JP6648709B2 - Battery module controller - Google Patents

Battery module controller Download PDF

Info

Publication number
JP6648709B2
JP6648709B2 JP2017016626A JP2017016626A JP6648709B2 JP 6648709 B2 JP6648709 B2 JP 6648709B2 JP 2017016626 A JP2017016626 A JP 2017016626A JP 2017016626 A JP2017016626 A JP 2017016626A JP 6648709 B2 JP6648709 B2 JP 6648709B2
Authority
JP
Japan
Prior art keywords
voltage
cells
soc
equalization
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017016626A
Other languages
Japanese (ja)
Other versions
JP2018125977A (en
Inventor
高橋 賢司
賢司 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017016626A priority Critical patent/JP6648709B2/en
Publication of JP2018125977A publication Critical patent/JP2018125977A/en
Application granted granted Critical
Publication of JP6648709B2 publication Critical patent/JP6648709B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本発明は、複数の単電池が接続された電池モジュールの制御装置に関する。   The present invention relates to a control device for a battery module to which a plurality of unit cells are connected.

回転電機を駆動源とするハイブリッド車両や電気自動車には、電源となる電池モジュールが搭載される。電池モジュールは複数の単電池(単セル)を備える。これら複数の単電池は直列または並列接続される。   A battery module as a power supply is mounted on a hybrid vehicle or an electric vehicle using a rotating electric machine as a driving source. The battery module includes a plurality of single cells (single cells). These cells are connected in series or in parallel.

電池モジュールの各単電池は、構成材料のばらつきや温度のばらつき等に起因して、充放電過程でSOC(充電割合、State Of Charge)にばらつきが生じる。このとき、過放電防止の観点から、放電限界は複数の単電池の中で最小SOCのものが基準となり、残りの単電池は余力を残したまま放電限界を迎えることになる。また過充電防止の観点から、充電限界は複数の単電池の中で最大SOCのものが基準となり、残りの単電池は満充電に至る前に充電プロセスが終了されることになる。つまりSOCのばらつきに起因して、電池モジュールの充放電能力を十分に発揮することが困難となる。   In each unit cell of the battery module, the SOC (Charge Ratio, State Of Charge) varies during the charging / discharging process due to a variation in constituent materials, a variation in temperature, and the like. At this time, from the viewpoint of preventing over-discharge, the discharge limit is based on the minimum SOC among the plurality of cells, and the remaining cells reach the discharge limit with a margin. From the viewpoint of preventing overcharging, the charging limit is determined based on the maximum SOC among the plurality of cells, and the charging process is completed before the remaining cells are fully charged. That is, it is difficult to sufficiently exhibit the charge / discharge capability of the battery module due to the variation in the SOC.

そこで例えば特許文献1では、各単電池のSOCのばらつきを均等化させる均等化処理を実行している。単電池のSOCを直接測定することは困難であり、従来から間接的にSOCが算出される。例えば電流積算や開回路電圧(OCV、Open Circuit Voltage)に基づいてSOCが算出される。後者について、開回路電圧とSOCとの間には対応関係があることが知られており、単電池の開回路電圧を測定することで、SOCが算出(推定)される。均等化処理では、各単電池間の開回路電圧が均等化される。   Therefore, for example, in Patent Literature 1, an equalization process for equalizing the variation in the SOC of each unit cell is executed. It is difficult to directly measure the SOC of a cell, and the SOC is conventionally calculated indirectly. For example, the SOC is calculated based on the current integration and the open circuit voltage (OCV, Open Circuit Voltage). For the latter, it is known that there is a correspondence between the open circuit voltage and the SOC, and the SOC is calculated (estimated) by measuring the open circuit voltage of the cell. In the equalization process, the open circuit voltage between the cells is equalized.

特開2015−186339号公報JP-A-2005-186339

ところで、単電池の構成材料によっては、開回路電圧とSOCとの対応関係が一意的に定まらない(一対一対応にならない)場合がある。例えば図4には、単電池のOCVカーブが示されている。横軸はSOCを示し、縦軸はOCVを示す。また図4には2種類のOCVカーブが示されている。一方は完全放電状態から所定のSOCまで充電を行い、その後所定時間休止させた後のOCVを測定させるOCV測定を繰り返し実行して取得したOCVカーブ(充電カーブ)である。他方は満充電状態から所定のSOCまで放電を行い、その後所定時間休止させた後のOCVを測定させるOCV測定を繰り返し実行して取得したOCVカーブ(放電カーブ)である。これらのOCVカーブに示されるように、単電池は、所定のSOCに対応する開回路電圧が充放電履歴に応じて変化するヒステリシス特性を有する。例えば図4の破線で囲ったように相対的に開回路電圧の変化(ヒステリシス幅)が大きい領域と、相対的に小さい領域とが存在する。   By the way, the correspondence between the open circuit voltage and the SOC may not be uniquely determined (one-to-one correspondence) depending on the constituent material of the unit cell. For example, FIG. 4 shows an OCV curve of a unit cell. The horizontal axis shows SOC, and the vertical axis shows OCV. FIG. 4 shows two types of OCV curves. One is an OCV curve (charging curve) obtained by repeatedly executing an OCV measurement for charging the battery from a completely discharged state to a predetermined SOC and then measuring the OCV after a pause for a predetermined time. The other is an OCV curve (discharge curve) obtained by repeatedly performing an OCV measurement for measuring the OCV after discharging from a fully charged state to a predetermined SOC and then suspending for a predetermined time. As shown in these OCV curves, the unit cell has a hysteresis characteristic in which an open circuit voltage corresponding to a predetermined SOC changes according to a charge / discharge history. For example, there are a region where the change (hysteresis width) of the open circuit voltage is relatively large and a region where it is relatively small as surrounded by a broken line in FIG.

このような場合に、均等化処理の精度が低下するおそれがある。例えば図5において、単電池1のOCVがOCV_1であり、単電池2のOCVがOCV_2であるときに、両単電池のSOCはともにSOC_Aとなるが、均等化処理が実行されると両者の開回路電圧を揃える処理が実行され、SOC差が開いてしまう。そこで本発明は、充放電履歴に応じて所定のSOCに対する開回路電圧が変化するようなヒステリシス特性を有する単電池に対して、従来より正確にSOCを均一化可能な、電池モジュールの制御装置を提供することを目的とする。   In such a case, the accuracy of the equalization processing may be reduced. For example, in FIG. 5, when the OCV of the unit cell 1 is OCV_1 and the OCV of the unit cell 2 is OCV_2, the SOCs of both the unit cells become SOC_A. The process of adjusting the circuit voltages is performed, and the SOC difference is widened. In view of the above, the present invention provides a battery module control device capable of more accurately uniforming the SOC of a single cell having a hysteresis characteristic in which an open circuit voltage for a predetermined SOC changes according to a charge / discharge history. The purpose is to provide.

本発明は、複数の単電池が接続された電池モジュールの制御装置に関する。複数の単電池は、充放電履歴に応じて所定のSOCに対する開回路電圧が変化し、その変化が相対的に大きい第1SOC領域と、相対的に小さい第2SOC領域を有する。制御装置は、電圧検出回路、均等化回路、及び均等化判定部を備える。電圧検出回路は、それぞれの単電池の電圧を検出する。均等化回路は、電圧検出回路により検出されたそれぞれの単電池の電圧を揃える均等化処理を実行する。均等化判定部は、複数の単電池が充放電後に所定の緩和時間を経過した後であって、電圧検出回路により検出されたそれぞれの複数の単電池の電圧のうち、最大電圧と最小電圧との差異が所定の閾値以上であり、かつ、複数の単電池のいずれの電圧も、第2SOC領域に対応する電圧範囲に含まれる場合に、均等化回路に対して均等化処理の実施を許可する。   The present invention relates to a control device for a battery module to which a plurality of unit cells are connected. The plurality of cells have an open circuit voltage with respect to a predetermined SOC that changes in accordance with a charging / discharging history, and have a first SOC region where the change is relatively large and a second SOC region where the change is relatively small. The control device includes a voltage detection circuit, an equalization circuit, and an equalization determination unit. The voltage detection circuit detects the voltage of each cell. The equalization circuit performs an equalization process for equalizing the voltages of the individual cells detected by the voltage detection circuit. The equalization determination unit, after a predetermined relaxation time has elapsed after the plurality of cells have been charged and discharged, of the voltage of each of the plurality of cells detected by the voltage detection circuit, the maximum voltage and the minimum voltage Is greater than or equal to a predetermined threshold value, and if any of the voltages of the plurality of cells is within the voltage range corresponding to the second SOC region, the equalization circuit is permitted to perform the equalization processing. .

本発明によれば、所定のSOCに対する開回路電圧の変化が相対的に小さい(ヒステリシス幅の小さい)第2SOC領域に対応する電圧範囲に、全ての単電池のOCVが含まれるときを狙って、均等化処理の実行を許可する。このようにすることで、従来より正確にSOCを均一化可能となる。   According to the present invention, aiming at a time when the OCV of all the cells is included in the voltage range corresponding to the second SOC region where the change in the open circuit voltage with respect to the predetermined SOC is relatively small (the hysteresis width is small) Permits execution of equalization processing. By doing so, the SOC can be more accurately uniformed than before.

本実施形態に係る電池モジュールの制御装置を含む回路図である。It is a circuit diagram including a control device of a battery module concerning this embodiment. 単電池のOCVカーブについて、第1SOC領域及び第2SOC領域を例示する図である。FIG. 3 is a diagram illustrating a first SOC region and a second SOC region with respect to an OCV curve of a unit cell. 均等化実行判定フローを例示するフローチャートである。It is a flowchart which illustrates an equalization execution determination flow. 単電池のOCVカーブを例示する図である。It is a figure which illustrates the OCV curve of a cell. 単電池のOCVカーブを例示する図であって、充放電履歴に応じたヒステリシス特性を説明する図である。It is a figure which illustrates the OCV curve of a cell, and is a figure explaining the hysteresis characteristic according to charge / discharge history.

図1に、本実施形態に係る電池モジュール12の制御装置14を例示する。電池モジュール12及びその制御装置14は、例えば回転電機を駆動源とするハイブリッド車両や電気自動車に搭載される。   FIG. 1 illustrates a control device 14 of the battery module 12 according to the present embodiment. The battery module 12 and its control device 14 are mounted on, for example, a hybrid vehicle or an electric vehicle that uses a rotating electric machine as a drive source.

電池モジュール12は、複数の単電池10(単セル)が接続される。図1に示す例では、n個の単電池10_1,10_2,・・・10_nが直列接続される。単電池10は、例えばリチウムイオン電池やニッケル水素電池等の二次電池から構成される。   The battery module 12 is connected to a plurality of unit cells 10 (unit cells). In the example shown in FIG. 1, n unit cells 10_1, 10_2,..., 10_n are connected in series. The cell 10 is formed of a secondary battery such as a lithium ion battery or a nickel hydride battery.

単電池10_1〜10_nは、所定のSOCに対する開回路電圧(OCV)が充放電履歴に応じて変化する、ヒステリシス特性を有する。例えば単電池10は、SiやSiO系化合物が添加された負極材を有する。例えば負極の主要材料であるグラファイトに、数%のSiOが添加される。このとき、図2に示すように、SiOが含まれない単電池と比較して、SOCとOCVの関係にヒステリシス特性が顕著に現れる。   The cells 10_1 to 10_n have a hysteresis characteristic in which an open circuit voltage (OCV) for a predetermined SOC changes according to a charge / discharge history. For example, the cell 10 has a negative electrode material to which Si or a SiO-based compound is added. For example, several percent of SiO is added to graphite, which is a main material of the negative electrode. At this time, as shown in FIG. 2, a hysteresis characteristic is remarkably exhibited in the relationship between the SOC and the OCV as compared with a single cell containing no SiO.

上述したように、図2のOCVカーブとして、完全放電状態から所定のSOCまで充電を行い、その後所定時間休止させた後のOCVを測定させるOCV測定を繰り返し実行して取得したOCVカーブ(充電カーブ)と、満充電状態から所定のSOCまで放電を行い、その後所定時間休止させた後のOCVを測定させるOCV測定を繰り返し実行して取得したOCVカーブ(放電カーブ)が示される。例えば単電池10の充放電履歴に応じて、そのOCVカーブは、充電カーブと放電カーブの間に含まれるような軌跡を取る。   As described above, as the OCV curve in FIG. 2, an OCV curve (charging curve) obtained by repeatedly executing the OCV measurement for charging the battery from a completely discharged state to a predetermined SOC, and then measuring the OCV after pausing for a predetermined period of time. ) And an OCV curve (discharge curve) obtained by repeatedly executing an OCV measurement for measuring the OCV after discharging from a fully charged state to a predetermined SOC and then suspending for a predetermined time. For example, according to the charging / discharging history of the cell 10, the OCV curve takes a locus included between the charge curve and the discharge curve.

単電池10のOCVのヒステリシス特性は、SOCに応じて変化する。例えば図2に示す様に、単電池10は、ヒステリシス幅の相対的に大きいSOC領域(第1SOC領域)と、相対的に小さいSOC領域(第2SOC領域)とを有する。後述するように、相対的にヒステリシス幅の小さい第2SOC領域を狙って、均等化処理が実行される。   The hysteresis characteristic of the OCV of the unit cell 10 changes according to the SOC. For example, as shown in FIG. 2, the unit cell 10 has an SOC region (first SOC region) having a relatively large hysteresis width and an SOC region (second SOC region) having a relatively small hysteresis width. As will be described later, the equalization process is performed with the aim of the second SOC region having a relatively small hysteresis width.

図1に戻り、制御装置14は、回路部16及び演算部18を備える。回路部16は、均等化回路20及び電圧検出回路22を備える。電圧検出回路22及び均等化回路20は回路が一部共通しており、マルチプレクサ24、電圧センサ26、シーケンサ28、及びインターフェース30を備える。マルチプレクサ24、電圧センサ26、シーケンサ28、及びインターフェース30は一台のコンピュータに搭載されていてもよい。   Returning to FIG. 1, the control device 14 includes a circuit unit 16 and a calculation unit 18. The circuit section 16 includes an equalizing circuit 20 and a voltage detecting circuit 22. The voltage detection circuit 22 and the equalization circuit 20 are partially common in circuit, and include a multiplexer 24, a voltage sensor 26, a sequencer 28, and an interface 30. The multiplexer 24, the voltage sensor 26, the sequencer 28, and the interface 30 may be mounted on one computer.

電圧検出回路22に関して、各単電池10_1〜10_nの正極端及び負極端の各ノードN_1〜N_n+1から配線が引き出される。一方の単電池10_k−1(k=2〜n)の負極と他方の単電池10_kの正極との間のノードN_kから引き出された配線は一方の負極配線LN_k−1及び他方の正極配線LP_kに分岐され、マルチプレクサ24の各チャンネルCH(k−1)N,CHkPに接続される。   Regarding the voltage detection circuit 22, wiring is drawn out from each of the nodes N_1 to N_n + 1 at the positive and negative ends of each of the unit cells 10_1 to 10_n. The wiring drawn from the node N_k between the negative electrode of one cell 10_k-1 (k = 2 to n) and the positive electrode of the other cell 10_k is connected to one negative electrode wiring LN_k-1 and the other positive electrode wiring LP_k. It is branched and connected to each channel CH (k-1) N, CHkP of the multiplexer 24.

電池モジュール12のうち、最も正極側の単電池10_1の正極端のノードN_1から引き出された配線は分岐せずに正極配線LP_1としてマルチプレクサ24のチャンネルCH1Pに接続される。同様にして、電池モジュール12のうち、最も負極側の単電池10_nの負極端のノードN_n+1から引き出された配線は分岐せずに負極配線LN_nとしてマルチプレクサ24のチャンネルCHnNに接続される。   In the battery module 12, the wiring drawn from the node N_1 at the positive electrode end of the unit cell 10_1 closest to the positive electrode is connected to the channel CH1P of the multiplexer 24 as the positive wiring LP_1 without branching. Similarly, in the battery module 12, the wiring drawn from the node N_n + 1 at the negative electrode end of the cell 10_n closest to the negative electrode is connected to the channel CHnN of the multiplexer 24 as the negative wiring LN_n without branching.

さらに電池モジュール12全体の電圧を測定する配線LP_0,LN_0が設けられる。配線LP_0は単電池10_1の正極端のノードN_0Pから引き出されマルチプレクサ24のチャンネルCH0Pに接続される。配線LN_0は単電池10_nの負極端のノードN_0Nから引き出されマルチプレクサ24のチャンネルCH0Nに接続される。   Further, wirings LP_0 and LN_0 for measuring the voltage of the entire battery module 12 are provided. The wiring LP_0 is drawn out from the node N_0P at the positive terminal of the unit cell 10_1 and connected to the channel CH0P of the multiplexer 24. The wiring LN_0 is drawn out from the node N_0N at the negative terminal of the unit cell 10_n and connected to the channel CH0N of the multiplexer 24.

正極配線LP_kと負極配線LN_kとの間には平滑コンデンサCkが接続される。また正極配線LP_kに抵抗RkPが設けられ、負極配線LN_kに抵抗RkNが設けられる。後述するように抵抗RkP,RkNは単電池10_kの電圧検出用の抵抗と均等化放電用の放電抵抗とを兼ねている。   A smoothing capacitor Ck is connected between the positive electrode wiring LP_k and the negative electrode wiring LN_k. Further, a resistor RkP is provided on the positive electrode wiring LP_k, and a resistor RkN is provided on the negative electrode wiring LN_k. As will be described later, the resistors RkP and RkN double as a resistor for detecting the voltage of the unit cell 10_k and a discharge resistor for equalizing discharge.

均等化回路20は電圧検出回路22と回路を共有しており、正極配線LP_k及び負極配線LN_k、抵抗RkN及び抵抗RkP、ならびに、スイッチSW1〜SWnを備える。スイッチSWk(k=1〜n)は正極配線LP_kと負極配線LN_kとの間に設けられる。スイッチSWkは図示しない信号線によって演算部18に接続され、そのオン/オフ切り替え制御が可能となっている。   The equalizing circuit 20 shares a circuit with the voltage detecting circuit 22, and includes a positive wiring LP_k and a negative wiring LN_k, a resistance RkN and a resistance RkP, and switches SW1 to SWn. The switches SWk (k = 1 to n) are provided between the positive wiring LP_k and the negative wiring LN_k. The switch SWk is connected to the arithmetic unit 18 by a signal line (not shown), and its on / off switching control is possible.

図1に例示する均等化回路20はいわゆるパッシブバランシング型(均等化放電型)の回路であり、スイッチSWkを閉じると単電池10_k、抵抗RkP、スイッチSWk、抵抗RkNを含むループ回路が形成される。単電池10_kの電力が抵抗RkP,RkNに消費される(捨てられる)ことで単電池10_kの電圧が下げられる。例えば最小SOCの単電池10_kをターゲット(ターゲットセル)として、他の単電池10_1〜10_k−1,10_k+1〜10_nに対してスイッチSW1〜SWk−1,SWk+1〜SWnをオン状態(接続状態)にする。これにより単電池10_1〜10_k−1,10_k+1〜10_nに対して均等化放電を実行させ、ターゲットセルである単電池10_kのOCVに他の全ての単電池10_1〜10_k−1,10_k+1〜10_nのOCVを揃える。   The equalizing circuit 20 illustrated in FIG. 1 is a so-called passive balancing type (equalizing discharge type) circuit. When the switch SWk is closed, a loop circuit including the cell 10_k, the resistor RkP, the switch SWk, and the resistor RkN is formed. . The voltage of the cell 10_k is reduced by the power of the cell 10_k being consumed (discarded) by the resistors RkP and RkN. For example, the unit cell 10_k having the minimum SOC is set as a target (target cell), and the switches SW1 to SWk-1, and SWk + 1 to SWn are turned on (connected state) for the other unit cells 10_1 to 10_k-1, 10_k + 1 to 10_n. . This causes the cells 10_1 to 10_k-1, 10_k + 1 to 10_n to perform equalized discharge, and the OCV of the cell 10_k as a target cell is replaced by the OCV of all the other cells 10_1 to 10_k-1, 10_k + 1 to 10_n. Align.

シーケンサ28は例えばプログラマブル・ロジック・コントローラ(PLC)から構成される。シーケンサ28はインターフェース30を介して所定の単電池10_kに対する電圧値検出指令を受信し、これに応じたチャンネル指令をマルチプレクサ24に出力する。例えば単電池10_kの電圧値検出指令を受信すると、チャンネルCHkP,CHkNを選択するチャンネル指令をマルチプレクサ24に出力する。マルチプレクサ24によるチャンネル切り替えにより、電圧センサ26はチャンネルCHkP,CHkN間の電圧を検出する。検出された電圧値はインターフェース30を介して演算部18に送信される。このようにして、電圧検出回路22はそれぞれの単電池10_1〜10_nの電圧VB_1〜VB_nを検出可能となる。なお、電池モジュール12全体の電圧を検出する際にはチャンネルCH0P,CH0Nが選択される。   The sequencer 28 is composed of, for example, a programmable logic controller (PLC). The sequencer 28 receives a voltage value detection command for a predetermined single cell 10 — k via the interface 30 and outputs a channel command corresponding to the command to the multiplexer 24. For example, when receiving a voltage value detection command for the cell 10 — k, the channel command for selecting the channels CHkP and CHkN is output to the multiplexer 24. By the channel switching by the multiplexer 24, the voltage sensor 26 detects the voltage between the channels CHkP and CHkN. The detected voltage value is transmitted to the calculation unit 18 via the interface 30. In this manner, the voltage detection circuit 22 can detect the voltages VB_1 to VB_n of the respective cells 10_1 to 10_n. When detecting the voltage of the entire battery module 12, the channels CH0P and CH0N are selected.

演算部18は例えばコンピュータから構成され、CPU及び記憶部を備える。演算部18は例えば車載の電池ECU(電子コントロールユニット)であってよい。演算部18の記憶部に記憶された均等化プログラム及び均等化実行判定プログラムをCPUが実行することで、演算部18には第1電圧比較部32、第2電圧比較部34、緩和判定部36、均等化判定部38、及び均等化処理制御部40が構成される。   The calculation unit 18 is configured by, for example, a computer, and includes a CPU and a storage unit. The calculation unit 18 may be, for example, a vehicle-mounted battery ECU (electronic control unit). When the CPU executes the equalization program and the equalization execution determination program stored in the storage unit of the arithmetic unit 18, the arithmetic unit 18 includes the first voltage comparison unit 32, the second voltage comparison unit 34, and the relaxation determination unit 36. , An equalization determination unit 38 and an equalization processing control unit 40.

<均等化実行判定フロー>
図3には、演算部18による均等化実行判定フローが例示される。このフローは、例えば車両のシステムが停止されるイグニッション−オフ時点以降、所定の時間間隔を置いて複数回実行される。まず緩和判定部36は、単電池10_1〜10_nが緩和状態にあるか否かを判定する(S10)。
<Equalization execution determination flow>
FIG. 3 illustrates an equalization execution determination flow performed by the arithmetic unit 18. This flow is executed a plurality of times at predetermined time intervals, for example, after the ignition-off point at which the vehicle system is stopped. First, the relaxation determination unit 36 determines whether or not the cells 10_1 to 10_n are in a relaxation state (S10).

緩和状態とは、単電池10の充放電後、電流が通流しない状態が継続し、分極が解消された状態を指す。このとき、単電池10の端子電圧は開回路電圧(OCV)として測定される。   The relaxed state refers to a state in which a state in which no current flows after charging and discharging of the unit cell 10 continues and polarization is eliminated. At this time, the terminal voltage of the cell 10 is measured as an open circuit voltage (OCV).

例えば、緩和判定部36はタイマー(図示せず)を備える。緩和判定部36は、単電池10の充放電が完了した時点から電流供給の無い時間(無負荷の時間)を計測し、所定の緩和時間を経過した場合に、単電池10_1〜10_nが緩和状態にあると判定する。   For example, the relaxation determination unit 36 includes a timer (not shown). The relaxation determination unit 36 measures a period of time during which no current is supplied (a period of no load) from the time when the charging and discharging of the cell 10 is completed, and when a predetermined relaxation time has elapsed, the cells 10_1 to 10_n are in the relaxed state. Is determined.

単電池10の充放電が完了した時点とは、例えば、電池モジュール12と負荷を接続するシステムメインリレー(図示せず)が遮断された時点が挙げられる。また、車両が外部充電の可能なプラグイン型の車両である場合には、単電池10の充放電が完了した時点の例として、外部充電(プラグイン充電)の終了後、充電リレー(図示せず)が遮断された時点が挙げられる。   The point in time when the charging and discharging of the cell 10 is completed includes, for example, a point in time when a system main relay (not shown) connecting the battery module 12 and the load is shut off. If the vehicle is a plug-in type vehicle that can be externally charged, as an example of the time when the charging and discharging of the single battery 10 is completed, a charge relay (shown in FIG. Z) was interrupted.

ステップS10において、単電池10が電圧緩和状態では無いと判定されると本フローが終了する。単電池10が電圧緩和状態にあると判定されると、演算部18は電圧検出回路22に対して全ての単電池10_1〜10_nの電圧VB_1〜VB_nを検出する旨の指令を出力する(S12)。電圧検出回路22によって検出された電圧VB_1〜VB_nは、第1電圧比較部32及び第2電圧比較部34に送られる。   In step S10, when it is determined that the cell 10 is not in the voltage relaxation state, the present flow ends. When it is determined that the cell 10 is in the voltage relaxation state, the arithmetic unit 18 outputs a command to the voltage detection circuit 22 to detect the voltages VB_1 to VB_n of all the cells 10_1 to 10_n (S12). . The voltages VB_1 to VB_n detected by the voltage detection circuit 22 are sent to the first voltage comparison unit 32 and the second voltage comparison unit 34.

なお、システムメインリレーが遮断された際にも電池モジュール12からいわゆる暗電流として微小電流が流れる場合がある。このような場合には、演算部18にて暗電流に相当するIR損を算出し、電圧検出回路22による検出電圧にこれを反映(電圧補正)させてもよい。補正後の電圧値は第1電圧比較部32及び第2電圧比較部34に送信される。   In addition, even when the system main relay is shut off, a minute current may flow from the battery module 12 as a so-called dark current. In such a case, the calculation unit 18 may calculate the IR loss corresponding to the dark current, and reflect (voltage correction) on the voltage detected by the voltage detection circuit 22. The corrected voltage value is transmitted to the first voltage comparison unit 32 and the second voltage comparison unit 34.

第1電圧比較部32は、電圧VB_1〜VB_nが、図2に示すような、第2SOC領域に対応する電圧領域である下限閾値Vth0以上上限閾値Vth1以下の範囲に含まれるか否かを判定する(S14)。電圧VB_1〜VB_nのいずれかが上記範囲に含まれない場合、本フローが終了する。   The first voltage comparison unit 32 determines whether or not the voltages VB_1 to VB_n fall within a range from a lower threshold Vth0 to an upper threshold Vth1, which is a voltage region corresponding to the second SOC region, as shown in FIG. (S14). If any of the voltages VB_1 to VB_n is not included in the above range, this flow ends.

なお、下限閾値Vth0及び上限閾値Vth1は、予め演算部18によって設定される。例えば下限閾値Vth0は、放電カーブと充電カーブの乖離が拡がり始めるSOC=α%に対応するOCVとする。また上限閾値Vth1は、単電池10のSOC使用範囲の上限(max%)に対応するOCVとする。つまり第2SOC領域はα%以上max%以下の領域となる。   Note that the lower threshold Vth0 and the upper threshold Vth1 are set in advance by the calculation unit 18. For example, the lower limit threshold value Vth0 is an OCV corresponding to SOC = α% at which the difference between the discharge curve and the charge curve starts to widen. The upper threshold Vth1 is an OCV corresponding to the upper limit (max%) of the SOC usage range of the cell 10. That is, the second SOC region is a region of not less than α% and not more than max%.

また、下限閾値Vth0及び上限閾値Vth1は、電池状態に応じて更新されてもよい。例えば、走行中やプラグイン充電中等において、電池モジュール12の電圧、電流、温度等を取得し、得られた測定値から電池の劣化状態等を学習し、逐次、閾値が更新されてもよい。   Further, the lower threshold Vth0 and the upper threshold Vth1 may be updated according to the battery state. For example, during traveling or during plug-in charging, the voltage, current, temperature, and the like of the battery module 12 may be obtained, the state of deterioration of the battery may be learned from the obtained measured values, and the threshold may be updated sequentially.

ここで、図2に示されるように、第2SOC領域内であっても、放電カーブと充電カーブとでSOCに対応する電圧(OCV)には僅かな差異が存在する。そこで、放電カーブ及び充電カーブの両者において、SOCがα%を割り込まず、またmax%を超過しない範囲で、下限閾値Vth0及び上限閾値Vth1が設定される。   Here, as shown in FIG. 2, even within the second SOC region, there is a slight difference in the voltage (OCV) corresponding to the SOC between the discharge curve and the charge curve. Therefore, in both the discharge curve and the charge curve, the lower limit threshold Vth0 and the upper limit threshold Vth1 are set within a range where the SOC does not fall below α% and does not exceed max%.

例えば図2に示すように、SOCがα%に到達するまでのOCVは、放電カーブと比較して充電カーブが僅かに高くなっている。言い換えると、充電カーブにおいてSOCがα%に到達するようなOCVにおいて、放電カーブでは十分に第2SOC領域に含まれる。このような場合に、充電カーブを念頭において下限閾値Vth0が設定される。すなわち、充電カーブにおいてSOCがα%に到達するときのOCVが下限閾値Vth0に設定される。上限閾値Vth1も同様に、放電カーブ及び充電カーブのうち相対的に低いカーブにおいてSOCがmax%となるOCVを上限閾値Vth1とする。   For example, as shown in FIG. 2, in the OCV until the SOC reaches α%, the charge curve is slightly higher than the discharge curve. In other words, in the OCV where the SOC reaches α% in the charge curve, the OCV is sufficiently included in the second SOC region in the discharge curve. In such a case, the lower limit threshold Vth0 is set with the charging curve in mind. That is, the OCV when the SOC reaches α% in the charging curve is set to the lower threshold Vth0. Similarly, as for the upper limit threshold Vth1, the OCV at which the SOC becomes max% in the relatively lower curve of the discharge curve and the charge curve is set as the upper limit threshold Vth1.

ステップS14にて、電圧VB_1〜VB_nが、下限閾値Vth0以上上限閾値Vth1以下の範囲に含まれる場合、第2電圧比較部34は、電圧VB_1〜VB_nの最大電圧と最小電圧との差が所定の閾値電圧差以上であるか否かを判定する(S16)。最大電圧と最小電圧との差が所定の閾値電圧差未満である場合、均等化処理は不要と判断し、本フローが終了する。   In step S14, when the voltages VB_1 to VB_n are included in the range from the lower threshold Vth0 to the upper threshold Vth1, the second voltage comparison unit 34 determines that the difference between the maximum voltage and the minimum voltage of the voltages VB_1 to VB_n is a predetermined value. It is determined whether the difference is equal to or larger than the threshold voltage difference (S16). If the difference between the maximum voltage and the minimum voltage is smaller than the predetermined threshold voltage difference, it is determined that the equalization processing is unnecessary, and this flow ends.

ステップS16にて、電圧VB_1〜VB_nの最大電圧と最小電圧との差が所定の閾値電圧差以上である場合、均等化判定部38は、均等化処理制御部40に対して均等化処理の実行を許可する(S18)。これに応じて、均等化回路20では、均等化処理制御部40の制御下で、上述したようなパッシブバランシングに基づく均等化処理が実行される(S20)。均等化処理中、単電池10_1〜10_nの電圧は電圧検出回路22によって適宜検出される。例えば全ての単電池10_1〜10_nの電圧が等しくなったときに、均等化処理が終了する。   In step S16, when the difference between the maximum voltage and the minimum voltage of the voltages VB_1 to VB_n is equal to or larger than the predetermined threshold voltage difference, the equalization determination unit 38 performs the equalization process on the equalization process control unit 40. Is permitted (S18). In response, the equalization circuit 20 performs the above-described equalization processing based on passive balancing under the control of the equalization processing control unit 40 (S20). During the equalization process, the voltages of the cells 10_1 to 10_n are appropriately detected by the voltage detection circuit 22. For example, when the voltages of all the cells 10_1 to 10_n become equal, the equalization processing ends.

なお、上述する実施形態では、相対的に高SOC領域を均等化処理領域としたが、この形態に限らない。例えば、負極としてSiやチタン酸リチウム(LTO)が混合された単電池では、相対的に高SOC領域でヒステリシス幅が相対的に拡がる。このような場合には、相対的に低SOC領域を均等化処理領域(第2SOC領域)とすればよい。   In the above-described embodiment, the relatively high SOC area is set as the equalization processing area. However, the present invention is not limited to this mode. For example, in a unit cell in which Si or lithium titanate (LTO) is mixed as a negative electrode, the hysteresis width is relatively widened in a relatively high SOC region. In such a case, the relatively low SOC area may be set as the equalization processing area (second SOC area).

10 単電池、12 電池モジュール、14 制御装置、16 回路部、18 演算部、20 均等化回路、22 電圧検出回路、24 マルチプレクサ、26 電圧センサ、28 シーケンサ、30 インターフェース、32 第1電圧比較部、34 第2電圧比較部、36 緩和判定部、38 均等化判定部、40 均等化処理制御部。   Reference Signs List 10 cell, 12 battery module, 14 control device, 16 circuit unit, 18 arithmetic unit, 20 equalization circuit, 22 voltage detection circuit, 24 multiplexer, 26 voltage sensor, 28 sequencer, 30 interface, 32 first voltage comparison unit, 34 second voltage comparison unit, 36 relaxation determination unit, 38 equalization determination unit, 40 equalization processing control unit.

Claims (1)

複数の単電池が接続された電池モジュールの制御装置であって、
前記複数の単電池は、充放電履歴に応じて所定のSOCに対する開回路電圧が変化し、その変化が相対的に大きい第1SOC領域と、相対的に小さい第2SOC領域を有し、
前記制御装置は、
それぞれの前記単電池の電圧を検出する電圧検出回路と、
前記電圧検出回路により検出されたそれぞれの前記単電池の電圧を揃える均等化処理を実行する均等化回路と、
前記複数の単電池が充放電後に所定の緩和時間を経過した後であって、前記電圧検出回路により検出されたそれぞれの前記複数の単電池の電圧のうち、最大電圧と最小電圧との差異が所定の閾値以上であり、かつ、前記複数の単電池のいずれの電圧も、前記第2SOC領域に対応する電圧範囲に含まれる場合に、前記均等化回路に対して均等化処理の実施を許可する均等化判定部と、
を備えることを特徴とする、電池モジュールの制御装置。
A control device for a battery module to which a plurality of cells are connected,
The plurality of cells have an open circuit voltage with respect to a predetermined SOC that changes according to a charge / discharge history, and has a first SOC region where the change is relatively large and a second SOC region where the change is relatively small,
The control device includes:
A voltage detection circuit for detecting a voltage of each of the unit cells,
An equalization circuit that performs an equalization process for equalizing the voltages of the respective cells detected by the voltage detection circuit,
After a predetermined relaxation time has elapsed after the plurality of cells have been charged and discharged, the difference between the maximum voltage and the minimum voltage among the voltages of the plurality of cells detected by the voltage detection circuit is different. When the voltage is equal to or higher than a predetermined threshold and any of the voltages of the plurality of cells is included in the voltage range corresponding to the second SOC region, the equalization circuit is permitted to perform the equalization processing. An equalization determination unit;
A control device for a battery module, comprising:
JP2017016626A 2017-02-01 2017-02-01 Battery module controller Active JP6648709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017016626A JP6648709B2 (en) 2017-02-01 2017-02-01 Battery module controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017016626A JP6648709B2 (en) 2017-02-01 2017-02-01 Battery module controller

Publications (2)

Publication Number Publication Date
JP2018125977A JP2018125977A (en) 2018-08-09
JP6648709B2 true JP6648709B2 (en) 2020-02-14

Family

ID=63109823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017016626A Active JP6648709B2 (en) 2017-02-01 2017-02-01 Battery module controller

Country Status (1)

Country Link
JP (1) JP6648709B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102424295B1 (en) * 2018-09-27 2022-07-21 주식회사 엘지에너지솔루션 Apparatus and method for estimating SOC
JP7056513B2 (en) 2018-10-26 2022-04-19 トヨタ自動車株式会社 Battery control device
CN110970964B (en) * 2019-04-24 2021-01-05 宁德时代新能源科技股份有限公司 Battery pack balance control method, device, equipment and medium
CN110880622A (en) * 2019-10-15 2020-03-13 江西恒动新能源有限公司 Equalization control method of battery pack
CN111969676A (en) * 2020-08-04 2020-11-20 合肥博艾思电池科技有限公司 Battery connecting line breakage detection method based on active equalization
CN114435182B (en) * 2022-04-08 2022-07-12 北京远特科技股份有限公司 Control method and device of power battery, electronic equipment and medium

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5002919B2 (en) * 2005-07-07 2012-08-15 日産自動車株式会社 Voltage variation control device
JP5683710B2 (en) * 2011-09-08 2015-03-11 日立オートモティブシステムズ株式会社 Battery system monitoring device
JP2013158087A (en) * 2012-01-27 2013-08-15 Toyota Motor Corp Power storage system and charged state estimation method
JP6135110B2 (en) * 2012-03-08 2017-05-31 日産自動車株式会社 Secondary battery control device, charge control method, and SOC detection method
JP2015166710A (en) * 2014-03-04 2015-09-24 ソニー株式会社 Electric storage member state estimation apparatus, battery pack, electric vehicle, electric storage device, and electric storage member state estimation method

Also Published As

Publication number Publication date
JP2018125977A (en) 2018-08-09

Similar Documents

Publication Publication Date Title
JP6648709B2 (en) Battery module controller
CN107863789B (en) Power supply system
US9438059B2 (en) Battery control apparatus and battery control method
US10209317B2 (en) Battery control device for calculating battery deterioration based on internal resistance increase rate
EP2418751B1 (en) Battery charger and battery charging method
JP6179407B2 (en) Battery pack equalization apparatus and method
KR101664641B1 (en) Discharging device for electricity storage device
JP6106991B2 (en) State management device and method for equalizing storage elements
JP7072607B2 (en) Effective Battery Cell Balancing Methods and Systems Using Duty Control
JP6324248B2 (en) Battery state detection device, secondary battery system, battery state detection program, battery state detection method
US20130057224A1 (en) Control system of battery pack and method of charging and discharging using the same
JP6316690B2 (en) Battery state detection device, secondary battery system, battery state detection program, battery state detection method
JP2008253129A (en) Method for quick charging lithium-based secondary battery and electronic equipment using same
WO2012132160A1 (en) Device for measuring degradation, rechargeable battery pack, method for measuring degradation, and program
WO2013008409A1 (en) Method for manufacturing battery pack and battery pack
WO2015178075A1 (en) Battery control device
JP2014068468A (en) Charge control device
JP2015195653A (en) Battery system, charging/discharging control program, and charging/discharging control method
JP2015106482A (en) Charging system
JP6011265B2 (en) Battery system
JP6115446B2 (en) Full charge capacity calculation device
JP6520017B2 (en) Charge rate calculation device
JP2020048318A (en) Secondary battery device
JP2021023098A (en) Monitoring device of multi-cell battery pack
JP2018091701A (en) Voltage estimation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191230

R151 Written notification of patent or utility model registration

Ref document number: 6648709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151