容量の差分が所定量よりも大きい場合に限って満充電容量が算出されるため、満充電容量の算出誤差を抑制することができる。したがって、電池の満充電容量を高精度に算出することができる。   Therefore, since the calculated remaining capacity and charge / discharge amount are maintained even during the start switch off period, the difference between the two remaining capacities calculated with high accuracy immediately after the start switch is turned on and the charge / discharge amount are used. Thus, the full charge capacity of the battery can be calculated. At this time, since the full charge capacity is calculated only when the difference between the remaining capacities is larger than the predetermined amount, the calculation error of the full charge capacity can be suppressed. Therefore, the full charge capacity of the battery can be calculated with high accuracy.

また、請求項2に記載の発明は、車両に搭載され、互いに直列接続された複数の電池セルを備えた電池の満充電容量を算出する満充電容量算出装置であって、前記車両の始動スイッチがオンされた直後に、各電池セルの開放電圧を検出し、検出した前記開放電圧に基づいて、各電池セルの残存容量を算出する残存容量算出手段と、前記始動スイッチがオンされてからオフされるまでの1トリップ中に、前記電池の充放電量を算出する充放電量算出手段と、前記残存容量算出手段により算出された各電池セルの残存容量、及び前記充放電量算出手段により算出された前記電池の充放電量を記憶する記憶手段と、を備え、各電池セルについて、前記残存容量算出手段により今回のトリップ開始時に算出された残存容量と、前記記憶手段に記憶されている前回のトリップ開始時の残存容量との差分が所定量よりも大きいことを条件として、前記差分及び前記記憶手段に記憶されている前回トリップ中の充放電量から満充電容量を算出し、最も小さい満充電容量を前記電池の満充電容量とする。   The invention according to claim 2 is a full charge capacity calculating device for calculating a full charge capacity of a battery including a plurality of battery cells mounted in a vehicle and connected in series to each other, wherein the start switch of the vehicle Immediately after the power is turned on, the open voltage of each battery cell is detected, and based on the detected open voltage, the remaining capacity calculation means for calculating the remaining capacity of each battery cell, and the start switch is turned on and turned off. The charge / discharge amount calculation means for calculating the charge / discharge amount of the battery, the remaining capacity of each battery cell calculated by the remaining capacity calculation means, and the charge / discharge amount calculation means Storage means for storing the charged / discharged amount of the battery, and for each battery cell, the remaining capacity calculated at the start of the current trip by the remaining capacity calculation means and stored in the storage means. On the condition that the difference from the remaining capacity at the start of the previous trip is larger than a predetermined amount, the full charge capacity is calculated from the difference and the charge / discharge amount during the previous trip stored in the storage means, A small full charge capacity is defined as the full charge capacity of the battery.

請求項2に記載の発明によれば、車両の始動スイッチがオンされた直後に、各電池セルの開放電圧が検出され、検出された開放電圧に基づいて残存容量が算出される。始動スイッチがオンされた直後は、各電池セルに電流が流れていないため、各電池セルの開放電圧を検出することができる。各電池セルの開放電圧からは、各電池セルの残存容量を高精度に算出することができる。   According to the second aspect of the present invention, immediately after the start switch of the vehicle is turned on, the open voltage of each battery cell is detected, and the remaining capacity is calculated based on the detected open voltage. Immediately after the start switch is turned on, no current flows through each battery cell, so that the open voltage of each battery cell can be detected. From the open circuit voltage of each battery cell, the remaining capacity of each battery cell can be calculated with high accuracy.

また、始動スイッチがオンされてからオフされるまでの1トリップ中に、電池の充放電量が算出される。複数の電池セルは互いに直列に接続されているため、充放電量は共通である。そして、算出された各電池セルの残存容量及び電池の充放電量が記憶される。さらに、各電池セルについて、今回のトリップ開始時の残存容量と、記憶されていた前回のトリップ開始時の残存容量との差分が所定値よりも大きいことを条件として、残容量の差分、及び記憶されていた前回トリップ中の充放電量から満充電容量が算出される。   Further, the charge / discharge amount of the battery is calculated during one trip from when the start switch is turned on to when it is turned off. Since the plurality of battery cells are connected to each other in series, the charge / discharge amount is common. Then, the calculated remaining capacity of each battery cell and the charge / discharge amount of the battery are stored. Further, for each battery cell, the difference in the remaining capacity and the storage are stored on the condition that the difference between the remaining capacity at the start of the current trip and the stored remaining capacity at the start of the previous trip is larger than a predetermined value. The full charge capacity is calculated from the charge / discharge amount during the previous trip.

よって、算出された残存容量及び充放電量が始動スイッチのオフ期間でも保持されるため、始動スイッチがオンされた直後に高精度に算出された2つの残存容量の差分、及び充放電量を用いて、各電池セルの満充電容量を算出することができる。このとき、残存容量の差分が所定量よりも大きい場合に限って満充電容量が算出されるため、満充電容量の算出誤差を抑制することができる。そして、各電池セルについて算出された満充電容量のうち、最も小さい満充電容量、すなわち最も劣化した電池セルの満充電容量が、互いに直列に接続された電池セルを備える電池の満充電容量とされる。したがって、電池の満充電容量を高精度に算出することができる。   Therefore, since the calculated remaining capacity and charge / discharge amount are maintained even during the start switch off period, the difference between the two remaining capacities calculated with high accuracy immediately after the start switch is turned on and the charge / discharge amount are used. Thus, the full charge capacity of each battery cell can be calculated. At this time, since the full charge capacity is calculated only when the difference between the remaining capacities is larger than the predetermined amount, the calculation error of the full charge capacity can be suppressed. Of the full charge capacities calculated for each battery cell, the smallest full charge capacity, that is, the full charge capacity of the most deteriorated battery cell is the full charge capacity of the battery including the battery cells connected in series with each other. The Therefore, the full charge capacity of the battery can be calculated with high accuracy.

車両に搭載された電池パック及び電池ECUの構成を示す図。The figure which shows the structure of the battery pack and battery ECU which were mounted in the vehicle. SOC及び充放電量と、満充電容量との関係を示す図。The figure which shows the relationship between SOC and charge / discharge amount, and a full charge capacity. 電池の出力、電池ECUの動作、及び均等化処理のタイムチャート。The time chart of the output of a battery, operation | movement of battery ECU, and an equalization process. 第1実施形態に係る電池セルのSOCの変化を示すグラフ。The graph which shows the change of SOC of the battery cell which concerns on 1st Embodiment. 満充電容量を算出する処理手順を示すフローチャート。The flowchart which shows the process sequence which calculates full charge capacity. 第2実施形態に係る電池セルのSOCの変化を示すグラフ。The graph which shows the change of SOC of the battery cell which concerns on 2nd Embodiment.

以下、満充電容量算出装置を、プラグインハイブリッド自動車に搭載されている電池の満充電容量の算出に適用した各実施形態について、図面を参照しつつ説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付しており、同一符号の部分についてはその説明を援用する。   Hereinafter, embodiments in which the full charge capacity calculation device is applied to calculation of the full charge capacity of a battery mounted on a plug-in hybrid vehicle will be described with reference to the drawings. In the following embodiments, parts that are the same or equivalent to each other are denoted by the same reference numerals in the drawings, and the description of the same reference numerals is used.

(第1実施形態)
図1に、電池パック40、及び電池パック40を制御する電池ECU50(満充電容量算出装置)の構成を示す。電池パック40は、電池10、均等化回路20、及び監視IC30を備える。電池10は、例えば、リチウムイオン二次電池やニッケル水素電池などの電池セル10a〜10cが互いに直列接続されて構成される。なお、本実施形態では3つの電池セルが直列接続されているが、電池セルの数は任意の数でよい。また、電池パック40には、複数の電池パック40が互いに直列に接続されていてもよい。
(First embodiment)
FIG. 1 shows the configuration of a battery pack 40 and a battery ECU 50 (full charge capacity calculation device) that controls the battery pack 40. The battery pack 40 includes a battery 10, an equalization circuit 20, and a monitoring IC 30. The battery 10 includes, for example, battery cells 10a to 10c such as lithium ion secondary batteries and nickel hydrogen batteries that are connected in series. In this embodiment, three battery cells are connected in series, but the number of battery cells may be any number. In addition, a plurality of battery packs 40 may be connected to the battery pack 40 in series.

均等化回路20は、スイッチ21a〜21c、及び抵抗22a〜22cを備える。スイッチ21aと抵抗22aは直列に接続され、直列に接続されたスイッチ21a及び抵抗22aは、電池セル10aに並列に接続されている。同様に、直接に接続されたスイッチ21b及び抵抗22bは、電池セル10bに並列に接続されており、直列に接続されたスイッチ21c及び抵抗22cは、電池セル10cに並列に接続されている。   The equalization circuit 20 includes switches 21a to 21c and resistors 22a to 22c. The switch 21a and the resistor 22a are connected in series, and the switch 21a and the resistor 22a connected in series are connected in parallel to the battery cell 10a. Similarly, the directly connected switch 21b and resistor 22b are connected in parallel to the battery cell 10b, and the switch 21c and resistor 22c connected in series are connected in parallel to the battery cell 10c.

スイッチ21a〜21cは、例えば、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)などのスイッチング素子やリレーにより構成され、電池ECU50により開閉が制御される。電池ECU50は、複数の電池セル10a〜10cの残存容量(SOC:State Of Charge)の均等化を行う際に、SOCが大きい電池セルに並列に接続されているスイッチを閉じて、SOCが大きい電池セルを放電させる。なお、電池ECU50及び均等化回路20により、均等化手段が構成される。   The switches 21a to 21c are configured with switching elements such as MOSFETs (Metal Oxide Semiconductor Field Effect Transistors) and relays, for example, and the battery ECU 50 controls opening and closing. When the battery ECU 50 equalizes the remaining capacity (SOC: State Of Charge) of the plurality of battery cells 10a to 10c, the battery ECU 50 closes a switch connected in parallel to the battery cell having a large SOC, and the battery having a large SOC Discharge the cell. The battery ECU 50 and the equalization circuit 20 constitute equalization means.

監視IC30は、電圧センサ32a〜32cを備え、また外部に備えた均等化抵抗のスイッチ21a〜21cを駆動する回路を備えている。電流センサ31は、電池10に直列に接続されており、電池10に流れる充放電電流Iを検出する。電池セル10a〜10cは、互いに直列に接続されているため、電池セル10a〜10cに流れる充放電電流Iは、共通の電流となる。また、電圧センサ32a〜32cは、それぞれ電池セル10a〜10cの両端間の電圧Va〜Vcを検出する。検出された電圧Va〜Vcは、電池ECU50へ送信される。   The monitoring IC 30 includes voltage sensors 32a to 32c, and also includes circuits that drive the equalization resistance switches 21a to 21c provided outside. The current sensor 31 is connected in series to the battery 10 and detects a charge / discharge current I flowing through the battery 10. Since the battery cells 10a to 10c are connected in series with each other, the charge / discharge current I flowing through the battery cells 10a to 10c is a common current. The voltage sensors 32a to 32c detect voltages Va to Vc across the battery cells 10a to 10c, respectively. The detected voltages Va to Vc are transmitted to the battery ECU 50.

電池ECU50は、CPU51、メモリ52(記憶装置)、及び図示しないI/O等を備えるコンピュータとして構成される。そして、電池ECU50及び電圧センサ32a〜32cから、残存容量算出手段が構成され、電池ECU50及び電流センサ31から、充放電量算出手段が構成される。   The battery ECU 50 is configured as a computer including a CPU 51, a memory 52 (storage device), an I / O (not shown), and the like. The battery ECU 50 and the voltage sensors 32a to 32c constitute a remaining capacity calculation means, and the battery ECU 50 and the current sensor 31 constitute a charge / discharge amount calculation means.

残存容量算出手段は、電圧センサ32a〜32cにより検出された電池セル10a〜10cの開放電圧(OCV:Open Circuit Voltage)に基づいて、電池セル10a〜10cの残存容量を算出する。電池セル10a〜10cのOCVは、電池セル10a〜10cに電流が流れていないときの電池セル10a〜10cの電圧であり、OCVとSOCとには相関関係がある。車両の走行中は、電池セル10a〜10cに電流が流れているため、OCVを検出することはできないが、車両の始動スイッチがオンされた直後は、電池セル10a〜10cに電流が流れていないため、OCVを検出できる。そこで、残存容量算出手段は、始動スイッチがオンされた直後に、電圧センサ32a〜32cにより検出された電池セル10a〜10cのOCVと、予め設定されているOCVとSOCとの相関関係から、電池セル10a〜10cのSOCを高精度に算出する。   The remaining capacity calculating means calculates the remaining capacity of the battery cells 10a to 10c based on the open circuit voltage (OCV) of the battery cells 10a to 10c detected by the voltage sensors 32a to 32c. The OCV of the battery cells 10a to 10c is the voltage of the battery cells 10a to 10c when no current flows through the battery cells 10a to 10c, and the OCV and the SOC have a correlation. While the vehicle is traveling, the current flows through the battery cells 10a to 10c, so the OCV cannot be detected. However, immediately after the start switch of the vehicle is turned on, no current flows through the battery cells 10a to 10c. Therefore, OCV can be detected. Therefore, the remaining capacity calculation means calculates the battery from the correlation between the OCV of the battery cells 10a to 10c detected by the voltage sensors 32a to 32c and the preset OCV and SOC immediately after the start switch is turned on. The SOC of the cells 10a to 10c is calculated with high accuracy.

充放電量算出手段は、始動スイッチがオンされてからオフされるまでの1トリップ中に、電流センサ31により検出された電池10の充放電電流Iを積算し、1トリップ中の電池10の充放電量を算出する。本実施形態では、始動スイッチのオン期間に、電池セル10a〜10cの均等化を行わない。そのため、1トリップ中の電池セル10a〜10cの充放電量は等しくなる。   The charging / discharging amount calculating means integrates the charging / discharging current I of the battery 10 detected by the current sensor 31 during one trip from when the start switch is turned on to when it is turned off, and charging / discharging the battery 10 during one trip. Calculate the amount of discharge. In the present embodiment, the battery cells 10a to 10c are not equalized during the ON period of the start switch. Therefore, the charge / discharge amounts of the battery cells 10a to 10c during one trip are equal.

残存容量算出手段により算出された電池セル10a〜10cのSOC、及び充放電量算出手段により算出された1トリップ中の充放電量は、メモリ52に記憶される。なお、CPU51及びメモリ52から、記憶手段が構成される。   The SOC of the battery cells 10a to 10c calculated by the remaining capacity calculation unit and the charge / discharge amount during one trip calculated by the charge / discharge amount calculation unit are stored in the memory 52. Note that the CPU 51 and the memory 52 constitute storage means.

また、電池ECU50は、残存容量算出手段により算出された電池セル10a〜10cのSOC、及び充放電量算出手段により算出された電池セル10a〜10cの充放電量から、電池セル10a〜10cの満充電容量を算出する。そして、電池ECU50は、最も少ない満充電容量を電池10の満充電容量とする。すなわち、電池ECU50は、最も劣化した電池セルの満充電容量を電池10の満充電容量とする。これにより、電池セル10a〜10cの過充電が防止される。なお、満充電容量は、SOC0%の状態からSOC100%の状態まで充電を行った場合の充電量に相当する。   Further, the battery ECU 50 determines the fullness of the battery cells 10a to 10c from the SOC of the battery cells 10a to 10c calculated by the remaining capacity calculation unit and the charge / discharge amount of the battery cells 10a to 10c calculated by the charge / discharge amount calculation unit. Calculate the charge capacity. Then, the battery ECU 50 sets the smallest full charge capacity as the full charge capacity of the battery 10. That is, the battery ECU 50 sets the full charge capacity of the most deteriorated battery cell as the full charge capacity of the battery 10. Thereby, overcharge of battery cell 10a-10c is prevented. The full charge capacity corresponds to the amount of charge when charging is performed from the SOC 0% state to the SOC 100% state.

次に、電池セル10a〜10cの満充電容量の算出方法について、図2を参照して詳しく説明する。P1点は、前回トリップ開始時点、P2点は今回のトリップ開始時点を示す。前回のトリップ終了時から今回のトリップ開始時までの間に、電池セル10a〜10cの充放電が行われていないとすると、今回のトリップ開始時のSOCは、前回のトリップ終了時のSOCと等しくなる。そのため、前回のトリップ開始時のSOCと今回のトリップ開始時のSOCとの差分は、前回のトリップ中の充放電量に対応する。一方、SOC100%とSOC0%の差分は、満充電容量に対応する。   Next, a method for calculating the full charge capacity of the battery cells 10a to 10c will be described in detail with reference to FIG. Point P1 indicates the previous trip start time, and point P2 indicates the current trip start time. If the battery cells 10a to 10c are not charged / discharged between the end of the previous trip and the start of the current trip, the SOC at the start of the current trip is equal to the SOC at the end of the previous trip. Become. Therefore, the difference between the SOC at the start of the previous trip and the SOC at the start of the current trip corresponds to the charge / discharge amount during the previous trip. On the other hand, the difference between SOC 100% and SOC 0% corresponds to the full charge capacity.

よって、満充電容量は、前回のトリップ中の充放電量を、P1点でのSOCとP2点でのSOCとの差分で除算し、除算したものに100を乗算した値となる。ただし、P1点でのSOCとP2点でのSOCの差分が小さい場合は、満充電容量の算出誤差が大きくなるため、P1点でのSOCとP2点でのSOCの差分が所定量よりも大きいことを条件として、満充電容量を算出する。なお、P1点でのSOC、及び前回のトリップ中の充放電量は、メモリ52から読み出して、満充電容量の算出に用いる。ここで、1トリップ中の充放電量は、放電側を正とする。   Therefore, the full charge capacity is a value obtained by dividing the charge / discharge amount during the previous trip by the difference between the SOC at the P1 point and the SOC at the P2 point, and multiplying the result by 100. However, when the difference between the SOC at the P1 point and the SOC at the P2 point is small, the calculation error of the full charge capacity becomes large. Therefore, the difference between the SOC at the P1 point and the SOC at the P2 point is larger than a predetermined amount. As a condition, the full charge capacity is calculated. Note that the SOC at the point P1 and the charge / discharge amount during the previous trip are read from the memory 52 and used to calculate the full charge capacity. Here, the charge / discharge amount during one trip is positive on the discharge side.

次に、図3のタイムチャートを参照して、電池ECU50の動作について説明する。R1時点で、電池10の充電に際して、始動スイッチがオンされると、電池ECU50が起動する。その直後に、電圧センサ32a〜32cが、電池セル10a〜10cのOCVを検出し、電池ECU50が、電池セル10a〜10cのSOCを算出する。続いて、電池ECU50は、外部電源による電池10の充電を開始し、S1時点で充電を終了する。図4に示すように、充電に伴い、R1時点からS1時点まで電池セルのSOCは増加する。電池ECU50は、R1時点からS1時点までの充放電量を算出する。   Next, the operation of the battery ECU 50 will be described with reference to the time chart of FIG. When the battery 10 is charged at the time R1, the battery ECU 50 is activated when the start switch is turned on. Immediately thereafter, the voltage sensors 32a to 32c detect the OCV of the battery cells 10a to 10c, and the battery ECU 50 calculates the SOC of the battery cells 10a to 10c. Subsequently, the battery ECU 50 starts charging the battery 10 with the external power source, and ends the charging at the time point S1. As shown in FIG. 4, the SOC of the battery cell increases from the time R1 to the time S1 with charging. The battery ECU 50 calculates the charge / discharge amount from the R1 time point to the S1 time point.

そして、電池10の充電終了に際して、S1時点で始動スイッチがオフされると、電池ECU50は停止する。その後の始動スイッチ停止期間T2では、電池セル10a〜10cの均等化は禁止される。外部電源による充電後は、最も劣化した電池セルのSOCが高くなっている。そのため、均等化を行うと、最も劣化した電池セルの放電が行われおそれがある。よって、最も劣化した電池セルの放電を抑制するため、外部電源による充電後の均等化は禁止される。   When the charging of the battery 10 ends, the battery ECU 50 stops when the start switch is turned off at the time S1. In the subsequent start switch stop period T2, equalization of the battery cells 10a to 10c is prohibited. After charging with an external power source, the SOC of the most deteriorated battery cell is high. Therefore, when equalization is performed, the battery cells that are most deteriorated may be discharged. Therefore, equalization after charging by an external power source is prohibited in order to suppress the discharge of the most deteriorated battery cell.

次に、P1時点で始動スイッチがオンされると、電池ECU50が起動する。その直後に、電圧センサ32a〜32cが、電池セル10a〜10cのOCVを検出し、電池ECU50が、電池セル10a〜10cのSOCを算出する。さらに、電池ECU50は、R1時点及びP1時点のSOC、及びR1時点からS1時点までの充放電量から、電池セル10a〜10cの満充電容量を算出する。   Next, when the start switch is turned on at time P1, the battery ECU 50 is activated. Immediately thereafter, the voltage sensors 32a to 32c detect the OCV of the battery cells 10a to 10c, and the battery ECU 50 calculates the SOC of the battery cells 10a to 10c. Further, the battery ECU 50 calculates the full charge capacity of the battery cells 10a to 10c from the SOC at the R1 time point and the P1 time point and the charge / discharge amount from the R1 time point to the S1 time point.

続いて、P1時点からS2時点まで、EV走行及びHV走行が行われ、図4に示すように、電池セルのSOCは減少する。電池ECU50は、P1時点からS2時点までの充放電量を算出する。   Subsequently, EV travel and HV travel are performed from time P1 to time S2, and the SOC of the battery cell decreases as shown in FIG. The battery ECU 50 calculates the charge / discharge amount from the time point P1 to the time point S2.

そして、S2時点で始動スイッチがオフされると、電池ECU50は停止する。その後の始動スイッチ停止期間T3は1時間よりも長い期間であるため、電池ECU50は1時間ごとに起動する。そして、電池ECU50の起動時に、電圧センサ32a〜32cが、電池セル10a〜10cのOCVを検出する。また、始動スイッチ停止期間T3では、電池セル10a〜10cの均等化を行う。本実施形態では、始動スイッチがオンされてからオフされるまでの1トリップ中の放電量が充電量よりも所定量を超えて多いことを条件として、1トリップ終了後の始動スイッチオフ期間に、電池セル10a〜10cの均等化を行う。均等化は、電圧値が最も低いセルは放電せずに、他のセルを放電して電圧値が最も低いセル電圧に合致するまで放電する。この際に電圧検出誤差による最低電圧セルの誤放電防止のため、最低セル電圧に電圧誤差を加えた電圧まで放電するようにしてもよい。このように均等化を行うと、少なくとも最も劣化した電池セルのSOCは、他の電池セルのSOCよりも小さくなるため、最も劣化した電池セルの放電は通常行われない。   When the start switch is turned off at the time S2, the battery ECU 50 stops. Since the subsequent start switch stop period T3 is a period longer than one hour, the battery ECU 50 is activated every hour. And at the time of starting of battery ECU50, voltage sensors 32a-32c detect OCV of battery cells 10a-10c. In addition, in the start switch stop period T3, the battery cells 10a to 10c are equalized. In this embodiment, on the condition that the amount of discharge during one trip from when the start switch is turned on to when it is turned off exceeds the predetermined amount by a larger amount than the charge amount, in the start switch off period after the end of one trip, The battery cells 10a to 10c are equalized. In the equalization, the cell having the lowest voltage value is not discharged, but the other cells are discharged until they match the cell voltage having the lowest voltage value. At this time, in order to prevent erroneous discharge of the lowest voltage cell due to the voltage detection error, the battery may be discharged to a voltage obtained by adding the voltage error to the lowest cell voltage. When equalization is performed in this way, at least the SOC of the most deteriorated battery cell is smaller than the SOC of the other battery cells, so that the most deteriorated battery cell is not normally discharged.

次に、P2時点で始動スイッチがオンされると、電池ECU50が起動する。その直後に、電圧センサ32a〜32cが、電池セル10a〜10cのOCVを検出し、電池ECU50が、電池セル10a〜10cのSOCを算出する。さらに、電池ECU50は、P1時点及びP2時点のSOC、及びP1時点からS2時点までの充放電量から、電池セル10a〜10cの満充電容量を算出する。始動スイッチ停止期間T3で均等化を行うが、均等化中に最も劣化した電池セルの放電は行われないため、最も劣化した電池セルの満充電容量は高精度に算出できる。   Next, when the start switch is turned on at time P2, the battery ECU 50 is activated. Immediately thereafter, the voltage sensors 32a to 32c detect the OCV of the battery cells 10a to 10c, and the battery ECU 50 calculates the SOC of the battery cells 10a to 10c. Further, the battery ECU 50 calculates the full charge capacity of the battery cells 10a to 10c from the SOC at the P1 time point and the P2 time point, and the charge / discharge amount from the P1 time point to the S2 time point. Although equalization is performed in the start switch stop period T3, since the battery cell that has deteriorated most during the equalization is not discharged, the full charge capacity of the battery cell that has deteriorated most can be calculated with high accuracy.

次に、図5のフローチャートを参照して、満充電容量を算出する処理手順について説明する。本処理は、電池ECU50が実行する。   Next, a processing procedure for calculating the full charge capacity will be described with reference to the flowchart of FIG. This process is executed by the battery ECU 50.

まず、S11では、始動スイッチがオンされた直後であるか否か判定する。始動スイッチがオンされた直後ではない場合は(NO)、S11を繰り返し実行する。始動スイッチがオンされた直後である場合は(YES)、S12の処理に進む。   First, in S11, it is determined whether or not it is immediately after the start switch is turned on. If not immediately after the start switch is turned on (NO), S11 is repeatedly executed. If it is immediately after the start switch is turned on (YES), the process proceeds to S12.

次に、S12では、電流センサ31、電圧センサ32a〜32c、及びメモリ52の少なくとも1つに異常が発生しているか否か判定する。異常が発生している場合は(YES)、満充電容量の誤算出を防止するために、S13で、満充電容量の算出を停止する。この場合、前回算出した満充電容量の値を保持して、本処理を終了する。一方、異常が発生していない場合は(NO)、S14の処理に進む。   Next, in S12, it is determined whether or not an abnormality has occurred in at least one of the current sensor 31, the voltage sensors 32a to 32c, and the memory 52. If an abnormality has occurred (YES), the calculation of the full charge capacity is stopped in S13 in order to prevent erroneous calculation of the full charge capacity. In this case, the value of the full charge capacity calculated last time is held, and this process is terminated. On the other hand, if no abnormality has occurred (NO), the process proceeds to S14.

S14では、前回始動スイッチがオフされてから今回始動スイッチがオンされるまでのオフ期間が、時間Ta(第1所定時間)よりも長いか否か判定する。時間Taは、始動スイッチがオフされてから電池セル10a〜10bの特性が安定するまでの時間であり、例えば15分である。始動スイッチのオン、オフ、オンが続けて繰り返された場合など、始動スイッチのオフ期間が時間Taよりも短い場合は(NO)、始動スイッチがオンされた時に電池セル10a〜10bの特性が安定していないので、OCVを検出しない。そこで、次のトリップ開始時に、直前のトリップよりも前のトリップ時の古いSOC及び充放電量が用いられないように、S15において、メモリ52に記憶されているSOC及び充放電量を消去する。この場合、前回算出した満充電容量を保持して、本処理を終了する。   In S14, it is determined whether or not an off period from when the start switch is turned off to when the start switch is turned on is longer than time Ta (first predetermined time). The time Ta is a time from when the start switch is turned off until the characteristics of the battery cells 10a to 10b are stabilized, for example, 15 minutes. When the start switch is turned on, off, and repeatedly turned on continuously, the characteristics of the battery cells 10a to 10b are stable when the start switch is turned on when the off period of the start switch is shorter than the time Ta (NO). Therefore, OCV is not detected. Therefore, at the start of the next trip, the SOC and the charge / discharge amount stored in the memory 52 are erased in S15 so that the old SOC and the charge / discharge amount at the trip prior to the previous trip are not used. In this case, the full charge capacity calculated last time is held, and this process is terminated.

一方、始動スイッチのオフ期間が時間Taよりも長い場合は(YES)、始動スイッチがオンされた時に電池セル10a〜10cの特性が安定しているので、S16において、電池セル10a〜10cのOCVを検出する。すなわち、前回のトリップ終了時から今回のトリップ開始時までの時間が時間Taよりも長いことを条件として、電池セル10a〜10cのOCVを検出する。   On the other hand, when the OFF period of the start switch is longer than the time Ta (YES), since the characteristics of the battery cells 10a to 10c are stable when the start switch is turned ON, the OCV of the battery cells 10a to 10c is determined in S16. Is detected. That is, the OCV of the battery cells 10a to 10c is detected on the condition that the time from the end of the previous trip to the start of the current trip is longer than the time Ta.

続いて、S17では、S16で検出した電池セル10a〜10cのOCV、及びOCVとSOCとの相関関係から、電池セル10a〜10cのSOCを算出する。続いて、S18では、S17で算出した電池セル10a〜10cのSOCをメモリ52に記憶する。   Subsequently, in S17, the SOC of the battery cells 10a to 10c is calculated from the OCV of the battery cells 10a to 10c detected in S16 and the correlation between the OCV and the SOC. Subsequently, in S18, the SOC of the battery cells 10a to 10c calculated in S17 is stored in the memory 52.

続いて、S19では、前回始動スイッチがオフされてから今回始動スイッチがオンされるまでのオフ期間が、時間Tb(第2所定時間)よりも短いか否か判定する。時間Tbは、時間Taよりも長く設定された時間であるとともに、メモリ52に記憶されている前回トリップ時の充放電量の信頼性を確保できる時間であり、例えば、数日である。始動スイッチのオフ期間が長いと、オフ期間の間に電池セル10a〜10cの自己放電等が行われ、メモリ52に記憶されている前回トリップ時の充放電量の信頼性が損なわれる。そこで、始動スイッチのオフ期間がTbよりも長い場合は(NO)、満充電容量の算出は行わず、S24の処理に進む。この場合は、前回算出した満充電容量を保持する。   Subsequently, in S19, it is determined whether or not an off period from when the start switch is turned off to when the start switch is turned on is shorter than time Tb (second predetermined time). The time Tb is a time set longer than the time Ta, and is a time that can ensure the reliability of the charge / discharge amount at the previous trip stored in the memory 52, and is several days, for example. If the off period of the start switch is long, the battery cells 10a to 10c are self-discharged during the off period, and the reliability of the charge / discharge amount at the previous trip stored in the memory 52 is impaired. Therefore, when the OFF period of the start switch is longer than Tb (NO), the full charge capacity is not calculated, and the process proceeds to S24. In this case, the previously calculated full charge capacity is retained.

一方、始動スイッチのオフ期間がTbよりも短い場合は(YES)、S20において、メモリ52から、前回のトリップ開始時における電池セル10a〜10cのSOCを読み出す。続いて、S21において、メモリ52から、前回のトリップ中における電池10の充放電量を読み出す。   On the other hand, when the OFF period of the start switch is shorter than Tb (YES), the SOC of the battery cells 10a to 10c at the start of the previous trip is read from the memory 52 in S20. Subsequently, in S21, the charge / discharge amount of the battery 10 during the previous trip is read from the memory 52.

続いて、S22では、電池セル10a〜10cのそれぞれについて、S20で読み出した前回のトリップ開始時のSOCと、S17で算出した今回のトリップ開始時のSOCとの差分が所定量よりも大きいか否か判定する。差分が所定量よりも小さい場合は、満充電容量の算出誤差が大きくなる。そのため、いずれかの電池セルの差分が所定量よりも小さい場合は(NO)、満充電容量の算出は行わずに、S24の処理に進む。この場合は、前回算出した満充電容量を保持する。   Subsequently, in S22, for each of the battery cells 10a to 10c, whether or not the difference between the SOC at the start of the previous trip read in S20 and the SOC at the start of the current trip calculated in S17 is greater than a predetermined amount. To determine. When the difference is smaller than the predetermined amount, the calculation error of the full charge capacity becomes large. Therefore, when the difference between any of the battery cells is smaller than the predetermined amount (NO), the process proceeds to S24 without calculating the full charge capacity. In this case, the previously calculated full charge capacity is retained.

一方、差分が所定量よりも大きい場合は(YES)、S23において、満充電容量を算出する。すなわち、差分が所定量よりも大きいことを条件として、満充電容量を算出する。詳しくは、電池セル10a〜10bのそれぞれについて、S20で読み出した前回のトリップ開始時のSOCと、S17で算出した今回のトリップ開始時のSOCとの差分、及びS21で読み出した充放電量から、満充電容量を算出する(図2参照)。そして、最も小さい満充電容量を、電池10の満充電容量とする。   On the other hand, when the difference is larger than the predetermined amount (YES), the full charge capacity is calculated in S23. That is, the full charge capacity is calculated on the condition that the difference is larger than a predetermined amount. Specifically, for each of the battery cells 10a to 10b, from the difference between the SOC at the start of the previous trip read in S20 and the SOC at the start of the current trip calculated in S17, and the charge / discharge amount read in S21, The full charge capacity is calculated (see FIG. 2). The smallest full charge capacity is set as the full charge capacity of the battery 10.

続いて、S24で、電流センサ31により検出された充放電電流を積算し、今回のトリップ中における電池10の充放電量を算出する。この充放電量の算出は、今回のトリップ中に継続して行う。続いて、S25では、S24で算出した充放電量をメモリ52に記憶する。   Subsequently, in S24, the charge / discharge current detected by the current sensor 31 is integrated, and the charge / discharge amount of the battery 10 during the current trip is calculated. This charge / discharge amount calculation is continuously performed during the current trip. Subsequently, in S25, the charge / discharge amount calculated in S24 is stored in the memory 52.

続いて、S26では、始動スイッチがオフされたか否か判定する。始動スイッチがオフされていない場合は(NO)、S24の処理に戻って、電池10の充放電量の算出を繰り返し実行する。一方、始動スイッチがオフされている場合は(YES)、本処理を終了する。   Subsequently, in S26, it is determined whether or not the start switch is turned off. If the start switch is not turned off (NO), the process returns to S24 and the calculation of the charge / discharge amount of the battery 10 is repeatedly executed. On the other hand, when the start switch is turned off (YES), this process is terminated.

以上説明した第1実施形態によれば、以下の効果を奏する。   According to 1st Embodiment described above, there exist the following effects.

・車両の始動スイッチがオンされた直後に、電池セル10a〜10cのOCVが検出され、検出されたOCVに基づいてSOCが算出される。始動スイッチがオンされた直後は、電池セル10a〜10cに電流が流れていないため、電池セル10a〜10cのOCVを検出することができる。そして、電池セル10a〜10cのOCVからは、電池セル10a〜10cのSOCを高精度に算出することができる。   -Immediately after the start switch of the vehicle is turned on, the OCV of the battery cells 10a to 10c is detected, and the SOC is calculated based on the detected OCV. Immediately after the start switch is turned on, since no current flows through the battery cells 10a to 10c, the OCV of the battery cells 10a to 10c can be detected. And from the OCV of the battery cells 10a to 10c, the SOC of the battery cells 10a to 10c can be calculated with high accuracy.

・始動スイッチがオンされてからオフされるまでの1トリップ中に、電池の充放電量が算出される。そして、算出された電池セル10a〜10cのSOC及び充放電量がメモリ52に記憶される。算出されたSOC及び充放電量が始動スイッチのオフ期間でも保持されるため、始動スイッチがオンされた直後に高精度に算出された2つのSOCの差分、及び充放電量を用いて、電池セル10a〜10cの満充電容量を算出することができる。このとき、SOCの差分が所定量よりも大きい場合に限って満充電容量が算出されるため、満充電容量の算出誤差を抑制することができる。そして、電池セル10a〜10cについて算出された満充電容量のうち、最も小さい満充電容量、すなわち最も劣化した電池セルの満充電容量が、電池10の満充電容量とされる。したがって、電池10の満充電容量を高精度に算出することができる。   The battery charge / discharge amount is calculated during one trip from when the start switch is turned on to when it is turned off. Then, the calculated SOC and charge / discharge amount of the battery cells 10 a to 10 c are stored in the memory 52. Since the calculated SOC and charge / discharge amount are maintained even when the start switch is off, the battery cell is calculated using the difference between the two SOCs calculated with high accuracy immediately after the start switch is turned on and the charge / discharge amount. The full charge capacity of 10a to 10c can be calculated. At this time, since the full charge capacity is calculated only when the difference in SOC is larger than the predetermined amount, calculation error of the full charge capacity can be suppressed. Of the full charge capacities calculated for the battery cells 10 a to 10 c, the smallest full charge capacity, that is, the full charge capacity of the most deteriorated battery cell is set as the full charge capacity of the battery 10. Therefore, the full charge capacity of the battery 10 can be calculated with high accuracy.

・1トリップ中の放電量が充電量よりも多い場合に限って、始動スイッチのオフ期間に電池セル10a〜10cの均等化を行う構成においても、最も劣化した電池セルの満充電容量、すなわち電池の満充電容量を高精度に算出することができる。   Even in the configuration in which the battery cells 10a to 10c are equalized during the off period of the start switch only when the discharge amount during one trip is larger than the charge amount, the full charge capacity of the most deteriorated battery cell, that is, the battery Can be calculated with high accuracy.

・始動スイッチをオフしてから時間Ta経過するまでは、電池セル10a〜10cの特性が安定していない。そこで、始動スイッチをオフしてから時間Taよりも長い時間経過した後に、始動スイッチがオンされた場合に限って、始動スイッチがオンされた直後に電池セル10a〜10cのOCVが検出される。これにより、電池セル10a〜10cのOCVの検出精度を向上させることができ、ひいては満充電容量の算出精度を向上させることができる。   The characteristics of the battery cells 10a to 10c are not stable until the time Ta elapses after the start switch is turned off. Therefore, the OCV of the battery cells 10a to 10c is detected immediately after the start switch is turned on only when the start switch is turned on after a time longer than the time Ta has elapsed since the start switch was turned off. Thereby, the OCV detection accuracy of the battery cells 10a to 10c can be improved, and as a result, the calculation accuracy of the full charge capacity can be improved.

・トリップ開始時にOCVが検出されない場合は、メモリ52に記憶されている古いSOC及び充放電量が消去される。これにより、次のトリップ開始時に、直前のトリップよりも前の古いトリップにおけるSOC及び充放電量を用いて、満充電容量が算出されることを防止できる。ひいては、算出された満充電容量の信頼性を向上させることができる。   If the OCV is not detected at the start of the trip, the old SOC and charge / discharge amount stored in the memory 52 are erased. Thereby, at the start of the next trip, it is possible to prevent the full charge capacity from being calculated using the SOC and the charge / discharge amount in the trip that is older than the previous trip. As a result, the reliability of the calculated full charge capacity can be improved.

・始動スイッチをオフしてから次に始動スイッチをオンするまでの時間が時間Tbよりも長いと、始動スイッチのオフ期間における自己放電等により、満充電容量の算出精度が低下する。そこで、始動スイッチをオフしてから次に始動スイッチをオンするまでの時間が時間Tbよりも短い場合に限って、満充電容量が算出される。これにより、満充電容量の算出精度が低下することを抑制できる。   If the time from when the start switch is turned off to when the start switch is turned on is longer than the time Tb, the calculation accuracy of the full charge capacity decreases due to self-discharge or the like during the off period of the start switch. Therefore, the full charge capacity is calculated only when the time from when the start switch is turned off to when the start switch is turned on is shorter than the time Tb. Thereby, it can suppress that the calculation precision of a full charge capacity falls.

・電流センサ31、電圧センサ32a〜32c、及びメモリ52の少なくとも1つに異常が発生した場合は、満充電容量の算出を停止することにより、満充電容量を誤算出することを防止できる。また、異常がなくなるまで、異常が発生する前に算出した満充電容量を用いることができる。   When the abnormality occurs in at least one of the current sensor 31, the voltage sensors 32a to 32c, and the memory 52, it is possible to prevent the full charge capacity from being erroneously calculated by stopping the calculation of the full charge capacity. Further, the full charge capacity calculated before the occurrence of the abnormality can be used until the abnormality disappears.

(第2の実施形態)
次に、第2実施形態について、第1実施形態と異なる点について説明する。第2実施形態では、外部電源による充電後の始動スイッチのオフ期間に、電池セル10a〜10cの均等化を禁止しない。第2実施形態に係る電池セルのSOCの変化を図6に示す。第1実施形態では、前回のトリップ開始時のSOCが今回のトリップ開始時のSOCよりも小さい場合でも大きい場合でも、満充電容量を算出したが、第2実施形態では、前回のトリップ開始時のSOCが今回のトリップ開始時のSOCよりも小さい場合には、満充電容量を算出しない。
(Second Embodiment)
Next, a difference between the second embodiment and the first embodiment will be described. In 2nd Embodiment, equalization of battery cell 10a-10c is not prohibited in the OFF period of the start switch after charge by an external power supply. FIG. 6 shows the change in SOC of the battery cell according to the second embodiment. In the first embodiment, the full charge capacity is calculated whether the SOC at the start of the previous trip is smaller or larger than the SOC at the start of the current trip, but in the second embodiment, the SOC at the start of the previous trip is calculated. When the SOC is smaller than the SOC at the start of the current trip, the full charge capacity is not calculated.

図6に示すように、始動スイッチがオンになるR1時点から始動スイッチがオフになるS1時点まで、外部充電により電池セルのSOCが増加する。S1時点では、最も劣化した電池セルのSOCが最も大きくなる。その後、S1時点からP1時点までの始動スイッチのオフ期間に均等化が行われる。このとき、最も劣化した電池セルの放電も行われる。そのため、P1時点のSOC、R1時点のSOC、及びR1時点からS1時点までの充放電量から電池10の満充電容量を算出すると、電池10の満充電容量に誤差が生じるおそれがある。   As shown in FIG. 6, the SOC of the battery cell is increased by external charging from the time R1 when the start switch is turned on to the time S1 when the start switch is turned off. At the S1 time point, the SOC of the most deteriorated battery cell is the largest. Thereafter, equalization is performed during the OFF period of the start switch from the time S1 to the time P1. At this time, the most deteriorated battery cell is also discharged. Therefore, if the full charge capacity of the battery 10 is calculated from the SOC at the P1 time, the SOC at the R1 time, and the charge / discharge amount from the R1 time to the S1 time, an error may occur in the full charge capacity of the battery 10.

次に、始動スイッチがオンになるP1時点から始動スイッチがオフになるS2時点まで、EV及びHV走行が行われ、SOCが減少する。S2時点では、最も劣化した電池セルのSOCが最も小さくなる。その後、S2時点からP2時点までの始動スイッチのオフ期間に均等化が行われる。このとき、最も劣化した電池セルの放電は行われない。そのため、P2時点のSOC、P1時点のSOC、及びP1時点からS2時点までの充放電量から電池10の満充電容量を算出すると、電池10の満充電容量が高精度に算出される。   Next, EV and HV traveling are performed from time P1 when the start switch is turned on to time S2 when the start switch is turned off, and the SOC is reduced. At S2, the SOC of the most deteriorated battery cell is the smallest. Thereafter, equalization is performed during the OFF period of the start switch from time S2 to time P2. At this time, the most deteriorated battery cell is not discharged. Therefore, when the full charge capacity of the battery 10 is calculated from the SOC at the P2 time, the SOC at the P1 time, and the charge / discharge amount from the P1 time to the S2 time, the full charge capacity of the battery 10 is calculated with high accuracy.

そこで、第2実施形態では、前回のトリップ開始時のSOCが、今回のトリップ開始時のSOCよりも所定量を超えて大きいことを条件として、電池10の満充電容量を算出する。   Therefore, in the second embodiment, the full charge capacity of the battery 10 is calculated on the condition that the SOC at the start of the previous trip is larger than the SOC at the start of the current trip by a predetermined amount.

第2実施形態によれば、前回のトリップ開始時のSOCが、今回のトリップ開始時のSOCよりも所定量を超えて大きい場合に限って、満充電容量が算出される。所定量よりも多く放電が行われると、最も劣化した電池セルのSOCは他の電池セルのSOCよりも小さくなる。そのため、始動スイッチのオフ期間に電池セルの均等化が行われたとしても、均等化中に最も劣化した電池セルの放電は通常行われない。それゆえ、前回のトリップ中に所定量よりも多く放電が行われたことを条件とすることにより、始動スイッチのオフ期間に均等化が行われたか否かに関わらず、最も劣化した電池セルの満充電容量、すなわち電池の満充電容量を高精度に算出することができる。   According to the second embodiment, the full charge capacity is calculated only when the SOC at the start of the previous trip is larger than the SOC at the start of the current trip by a predetermined amount. When the discharge is performed more than a predetermined amount, the SOC of the battery cell that is most deteriorated becomes smaller than the SOC of the other battery cells. Therefore, even if the battery cells are equalized during the off-period of the start switch, the battery cells that are most deteriorated during the equalization are not normally discharged. Therefore, by assuming that more than a predetermined amount of discharge has been performed during the previous trip, regardless of whether or not equalization was performed during the OFF period of the start switch, The full charge capacity, that is, the full charge capacity of the battery can be calculated with high accuracy.

(他の実施形態)
・上記各実施形態では、電池セル10a〜10cそれぞれの満充電容量を算出して、最も小さい満充電容量を電池10の満充電容量としたが、最も劣化した電池セル(電池)の満充電容量だけを算出するようにしてもよい。最も劣化した電池セルは、例えば、EV走行を行った後、次のトリップ開始時のOCV等から判定する。
(Other embodiments)
In each of the above embodiments, the full charge capacity of each of the battery cells 10a to 10c is calculated and the smallest full charge capacity is defined as the full charge capacity of the battery 10, but the full charge capacity of the battery cell (battery) that has deteriorated most It is also possible to calculate only. The battery cell that has deteriorated most is determined from, for example, the OCV at the start of the next trip after EV traveling.

・電池ECU50は、プラグインハイブリッド自動車に限らず、EV自動車に適用してもよい。   The battery ECU 50 may be applied not only to plug-in hybrid vehicles but also to EV vehicles.

10…電池、10a,10b,10c…電池セル、31…電流センサ、32a、32b,32c…電圧センサ、50…電池ECU、52…メモリ。   DESCRIPTION OF SYMBOLS 10 ... Battery, 10a, 10b, 10c ... Battery cell, 31 ... Current sensor, 32a, 32b, 32c ... Voltage sensor, 50 ... Battery ECU, 52 ... Memory.

Claims (8)

車両に搭載された電池の満充電容量を算出する満充電容量算出装置(50)であって、
前記車両の始動スイッチがオンされた直後に、前記電池の開放電圧を検出し、検出した前記開放電圧に基づいて、前記電池の残存容量を算出する残存容量算出手段(32a〜32c,50)と、
前記始動スイッチがオンされてからオフされるまでの1トリップ中に、前記電池の充放電量を算出する充放電量算出手段(31,50)と、
前記残存容量算出手段により算出された前記電池の残存容量、及び前記充放電量算出手段により算出された前記電池の充放電量を記憶する記憶手段(51,52)と、を備え、
前記残存容量算出手段により今回のトリップ開始時に算出された残存容量と、前記記憶手段に記憶されている前回のトリップ開始時の残存容量との差分が所定量よりも大きいことを条件として、前記差分及び前記記憶手段に記憶されている前回トリップ中の充放電量から前記電池の満充電容量を算出することを特徴とする満充電容量算出装置。
A full charge capacity calculation device (50) for calculating a full charge capacity of a battery mounted on a vehicle,
Immediately after the start switch of the vehicle is turned on, a remaining capacity calculation means (32a to 32c, 50) for detecting an open voltage of the battery and calculating a remaining capacity of the battery based on the detected open voltage. ,
Charge / discharge amount calculation means (31, 50) for calculating the charge / discharge amount of the battery during one trip from when the start switch is turned on to when it is turned off;
Storage means (51, 52) for storing the remaining capacity of the battery calculated by the remaining capacity calculating means and the charge / discharge amount of the battery calculated by the charge / discharge amount calculating means,
The difference is calculated on the condition that the difference between the remaining capacity calculated at the start of the current trip by the remaining capacity calculation means and the remaining capacity at the start of the previous trip stored in the storage means is larger than a predetermined amount. And a full charge capacity calculation device for calculating the full charge capacity of the battery from the charge / discharge amount during the previous trip stored in the storage means.
車両に搭載され、互いに直列接続された複数の電池セル(10a〜10c)を備えた電池(10)の満充電容量を算出する満充電容量算出装置(50)であって、
前記車両の始動スイッチがオンされた直後に、各電池セルの開放電圧を検出し、検出した前記開放電圧に基づいて、各電池セルの残存容量を算出する残存容量算出手段(32a〜32c,50)と、
前記始動スイッチがオンされてからオフされるまでの1トリップ中に、前記電池の充放電量を算出する充放電量算出手段(31,50)と、
前記残存容量算出手段により算出された各電池セルの残存容量、及び前記充放電量算出手段により算出された前記電池の充放電量を記憶する記憶手段(51,52)と、を備え、
各電池セルについて、前記残存容量算出手段により今回のトリップ開始時に算出された残存容量と、前記記憶手段に記憶されている前回のトリップ開始時の残存容量との差分が所定量よりも大きいことを条件として、前記差分及び前記記憶手段に記憶されている前回トリップ中の充放電量から満充電容量を算出し、最も小さい満充電容量を前記電池の満充電容量とすることを特徴とする満充電容量算出装置。
A full charge capacity calculation device (50) for calculating a full charge capacity of a battery (10) provided with a plurality of battery cells (10a to 10c) mounted on a vehicle and connected in series with each other,
Immediately after the start switch of the vehicle is turned on, an open voltage of each battery cell is detected, and a remaining capacity calculation means (32a to 32c, 50) that calculates the remaining capacity of each battery cell based on the detected open voltage. )When,
Charge / discharge amount calculation means (31, 50) for calculating the charge / discharge amount of the battery during one trip from when the start switch is turned on to when it is turned off;
Storage means (51, 52) for storing the remaining capacity of each battery cell calculated by the remaining capacity calculation means, and the charge / discharge amount of the battery calculated by the charge / discharge amount calculation means,
For each battery cell, the difference between the remaining capacity calculated at the start of the current trip by the remaining capacity calculating means and the remaining capacity at the start of the previous trip stored in the storage means is larger than a predetermined amount. As a condition, a full charge capacity is calculated from the difference and the charge / discharge amount during the previous trip stored in the storage means, and the minimum full charge capacity is set as the full charge capacity of the battery. Capacity calculation device.
前記1トリップ中の放電量が充電量よりも多いことを条件として、前記1トリップの終了後の前記始動スイッチがオフされている期間に、前記複数の電池セルの残存容量を均等化する均等化手段(20,50)を備える請求項2に記載の満充電容量算出装置。   Equalization that equalizes the remaining capacity of the plurality of battery cells during a period in which the start switch is turned off after the end of the one trip, on condition that the discharge amount during the one trip is larger than the charge amount The full charge capacity calculation device according to claim 2, comprising means (20, 50). 前記前回のトリップ開始時の残存容量が、前記今回のトリップ開始時の残存容量よりも大きいことを更に条件として、前記電池の満充電容量を算出する請求項1〜3のいずれかに記載の満充電容量算出装置。   The full charge capacity of the battery according to any one of claims 1 to 3, wherein the full charge capacity of the battery is calculated on the condition that the remaining capacity at the start of the previous trip is larger than the remaining capacity at the start of the current trip. Charge capacity calculation device. 前記残存容量算出手段は、前回のトリップ終了時から前記今回のトリップ開始時までの時間が第1所定時間よりも長いことを条件として、前記開放電圧を検出する請求項1〜4のいずれかに記載の満充電容量算出装置。   The residual capacity calculating means detects the open circuit voltage on the condition that the time from the end of the previous trip to the start of the current trip is longer than a first predetermined time. Full charge capacity calculation apparatus of description. 前記残存容量算出手段により、前記開放電圧が検出されなかった場合は、前記記憶手段に記憶されている残存容量及び充放電量を消去する請求項5に記載の満充電容量算出装置。   The full charge capacity calculation device according to claim 5, wherein when the open circuit voltage is not detected by the remaining capacity calculation means, the remaining capacity and the charge / discharge amount stored in the storage means are erased. 前記前回のトリップ終了時から前記今回のトリップ開始時までの時間が、前記第1所定時間よりも長く設定された第2所定時間よりも短いことを更に条件として、前記満充電容量を算出する請求項5又は6に記載の満充電容量算出装置。   The full charge capacity is calculated on the condition that the time from the end of the previous trip to the start of the current trip is shorter than a second predetermined time set longer than the first predetermined time. Item 7. The full charge capacity calculation device according to Item 5 or 6. 前記残存容量算出手段は、前記開放電圧を検出する電圧センサ(32a〜32c)を含み、
前記充放電量算出手段は、前記電池に流れる電流を検出する電流センサ(31)を含み、
前記記憶手段は、記憶装置(52)を含み、
前記電圧センサ、前記電流センサ、及び前記記憶装置の少なくとも1つに異常が発生した場合に、前記満充電容量の算出を停止して、前回算出した前記満充電容量を保持する請求項1〜7のいずれかに記載の満充電容量算出装置。
The remaining capacity calculating means includes voltage sensors (32a to 32c) for detecting the open circuit voltage,
The charge / discharge amount calculating means includes a current sensor (31) for detecting a current flowing through the battery,
The storage means includes a storage device (52),
8. When the abnormality occurs in at least one of the voltage sensor, the current sensor, and the storage device, the calculation of the full charge capacity is stopped and the previously calculated full charge capacity is held. The full charge capacity calculation device according to any one of the above.
JP2013221743A 2013-10-25 2013-10-25 Full charge capacity calculation device Active JP6115446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013221743A JP6115446B2 (en) 2013-10-25 2013-10-25 Full charge capacity calculation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013221743A JP6115446B2 (en) 2013-10-25 2013-10-25 Full charge capacity calculation device

Publications (2)

Publication Number Publication Date
JP2015083928A true JP2015083928A (en) 2015-04-30
JP6115446B2 JP6115446B2 (en) 2017-04-19

Family

ID=53047599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013221743A Active JP6115446B2 (en) 2013-10-25 2013-10-25 Full charge capacity calculation device

Country Status (1)

Country Link
JP (1) JP6115446B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018057137A (en) * 2016-09-28 2018-04-05 株式会社デンソー Full charge capacity calculation device
WO2019116640A1 (en) 2017-12-13 2019-06-20 住友電気工業株式会社 Battery monitoring device, computer program, and battery monitoring method
JP2020085658A (en) * 2018-11-26 2020-06-04 トヨタ自動車株式会社 Battery control device
JP2021090275A (en) * 2019-12-04 2021-06-10 株式会社デンソーテン Calculation device and full charge capacity calculation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185500A (en) * 2007-01-31 2008-08-14 Fujitsu Ltd Battery remaining capacity predicting apparatus
JP2010273413A (en) * 2009-05-20 2010-12-02 Nissan Motor Co Ltd Device for controlling battery pack
WO2012105492A1 (en) * 2011-01-31 2012-08-09 三洋電機株式会社 Method for detecting full charge capacity of battery
JP2012237665A (en) * 2011-05-12 2012-12-06 Toyota Motor Corp Battery state estimation device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185500A (en) * 2007-01-31 2008-08-14 Fujitsu Ltd Battery remaining capacity predicting apparatus
JP2010273413A (en) * 2009-05-20 2010-12-02 Nissan Motor Co Ltd Device for controlling battery pack
WO2012105492A1 (en) * 2011-01-31 2012-08-09 三洋電機株式会社 Method for detecting full charge capacity of battery
JP2012237665A (en) * 2011-05-12 2012-12-06 Toyota Motor Corp Battery state estimation device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018057137A (en) * 2016-09-28 2018-04-05 株式会社デンソー Full charge capacity calculation device
WO2019116640A1 (en) 2017-12-13 2019-06-20 住友電気工業株式会社 Battery monitoring device, computer program, and battery monitoring method
CN111480087A (en) * 2017-12-13 2020-07-31 住友电气工业株式会社 Battery monitoring device, computer program, and battery monitoring method
JPWO2019116640A1 (en) * 2017-12-13 2021-01-07 住友電気工業株式会社 Battery monitoring device, computer program and battery monitoring method
EP3726235A4 (en) * 2017-12-13 2021-08-25 Sumitomo Electric Industries, Ltd. Battery monitoring device, computer program, and battery monitoring method
JP7067566B2 (en) 2017-12-13 2022-05-16 住友電気工業株式会社 Battery monitoring device, computer program and battery monitoring method
JP2020085658A (en) * 2018-11-26 2020-06-04 トヨタ自動車株式会社 Battery control device
JP7087957B2 (en) 2018-11-26 2022-06-21 トヨタ自動車株式会社 Battery control device
JP2021090275A (en) * 2019-12-04 2021-06-10 株式会社デンソーテン Calculation device and full charge capacity calculation method

Also Published As

Publication number Publication date
JP6115446B2 (en) 2017-04-19

Similar Documents

Publication Publication Date Title
JP6119402B2 (en) Internal resistance estimation device and internal resistance estimation method
JP7325438B2 (en) Battery management device and method
JP6129306B2 (en) Battery control device
JP6233856B2 (en) Battery control system, vehicle control system
WO2014132403A1 (en) Device for assessing extent of degradation in secondary cell
JP6171127B2 (en) Battery control system, vehicle control system
JP6648709B2 (en) Battery module controller
JP2010032412A (en) Power supply for vehicle
WO2017056732A1 (en) Battery control device and battery system
JP6171128B2 (en) Battery control system, vehicle control system
JP2018136131A (en) State estimation device
JP6115446B2 (en) Full charge capacity calculation device
KR20160092719A (en) Apparatus and Method for estimating state of battery
WO2015178075A1 (en) Battery control device
WO2016132895A1 (en) Battery system monitoring apparatus
US20160013521A1 (en) Storage battery, control method of storage battery, control device, and control method
KR102350920B1 (en) device for detecting the state of charge of a battery
JP5886225B2 (en) Battery control device and battery control method
WO2013057784A1 (en) Battery control device and secondary battery system
US11796599B2 (en) Battery diagnosis apparatus, battery diagnosis method and energy storage system
JP7074788B2 (en) Battery pack
JP5518001B2 (en) Battery control device
JP7174327B2 (en) Method for determining state of secondary battery
JP2015118060A (en) State-of-charge estimation apparatus and state-of-charge estimation method
JP2015061505A (en) Power storage system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170306

R151 Written notification of patent or utility model registration

Ref document number: 6115446

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151