JP6179407B2 - Battery pack equalization apparatus and method - Google Patents

Battery pack equalization apparatus and method Download PDF

Info

Publication number
JP6179407B2
JP6179407B2 JP2014007428A JP2014007428A JP6179407B2 JP 6179407 B2 JP6179407 B2 JP 6179407B2 JP 2014007428 A JP2014007428 A JP 2014007428A JP 2014007428 A JP2014007428 A JP 2014007428A JP 6179407 B2 JP6179407 B2 JP 6179407B2
Authority
JP
Japan
Prior art keywords
battery
equalization
battery cell
open circuit
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014007428A
Other languages
Japanese (ja)
Other versions
JP2015136268A (en
Inventor
裕基 堀
裕基 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2014007428A priority Critical patent/JP6179407B2/en
Publication of JP2015136268A publication Critical patent/JP2015136268A/en
Application granted granted Critical
Publication of JP6179407B2 publication Critical patent/JP6179407B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本発明は、組電池に含まれる複数の電池セルの容量を均等化する組電池の均等化装置及び方法に関する。   The present invention relates to an assembled battery equalizing apparatus and method for equalizing the capacity of a plurality of battery cells included in an assembled battery.

近年、実用化されつつあるハイブリッド自動車や電気自動車等では、複数の電池セルを直列に接続して高電圧化した組電池が用いられている。このよう組電池では、充放電を繰り返すと、各電池セルの容量及び電圧にばらつきが生じる。ここで、組電池を放電又は充電する際は、各電池セルの過放電及び過充電を回避するため、最小又は最大の電池セルの容量及び電圧に応じて、全電池セルの放電又は充電を停止しなければならない。それゆえ、各電池セルの容量及び電圧のばらつきが大きいと電力効率が低下するので、各電池セルの容量及び電圧を均等化する必要がある。   In recent years, in hybrid vehicles and electric vehicles that are being put into practical use, assembled batteries in which a plurality of battery cells are connected in series to increase the voltage are used. In such an assembled battery, when charging and discharging are repeated, the capacity and voltage of each battery cell vary. Here, when discharging or charging the assembled battery, in order to avoid overdischarge and overcharge of each battery cell, the discharge or charge of all the battery cells is stopped according to the capacity or voltage of the minimum or maximum battery cell. Must. Therefore, if the variation in the capacity and voltage of each battery cell is large, the power efficiency is lowered. Therefore, it is necessary to equalize the capacity and voltage of each battery cell.

特許文献1に記載の電池均等化装置は、複数の電池セルのうちの電圧を均等化する電池セルを決定し、決定した電池セルの開回路電圧を平均して均等化制御の目標電圧を算出している。さらに、各電池セルの内部抵抗を算出し、算出した各内部抵抗に起因する電位差の分だけ目標電圧を補正して、各電池セルの終了電圧を算出している。そして、各電池セルの閉回路電圧が、各終了電圧となるように電圧を均等化している。   The battery equalization apparatus described in Patent Document 1 determines a battery cell that equalizes voltages among a plurality of battery cells, and calculates a target voltage for equalization control by averaging the open circuit voltages of the determined battery cells. doing. Furthermore, the internal resistance of each battery cell is calculated, the target voltage is corrected by the potential difference caused by each calculated internal resistance, and the end voltage of each battery cell is calculated. And the voltage is equalized so that the closed circuit voltage of each battery cell becomes each end voltage.

特開2013−102592号公報JP 2013-102592 A

特許文献1に記載の電池均等化装置では、容量に対する開回路電圧の特性において、均等化する電池セルの開回路電圧が、容量に対する開回路電圧の変化量の小さい領域にある場合に、目標電圧を決定することが困難である。そのため、特許文献1に記載の電池均等化装置では、複数の電池セルが、容量に対する開回路電圧の変化量の小さい領域が長い特性を持っている場合に、均等化する電池セルの選択によっては、複数の電池セルの容量を均等化することが困難となる。   In the battery equalization apparatus described in Patent Document 1, when the open circuit voltage of the battery cell to be equalized is in a region where the amount of change in the open circuit voltage with respect to the capacity is small in the characteristics of the open circuit voltage with respect to the capacity, the target voltage Is difficult to determine. Therefore, in the battery equalization apparatus described in Patent Document 1, when a plurality of battery cells have long characteristics in a region where the amount of change in the open circuit voltage relative to the capacity is long, depending on the selection of the battery cells to be equalized, It becomes difficult to equalize the capacity of the plurality of battery cells.

本発明は、上記実情に鑑み、複数の電池セルが、容量に対する開回路電圧の変化量の小さい領域が長い特性を持っている場合でも、複数の電池セルの容量を均等化することが可能な組電池の均等化装置を提供することを主たる目的とする。   In view of the above circumstances, the present invention can equalize the capacities of a plurality of battery cells even when the plurality of battery cells have a long characteristic in which the amount of change in the open circuit voltage with respect to the capacity is small. The main purpose is to provide an apparatus for equalizing a battery pack.

上記課題を解決するため、請求項1に記載の発明は、複数の電池セルが互いに直列に接続された組電池の均等化を行う組電池の均等化装置であって、前記電池セルは、容量と開回路電圧との対応関係において、前記容量に対する前記電圧の変化量が所定量よりも小さい領域が、所定領域よりも長い特性を有し、前記組電池に含まれる各電池セルの状態を監視する監視部と、各電池セルの前記容量のばらつきを低減する均等化処理を実行する均等化部と、を備え、前記監視部は、各電池セルの開回路電圧のいずれかが、前記変化量が所定量よりも小さい領域から前記変化量が所定量よりも大きい領域へ移行したことを検出する検出部を含み、前記検出部により前記移行したことが検出された場合に、前記均等化部に前記均等化処理を実行させる。   In order to solve the above-mentioned problem, the invention described in claim 1 is an assembled battery equalizing device that performs equalization of an assembled battery in which a plurality of battery cells are connected in series with each other. And the open circuit voltage, the region in which the amount of change in the voltage relative to the capacity is smaller than the predetermined amount has a longer characteristic than the predetermined region, and monitors the state of each battery cell included in the assembled battery And an equalization unit that executes an equalization process for reducing variation in the capacity of each battery cell, and the monitoring unit is configured such that one of open circuit voltages of each battery cell is the amount of change. Including a detection unit that detects that the change amount has shifted from a region smaller than a predetermined amount to a region where the change amount is larger than a predetermined amount, and when the detection unit detects that the shift has occurred, the equalization unit Execute the equalization process

請求項1に記載の発明によれば、各電池セルの開回路電圧のいずれかが、容量と開回路電圧との対応関係において、容量に対する開回路電圧の変化量が所定量よりも小さい領域から大きい領域へ移行したことが検出される。すなわち、複数の電池セル間において、容量がばらついていることが検出される。さらに、容量がばらついていることが検出された場合に、各電池セルの容量のばらつきを低減する均等化処理が実行される。   According to the first aspect of the present invention, any one of the open circuit voltages of each battery cell is selected from a region where the change amount of the open circuit voltage with respect to the capacity is smaller than a predetermined amount in the correspondence relationship between the capacity and the open circuit voltage. It is detected that a large area has been moved. That is, it is detected that the capacity varies between the plurality of battery cells. Furthermore, when it is detected that the capacities are varied, an equalization process for reducing the variation in the capacities of the battery cells is executed.

よって、複数の電池セルが、容量に対する開回路電圧の変化量の小さい領域が長い特性を持っている場合でも、複数の電池セル間において容量がばらついている際には、ばらつきを検出し、複数の電池セルの容量を均等化することができる。   Therefore, even when a plurality of battery cells have long characteristics in a region where the amount of change in the open circuit voltage with respect to the capacity is long, when the capacity varies between the plurality of battery cells, the variation is detected, The capacity of battery cells can be equalized.

また、請求項9に記載の発明は、複数の電池セルが互いに直列に接続された組電池の均等化を行う組電池の均等化方法であって、前記電池セルは、容量と開回路電圧との対応関係において、前記容量に対する前記電圧の変化量が所定量よりも小さい領域が、所定領域よりも長い特性を有し、前記組電池に含まれる各電池セルの状態を監視する監視工程と、前記各電池セルの前記容量のばらつきを低減する均等化工程と、を備え、前記監視工程は、各電池セルの開回路電圧のいずれかが、前記変化量が所定量よりも小さい領域から前記変化量が所定量よりも大きい領域へ移行したことを検出する検出工程を含み、前記均等化工程は、前記検出工程において前記移行したことが検出された場合に実行される。   The invention according to claim 9 is an assembled battery equalizing method for equalizing an assembled battery in which a plurality of battery cells are connected in series with each other, wherein the battery cell includes a capacity, an open circuit voltage, and In the correspondence relationship, the monitoring step of monitoring the state of each battery cell included in the assembled battery, wherein the region where the amount of change in the voltage with respect to the capacity is smaller than the predetermined amount has a longer characteristic than the predetermined region; An equalization step of reducing variation in the capacity of each battery cell, and the monitoring step includes changing one of the open circuit voltages of each battery cell from a region where the change amount is smaller than a predetermined amount. A detection step for detecting that the amount has shifted to a region larger than a predetermined amount, and the equalization step is executed when the shift is detected in the detection step.

請求項9に記載の発明によれば、請求項1と同様の効果を奏する。   According to invention of Claim 9, there exists an effect similar to Claim 1.

本実施形態に係る組電池の均等化装置の構成を示す図。The figure which shows the structure of the equalization apparatus of the assembled battery which concerns on this embodiment. (a)放電中のSOCのばらつきを示す図。(b)充電中のSOCのばらつきを示す図。(c)SOCのばらつきを算出する式。(d)均等化時間を算出する式。(A) The figure which shows the dispersion | variation in SOC during discharge. (B) The figure which shows the dispersion | variation in SOC during charge. (C) An expression for calculating the variation of the SOC. (D) Formula for calculating equalization time. 電池セルの均等化を実行する処理手順を示すフローチャート。The flowchart which shows the process sequence which performs equalization of a battery cell.

以下、組電池の均等化装置を具現化した実施形態について、図面を参照しつつ説明する。本実施形態に係る組電池の均等化装置は、組電池10の均等化を行うことを想定している。組電池10は、複数の電池セル11(#1)〜(#n)が互いに直列に接続されて構成された蓄電池である。各電池セル11(#1)〜(#n)は、電池の充電状態を示す電池容量(SOC:State of Charge)と開回路電圧(OCV:Open Circuit Voltage)との対応関係(OCV−SOC特性)において、SOCに対するOCVの変化量が所定量よりも小さい領域、いわゆるプラトー領域が、所定領域よりも長い特性を有する。各電池セル11(#1)〜(#n)は、例えば、正極に、オリビン構造を有する少なくとも1つのリチウム金属リン酸塩(LiMnPO4,LiFePO4,LiCoPO4,LiNiPO4)が含まれる、リチウムイオン二次電池である。   Hereinafter, an embodiment in which a battery pack equalizing apparatus is embodied will be described with reference to the drawings. The assembled battery equalizing apparatus according to the present embodiment assumes that the assembled batteries 10 are equalized. The assembled battery 10 is a storage battery configured by connecting a plurality of battery cells 11 (# 1) to (#n) in series with each other. Each of the battery cells 11 (# 1) to (#n) has a correspondence relationship (OCV-SOC characteristic) between a battery capacity (SOC) indicating a state of charge of the battery and an open circuit voltage (OCV). ), A region where the amount of change in OCV with respect to the SOC is smaller than a predetermined amount, that is, a so-called plateau region has a longer characteristic than the predetermined region. Each of the battery cells 11 (# 1) to (#n) includes, for example, a lithium ion secondary battery in which the positive electrode includes at least one lithium metal phosphate (LiMnPO4, LiFePO4, LiCoPO4, LiNiPO4) having an olivine structure. It is.

まず、図1を参照して、本実施形態に係る組電池の均等化装置の構成について説明する。本実施形態に係る組電池の均等化装置は、監視装置20(監視部)、及び均等化回路30(均等化部)を備える。   First, with reference to FIG. 1, the structure of the equalization apparatus of the assembled battery which concerns on this embodiment is demonstrated. The battery pack equalization apparatus according to this embodiment includes a monitoring device 20 (monitoring unit) and an equalization circuit 30 (equalization unit).

監視装置20は、監視IC25、電流センサ26、及びマイコン24を備え、組電池10から電源供給を受けて作動する。監視装置20は、各電池セル11(#1)〜(#n)の状態として、少なくとも、各電池セル11の電圧、及び各電池セル11を流れる充放電電流Iを監視する。また、監視装置20は、均等化回路30に、各電池セル11のSOCのばらつきを低減する均等化処理を実行させる。   The monitoring device 20 includes a monitoring IC 25, a current sensor 26, and a microcomputer 24, and operates by receiving power supply from the assembled battery 10. The monitoring device 20 monitors at least the voltage of each battery cell 11 and the charge / discharge current I flowing through each battery cell 11 as the state of each battery cell 11 (# 1) to (#n). In addition, the monitoring device 20 causes the equalization circuit 30 to perform an equalization process that reduces the variation in the SOC of each battery cell 11.

監視IC25は、セル電圧入力部、マルチプレクサ、A/D変換器等を備えている。セル電圧入力部は、少なくともn個の電圧検出用のチャンネルを備えている。各チャンネルの検出線は、各電池セルの正極及び負極と接続され、各電池セルの両極間の電圧を検出する。マルチプレクサは、セル電圧入力部から出力される各電池セルの電圧信号を、1系統の時系列信号に変換する。A/D変換器は、マルチプレクサから出力される1系統の時系列信号をディジタル信号に変換する。ディジタル信号に変換された各電池セル11の電圧値は、マイコン24に入力される。電流センサ26は、組電池10の充放電経路に設置されて、各電池セル11を流れる充放電電流を検出する。電流センサ26により検出された電流値は、マイコン24に入力される。   The monitoring IC 25 includes a cell voltage input unit, a multiplexer, an A / D converter, and the like. The cell voltage input unit includes at least n voltage detection channels. The detection line of each channel is connected to the positive electrode and the negative electrode of each battery cell, and detects the voltage between both electrodes of each battery cell. The multiplexer converts the voltage signal of each battery cell output from the cell voltage input unit into one system time series signal. The A / D converter converts one system time-series signal output from the multiplexer into a digital signal. The voltage value of each battery cell 11 converted into a digital signal is input to the microcomputer 24. The current sensor 26 is installed in the charge / discharge path of the assembled battery 10 and detects a charge / discharge current flowing through each battery cell 11. The current value detected by the current sensor 26 is input to the microcomputer 24.

マイコン24は、CPU、メモリ、I/O等を備えたコンピュータであり、各種プログラムを実行することにより、OCV推定部21、検出部22、及び時間算出部23の機能を実現する。   The microcomputer 24 is a computer including a CPU, a memory, an I / O, and the like, and realizes the functions of the OCV estimation unit 21, the detection unit 22, and the time calculation unit 23 by executing various programs.

OCV推定部21は、組電池10の充電中又は放電中に検出された、各電池セル11の閉回路電圧(CCV:Closed Circuit Voltage)、及び充放電電流Iから、各電池セル11のOCVを推定する。   The OCV estimation unit 21 calculates the OCV of each battery cell 11 from the closed circuit voltage (CCV) and charge / discharge current I of each battery cell 11 detected during charging or discharging of the assembled battery 10. presume.

詳しくは、OCV推定部21は、検出された電池セル11のCCV及び充放電電流Iに基づいて、マップデータを参照し、各電池セル11の内部抵抗Riを算出する。このマップデータは、電池セル11のCCV及び充放電電流Iと、内部抵抗Riとの対応を示すデータであり、予め実験等により作成されて監視装置20に保存されている。そして、OCV推定部21は、各電池セル11のCCV、充放電電流I及び算出した内部抵抗Riを用いて、各電池セル11のOCVを推定する。具体的には、組電池10の放電時の充放電電流Iを正、組電池10の充電時の充放電電流Iを負とした場合、各電池セル11のCCVにRi×Iを加算した値を、各電池セル11のOCVとする。   Specifically, the OCV estimation unit 21 calculates the internal resistance Ri of each battery cell 11 with reference to the map data based on the detected CCV and charge / discharge current I of the battery cell 11. This map data is data indicating the correspondence between the CCV and charge / discharge current I of the battery cell 11 and the internal resistance Ri, and is created in advance by experiments or the like and stored in the monitoring device 20. Then, the OCV estimation unit 21 estimates the OCV of each battery cell 11 using the CCV of each battery cell 11, the charge / discharge current I, and the calculated internal resistance Ri. Specifically, when charging / discharging current I at the time of discharging the assembled battery 10 is positive and charging / discharging current I at the charging of the assembled battery 10 is negative, a value obtained by adding Ri × I to the CCV of each battery cell 11 Is the OCV of each battery cell 11.

検出部22は、各電池セル11のOCVのいずれかが、SOCとOCVとの対応関係において、SOCに対するOCVの変化量が所定量よりも小さい領域から、所定量よりも大きい領域へ移行したことを検出する。すなわち、OCV−SOC特性を示す曲線において、平坦な領域から急峻な領域へ移行したことを検出する(図2(a),(b)参照)。検出部22により、各電池セル11のOCVのいずれかが、平坦な領域から急峻な領域へ移行したことが検出される場合は、移行した電池セル11のSOCと、移行していない電池セル11のSOCとの差が大きい状態になっている。すなわち、各電池セル11間において、各電池セル11のSOCのうちの最小値と最大値との差が大きく、各電池セル11のSOCがばらついた状態になっている。そこで、監視装置20は、検出部22により、各電池セル11のOCVのいずれかが、急峻な領域へ移行したことが検出された場合に、均等化回路30に均等化処理を実行させる。   The detection unit 22 indicates that any one of the OCVs of the battery cells 11 has shifted from an area where the change amount of the OCV to the SOC is smaller than the predetermined amount to an area larger than the predetermined amount in the correspondence relationship between the SOC and the OCV. Is detected. That is, a transition from a flat area to a steep area is detected in the curve indicating the OCV-SOC characteristics (see FIGS. 2A and 2B). When the detection unit 22 detects that any of the OCVs of each battery cell 11 has shifted from a flat region to a steep region, the SOC of the transferred battery cell 11 and the non-transferred battery cell 11 are detected. The difference from the SOC is large. That is, between each battery cell 11, the difference of the minimum value and the maximum value of SOC of each battery cell 11 is large, and the SOC of each battery cell 11 is in a state of variation. Therefore, the monitoring device 20 causes the equalization circuit 30 to perform equalization processing when the detection unit 22 detects that any of the OCVs of the battery cells 11 has shifted to a steep region.

詳しくは、検出部22は、組電池10の放電中に、OCV推定部21により推定された各電池セル11のOCVのうち、最小のOCVとそれ以外のOCVとの差の絶対値ΔVaのいずれかが、閾値Vtaよりも大きくなった場合に、平坦な領域から急峻な領域へ移行したことを検出する。   Specifically, the detection unit 22 determines which of the absolute values ΔVa of the difference between the minimum OCV and the other OCVs among the OCVs of the battery cells 11 estimated by the OCV estimation unit 21 during the discharge of the assembled battery 10. However, when it becomes larger than the threshold value Vta, it is detected that the region has shifted from a flat region to a steep region.

各電池セル11のOCVが、OCV−SOC特性を示す曲線の平坦な領域にある場合には、各電池セル11のSOCがばらついている状態でも、各電池セル11のOCVの差は検出できない程に小さい。しかしながら、各電池セル11のSOCがばらついている状態で組電池10を放電させると、図2(a)に示すように、最もSOCの小さい電池セル11(#n)のOCVは最初に急峻な領域へ移行する。なお、図2(a),(b)では、便宜上、電池セル11(#1)〜(#3),(#n)のみを示しており、電池セル11(#1)のSOCが最大、電池セル11(#n)のSOCが最小になっている。   When the OCV of each battery cell 11 is in the flat region of the curve showing the OCV-SOC characteristic, even if the SOC of each battery cell 11 varies, the difference in the OCV of each battery cell 11 cannot be detected. Small. However, if the assembled battery 10 is discharged in a state where the SOC of each battery cell 11 varies, the OCV of the battery cell 11 (#n) having the smallest SOC is initially steep as shown in FIG. Move to the area. 2 (a) and 2 (b), only the battery cells 11 (# 1) to (# 3) and (#n) are shown for convenience, and the SOC of the battery cell 11 (# 1) is maximum. The SOC of the battery cell 11 (#n) is minimized.

最小のOCVと平坦な領域に留まっているOCVとの差が、閾値Vtaよりも大きい場合、最小のSOCと最大のSOCとの差が大きく、組電池10の電力効率が低下している。そのため、組電池10の電力効率を向上させるために、電池セル11の均等化処理を行う必要がある。   When the difference between the minimum OCV and the OCV remaining in the flat region is larger than the threshold value Vta, the difference between the minimum SOC and the maximum SOC is large, and the power efficiency of the assembled battery 10 is reduced. Therefore, in order to improve the power efficiency of the assembled battery 10, it is necessary to perform equalization processing of the battery cells 11.

そこで、最小のOCVが平坦な領域から急峻な領域へ移行したことが検出された場合、監視装置20は、均等化回路30により、最小のOCVよりも閾値Vtaを超えて大きいOCVの電池セル11(#1)〜(#3)を放電させる。これにより、電池セル11(#1)〜(#3)のSOCが、電池セル11(#n)のSOCに近づき、最小である電池セル11(#n)のSOCと、最大である電池セル11(#1)のSOCとの差が減少するため、組電池10の電力効率が向上する。   Therefore, when it is detected that the minimum OCV has shifted from the flat region to the steep region, the monitoring device 20 uses the equalization circuit 30 to increase the battery cell 11 having an OCV larger than the minimum OCV by exceeding the threshold value Vta. (# 1) to (# 3) are discharged. Accordingly, the SOC of the battery cells 11 (# 1) to (# 3) approaches the SOC of the battery cell 11 (#n), and the SOC of the battery cell 11 (#n) that is the minimum and the battery cell that is the maximum Since the difference from the SOC of 11 (# 1) is reduced, the power efficiency of the assembled battery 10 is improved.

また、検出部22は、組電池の充電中に、OCV推定部21により推定された各電池セル11のOCVのうち、最大のOCVとそれ以外のOCVとの差の絶対値ΔVbのいずれかが、閾値Vtbよりも大きくなった場合に、平坦な領域から急峻な領域へ移行したことを検出する。各電池セル11のSOCがばらついている状態で組電池10を充電させると、図2(b)に示すように、最もSOCの大きい電池セル11(#1)のOCVは最初に急峻な領域へ移行する。   In addition, the detection unit 22 determines which of the absolute values ΔVb of the difference between the maximum OCV and the other OCVs among the OCVs of the battery cells 11 estimated by the OCV estimation unit 21 during charging of the assembled battery. When it becomes larger than the threshold value Vtb, it is detected that the region has shifted from a flat region to a steep region. When the battery pack 10 is charged in a state where the SOC of each battery cell 11 varies, the OCV of the battery cell 11 (# 1) having the largest SOC is first moved to a steep region as shown in FIG. Transition.

最大のOCVと平坦な領域に留まっているOCVとの差が、閾値Vtbよりも大きい場合、最小のSOCと最大のSOCとの差が大きく、組電池10の電力効率が低下している。そのため、組電池10の電力効率を向上させるために、電池セル11の均等化処理を行う必要がある。   When the difference between the maximum OCV and the OCV remaining in the flat region is larger than the threshold value Vtb, the difference between the minimum SOC and the maximum SOC is large, and the power efficiency of the battery pack 10 is reduced. Therefore, in order to improve the power efficiency of the assembled battery 10, it is necessary to perform equalization processing of the battery cells 11.

そこで、最大のOCVが平坦な領域から急峻な領域へ移行したことが検出された場合、監視装置20は、均等化回路30により、電池セル11(#1)を放電させる。これにより、電池セル11(#1)のSOCが、電池セル11(#2),(#3),(#n)のSOCに近づき、最小である電池セル11(#n)のSOCと、最大である電池セル11(#1)のSOCとの差が減少するため、組電池10の電力効率が向上する。   Therefore, when it is detected that the maximum OCV has shifted from the flat region to the steep region, the monitoring device 20 causes the equalization circuit 30 to discharge the battery cell 11 (# 1). Thereby, the SOC of the battery cell 11 (# 1) approaches the SOC of the battery cell 11 (# 2), (# 3), (#n), and the SOC of the battery cell 11 (#n), which is the minimum, Since the difference from the SOC of the battery cell 11 (# 1) which is the maximum is reduced, the power efficiency of the assembled battery 10 is improved.

また、検出部22は、電池セル11(#1)〜(#n)間におけるSOCのばらつきの許容量、及びSOCとOCVとの対応関係に基づいて、上述した閾値Vta,Vtbを算出する。詳しくは、SOCのばらつきの許容量、すなわち最小のSOCと最大のSOCとの差の許容量をX(%)とする。そして、OCV−SOC特性の平坦な領域よりもSOCが小さい側の急峻な領域における、SOCとOCVとの対応関係を用いて、X(%)を電圧値に換算して閾値Vtaを算出する。同様に、OCV−SOC特性の平坦な領域よりもSOCが大きい側の急峻な領域における、SOCとOCVとの対応関係を用いて、X(%)を電圧値に換算して閾値Vtbを算出する。   In addition, the detection unit 22 calculates the threshold values Vta and Vtb described above based on the allowable amount of variation in SOC between the battery cells 11 (# 1) to (#n) and the correspondence relationship between the SOC and the OCV. Specifically, an allowable amount of variation in SOC, that is, an allowable amount of difference between the minimum SOC and the maximum SOC is X (%). Then, the threshold value Vta is calculated by converting X (%) into a voltage value using the correspondence relationship between the SOC and the OCV in the steep region where the SOC is smaller than the flat region of the OCV-SOC characteristic. Similarly, the threshold value Vtb is calculated by converting X (%) into a voltage value using the correspondence relationship between the SOC and the OCV in the steep region where the SOC is larger than the flat region of the OCV-SOC characteristic. .

これにより、組電池10の放電中に、最小のSOCとそれ以外のSOCとの差の絶対値が、許容量Xよりも大きくなるようなばらつきが生じた場合に、均等化回路30により均等化処理が実行される。また、組電池10の充電中に、最大のSOCとそれ以外のSOCとの差の絶対値が、許容量Xよりも大きくなるようなばらつきが生じた場合に、均等化回路30により均等化処理が実行される。   Thereby, during the discharge of the battery pack 10, when there is a variation in which the absolute value of the difference between the minimum SOC and the other SOC becomes larger than the allowable amount X, the equalization circuit 30 equalizes. Processing is executed. Further, when the battery pack 10 is charged, if the variation in which the absolute value of the difference between the maximum SOC and other SOCs becomes larger than the allowable amount X occurs, the equalization circuit 30 performs the equalization process. Is executed.

時間算出部23は、均等化回路30に均等化処理を実行させる均等化時間Te(処理時間)を算出する。詳しくは、時間算出部23は、経過時間Tpの間に、電池セル11(#1)〜(#n)間において発生しうるSOCのばらつきΔCを推定し、推定したSOCのばらつきΔCを、均等化電流Ieで除して、均等化時間Teを算出する(図2(d)参照)。   The time calculation unit 23 calculates an equalization time Te (processing time) for causing the equalization circuit 30 to execute the equalization process. Specifically, the time calculation unit 23 estimates the SOC variation ΔC that may occur between the battery cells 11 (# 1) to (#n) during the elapsed time Tp, and evenly estimates the estimated SOC variation ΔC. The equalization time Te is calculated by dividing by the equalization current Ie (see FIG. 2D).

経過時間Tpは、前回各電池セル11のOCVのいずれかが、急峻な領域へ移行したことが検出されてから、今回各電池セル11のOCVのいずれかが、急峻な領域へ移行したことが検出されるまでの時間である。すなわち、経過時間Tpは、前回均等化処理が実行されてから、今回SOCのばらつきが検出されるまでの時間である。また、均等化電流Ieは、均等化回路30により均等化処理を行う際に、均等化回路30に流れる電流である。均等化電流Ieの値は、均等化回路30の設計値により決まる。   The elapsed time Tp indicates that any of the OCVs of the battery cells 11 has moved to the steep area this time since it was detected that one of the OCVs of the battery cells 11 has moved to the steep area last time. This is the time until detection. That is, the elapsed time Tp is the time from when the previous equalization process is executed until the current SOC variation is detected. The equalization current Ie is a current that flows through the equalization circuit 30 when the equalization circuit 30 performs the equalization process. The value of the equalization current Ie is determined by the design value of the equalization circuit 30.

各電池セル11のSOCのばらつきは、主に自己放電電流のばらつきと、監視装置20による消費電流のばらつきとから生じる。そこで、時間算出部23は、n個の電池セル11間における、単位時間あたりの自己放電電流のばらつきと、単位時間あたりの監視装置20による消費電流のばらつきとを加算する。そして、時間算出部23は、自己放電電流のばらつきと消費電流のばらつきとを加算した値に、経過時間Tpを積算して、経過時間Tpの間に発生しうるSOCのばらつきΔCを推定する(図2(c)参照)。なお、経過時間Tpの間に発生しうるSOCのばらつきΔCは、SOCのばらつきの許容量Xよりも十分に小さい。   The variation in the SOC of each battery cell 11 is mainly caused by the variation in self-discharge current and the variation in current consumption by the monitoring device 20. Therefore, the time calculation unit 23 adds the variation in self-discharge current per unit time between the n battery cells 11 and the variation in current consumption by the monitoring device 20 per unit time. Then, the time calculation unit 23 adds the elapsed time Tp to the value obtained by adding the self-discharge current variation and the consumption current variation, and estimates the SOC variation ΔC that may occur during the elapsed time Tp ( (Refer FIG.2 (c)). Note that the SOC variation ΔC that can occur during the elapsed time Tp is sufficiently smaller than the allowable amount X of the SOC variation.

自己放電電流のばらつきは、組電池10の設計値に基づいて統計的に算出される値であり、組電池10のメーカが公表していることもある。また、消費電流のばらつきは、監視IC25の各チャンネルの消費電流のばらつきであり、監視IC25の設計値に基づいて算出される値である。   The variation of the self-discharge current is a value that is statistically calculated based on the design value of the assembled battery 10 and may be announced by the manufacturer of the assembled battery 10. The variation in current consumption is a variation in current consumption in each channel of the monitoring IC 25 and is a value calculated based on the design value of the monitoring IC 25.

均等化回路30は、スイッチSW(#1)〜(#n)のそれぞれと、抵抗R(#1)〜(#n)のそれぞれとの直列体が、電池セル11(#1)〜(#n)のそれぞれに対して並列に接続されている回路である。均等化回路30は、均等化処理の対象として選択された電池セル11の電力を放電消費させることにより、n個の電池セル11のSOCを均等化させるパッシブ方式の均等化回路である。   The equalizing circuit 30 includes battery cells 11 (# 1) to (#) in which series of switches SW (# 1) to (#n) and resistors R (# 1) to (#n) are respectively connected. n) are connected in parallel with each other. The equalization circuit 30 is a passive type equalization circuit that equalizes the SOC of the n battery cells 11 by discharging and consuming the power of the battery cells 11 selected as the target of the equalization process.

スイッチSW(#1)〜(#n)は、それぞれ、監視装置20により制御され、電池セル11(#1)〜(#n)と抵抗R(#1)〜(#n)との接続を開閉する。監視装置20が、選択された電池セル11に接続されたスイッチSWを閉状態にすることにより、選択された電池セル11から抵抗Rへ均等化電流Ieが流れ、選択された電池セル11のSOCが減少する。なお、抵抗R(#1)〜(#n)の値は全て等しい。   The switches SW (# 1) to (#n) are controlled by the monitoring device 20, and connect the battery cells 11 (# 1) to (#n) and the resistors R (# 1) to (#n). Open and close. When the monitoring device 20 closes the switch SW connected to the selected battery cell 11, the equalization current Ie flows from the selected battery cell 11 to the resistor R, and the SOC of the selected battery cell 11 is detected. Decrease. The values of the resistors R (# 1) to (#n) are all equal.

次に、電池セル11を均等化する処理手順について、図3のフローチャートを参照しつつ説明する。本処理手順は、本実施形態に係る組電池の均等化装置が、所定間隔で繰り返し実行する。本処理手順は、組電池10の放電中に実行することを想定している。   Next, a processing procedure for equalizing the battery cells 11 will be described with reference to the flowchart of FIG. This processing procedure is repeatedly executed at predetermined intervals by the battery pack equalization apparatus according to the present embodiment. This processing procedure is assumed to be executed during discharge of the battery pack 10.

まず、電池セル11の均等化処理を実行中か否か判定する(S10)。均等化処理を実行していない場合は(S10:NO)、検出された各電池セル11のCCVと充放電電流I、及び内部抵抗Ri算出用のマップデータを用いて、各電池セル11の内部抵抗Riを算出する。そして、各電池セル11のCCVと充放電電流I、及び算出した内部抵抗Riから、各電池セル11のOCVを推定する(S11)。一方、均等化処理を実行している場合は(S10:YES)、均等化処理の開始から、均等化時間Teが経過したか否か判定する(S17)。   First, it is determined whether the equalization process for the battery cells 11 is being executed (S10). When the equalization process is not executed (S10: NO), the detected CCV and charge / discharge current I of each battery cell 11 and the map data for calculating the internal resistance Ri are used. The resistance Ri is calculated. Then, the OCV of each battery cell 11 is estimated from the CCV and charge / discharge current I of each battery cell 11 and the calculated internal resistance Ri (S11). On the other hand, if the equalization process is being executed (S10: YES), it is determined whether the equalization time Te has elapsed since the start of the equalization process (S17).

次に、S11で推定した各電池セル11のOCVのうち、最小のOCVとそれ以外のOCVとの差ΔVaのいずれかが、閾値Vtaよりも大きいか否か判定する(S12)。すなわち、推定された各電池セル11のOCVのうち、最小のOCVが、OCV−SOC特性の曲線において、平坦な領域から急峻な領域へ移行したか否か判定する。   Next, it is determined whether any of the differences ΔVa between the minimum OCV and the other OCVs among the OCVs of the respective battery cells 11 estimated in S11 is larger than the threshold value Vta (S12). That is, it is determined whether or not the minimum OCV among the estimated OCVs of the battery cells 11 has shifted from a flat region to a steep region in the curve of the OCV-SOC characteristic.

最小のOCVとそれ以外のOCVとの差ΔVaのいずれもが、閾値Vta以下の場合(S12:NO)、n個の電池セル11間に許容量X以上のばらつきは生じていないため、電池セル11の均等化処理を実行する必要はない。よって、電池セル11の均等化を実行しないで、本処理を終了する。   When any of the differences ΔVa between the minimum OCV and the other OCVs is equal to or less than the threshold value Vta (S12: NO), there is no variation of the allowable amount X or more between the n battery cells 11, so that the battery cell 11 equalization processing need not be executed. Therefore, this process is complete | finished, without performing equalization of the battery cell 11. FIG.

一方、最初のOCVとそれ以外のOCVとの差ΔVaのいずれかが、閾値Vtaよりも大きい場合(S12:YES)、n個の電池セル11間に許容量Xを越えるばらつきが生じているため、電池セル11の均等化処理を実行する必要がある。よって、続いて均等化処理を行う。   On the other hand, if any of the differences ΔVa between the first OCV and the other OCVs is larger than the threshold value Vta (S12: YES), there is a variation exceeding the allowable amount X among the n battery cells 11. The battery cell 11 needs to be equalized. Therefore, the equalization process is subsequently performed.

まず、前回S12の処理で肯定判定されてから、今回S12の処理で肯定判定されるまでの経過時間Tpを算出する。すなわち、前回電池セル11の均等化処理を実行してから、今回n個の電池セル11の間で、SOCのばらつきが検出されるまでの経過時間Tpを算出する(S13)。   First, an elapsed time Tp from when an affirmative determination is made in the process of S12 last time until an affirmative determination is made in the process of S12 this time is calculated. That is, the elapsed time Tp from when the equalization process of the battery cells 11 is executed to when the SOC variation is detected among the n battery cells 11 this time is calculated (S13).

続いて、S13で算出した経過時間Tpの間に、発生しうるSOCのばらつきΔCを、自己放電電流のばらつき、及び、監視IC25の各チャンネルの消費電流のばらつきを用いて算出する(S14)。   Subsequently, the SOC variation ΔC that may occur during the elapsed time Tp calculated in S13 is calculated using the self-discharge current variation and the variation in the consumption current of each channel of the monitoring IC 25 (S14).

続いて、S14で算出したSOCのばらつきΔCを、均等化処理を行う際に均等化回路30の抵抗Rに流れる均等化電流Ieで除算して、均等化時間Teを算出する(S15)。なお、均等化回路30の抵抗R(#1)〜(#n)の値は互いに等しいので、各電池セル11から均等化回路30へ流れる均等化電流Ieは互いに等しくなる。   Subsequently, the SOC variation ΔC calculated in S14 is divided by the equalization current Ie flowing through the resistor R of the equalization circuit 30 when performing the equalization process, thereby calculating the equalization time Te (S15). Since the values of the resistors R (# 1) to (#n) of the equalization circuit 30 are equal to each other, the equalization currents Ie flowing from each battery cell 11 to the equalization circuit 30 are equal to each other.

続いて、電池セル11の均等化処理を開始する(S16)。詳しくは、最小のOCVよりも閾値Vtaを超えて大きいOCVの電池セル11に対して、並列に接続されたスイッチSWを閉状態にする。これにより、最小のOCVよりも閾値Vtaを超えて大きいOCVの電池セル11から、均等化回路30へ均等化電流Ieが流れて、n個の電池セル11間におけるSOCのばらつきが低減される。   Then, the equalization process of the battery cell 11 is started (S16). Specifically, the switch SW connected in parallel is closed for the battery cell 11 of the OCV that is larger than the minimum OCV and exceeds the threshold value Vta. As a result, the equalization current Ie flows from the battery cell 11 having an OCV larger than the minimum OCV and exceeding the threshold Vta to the equalization circuit 30, and variation in SOC among the n battery cells 11 is reduced.

続いて、今回の均等化処理の開始から、S15で算出した均等化時間Teが経過したか否か判定する(S17)。均等化時間Teが経過している場合は(S17:YES)、電池セル11の均等化処理を停止する(S18)。すなわち、S16で閉状態にしたスイッチSWを開状態にし、電池セル11から均等化回路30へ均等化電流Ieが流れないようにする。その後、本処理を終了する。   Subsequently, it is determined whether or not the equalization time Te calculated in S15 has elapsed since the start of the current equalization process (S17). When the equalization time Te has elapsed (S17: YES), the equalization process of the battery cells 11 is stopped (S18). That is, the switch SW closed in S16 is opened so that the equalization current Ie does not flow from the battery cell 11 to the equalization circuit 30. Thereafter, this process is terminated.

一方、均等化時間Teが経過していない場合は(S17:NO)、均等化処理を実行している状態で、すなわち、S16で閉状態にしたスイッチSWを閉状態にしたまま、本処理を一旦終了する。その後、S10から再度実行する。   On the other hand, if the equalization time Te has not elapsed (S17: NO), this process is performed while the equalization process is being performed, that is, with the switch SW closed in S16 being closed. Exit once. Thereafter, the process is executed again from S10.

なお、上記フローチャートにおいて、S11の処理が推定工程、S12の処理が検出工程、S11及びS12の処理が監視工程、S16の処理が均等化工程に相当する。   In the flowchart, the process of S11 corresponds to the estimation process, the process of S12 corresponds to the detection process, the processes of S11 and S12 correspond to the monitoring process, and the process of S16 corresponds to the equalization process.

上記処理手順の説明では、組電池10の放電中に、電池セル11を均等化する処理手順を説明した。組電池10の充電中に、電池セル11を均等化する処理手順の場合は、上記処理手順とS12及びS16の処理が異なり、他の処理は同様である。   In the description of the processing procedure, the processing procedure for equalizing the battery cells 11 during the discharge of the assembled battery 10 has been described. In the case of a processing procedure for equalizing the battery cells 11 during charging of the battery pack 10, the above processing procedure is different from the processing in S12 and S16, and the other processing is the same.

具体的には、S12では、S11で推定した各電池セル11のOCVのうち、最大のOCVとそれ以外のOCVとの差ΔVbのいずれかが、閾値Vtbよりも大きいか否か判定する。すなわち、推定された各電池セル11のOCVのうち、最大のOCVが、OCV−SOC特性の曲線において、平坦な領域から急峻な領域へ移行したか否か判定する。   Specifically, in S12, it is determined whether any of the differences ΔVb between the maximum OCV and the other OCVs among the OCVs of the battery cells 11 estimated in S11 is larger than the threshold value Vtb. That is, it is determined whether or not the maximum OCV among the estimated OCVs of the battery cells 11 has shifted from a flat region to a steep region in the curve of the OCV-SOC characteristic.

最大のOCVとそれ以外のOCVとの差ΔVaのいずれもが、閾値Vta以下の場合(S12:NO)、電池セル11の均等化を実行しないで、本処理を終了する。   If any of the differences ΔVa between the maximum OCV and the other OCVs is equal to or less than the threshold value Vta (S12: NO), this process is terminated without executing equalization of the battery cells 11.

一方、最初のOCVとそれ以外のOCVとの差ΔVbのいずれかが、閾値Vtbよりも大きい場合(S12:YES)、n個の電池セル11間に許容量Xを越えるばらつきが生じているため、均等化処理を行う。   On the other hand, if any of the differences ΔVb between the first OCV and the other OCVs is larger than the threshold value Vtb (S12: YES), there is a variation exceeding the allowable amount X among the n battery cells 11. , Equalization processing is performed.

また、S16では、最大の電池セル11に対して並列に接続されたスイッチSWを閉状態にする。これにより、最大のOCVの電池セル11から、均等化回路30へ均等化電流Ieが流れて、n個の電池セル11間におけるSOCのばらつきが低減される。   In S16, the switch SW connected in parallel to the largest battery cell 11 is closed. As a result, the equalization current Ie flows from the battery cell 11 having the largest OCV to the equalization circuit 30, and variation in SOC among the n battery cells 11 is reduced.

以上説明した本実施形態によれば、以下の効果を奏する。   According to this embodiment described above, the following effects are obtained.

・各電池セル11のOCVのいずれかが、SOCとOCVとの対応関係において、SOCに対するOCVの変化量が、所定量よりも小さい領域から大きい領域へ移行したことが検出される。すなわち、n個の電池セル11間において、SOCがばらついていることが検出される。さらに、SOCがばらついていることが検出された場合に、各電池セル11のSOCのばらつきを低減する均等化処理が実行される。   It is detected that any of the OCVs of the battery cells 11 has shifted from a region smaller than a predetermined amount to a region where the change amount of the OCV with respect to the SOC in the correspondence relationship between the SOC and the OCV. That is, it is detected that the SOC varies among the n battery cells 11. Furthermore, when it is detected that the SOC varies, an equalization process for reducing the variation in the SOC of each battery cell 11 is executed.

よって、n個の電池セル11が、SOCに対するOCVの変化量の小さい領域が長い特性を持っている場合でも、n個の電池セル11間においてSOCがばらついている際には、SOCのばらつきを検出し、n個の電池セル11のSOCを均等化することができる。   Therefore, even when n battery cells 11 have long characteristics in a region where the amount of change in OCV with respect to the SOC is long, when the SOC varies between n battery cells 11, the variation in SOC is It is possible to detect and equalize the SOC of the n battery cells 11.

・組電池10の放電中に、各電池セル11のCCV及び充放電電流Iから各電池セル11のOCVが推定される。そして、組電池10の放電中に、各電池セル11のOCVのうち、最小のOCVとそれ以外のOCVとの差ΔVaが、閾値Vtaよりも大きくなった場合に、OCV−SOC特性を示す曲線において、平坦な領域から急峻な領域へ移行したことが検出される。そして、最小のOCVよりも閾値Vtaを超えて大きいOCVの電池セル11が放電される。   During the discharge of the battery pack 10, the OCV of each battery cell 11 is estimated from the CCV and charge / discharge current I of each battery cell 11. A curve indicating the OCV-SOC characteristic when the difference ΔVa between the minimum OCV and the other OCV among the OCVs of the battery cells 11 becomes larger than the threshold value Vta during the discharge of the battery pack 10. , It is detected that the region has shifted from a flat region to a steep region. Then, the battery cell 11 having an OCV larger than the minimum OCV exceeding the threshold Vta is discharged.

よって、各電池セル11のSOCのばらつきが検出された場合に、最小のOCVよりも閾値Vtaを超えて大きいOCVの電池セル11のSOCを、最小のOCVの電池セル11のSOCに近づけることができる。ひいては、n個の電池セル11間において、最小のSOCと最大のSOCとの差を小さくし、SOCのばらつきを低減できる。   Therefore, when a variation in the SOC of each battery cell 11 is detected, the SOC of the battery cell 11 having an OCV larger than the minimum OCV exceeding the threshold Vta can be made closer to the SOC of the battery cell 11 having the smallest OCV. it can. As a result, the difference between the minimum SOC and the maximum SOC among the n battery cells 11 can be reduced, and the variation in SOC can be reduced.

・組電池10の充電中に、各電池セル11のCCV及び充放電電流Iから各電池セル11のOCVが推定される。そして、組電池10の充電中に、各電池セル11のOCVのうち、最大のOCVとそれ以外のOCVとの差ΔVbが、閾値Vtbよりも大きくなった場合に、OCV−SOC特性を示す曲線において、平坦な領域から急峻な領域へ移行したことが検出され、最大のOCVの電池セル11が放電される。   During the charging of the battery pack 10, the OCV of each battery cell 11 is estimated from the CCV and charge / discharge current I of each battery cell 11. A curve indicating the OCV-SOC characteristic when the difference ΔVb between the maximum OCV and the other OCV among the OCVs of the battery cells 11 becomes larger than the threshold value Vtb during charging of the battery pack 10. , It is detected that the region has shifted from a flat region to a steep region, and the battery cell 11 having the maximum OCV is discharged.

よって、各電池セル11のSOCのばらつきが検出された際に、最大のOCVの電池セル11の容量を、それ以外の電池セル11のSOCに近づけることができる。ひいては、n個の電池セル11間において、最小のSOCと最大のSOCとの差を小さくし、SOCのばらつきを低減できる。   Therefore, when the variation in the SOC of each battery cell 11 is detected, the capacity of the battery cell 11 having the maximum OCV can be brought close to the SOC of the other battery cells 11. As a result, the difference between the minimum SOC and the maximum SOC among the n battery cells 11 can be reduced, and the variation in SOC can be reduced.

・n個の電池セル11間におけるSOCのばらつきの許容量X、及びOCV−SOC特性に基づいて、n個の電池セル11間におけるOCVの差ΔVa,ΔVbの閾値Vta,Vtbが算出される。これにより、許容量Xを超えるSOCのばらつきが発生した場合に、電池セル11のSOCの均等化処理が実行される。したがって、n個の電池セル11のSOCのばらつきを、許容量X以内に抑制することができる。   The thresholds Vta and Vtb of the OCV differences ΔVa and ΔVb between the n battery cells 11 are calculated based on the allowable amount X of SOC variation between the n battery cells 11 and the OCV-SOC characteristics. Thereby, when the variation of the SOC exceeding the allowable amount X occurs, the SOC equalization process of the battery cell 11 is executed. Therefore, the variation in the SOC of the n battery cells 11 can be suppressed within the allowable amount X.

・n個の電池セル11間において発生しうるSOCのばらつきΔCが推定され、推定されたばらつきΔCを均等化電流Ieで除して、均等化時間Teが算出される。すなわち、発生しうるSOCのばらつきΔCを、均等化処理により解消する均等化時間Teが算出される。そして、算出された均等化時間Teの間、均等化処理が実行される。よって、n個の電池セル11の容量のばらつきを、確実に低減することができる。   The SOC variation ΔC that can occur between the n battery cells 11 is estimated, and the equalization time Te is calculated by dividing the estimated variation ΔC by the equalization current Ie. That is, the equalization time Te for eliminating the SOC variation ΔC that may occur by the equalization process is calculated. Then, the equalization process is executed during the calculated equalization time Te. Therefore, the variation in capacity of the n battery cells 11 can be reliably reduced.

・各電池セル11のSOCのばらつきΔCは、主に自己放電電流のばらつきと、監視IC25の各チャンネルの消費電流のばらつきとから生じる。そこで、n個の電池セル11間における自己放電電流のばらつきと、監視IC25による消費電流のばらつきとが加算された値に、前回SOCのばらつきが検出されてから、今回SOCのばらつきが検出されるまでの経過時間Tpが積算される。これにより、前回SOCのばらつきが検出されてから、今回SOCのばらつきが検出されるまで、すなわち前回均等化処理が実行されてから、今回SOCのばらつきが検出されるまでの間に、発生しうるSOCのばらつきΔCを推定できる。   The SOC variation ΔC of each battery cell 11 is mainly caused by the self-discharge current variation and the consumption current variation of each channel of the monitoring IC 25. Therefore, the variation of the current SOC is detected after the variation of the previous SOC is detected to the value obtained by adding the variation of the self-discharge current among the n battery cells 11 and the variation of the consumption current by the monitoring IC 25. Elapsed time Tp is accumulated. As a result, it may occur from the time when the SOC variation is detected until the current SOC variation is detected, that is, between the time when the previous equalization process is performed and the time when the current SOC variation is detected. The SOC variation ΔC can be estimated.

・各電池セル11のCCV及び充放電電流Iと、マップデータとから、各電池セル11の内部抵抗Riが算出される。そして、各電池セル11のCCV、充放電電流I、及び算出された内部抵抗Riを用いて、各電池セル11のOCVを推定できる。   The internal resistance Ri of each battery cell 11 is calculated from the CCV and charge / discharge current I of each battery cell 11 and the map data. And OCV of each battery cell 11 can be estimated using CCV of each battery cell 11, the charging / discharging current I, and the calculated internal resistance Ri.

・監視装置20が、スイッチSWを閉状態にすることにより、均等化回路30に均等化処理を実行させることができる。   The monitoring device 20 can cause the equalization circuit 30 to execute the equalization process by closing the switch SW.

(他の実施形態)
・監視装置20は、各電池セル11の電圧、及び充放電電流Iに加えて、各電池セル11の温度を監視するようにしてもよい。そして、各電池セル11のCCV、充放電電流I、及び温度との対応関係を示すマップデータを参照して、各電池セル11の内部抵抗Riを算出してもよい。
(Other embodiments)
The monitoring device 20 may monitor the temperature of each battery cell 11 in addition to the voltage of each battery cell 11 and the charge / discharge current I. Then, the internal resistance Ri of each battery cell 11 may be calculated with reference to map data indicating the correspondence relationship between the CCV, charge / discharge current I, and temperature of each battery cell 11.

・均等化回路30は、均等化処理により電池セル11から放電された電力を、他の電池セル11に充電させるアクティブ方式の均等化回路でもよい。アクティブ方式の均等化回路の場合は、例えば、組電池10の放電中に均等化処理を実行する場合は、放電された電力を最小のOCVの電池セル11に充電させる。また、組電池10の充電中に均等化処理を実行する場合は、放電された電力を、最大のOCVよりも閾値Vtbを超えて小さいOCVの電池セル11に充電させる。   The equalization circuit 30 may be an active equalization circuit that charges other battery cells 11 with the power discharged from the battery cells 11 by the equalization process. In the case of the active type equalization circuit, for example, when the equalization process is executed while the assembled battery 10 is being discharged, the battery cell 11 having the smallest OCV is charged with the discharged power. Further, when the equalization process is executed during charging of the battery pack 10, the discharged electric power is charged to the battery cell 11 having an OCV smaller than the maximum OCV and exceeding the threshold Vtb.

・均等化処理の処理時間は、推定したSOCのばらつきΔCに応じて、予め設定されている時間としてもよい。   The processing time of the equalization processing may be a time set in advance according to the estimated SOC variation ΔC.

・均等化処理の処理時間は、経過時間Tpに応じて予め設定されている時間としてもよい。   The processing time for the equalization processing may be a time set in advance according to the elapsed time Tp.

10…組電池、11…電池セル、20…監視装置、21…OCV推定部、22…検出部、23…時間算出部、30…均等化回路。   DESCRIPTION OF SYMBOLS 10 ... Battery pack, 11 ... Battery cell, 20 ... Monitoring apparatus, 21 ... OCV estimation part, 22 ... Detection part, 23 ... Time calculation part, 30 ... Equalization circuit.

Claims (6)

複数の電池セル(11)が互いに直列に接続された組電池(10)の均等化を行う組電池の均等化装置であって、
前記電池セルは、容量と開回路電圧との対応関係において、前記容量に対する前記開回路電圧の変化量が所定量よりも小さい領域が、所定領域よりも長い特性を有し、
前記組電池に含まれる各電池セルの状態を監視する監視部(20)と、
各電池セルの前記容量のばらつきを低減する均等化処理を実行する均等化部(30)と、を備え、
前記監視部は、各電池セルの開回路電圧のいずれかが、前記変化量が所定量よりも小さい領域から前記変化量が所定量よりも大きい領域へ移行したことを検出する検出部(22)、及び前記組電池の放電中に、前記各電池セルの状態から各電池セルの開回路電圧を推定する推定部(21)を含み、前記検出部により前記移行したことが検出された場合に、前記均等化部に前記均等化処理を実行させるものであって、
前記検出部は、前記組電池の放電中に、前記推定部により推定された各電池セルの前記開回路電圧のうち、最小の前記開回路電圧と、それ以外の前記開回路電圧との差の絶対値が閾値よりも大きくなった場合に、前記移行したことを検出し、
前記均等化部は、前記均等化処理として、最小の前記開回路電圧よりも前記閾値を超えて大きい前記開回路電圧の電池セルを放電させ、
前記検出部は、前記複数の電池セル間における前記容量のばらつきの許容量、及び前記対応関係に基づき、前記閾値を算出することを特徴とする組電池の均等化装置。
An assembled battery equalizing device for equalizing an assembled battery (10) in which a plurality of battery cells (11) are connected in series with each other,
In the correspondence relationship between the capacity and the open circuit voltage, the battery cell has a characteristic that a region in which the change amount of the open circuit voltage with respect to the capacity is smaller than a predetermined amount is longer than the predetermined region,
A monitoring unit (20) for monitoring the state of each battery cell included in the assembled battery;
An equalization unit (30) for performing an equalization process for reducing the variation in the capacity of each battery cell,
The monitoring unit detects that any one of the open circuit voltages of the battery cells has shifted from a region where the amount of change is smaller than a predetermined amount to a region where the amount of change is larger than a predetermined amount. And including an estimation unit (21) for estimating an open circuit voltage of each battery cell from the state of each battery cell during discharging of the assembled battery, and when the transition is detected by the detection unit, Causing the equalization unit to perform the equalization process ,
The detection unit detects a difference between the minimum open circuit voltage and the other open circuit voltage among the open circuit voltages of the battery cells estimated by the estimation unit during discharging of the assembled battery. When the absolute value becomes larger than the threshold, the transition is detected,
The equalization unit, as the equalization process, discharges the battery cell of the open circuit voltage that is larger than the minimum open circuit voltage and exceeds the threshold,
The assembled battery equalization apparatus , wherein the detection unit calculates the threshold value based on an allowable amount of the variation in capacity among the plurality of battery cells and the correspondence relationship .
複数の電池セル(11)が互いに直列に接続された組電池(10)の均等化を行う組電池の均等化装置であって、An assembled battery equalizing device for equalizing an assembled battery (10) in which a plurality of battery cells (11) are connected in series with each other,
前記電池セルは、容量と開回路電圧との対応関係において、前記容量に対する前記開回路電圧の変化量が所定量よりも小さい領域が、所定領域よりも長い特性を有し、The battery cell has a characteristic in which the amount of change in the open circuit voltage relative to the capacity is smaller than a predetermined amount in a correspondence relationship between the capacity and the open circuit voltage, and is longer than the predetermined region.
前記組電池に含まれる各電池セルの状態を監視する監視部(20)と、A monitoring unit (20) for monitoring the state of each battery cell included in the assembled battery;
各電池セルの前記容量のばらつきを低減する均等化処理を実行する均等化部(30)と、を備え、An equalization unit (30) for performing an equalization process for reducing the variation in the capacity of each battery cell,
前記監視部は、各電池セルの開回路電圧のいずれかが、前記変化量が所定量よりも小さい領域から前記変化量が所定量よりも大きい領域へ移行したことを検出する検出部(22)、及び前記組電池の充電中に、前記各電池セルの状態から各電池セルの開回路電圧を推定する推定部(21)を含み、前記検出部により前記移行したことが検出された場合に、前記均等化部に前記均等化処理を実行させるものであって、The monitoring unit detects that any one of the open circuit voltages of the battery cells has shifted from a region where the amount of change is smaller than a predetermined amount to a region where the amount of change is larger than a predetermined amount. And including an estimation unit (21) that estimates an open circuit voltage of each battery cell from the state of each battery cell during charging of the assembled battery, and when the transition is detected by the detection unit, Causing the equalization unit to perform the equalization process,
前記検出部は、前記組電池の充電中に、前記推定部により推定された各電池セルの前記開回路電圧のうち、最大の前記開回路電圧と、それ以外の前記開回路電圧との差の絶対値が閾値よりも大きくなった場合に、前記移行したことを検出し、The detection unit is configured to calculate a difference between the maximum open circuit voltage and the other open circuit voltage among the open circuit voltages of the battery cells estimated by the estimation unit during charging of the assembled battery. When the absolute value becomes larger than the threshold, the transition is detected,
前記均等化部は、前記均等化処理として、最大の前記開回路電圧の電池セルを放電させ、The equalization unit discharges the battery cell having the maximum open circuit voltage as the equalization process,
前記検出部は、前記複数の電池セル間における前記容量のばらつきの許容量、及び前記対応関係に基づき、前記閾値を算出することを特徴とする組電池の均等化装置。The assembled battery equalization apparatus, wherein the detection unit calculates the threshold value based on an allowable amount of the variation in capacity among the plurality of battery cells and the correspondence relationship.
前記監視部は、前記複数の電池セル間において発生しうる前記容量のばらつきを推定し、推定した前記ばらつきを、前記均等化処理を行う際に前記均等化部に流れる均等化電流で除して、前記均等化処理の処理時間を算出する時間算出部(23)を含み、前記時間算出部により算出された前記処理時間の間、前記均等化部に前記均等化処理を実行させる請求項1又は2に記載の組電池の均等化装置。 The monitoring unit estimates a variation in the capacity that may occur between the plurality of battery cells, and divides the estimated variation by an equalization current that flows through the equalization unit when performing the equalization process. , the time calculation unit for calculating a processing time of the equalization process comprises (23), between the said processing time calculated by the time calculation unit, according to claim 1 to execute the equalization process in the equalization unit or 2. The battery pack equalizing apparatus according to 2. 前記時間算出部は、前記複数の電池セル間における自己放電電流のばらつきと、前記複数の電池セル間における前記監視部による消費電流のばらつきとを加算した値に、前記検出部により前回前記移行したことが検出されてから今回前記移行したことが検出されるまでの経過時間を積算して、前記容量のばらつきを推定する請求項に記載の組電池の均等化装置。 The time calculation unit has shifted the previous time by the detection unit to a value obtained by adding a variation in self-discharge current between the plurality of battery cells and a variation in current consumption by the monitoring unit between the plurality of battery cells. The assembled battery equalization apparatus according to claim 3 , wherein the variation in capacity is estimated by integrating the elapsed time from the detection of the event to the detection of the current transition. 前記各電池セルの状態は、各電池セルの閉回路電圧及び各電池セルを流れる充放電電流を含み、
前記推定部は、検出した各電池セルの状態と内部抵抗との対応を示すマップデータを参照して、各電池セルの内部抵抗を算出するとともに、前記閉回路電圧、前記充放電電流、及び算出した前記内部抵抗を用いて前記開回路電圧を推定する請求項1〜4のいずれかに記載の組電池の均等化装置。
The state of each battery cell includes a closed circuit voltage of each battery cell and a charge / discharge current flowing through each battery cell,
The estimation unit calculates the internal resistance of each battery cell with reference to map data indicating the correspondence between the detected state of each battery cell and the internal resistance, and also calculates the closed circuit voltage, the charge / discharge current, and the calculation The assembled battery equalization apparatus according to claim 1 , wherein the open circuit voltage is estimated using the internal resistance.
前記均等化部は、前記複数の電池セルのそれぞれに接続された抵抗、及び、前記電池セルと前記抵抗との接続を開閉するスイッチを備え、
前記監視部は、前記スイッチの開閉を制御する請求項1〜のいずれかに記載の組電池の均等化装置。
The equalization unit includes a resistor connected to each of the plurality of battery cells, and a switch that opens and closes the connection between the battery cell and the resistor,
The monitoring unit equalization device for a battery pack according to any one of claims 1 to 5 for controlling the opening and closing of said switch.
JP2014007428A 2014-01-20 2014-01-20 Battery pack equalization apparatus and method Active JP6179407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014007428A JP6179407B2 (en) 2014-01-20 2014-01-20 Battery pack equalization apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014007428A JP6179407B2 (en) 2014-01-20 2014-01-20 Battery pack equalization apparatus and method

Publications (2)

Publication Number Publication Date
JP2015136268A JP2015136268A (en) 2015-07-27
JP6179407B2 true JP6179407B2 (en) 2017-08-16

Family

ID=53767744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014007428A Active JP6179407B2 (en) 2014-01-20 2014-01-20 Battery pack equalization apparatus and method

Country Status (1)

Country Link
JP (1) JP6179407B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6573069B2 (en) * 2015-08-03 2019-09-11 三菱自動車工業株式会社 Charge control device
JP6432473B2 (en) * 2015-09-11 2018-12-05 株式会社デンソー Battery controller
JP6361643B2 (en) * 2015-12-15 2018-07-25 横河電機株式会社 Energy storage service system
JP6573120B2 (en) 2016-01-26 2019-09-11 株式会社Gsユアサ State estimation device, power storage element module, vehicle, and state estimation method
JP6658425B2 (en) * 2016-09-23 2020-03-04 トヨタ自動車株式会社 Battery system
CN110462968B (en) 2017-04-05 2023-11-07 株式会社杰士汤浅国际 Power storage device and control method for power storage element
CN110015180B (en) * 2017-08-31 2022-09-09 比亚迪股份有限公司 Battery equalization method, system, vehicle, storage medium and electronic device
CN108512280B (en) * 2018-05-04 2023-06-30 厦门芯阳科技股份有限公司 Equalizing charge control method for series battery pack
US10978884B2 (en) * 2018-08-10 2021-04-13 Powin Energy Corporation Enhanced switched balancing network for battery pack
US11063444B2 (en) * 2018-08-10 2021-07-13 Powin, Llc Enhanced battery management system for battery pack
WO2020055809A1 (en) 2018-09-11 2020-03-19 Powin Energy Corporation Modular battery stack and support system
CN111301226A (en) * 2020-03-31 2020-06-19 西安工业大学 Active balancing device and method for power battery of electric automobile
CN112332469A (en) * 2020-09-08 2021-02-05 煤炭科学技术研究院有限公司 Balancing module and balancing method for power supply of mining lithium ion storage battery
CN112910026A (en) * 2020-12-21 2021-06-04 国网甘肃省电力公司电力科学研究院 Energy storage battery charging and discharging method considering battery pack balance of distributed energy storage system
CN112737049B (en) * 2021-01-04 2023-04-14 珠海格力电器股份有限公司 Battery equalization control method and device and battery module
JP7487694B2 (en) 2021-03-23 2024-05-21 株式会社デンソー Battery device
CN113178630A (en) * 2021-04-28 2021-07-27 合达信科技集团有限公司 Battery management system HBMS of multiple electric cores
CN115372848B (en) * 2021-05-19 2024-10-18 宁德时代新能源科技股份有限公司 Method, device, equipment and medium for detecting self-discharge performance of battery
CN115000543B (en) * 2022-07-11 2024-08-13 吉林大学 Active equalization method considering battery aging under low-temperature environment
CN115480165B (en) * 2022-09-16 2024-03-22 中国第一汽车股份有限公司 Calculation method and device for allowable differential pressure of power battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4772137B2 (en) * 2009-06-02 2011-09-14 トヨタ自動車株式会社 Control device for battery-powered equipment
JP2011041452A (en) * 2009-07-17 2011-02-24 Toshiba Corp Assembled battery unit and vehicle
JP2013255320A (en) * 2012-06-06 2013-12-19 Toyota Industries Corp Battery equalization device and method

Also Published As

Publication number Publication date
JP2015136268A (en) 2015-07-27

Similar Documents

Publication Publication Date Title
JP6179407B2 (en) Battery pack equalization apparatus and method
EP3518374B1 (en) Power supply system
US9985444B2 (en) Electric storage device management apparatus and method of equalizing capacities of electric storage devices
JP7217474B2 (en) Management device and power supply system
US9722436B2 (en) Method for equalizing capacities of electric storage devices and system thereof
JP6217996B2 (en) Charge / discharge system for storage element
EP2618454B1 (en) Device for averaging cell voltage of plurality of battery packs
JP6324248B2 (en) Battery state detection device, secondary battery system, battery state detection program, battery state detection method
WO2020021888A1 (en) Management device and power supply system
JP6316690B2 (en) Battery state detection device, secondary battery system, battery state detection program, battery state detection method
WO2015125537A1 (en) Secondary-battery system
JP2016144398A (en) Method and system for positively equalizing lithium iron phosphate battery pack
US10320204B2 (en) Electric storage apparatus and electric-storage controlling method
JP6618443B2 (en) How to stop charging the power system
JP6648709B2 (en) Battery module controller
JP6155743B2 (en) Charge state detection device and charge state detection method
WO2015178075A1 (en) Battery control device
JP7167581B2 (en) Secondary battery device
JP7027860B2 (en) Power system
WO2023008044A1 (en) Battery monitoring device and program
JP2013081306A (en) Battery deterioration equalization system and method
JP2020061823A (en) Secondary battery control device
JP6673010B2 (en) Cell disconnection inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170703

R151 Written notification of patent or utility model registration

Ref document number: 6179407

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250