WO2019188889A1 - Power storage system and charging control method - Google Patents

Power storage system and charging control method Download PDF

Info

Publication number
WO2019188889A1
WO2019188889A1 PCT/JP2019/012333 JP2019012333W WO2019188889A1 WO 2019188889 A1 WO2019188889 A1 WO 2019188889A1 JP 2019012333 W JP2019012333 W JP 2019012333W WO 2019188889 A1 WO2019188889 A1 WO 2019188889A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage battery
charge
charging
train
power
Prior art date
Application number
PCT/JP2019/012333
Other languages
French (fr)
Japanese (ja)
Inventor
中村 秀人
純夫 可知
渉 手塚
Original Assignee
古河電気工業株式会社
古河電池株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社, 古河電池株式会社 filed Critical 古河電気工業株式会社
Priority to CN201980022775.XA priority Critical patent/CN111937269A/en
Priority to JP2020510024A priority patent/JPWO2019188889A1/en
Publication of WO2019188889A1 publication Critical patent/WO2019188889A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/569Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power storage system and a charge control method, for example, a power storage system that controls charging of a lead storage battery, and a charge control method that controls charging of a lead storage battery.
  • Lead batteries are deteriorated in capacity due to repeated charge and discharge over a long period of time.
  • equal charge is periodically performed to bring the lead storage battery into a fully charged state.
  • a charge / discharge control device for controlling the amount of charge / discharge is connected between the AC / DC converter (PCS: Power Conversion System) and the storage battery array, and connected to each storage battery array.
  • PCS Power Conversion System
  • Patent Document 1 it is necessary to provide a charge / discharge control device for adjusting the charge / discharge amount of each storage battery array for each storage battery array, which increases the cost of the power storage system. There is.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is a storage system including a multi-parallel storage battery module. It is to suppress.
  • a power storage system controls a multi-parallel storage battery module in which a plurality of storage battery arrays including at least one lead storage battery cell are connected in parallel, and power transfer of the multi-parallel storage battery module.
  • a control device that controls on / off of the switch, and the control device turns on the switch to supply power from the AC / DC converter to the storage battery train, thereby fully charging the storage battery train.
  • the power storage system having the multi-parallel storage battery module according to the present invention it is possible to suppress the variation in the charging state between the storage battery columns due to the equal charge with a simpler configuration.
  • SOC charge condition
  • a power storage system (100) includes a plurality of parallel storage battery arrays (20, 20_1 to 20_n) including at least one lead storage battery cell (200) connected in parallel.
  • a switch (4_1 to 4_n) connected in series therebetween, and a control device (1) for monitoring the state of the storage battery row for each storage battery row and controlling on / off of the switch, the control device Turns on the switch and supplies electric power from the AC / DC converter to the storage battery train, thereby performing equal charge for bringing the storage battery train into a fully charged state, and the storage battery Wherein determining whether the uniform charging is completed, characterized by turning off the switch of the storage battery string charge equalization is determined to have been completed for each.
  • the control device includes an integrated value of charge currents of the storage battery trains after completion of the previous equal charge and the storage battery trains after the previous equivalent charge is completed.
  • the ratio with the integrated value of the discharge current becomes a predetermined value, it may be determined that the equal charge of the storage battery row is completed.
  • the control device decreases a charging current of the storage battery train to a predetermined value (Ith) in a constant voltage charging period in which the storage battery train is charged with a constant voltage in the equal charge. In this case, it may be determined that the equal charge of the battery array is completed.
  • the equal charge starts charging the storage battery train with a constant current, and after the voltage of the storage battery array reaches a predetermined voltage, the constant current charging the storage battery array with a constant voltage ⁇ It may be performed by a constant voltage charging method.
  • the equal charge starts charging of the storage battery train with constant power, and after the voltage of the storage battery array reaches a predetermined voltage, the constant power charging the storage battery array with a constant voltage ⁇ It may be performed by a constant voltage charging method.
  • a charge control method includes a multi-parallel storage battery module in which a plurality of storage battery rows (20, 20_1 to 20_n) including at least one lead storage battery cell (200) are connected in parallel. (2), the AC / DC converter (3) for controlling the power transfer of the multi-parallel storage battery module, and the corresponding AC / DC converter provided for each of the storage battery columns.
  • the multiple power storage system includes a switch (4_1 to 4_n) connected in series and a control device (1) for monitoring the state of the storage battery row for each storage battery row and controlling on / off of the switch.
  • a charge control method for a parallel storage battery module wherein the control device turns on the switch to supply electric power from the AC / DC converter to the storage battery array, whereby the storage battery A first step (S1) for starting equal charge for bringing the battery into a fully charged state, and a second step (S2) for determining whether or not the equal charge has been completed for each storage battery train.
  • the control device includes a third step (S3) of turning off the switch of the storage battery array that has been determined that the equal charge has been completed.
  • the control device completes the integrated value of the charge current of the storage battery train after the previous equivalent charge is completed and the previous equivalent charge. Then, when the ratio with the integrated value of the discharge current of the storage battery row after that becomes a predetermined value, a step of determining that the equal charge of the storage battery row is completed may be included.
  • the second step is performed in a constant voltage charging period in which the control device charges the storage battery train with a constant voltage in the equal charge.
  • the value (Ith) may include a step of determining that the equal charge of the battery array is completed.
  • the equal charge starts charging the storage battery train with a constant current, and charges the storage battery train with a constant voltage after the voltage of the storage battery array reaches a predetermined voltage.
  • -It may be performed by a constant voltage charging method.
  • the equal charge starts constant charging of the storage battery train with constant power, and charges the storage battery train with a constant voltage after the voltage of the storage battery array reaches a predetermined voltage.
  • -It may be performed by a constant voltage charging method.
  • FIG. 1 is a diagram showing a configuration of a power storage system according to an embodiment of the present invention.
  • the power storage system 100 shown in the figure is a power storage system including, for example, a cycle-use lead storage battery.
  • the power storage system 100 supplies power to the load 6 from the power supply unit 5 (commercial power supply) at normal times, and supplies power to the load 6 from a lead storage battery for power backup when a power failure occurs.
  • the power supply unit 5 commercial power supply
  • the power supply unit 5 is a functional unit that supplies power to the power storage system 100 and the load 6.
  • the power supply unit 5 is, for example, a commercial power source.
  • the power supply unit 5 may include a power generation facility that generates electric power based on renewable energy such as photovoltaic power generation (PV: Photovoltaics).
  • PV photovoltaic power generation
  • the power storage system 100 includes a storage battery module 2, an AC / DC converter 3, switches 4_1 to 4_n (n is an integer of 2 or more), and a control device 1.
  • the storage battery module 2 includes a lead storage battery configured to be able to charge and discharge electric power.
  • the storage battery module 2 is a multi-parallel storage battery module in which a plurality of storage battery arrays including at least one lead storage battery cell are connected in parallel.
  • the storage battery module 2 has a structure in which a plurality of storage battery rows 20_1 to 20_n in which m (m is an integer of 1 or more) lead storage battery cells 200 are connected in series are connected in parallel. have.
  • the storage battery module 2 is also referred to as “multi-parallel storage battery module 2”.
  • the storage battery columns 20_1 to 20_n are not distinguished from each other, they may be simply expressed as “storage battery column 20”.
  • the storage battery module 2 also includes a voltage sensor 201 that measures the output voltage (storage voltage) of each of the storage battery columns 20_1 to 20_n, and a current sensor 202 that measures the charging current and the discharge current of each of the storage battery columns 20_1 to 20_n.
  • a voltage sensor 201 that measures the output voltage (storage voltage) of each of the storage battery columns 20_1 to 20_n
  • a current sensor 202 that measures the charging current and the discharge current of each of the storage battery columns 20_1 to 20_n.
  • Each column 20_1 to 20_n has.
  • An AC / DC converter (hereinafter also referred to as a “PCS (Power Conditioning System)”) 3 is controlled by a controller 1 described later, and converts power between the power supply unit 5, the storage battery module 2, and the load 6. , A power conversion unit that controls transmission and reception of power among the power supply unit 5, the storage battery module 2, and the load 6.
  • PCS Power Conditioning System
  • the PCS 3 converts AC power (AC) from the power supply unit 5 into DC power (DC) and supplies it to the storage battery module 2.
  • the PCS 3 includes, for example, a DC / DC converter, an AC / DC converter (AC / DC), a switch circuit, and the like.
  • the switches 4_1 to 4_n are devices that switch connection and disconnection between the PCS 3 and the multi-parallel storage battery module 2. As shown in FIG. 1, the switches 4_1 to 4_n are provided corresponding to the storage battery columns 20_1 to 20_n, and are connected in series between the corresponding storage battery columns 20_1 to 20_n and the PCS3.
  • the switches 4_1 to 4_n are, for example, electromagnetic switches (relays).
  • the control device 1 is a device that performs overall control of the entire power storage system 100.
  • the control device 1 monitors the state of each of the storage battery columns 20_1 to 20_n for each of the storage battery columns 20_1 to 20_n, and controls on / off of the switches 4_1 to 4_n.
  • the control device 1 includes a monitoring unit 11, a storage battery management unit 12, and a switch control unit 13.
  • the monitoring unit 11 is a data processing device that sequentially acquires physical quantities measured by the voltage sensor 201 and the current sensor 202 of the multi-parallel storage battery module 2 and monitors the state of the multi-parallel storage battery module 2 based on the physical quantities.
  • the monitoring unit 11 is, for example, a BMU (Battery Management Unit).
  • the storage battery management unit 12 is a device that performs overall control of each component of the power storage system 100.
  • the storage battery management unit 12 is, for example, an EMS (Energy Management System).
  • the storage battery management unit 12 performs charge / discharge control of the multi-parallel storage battery module 2 by driving the PCS 3.
  • the storage battery management unit 12 performs multi-parallel processing by various charging methods such as a constant current-constant voltage charging (CCCV) method and a constant power-constant voltage charging method based on the monitoring result of the multi-parallel storage battery module 2 by the monitoring unit 11.
  • the equal charge of the storage battery module 2 is executed.
  • the constant current-constant voltage charging (CCCV) method starts charging the storage battery trains 20_1 to 20_n with a constant current, and after the voltages of the storage battery trains 20_1 to 20_n reach a predetermined voltage, the storage battery train with the constant voltage.
  • This is a charging method for charging 20_1 to 20_n.
  • the constant power-constant voltage charging method charging of the storage battery trains 20_1 to 20_n is started with constant power, and after the voltage of the storage battery trains 20_1 to 20_n reaches a predetermined voltage, the storage battery trains 20_1 to 20_n are connected with the constant voltage. This is a charging method for charging.
  • the switch control unit 13 is a functional unit that switches on / off the switches 4_1 to 4_n in accordance with an instruction from the monitoring unit 11 or the storage battery management unit 12.
  • the switch control unit 13 is a signal generation circuit that generates a drive signal for switching on / off of the relay in accordance with an instruction from the monitoring unit 11 or the storage battery management unit 12. is there.
  • the monitoring unit 11 and the storage battery management unit 12 include, for example, a processor such as a CPU (Central Processing Unit), a storage device such as a RAM (Random Access Memory) and a ROM (Read Only Memory), and I / F as hardware resources.
  • a processor such as a CPU (Central Processing Unit)
  • a storage device such as a RAM (Random Access Memory) and a ROM (Read Only Memory)
  • I / F hardware resources.
  • the processor executes the various operations according to a program stored in the storage device to control the peripheral circuit.
  • the control device 1 periodically performs equal charge to bring the storage battery rows 20_1 to 20_n of the multi-parallel storage battery module 2 into a fully charged state in order to prevent deterioration of the lead storage batteries constituting the multi-parallel storage battery module 2.
  • the control device 1 turns on the switches 4_1 to 4_n to supply electric power from the PCS 3 to the storage battery trains 20_1 to 20_n, thereby performing equal charge for bringing the storage battery trains 20_1 to 20_n into a fully charged state, and the storage battery train 20_1. It is determined whether or not the equal charge is completed for each of 20 to n, and the switches 4_1 to 4_n of the storage battery rows 20_1 to 20_n that are determined to have completed the equal charge are turned off.
  • FIG. 2 is a flowchart showing the flow of the charge control method during equal charge in the power storage system 100.
  • 3A to 3D are diagrams for explaining a charge control method during equal charge in power storage system 100.
  • charging currents of the storage battery columns 20_1 to 20_3 during equal charging are I1, I2, and I3, respectively, and I2> I1> I3 due to variations in characteristics of the storage battery columns 20_1 to 20_3.
  • the voltage sensor 201 and the current sensor 202 are not shown.
  • the control device 1 turns on the switches 4_1 to 4_3 to supply electric power from the PCS 3 to the storage battery arrays 20_1 to 20_3, thereby starting equal charge of the storage battery arrays 20_1 to 20_3 (steps). S1).
  • the monitoring unit 11 requests the storage battery management unit 12 to perform equal charge.
  • the storage battery management unit 12 turns on the switches 4_1 to 4_3 via the switch control unit 13 (or confirms that the switches are turned on) and a predetermined charging method (for example, The PCS 3 is driven so as to perform uniform charging with a constant current-constant voltage charging method), and the supply of power to the storage battery arrays 20_1 to 20_3 is started.
  • the control device 1 determines whether or not there are storage battery rows 20_1 to 20_3 that have been charged evenly (step S2). Specifically, based on the measurement results of the output voltages and currents of the storage battery columns 20_1 to 20_3 acquired from the voltage sensor 201 and the current sensor 202 of the storage battery columns 20_1 to 20_3, the monitoring unit 11 stores the storage battery columns 20_1 to 20_3. It is determined whether or not the equal charge is completed. A specific determination method will be described later.
  • step S2 when there is no storage battery row 20_1 to 20_3 for which equal charge has been completed, the control device 1 continues to perform equal charge for each of the storage battery rows 20_1 to 20_3.
  • control device 1 turns off switches 4_1 to 4_3 of storage battery trains 20_1 to 20_3 for which equal charge has been completed (step S3).
  • the storage battery column 20_2 having the largest charging current I2 is first fully charged.
  • the monitoring unit 11 determines that the equal charging of the storage battery row 20_2 has been completed, the monitoring unit 11 notifies the storage battery management unit 12 of that. Receiving the notification, the storage battery management unit 12 instructs the switch control unit 13 to perform release control (off) of the switch 4_2, and the switch control unit 13 performs release control of the switch 4_2 as illustrated in FIG. 3B. Then, the storage battery array 20_2 is disconnected from the PCS 3.
  • control device 1 determines whether or not the equal charging of all the storage battery rows 20_1 to 20_3 has been completed (step S4).
  • the process returns to step S2, and the processes from step S2 to step S4 described above are executed again.
  • the storage battery row 20_1 is fully charged next to the storage battery row 20_2.
  • the monitoring unit 11 determines that the equal charge of the storage battery row 20_1 has been completed, the monitoring unit 11 notifies the storage battery management unit 12 of that.
  • the storage battery management unit 12 instructs the switch control unit 13 to perform release control (off) of the switch 4_1.
  • the switch control unit 13 performs release control of the switch 4_1.
  • the storage battery array 20_1 is disconnected from the PCS3.
  • the process returns to step S2.
  • the monitoring unit 11 notifies the storage battery management unit 12 that the equal charge of the storage battery train 20_3 has been completed.
  • the storage battery management unit 12 instructs the switch control unit 13 to perform release control (off) of the switch 4_3, and the switch control unit 13 performs release control of the switch 4_3 as illustrated in FIG. 3D.
  • the storage battery array 20_3 is disconnected from the PCS3. Thereby, the equal charge of all the storage battery rows 20_1 to 20_3 is completed.
  • step S4 when it is determined that the equal charging of all the storage battery rows 20_1 to 20_3 is completed, the control device 1 ends the control for the equal charging of the multi-parallel storage battery module 2 (step S5).
  • equal charge of power storage system 100 according to the present embodiment is performed.
  • the control device 1 determines the integrated value of the charging current of the storage battery train 20 after completion of the previous equal charge and the discharge current of the storage battery train 20 after the previous equivalent charge is completed. When the ratio with the integrated value becomes a predetermined value, it is determined that the equal charge of the storage battery array 20 has been completed.
  • FIG. 4 is a timing chart showing the charging current and the discharging current of the storage battery train 20 (lead storage battery) during equal charging.
  • the vertical axis represents current
  • the horizontal axis represents time.
  • Reference numeral 302 represents the charging current of the storage battery string 20
  • reference numeral 303 represents the discharge current of the storage battery string 20.
  • the monitoring unit 11 of the control device 1 starts integration of the charging current and the discharging current for each of the storage battery rows 20_1 to 20_n at the timing when the uniform charging is completed. For example, in FIG. 4, at time t31 when the equal charging is completed, the monitoring unit 11 starts integrating the charging currents of the storage battery columns 20_1 to 20_n and starts integrating the discharging currents of the storage battery columns 20_1 to 20_n. .
  • the monitoring unit 11 calculates the ratio between the integrated value of the charging current and the integrated value of the discharge current for each of the storage battery columns 20_1 to 20_n. Specifically, the ratio of the integrated value of the charging current to the integrated value of the discharge current is calculated.
  • the monitoring unit 11 determines whether or not the calculated ratio has reached the ratio reference value for each of the storage battery columns 20_1 to 20_n.
  • the ratio reference value is a value serving as a reference for determining the end of the constant voltage charging period in the uniform charging.
  • overcharge is performed so that the equal charge is 100% or more (for example, 104%) with respect to the discharge capacity. Therefore, the ratio reference value is preferably set to a value exceeding 100%, for example, a value in the range of 101% to 104%.
  • the monitoring unit 11 continues the integration of the charging current and the discharging current for each of the storage battery arrays 20_1 to 20_n when there is no storage battery array 20 in which the above ratio has reached the ratio reference value.
  • the monitoring unit 11 determines that the uniform charging has been completed for the storage battery string 20 in which the calculated ratio has reached the ratio reference value.
  • the monitoring unit 11 repeatedly executes the above processing until a determination result indicating that the equal charge has been completed for all the storage battery columns 20_1 to 20_n is obtained.
  • the control device 1 reduces the storage current of the storage battery train 20 to a predetermined value when it reaches a predetermined value. It is determined that the equal charge is completed.
  • FIG. 5 shows the state of charge (SOC: State Of Charge) of the storage battery train 20 during the constant voltage charging period when uniform charging is performed by the constant voltage-constant current charging method or the constant power-constant current charging method. It is a figure which shows a relationship.
  • the monitoring unit 11 determines that the uniform charging has been completed when the charging current of each of the storage battery columns 20_1 to 20_n decreases and reaches a predetermined threshold value Ith.
  • FIG. 6 is a diagram illustrating an example of a temporal change in the charging current flowing through each storage battery row when equal charging is performed by the constant current-constant voltage charging method.
  • the storage battery rows 20_1 to 20_3 may vary in charging current during constant current charging depending on the temperature and the characteristics (internal resistance) of the lead storage battery cell 200 itself. For example, consider the case where I2>I1> I3 as in the above example.
  • the monitoring unit 11 of the control device 1 monitors the charging currents of the storage battery columns 20_1 to 20_3. In the above example, since I2> I1> I3, the charging current I2 of the storage battery train 20_2 first reaches the threshold value Ith. When the monitoring unit 11 detects that the charging current I2 of the storage battery train 20_2 has reached the threshold value Ith, the monitoring unit 11 determines that the equal charging of the storage battery train 20_2 has been completed.
  • the charging current I1 of the storage battery train 20_1 next reaches the threshold value Ith.
  • the monitoring unit 11 detects that the charging current I1 of the storage battery row 20_1 has reached the threshold value Ith, the monitoring unit 11 determines that the equal charging of the storage battery row 20_1 has been completed.
  • the charging current I3 of the storage battery row 20_3 next reaches the threshold value Ith.
  • the monitoring unit 11 detects that the charging current I3 of the storage battery train 20_3 has reached the threshold value Ith, the monitoring unit 11 determines that the equal charge of the storage battery train 20_3 has been completed.
  • power storage system 100 is provided corresponding to each of multiple parallel storage battery modules 2 in which storage battery arrays 20_1 to 20_n including at least one lead storage battery cell 200 are connected in parallel, and each storage battery array 20_1 to 20_n.
  • the apparatus 1 is provided.
  • the control device 1 turns on the switches 4_1 to 4_n and supplies power from the PCS 3 to the storage battery trains 20_1 to 20_n to perform equal charging, and determines whether or not the uniform charging is completed for each of the storage battery trains 20_1 to 20_n. Then, the switches 4_1 to 4_n of the storage battery arrays 20_1 to 20_n determined to have completed the uniform charging are turned off.
  • the lead storage battery cell 200 of each storage battery column 20_1 to 20_n itself can be controlled. Even when the charging current flowing through each of the storage battery rows 20_1 to 20_n varies during equal charge due to characteristics (internal resistance), temperature, etc., each of the storage battery rows 20_1 to 20_n can be fully charged. It becomes possible.
  • the power storage system 100 has a configuration in which the power supply to the storage battery columns 20_1 to 20_n from the PCS 3 during the uniform charging is switched between the power storage systems 20_1 to 20_n by the switches 4_1 to 4_n.
  • the power storage system 100 since it is not necessary to separately provide a complicated charge / discharge control device for adjusting the charge / discharge amount of each storage battery row for each storage battery row, an increase in the cost of the power storage system can be suppressed as compared with the prior art. .
  • the power storage system 100 it is possible to suppress the deterioration of the multi-parallel storage battery module by suppressing the variation in the charging state between the storage battery columns due to the equal charge with a simpler configuration. .
  • the control device 1 includes the integrated value of the charging currents of the storage battery trains 20_1 to 20_n after completion of the previous equal charge and the storage battery trains 20_1 to 20_1 after the previous equivalent charge is completed.
  • the ratio with the integrated value of the discharge current of 20_n becomes a predetermined value, it is determined that the equal charge of the storage battery rows 20_1 to 20_n has been completed.
  • the control device 1 causes the charging current of the storage battery trains 20_1 to 20_n to decrease to a predetermined value during a constant voltage charging period in which the storage battery trains 20_1 to 20_n are charged with a constant voltage in equal charge. In addition, it is determined that the equal charging of the storage battery rows 20_1 to 20_n has been completed.
  • a uniform charging method that performs constant voltage charging just before the end of uniform charging, such as a constant current-constant voltage charging method and a constant power-constant voltage charging method, it is easier and more accurate. It is possible to determine whether or not the uniform charging is completed for each storage battery row 20.
  • the constant current-constant voltage charging method and the constant power-constant voltage charging method are exemplified as the charging method having a constant voltage charging period of equal charge, but is not limited thereto.
  • constant current charging is performed first, and constant current charging at a current value lower than the previous current value after the storage battery voltage reaches a predetermined threshold is repeated a plurality of times.
  • a multi-stage charging method may be used in which the lead storage battery is recovered to a fully charged state by performing voltage charging.
  • control device 1 determines that the equal charging of the storage battery trains 20_1 to 20_n is completed when the charging current of the storage battery trains 20_1 to 20_n decreases to a predetermined value during the constant voltage charging period of the multistage charging method.
  • the control device 1 determines whether or not the uniform charging is completed for each storage battery array 20 more easily and accurately.
  • SYMBOLS 1 Control apparatus, 2 ... Storage battery module (multi-parallel storage battery module), 3 ... AC / DC converter (PCS), 4_1-4_n ... Switch, 5 ... Electric power supply part, 6 ... Load, 11 ... Monitoring part, 12 ... Storage battery management , 13... Switch control unit, 20, 20_1 to 20_n... Storage battery row, 100... Power storage system, 200 .. lead storage battery cell, 201... Voltage sensor, 202 ... current sensor, Ith.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention suppresses unevenness in a charging state between battery rows by means of uniform charging with a simple configuration in a power storage system having a multi-parallel battery module. This storage system (100) is characterized by being provided with: a multi-parallel battery module (2) in which battery rows (20) comprising at least one lead battery cell (200) are connected to each other in a plurality of parallel rows; switches (4_1 to 4_n) which are provided to correspond to the respective battery rows and are connected in series between the battery rows and AC/DC conversion devices (3) corresponding to each other; and a control device (1), wherein the control device turns on the switches and supplies electric power from the AC/DC conversion devices to the battery rows so as to fully charge the battery rows by means of the uniform charging, and determines whether the uniform charging has been completed for the respective battery rows and turns off the switches of the battery rows to which the uniform charging is determined to have been completed.

Description

蓄電システムおよび充電制御方法Power storage system and charge control method
 本発明は、蓄電システムおよび充電制御方法に関し、例えば鉛蓄電池の充電を制御する蓄電システム、および鉛蓄電池の充電を制御する充電制御方法に関する。 The present invention relates to a power storage system and a charge control method, for example, a power storage system that controls charging of a lead storage battery, and a charge control method that controls charging of a lead storage battery.
 鉛蓄電池は、長期間の充放電の繰り返しにより、容量が低下し劣化する。鉛蓄電池を用いた蓄電システムでは、鉛蓄電池の劣化の一因であるサルフェーションを除去するために、鉛蓄電池を満充電状態にする均等充電を定期的に行っている。 Lead batteries are deteriorated in capacity due to repeated charge and discharge over a long period of time. In a power storage system using a lead storage battery, in order to remove the sulfation that is a cause of the deterioration of the lead storage battery, equal charge is periodically performed to bring the lead storage battery into a fully charged state.
 近年、鉛蓄電池の大容量化の要求により、単一の鉛蓄電池セル(単電池)または複数の鉛蓄電池セルを直列に接続した蓄電池列(「ストリング」とも称する。)を複数並列に接続した多並列蓄電池モジュールを備えた蓄電システムが普及しつつある。 In recent years, in response to demands for a large capacity of lead storage batteries, a single lead storage battery cell (single battery) or a plurality of storage battery arrays (also referred to as “strings”) in which a plurality of lead storage battery cells are connected in series are connected in parallel. Power storage systems equipped with parallel storage battery modules are becoming widespread.
 従来の多並列蓄電池モジュールを備えた蓄電システムでは、多並列蓄電池全体で均等充電を管理している。そのため、各蓄電池列の鉛蓄電池セル自体の特性(内部抵抗)や温度等に起因して、均等充電時に蓄電池列間に流れる充電電流がばらつくことにより、過充電や充電不足となる蓄電池列が発生し、多並列蓄電池モジュールの劣化が進行するという問題があった。 In a power storage system equipped with a conventional multi-parallel storage battery module, uniform charging is managed throughout the multi-parallel storage battery. Therefore, due to the characteristics (internal resistance), temperature, etc. of the lead storage battery cell of each storage battery array, the storage battery array that becomes overcharged or insufficiently charged occurs due to variations in the charging current flowing between the storage battery arrays during uniform charging. However, there is a problem that the deterioration of the multi-parallel storage battery module proceeds.
 この問題を解決するための従来技術として、交直変換装置(PCS:Power Conversion System)と蓄電池列との間に充放電量を制御する充放電制御機器(チョッパ)を接続し、各蓄電池列に接続された充放電制御機器が対応する蓄電池列の充放電量を調整することで、均等充電時に過充電や充電不足となることを防止する技術が知られている(特許文献1参照)。 As a conventional technique for solving this problem, a charge / discharge control device (chopper) for controlling the amount of charge / discharge is connected between the AC / DC converter (PCS: Power Conversion System) and the storage battery array, and connected to each storage battery array. There is known a technique for preventing overcharging or insufficient charging during equal charging by adjusting the charge / discharge amount of the storage battery array to which the charged / discharge control device corresponds (see Patent Document 1).
特許第6247039号公報Japanese Patent No. 6247039
 しかしながら、上述した特許文献1に開示された従来技術では、各蓄電池列の充放電量を調整するための充放電制御機器を蓄電池列毎に設ける必要があり、蓄電システムのコストが高くなるという課題がある。 However, in the prior art disclosed in Patent Document 1 described above, it is necessary to provide a charge / discharge control device for adjusting the charge / discharge amount of each storage battery array for each storage battery array, which increases the cost of the power storage system. There is.
 本発明は、上述した課題に鑑みてなされたものであり、本発明の目的は、多並列蓄電池モジュールを備えた蓄電システムにおいて、より簡単な構成で、均等充電による蓄電池列間の充電状態のばらつきを抑えることにある。 The present invention has been made in view of the above-described problems, and an object of the present invention is a storage system including a multi-parallel storage battery module. It is to suppress.
 本発明の代表的な実施の形態に係る蓄電システムは、少なくとも一つの鉛蓄電池セルを含む複数の蓄電池列を並列に接続した多並列蓄電池モジュールと、前記多並列蓄電池モジュールの電力の授受を制御する交直変換装置と、前記蓄電池列毎に対応して設けられ、対応する前記蓄電池列と前記交直変換装置との間に直列に接続されたスイッチと、前記蓄電池列の状態を前記蓄電池列毎に監視し、前記スイッチのオン/オフを制御する制御装置とを備え、前記制御装置は、前記スイッチをオンして前記交直変換装置から前記蓄電池列へ電力を供給することにより、前記蓄電池列を満充電状態にするための均等充電を行うとともに、前記蓄電池列毎に前記均等充電が完了したか否かを判定し、前記均等充電が完了したと判定した前記蓄電池列の前記スイッチをオフすることを特徴とする。 A power storage system according to a representative embodiment of the present invention controls a multi-parallel storage battery module in which a plurality of storage battery arrays including at least one lead storage battery cell are connected in parallel, and power transfer of the multi-parallel storage battery module. An AC / DC converter, a switch provided corresponding to each storage battery column, connected in series between the corresponding storage battery column and the AC / DC converter, and monitoring the state of the storage battery column for each storage battery column And a control device that controls on / off of the switch, and the control device turns on the switch to supply power from the AC / DC converter to the storage battery train, thereby fully charging the storage battery train. Performing equalization charging to make a state, determining whether or not the equalization charging is completed for each storage battery column, and determining whether the equalization charging is completed Characterized in that it turns off the serial switch.
 本発明に係る多並列蓄電池モジュールを有する蓄電システムによれば、より簡単な構成で、均等充電による蓄電池列間の充電状態のばらつきを抑えることが可能となる。 According to the power storage system having the multi-parallel storage battery module according to the present invention, it is possible to suppress the variation in the charging state between the storage battery columns due to the equal charge with a simpler configuration.
本発明の一実施の形態に係る蓄電システムの構成を示す図である。It is a figure which shows the structure of the electrical storage system which concerns on one embodiment of this invention. 実施の形態に係る蓄電システムにおける均等充電時の充電制御方法の流れを示すフロー図である。It is a flowchart which shows the flow of the charge control method at the time of equal charge in the electrical storage system which concerns on embodiment. 実施の形態に係る蓄電システムにおける均等充電時の充電制御方法を説明するための図である。It is a figure for demonstrating the charge control method at the time of equal charge in the electrical storage system which concerns on embodiment. 実施の形態に係る蓄電システムにおける均等充電時の充電制御方法を説明するための図である。It is a figure for demonstrating the charge control method at the time of equal charge in the electrical storage system which concerns on embodiment. 実施の形態に係る蓄電システムにおける均等充電時の充電制御方法を説明するための図である。It is a figure for demonstrating the charge control method at the time of equal charge in the electrical storage system which concerns on embodiment. 実施の形態に係る蓄電システムにおける均等充電時の充電制御方法を説明するための図である。It is a figure for demonstrating the charge control method at the time of equal charge in the electrical storage system which concerns on embodiment. 均等充電時の蓄電池列(鉛蓄電池)の充電電流および放電電流を示すタイミングチャートである。It is a timing chart which shows the charging current and discharge current of the storage battery row | line (lead storage battery) at the time of equal charge. 定電圧-定電流充電方式または定電力-定電流充電方式によって均等充電を行ったときの定電圧充電期間における蓄電池列の充電電流と充電状態(SOC)との関係を示す図である。It is a figure which shows the relationship between the charging current of a storage battery row | line | column and a charge condition (SOC) in the constant voltage charge period when equal charge is performed by a constant voltage-constant current charge system or a constant power-constant current charge system. 定電流-定電圧充電方式によって均等充電を行った時の各蓄電池列に流れる充電電流の時間的な変化の一例を示す図である。It is a figure which shows an example of the time change of the charging current which flows into each storage battery row | line | column when performing uniform charge by a constant current-constant voltage charging system.
1.実施の形態の概要
 先ず、本願において開示される発明の代表的な実施の形態について概要を説明する。なお、以下の説明では、一例として、発明の構成要素に対応する図面上の参照符号を、括弧を付して記載している。
1. First, an outline of a typical embodiment of the invention disclosed in the present application will be described. In the following description, as an example, reference numerals on the drawings corresponding to constituent elements of the invention are shown in parentheses.
 〔1〕本発明の代表的な実施の形態に係る蓄電システム(100)は、少なくとも一つの鉛蓄電池セル(200)を含む複数の蓄電池列(20,20_1~20_n)を並列に接続した多並列蓄電池モジュール(2)と、前記多並列蓄電池モジュールの電力の授受を制御する交直変換装置(3)と、前記蓄電池列毎に対応して設けられ、対応する前記蓄電池列と前記交直変換装置との間に直列に接続されたスイッチ(4_1~4_n)と、前記蓄電池列の状態を前記蓄電池列毎に監視し、前記スイッチのオン/オフを制御する制御装置(1)とを備え、前記制御装置は、前記スイッチをオンして前記交直変換装置から前記蓄電池列へ電力を供給することにより、前記蓄電池列を満充電状態にするための均等充電を行うとともに、前記蓄電池列毎に前記均等充電が完了したか否かを判定し、前記均等充電が完了したと判定した前記蓄電池列の前記スイッチをオフすることを特徴とする。 [1] A power storage system (100) according to a representative embodiment of the present invention includes a plurality of parallel storage battery arrays (20, 20_1 to 20_n) including at least one lead storage battery cell (200) connected in parallel. A storage battery module (2), an AC / DC converter (3) for controlling power transfer of the multi-parallel battery module, and a corresponding battery battery column and AC / DC converter provided for each storage battery column A switch (4_1 to 4_n) connected in series therebetween, and a control device (1) for monitoring the state of the storage battery row for each storage battery row and controlling on / off of the switch, the control device Turns on the switch and supplies electric power from the AC / DC converter to the storage battery train, thereby performing equal charge for bringing the storage battery train into a fully charged state, and the storage battery Wherein determining whether the uniform charging is completed, characterized by turning off the switch of the storage battery string charge equalization is determined to have been completed for each.
 〔2〕上記蓄電システムにおいて、前記制御装置は、前回実施した前記均等充電が完了してからの前記蓄電池列の充電電流の積算値と前回実施した前記均等充電が完了してからの前記蓄電池列の放電電流の積算値との比率が所定値となった場合に、前記蓄電池列の前記均等充電が完了したと判定してもよい。 [2] In the power storage system, the control device includes an integrated value of charge currents of the storage battery trains after completion of the previous equal charge and the storage battery trains after the previous equivalent charge is completed. When the ratio with the integrated value of the discharge current becomes a predetermined value, it may be determined that the equal charge of the storage battery row is completed.
 〔3〕上記蓄電システムにおいて、前記制御装置は、前記均等充電における定電圧によって前記蓄電池列を充電する定電圧充電期間において、前記蓄電池列の充電電流が低下して所定値(Ith)となった場合に、前記蓄電池列の前記均等充電が完了したと判定してもよい。 [3] In the power storage system, the control device decreases a charging current of the storage battery train to a predetermined value (Ith) in a constant voltage charging period in which the storage battery train is charged with a constant voltage in the equal charge. In this case, it may be determined that the equal charge of the battery array is completed.
 〔4〕上記蓄電システムにおいて、前記均等充電は、定電流によって前記蓄電池列の充電を開始し、前記蓄電池列の電圧が所定の電圧に到達した後に定電圧によって前記蓄電池列を充電する定電流-定電圧充電方式によって行われてもよい。 [4] In the above power storage system, the equal charge starts charging the storage battery train with a constant current, and after the voltage of the storage battery array reaches a predetermined voltage, the constant current charging the storage battery array with a constant voltage − It may be performed by a constant voltage charging method.
 〔5〕上記蓄電システムにおいて、前記均等充電は、定電力によって前記蓄電池列の充電を開始し、前記蓄電池列の電圧が所定の電圧に到達した後に定電圧によって前記蓄電池列を充電する定電力-定電圧充電方式によって行われてもよい。 [5] In the power storage system, the equal charge starts charging of the storage battery train with constant power, and after the voltage of the storage battery array reaches a predetermined voltage, the constant power charging the storage battery array with a constant voltage − It may be performed by a constant voltage charging method.
 〔6〕本発明の代表的な実施の形態に係る充電制御方法は、少なくとも一つの鉛蓄電池セル(200)を含む複数の蓄電池列(20,20_1~20_n)を並列に接続した多並列蓄電池モジュール(2)と、前記多並列蓄電池モジュールの電力の授受を制御する交直変換装置(3)と、前記蓄電池列毎に対応して設けられ、対応する前記蓄電池列と前記交直変換装置との間に直列に接続されたスイッチ(4_1~4_n)と、前記蓄電池列の状態を前記蓄電池列毎に監視し、前記スイッチのオン/オフを制御する制御装置(1)とを備えた蓄電システムにおける前記多並列蓄電池モジュールの充電制御方法であって、前記制御装置が、前記スイッチをオンして前記交直変換装置から前記蓄電池列へ電力を供給することにより、前記蓄電池列を満充電状態にするための均等充電を開始する第1ステップ(S1)と、前記制御装置が、前記蓄電池列毎に前記均等充電が完了したか否かを判定する第2ステップ(S2)と、前記制御装置が、前記均等充電が完了したと判定した前記蓄電池列の前記スイッチをオフする第3ステップ(S3)とを含むことを特徴とする。 [6] A charge control method according to a typical embodiment of the present invention includes a multi-parallel storage battery module in which a plurality of storage battery rows (20, 20_1 to 20_n) including at least one lead storage battery cell (200) are connected in parallel. (2), the AC / DC converter (3) for controlling the power transfer of the multi-parallel storage battery module, and the corresponding AC / DC converter provided for each of the storage battery columns. The multiple power storage system includes a switch (4_1 to 4_n) connected in series and a control device (1) for monitoring the state of the storage battery row for each storage battery row and controlling on / off of the switch. A charge control method for a parallel storage battery module, wherein the control device turns on the switch to supply electric power from the AC / DC converter to the storage battery array, whereby the storage battery A first step (S1) for starting equal charge for bringing the battery into a fully charged state, and a second step (S2) for determining whether or not the equal charge has been completed for each storage battery train. The control device includes a third step (S3) of turning off the switch of the storage battery array that has been determined that the equal charge has been completed.
 〔7〕上記充電制御方法において、前記第2ステップは、前記制御装置が、前回実施した前記均等充電が完了してからの前記蓄電池列の充電電流の積算値と前回実施した前記均等充電が完了してからの前記蓄電池列の放電電流の積算値との比率が所定値となった場合に、前記蓄電池列の前記均等充電が完了したと判定するステップを含んでもよい。 [7] In the charge control method, in the second step, the control device completes the integrated value of the charge current of the storage battery train after the previous equivalent charge is completed and the previous equivalent charge. Then, when the ratio with the integrated value of the discharge current of the storage battery row after that becomes a predetermined value, a step of determining that the equal charge of the storage battery row is completed may be included.
 〔8〕上記充電制御方法において、前記第2ステップは、前記制御装置が、前記均等充電における定電圧によって前記蓄電池列を充電する定電圧充電期間において、前記蓄電池列の充電電流が低下して所定値(Ith)となった場合に、前記蓄電池列の前記均等充電が完了したと判定するステップを含んでもよい。 [8] In the above charge control method, the second step is performed in a constant voltage charging period in which the control device charges the storage battery train with a constant voltage in the equal charge. When the value (Ith) is reached, it may include a step of determining that the equal charge of the battery array is completed.
 〔9〕上記充電制御方法において、前記均等充電は、定電流によって前記蓄電池列の充電を開始し、前記蓄電池列の電圧が所定の電圧に到達した後に定電圧によって前記蓄電池列を充電する定電流-定電圧充電方式によって行われてもよい。 [9] In the charge control method, the equal charge starts charging the storage battery train with a constant current, and charges the storage battery train with a constant voltage after the voltage of the storage battery array reaches a predetermined voltage. -It may be performed by a constant voltage charging method.
 〔10〕上記充電制御方法において、前記均等充電は、定電力によって前記蓄電池列の充電を開始し、前記蓄電池列の電圧が所定の電圧に到達した後に定電圧によって前記蓄電池列を充電する定電力-定電圧充電方式によって行われてもよい。 [10] In the above charge control method, the equal charge starts constant charging of the storage battery train with constant power, and charges the storage battery train with a constant voltage after the voltage of the storage battery array reaches a predetermined voltage. -It may be performed by a constant voltage charging method.
2.実施の形態の具体例
 以下、本発明の実施の形態の具体例について図を参照して説明する。なお、以下の説明において、各実施の形態において共通する構成要素には同一の参照符号を付し、繰り返しの説明を省略する。また、図面は模式的なものであり、各要素の寸法の関係、各要素の比率などは、現実と異なる場合があることに留意する必要がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。
2. Specific Examples of Embodiments Hereinafter, specific examples of embodiments of the present invention will be described with reference to the drawings. In the following description, the same reference numerals are given to components common to the respective embodiments, and repeated description is omitted. It should be noted that the drawings are schematic, and the relationship between the dimensions of each element, the ratio of each element, and the like may differ from the actual situation. Even between the drawings, there are cases in which portions having different dimensional relationships and ratios are included.
 ≪実施の形態1≫
 図1は、本発明の一実施の形態に係る蓄電システムの構成を示す図である。
 同図に示される蓄電システム100は、例えばサイクルユースの鉛蓄電池を備えた蓄電システムである。蓄電システム100は、例えば、通常時に電力供給部5(商用電源)から負荷6に給電し、停電の発生時には、電源バックアップ用の鉛蓄電池から負荷6に給電する。
<< Embodiment 1 >>
FIG. 1 is a diagram showing a configuration of a power storage system according to an embodiment of the present invention.
The power storage system 100 shown in the figure is a power storage system including, for example, a cycle-use lead storage battery. For example, the power storage system 100 supplies power to the load 6 from the power supply unit 5 (commercial power supply) at normal times, and supplies power to the load 6 from a lead storage battery for power backup when a power failure occurs.
 電力供給部5は、蓄電システム100および負荷6に電力を供給する機能部である。電力供給部5は、例えば、商用電源である。なお、電力供給部5は、商用電源に加えて、太陽光発電(PV:Photovoltaics)等の再生可能エネルギーに基づいて電力を発生させる発電設備を有していてもよい。 The power supply unit 5 is a functional unit that supplies power to the power storage system 100 and the load 6. The power supply unit 5 is, for example, a commercial power source. In addition to the commercial power source, the power supply unit 5 may include a power generation facility that generates electric power based on renewable energy such as photovoltaic power generation (PV: Photovoltaics).
 蓄電システム100は、蓄電池モジュール2、交直変換装置3、スイッチ4_1~4_n(nは2以上の整数)、および制御装置1を備えている。 The power storage system 100 includes a storage battery module 2, an AC / DC converter 3, switches 4_1 to 4_n (n is an integer of 2 or more), and a control device 1.
 蓄電池モジュール2は、電力を充放電可能に構成された鉛蓄電池を含む。蓄電池モジュール2は、少なくとも一つの鉛蓄電池セルを含む蓄電池列を複数並列に接続した多並列蓄電池モジュールである。 The storage battery module 2 includes a lead storage battery configured to be able to charge and discharge electric power. The storage battery module 2 is a multi-parallel storage battery module in which a plurality of storage battery arrays including at least one lead storage battery cell are connected in parallel.
 具体的に、蓄電池モジュール2は、図1に示すように、m(mは1以上の整数)個の鉛蓄電池セル200が直列に接続された複数の蓄電池列20_1~20_nを並列に接続した構造を有している。以下、蓄電池モジュール2を「多並列蓄電池モジュール2」とも称する。また、それぞれの蓄電池列20_1~20_nを区別しない場合には、単に、「蓄電池列20」と表記する場合がある。 Specifically, as shown in FIG. 1, the storage battery module 2 has a structure in which a plurality of storage battery rows 20_1 to 20_n in which m (m is an integer of 1 or more) lead storage battery cells 200 are connected in series are connected in parallel. have. Hereinafter, the storage battery module 2 is also referred to as “multi-parallel storage battery module 2”. Further, when the storage battery columns 20_1 to 20_n are not distinguished from each other, they may be simply expressed as “storage battery column 20”.
 また、蓄電池モジュール2は、各蓄電池列20_1~20_nの出力電圧(蓄電電圧)を計測する電圧センサ201と、各蓄電池列20_1~20_nの充電電流および放電電流を計測する電流センサ202とを、蓄電池列20_1~20_n毎に有している。 The storage battery module 2 also includes a voltage sensor 201 that measures the output voltage (storage voltage) of each of the storage battery columns 20_1 to 20_n, and a current sensor 202 that measures the charging current and the discharge current of each of the storage battery columns 20_1 to 20_n. Each column 20_1 to 20_n has.
 交直変換装置(以下、「PCS(Power Conditioning System)とも称する。)3は、後述する制御装置1によって制御され、電力供給部5、蓄電池モジュール2、および負荷6の間で相互に電力を変換し、電力供給部5、蓄電池モジュール2、および負荷6の間での電力の授受を制御する電力変換部である。 An AC / DC converter (hereinafter also referred to as a “PCS (Power Conditioning System)”) 3 is controlled by a controller 1 described later, and converts power between the power supply unit 5, the storage battery module 2, and the load 6. , A power conversion unit that controls transmission and reception of power among the power supply unit 5, the storage battery module 2, and the load 6.
 例えば、PCS3は、電力供給部5からの交流電力(AC)を直流電力(DC)に変換して蓄電池モジュール2に供給する。PCS3は、例えば、DC/DCコンバータ、AC/DCコンバータ(AC/DC)、およびスイッチ回路等を含んで構成されている。 For example, the PCS 3 converts AC power (AC) from the power supply unit 5 into DC power (DC) and supplies it to the storage battery module 2. The PCS 3 includes, for example, a DC / DC converter, an AC / DC converter (AC / DC), a switch circuit, and the like.
 スイッチ4_1~4_nは、PCS3と多並列蓄電池モジュール2との間の接続と遮断を切り替える装置である。図1に示すように、スイッチ4_1~4_nは、蓄電池列20_1~20_n毎に対応して設けられ、対応する蓄電池列20_1~20_nとPCS3との間に直列に接続されている。スイッチ4_1~4_nは、例えば電磁スイッチ(リレー)である。 The switches 4_1 to 4_n are devices that switch connection and disconnection between the PCS 3 and the multi-parallel storage battery module 2. As shown in FIG. 1, the switches 4_1 to 4_n are provided corresponding to the storage battery columns 20_1 to 20_n, and are connected in series between the corresponding storage battery columns 20_1 to 20_n and the PCS3. The switches 4_1 to 4_n are, for example, electromagnetic switches (relays).
 制御装置1は、蓄電システム100全体の統括的な制御を行う装置である。制御装置1は、各蓄電池列20_1~20_nの状態を、蓄電池列20_1~20_n毎に監視し、スイッチ4_1~4_nのオン/オフを制御する。 The control device 1 is a device that performs overall control of the entire power storage system 100. The control device 1 monitors the state of each of the storage battery columns 20_1 to 20_n for each of the storage battery columns 20_1 to 20_n, and controls on / off of the switches 4_1 to 4_n.
 図1に示すように、制御装置1は、監視部11、蓄電池管理部12、およびスイッチ制御部13を有する。
 監視部11は、多並列蓄電池モジュール2の電圧センサ201および電流センサ202によって計測された物理量を逐次取得し、当該物理量に基づいて多並列蓄電池モジュール2の状態を監視するデータ処理装置である。監視部11は、例えば、BMU(Battery Management Unit)である。
As shown in FIG. 1, the control device 1 includes a monitoring unit 11, a storage battery management unit 12, and a switch control unit 13.
The monitoring unit 11 is a data processing device that sequentially acquires physical quantities measured by the voltage sensor 201 and the current sensor 202 of the multi-parallel storage battery module 2 and monitors the state of the multi-parallel storage battery module 2 based on the physical quantities. The monitoring unit 11 is, for example, a BMU (Battery Management Unit).
 蓄電池管理部12は、蓄電システム100の各構成要素の統括的な制御を司る装置である。蓄電池管理部12は、例えばEMS(Energy Management System)である。
 具体的に、蓄電池管理部12は、PCS3を駆動することにより、多並列蓄電池モジュール2の充放電制御を行う。例えば、蓄電池管理部12は、監視部11による多並列蓄電池モジュール2の監視結果に基づいて、定電流-定電圧充電(CCCV)方式や定電力-定電圧充電方式等の各種充電方式で多並列蓄電池モジュール2の均等充電を実行する。
The storage battery management unit 12 is a device that performs overall control of each component of the power storage system 100. The storage battery management unit 12 is, for example, an EMS (Energy Management System).
Specifically, the storage battery management unit 12 performs charge / discharge control of the multi-parallel storage battery module 2 by driving the PCS 3. For example, the storage battery management unit 12 performs multi-parallel processing by various charging methods such as a constant current-constant voltage charging (CCCV) method and a constant power-constant voltage charging method based on the monitoring result of the multi-parallel storage battery module 2 by the monitoring unit 11. The equal charge of the storage battery module 2 is executed.
 ここで、定電流-定電圧充電(CCCV)方式とは、定電流によって蓄電池列20_1~20_nの充電を開始し、蓄電池列20_1~20_nの電圧が所定の電圧に到達した後に定電圧によって蓄電池列20_1~20_nを充電する充電方式である。 Here, the constant current-constant voltage charging (CCCV) method starts charging the storage battery trains 20_1 to 20_n with a constant current, and after the voltages of the storage battery trains 20_1 to 20_n reach a predetermined voltage, the storage battery train with the constant voltage. This is a charging method for charging 20_1 to 20_n.
 また、定電力-定電圧充電方式とは、定電力によって蓄電池列20_1~20_nの充電を開始し、蓄電池列20_1~20_nの電圧が所定の電圧に到達した後に定電圧によって蓄電池列20_1~20_nを充電する充電方式である。 In the constant power-constant voltage charging method, charging of the storage battery trains 20_1 to 20_n is started with constant power, and after the voltage of the storage battery trains 20_1 to 20_n reaches a predetermined voltage, the storage battery trains 20_1 to 20_n are connected with the constant voltage. This is a charging method for charging.
 スイッチ制御部13は、監視部11または蓄電池管理部12からの指示に応じて、スイッチ4_1~4_nのオン/オフを切り替える機能部である。例えば、スイッチ4_1~4_nがリレーである場合、スイッチ制御部13は、監視部11または蓄電池管理部12からの指示に応じてリレーのオン/オフを切り替えるための駆動信号を生成する信号生成回路である。 The switch control unit 13 is a functional unit that switches on / off the switches 4_1 to 4_n in accordance with an instruction from the monitoring unit 11 or the storage battery management unit 12. For example, when the switches 4_1 to 4_n are relays, the switch control unit 13 is a signal generation circuit that generates a drive signal for switching on / off of the relay in accordance with an instruction from the monitoring unit 11 or the storage battery management unit 12. is there.
 監視部11および蓄電池管理部12は、例えば、ハードウェア資源としての、CPU(Central Processing Unit)等プロセッサと、RAM(Random Access Memory)やROM(Read Only Memory)等の記憶装置と、I/F回路等の周辺回路とを有するデータ処理装置において、上記記憶装置に記憶されたプログラムに従って上記プロセッサが各種演算を実行して周辺回路を制御することにより、実現される。 The monitoring unit 11 and the storage battery management unit 12 include, for example, a processor such as a CPU (Central Processing Unit), a storage device such as a RAM (Random Access Memory) and a ROM (Read Only Memory), and I / F as hardware resources. In a data processing apparatus having a peripheral circuit such as a circuit, the processor executes the various operations according to a program stored in the storage device to control the peripheral circuit.
 制御装置1は、多並列蓄電池モジュール2を構成する鉛蓄電池の劣化を防止するために、多並列蓄電池モジュール2の蓄電池列20_1~20_nを満充電状態にする均等充電を定期的に実行する。 The control device 1 periodically performs equal charge to bring the storage battery rows 20_1 to 20_n of the multi-parallel storage battery module 2 into a fully charged state in order to prevent deterioration of the lead storage batteries constituting the multi-parallel storage battery module 2.
 制御装置1は、スイッチ4_1~4_nをオンしてPCS3から蓄電池列20_1~20_nへ電力を供給することにより、蓄電池列20_1~20_nを満充電状態にするための均等充電を行うとともに、蓄電池列20_1~20_n毎に均等充電が完了したか否かを判定し、均等充電が完了したと判定した蓄電池列20_1~20_nのスイッチ4_1~4_nをオフする。 The control device 1 turns on the switches 4_1 to 4_n to supply electric power from the PCS 3 to the storage battery trains 20_1 to 20_n, thereby performing equal charge for bringing the storage battery trains 20_1 to 20_n into a fully charged state, and the storage battery train 20_1. It is determined whether or not the equal charge is completed for each of 20 to n, and the switches 4_1 to 4_n of the storage battery rows 20_1 to 20_n that are determined to have completed the equal charge are turned off.
 以下、蓄電システム100における均等充電時の充電制御方法について、図を用いて詳細に説明する。 Hereinafter, a charge control method during equal charge in the power storage system 100 will be described in detail with reference to the drawings.
 図2は、蓄電システム100における均等充電時の充電制御方法の流れを示すフロー図である。図3A~図3Dは、蓄電システム100における均等充電時の充電制御方法を説明するための図である。 FIG. 2 is a flowchart showing the flow of the charge control method during equal charge in the power storage system 100. 3A to 3D are diagrams for explaining a charge control method during equal charge in power storage system 100. FIG.
 ここでは、図3A~図3Dに示すように、蓄電システム100における多並列蓄電池モジュール2が、直列に接続された4個(m=4)の鉛蓄電池セル200を有する3つの蓄電池列20_1~20_3を並列に接続した構造を有する場合を例にとり、説明する。 Here, as shown in FIGS. 3A to 3D, the multi-parallel storage battery module 2 in the power storage system 100 includes three storage battery rows 20_1 to 20_3 having four (m = 4) lead storage battery cells 200 connected in series. This will be described by taking as an example the case of having a structure in which these are connected in parallel.
 また、図3A~図3Dにおいて、均等充電中の各蓄電池列20_1~20_3の充電電流をそれぞれI1,I2,I3とし、各蓄電池列20_1~20_3の特性等のばらつきにより、I2>I1>I3であるとする。なお、図3A~図3Dにおいて、電圧センサ201および電流センサ202の図示を省略している。 Further, in FIGS. 3A to 3D, charging currents of the storage battery columns 20_1 to 20_3 during equal charging are I1, I2, and I3, respectively, and I2> I1> I3 due to variations in characteristics of the storage battery columns 20_1 to 20_3. Suppose there is. 3A to 3D, the voltage sensor 201 and the current sensor 202 are not shown.
 先ず、図3Aに示すように、制御装置1は、スイッチ4_1~4_3をオンしてPCS3から蓄電池列20_1~20_3へ電力を供給することにより、蓄電池列20_1~20_3の均等充電を開始する(ステップS1)。 First, as shown in FIG. 3A, the control device 1 turns on the switches 4_1 to 4_3 to supply electric power from the PCS 3 to the storage battery arrays 20_1 to 20_3, thereby starting equal charge of the storage battery arrays 20_1 to 20_3 (steps). S1).
 例えば、監視部11が蓄電池管理部12に対して均等充電の実行を要求する。蓄電池管理部12は、監視部11からの要求に応じて、スイッチ制御部13を介してスイッチ4_1~4_3をオンさせる(または、オンしていることを確認する)とともに、所定の充電方式(例えば、定電流-定電圧充電方式)で均等充電を行うように、PCS3を駆動して、蓄電池列20_1~20_3への電力の供給を開始する。 For example, the monitoring unit 11 requests the storage battery management unit 12 to perform equal charge. In response to a request from the monitoring unit 11, the storage battery management unit 12 turns on the switches 4_1 to 4_3 via the switch control unit 13 (or confirms that the switches are turned on) and a predetermined charging method (for example, The PCS 3 is driven so as to perform uniform charging with a constant current-constant voltage charging method), and the supply of power to the storage battery arrays 20_1 to 20_3 is started.
 次に、制御装置1は、均等充電が完了した蓄電池列20_1~20_3があるか否かを判定する(ステップS2)。具体的には、監視部11が、各蓄電池列20_1~20_3の電圧センサ201および電流センサ202から取得した各蓄電池列20_1~20_3の出力電圧および電流の計測結果に基づいて、蓄電池列20_1~20_3の均等充電が完了したか否かを判定する。なお、具体的な判定方法については、後述する。 Next, the control device 1 determines whether or not there are storage battery rows 20_1 to 20_3 that have been charged evenly (step S2). Specifically, based on the measurement results of the output voltages and currents of the storage battery columns 20_1 to 20_3 acquired from the voltage sensor 201 and the current sensor 202 of the storage battery columns 20_1 to 20_3, the monitoring unit 11 stores the storage battery columns 20_1 to 20_3. It is determined whether or not the equal charge is completed. A specific determination method will be described later.
 ステップS2において、均等充電が完了した蓄電池列20_1~20_3が存在しない場合には、制御装置1は、引き続き各蓄電池列20_1~20_3の均等充電を継続する。 In step S2, when there is no storage battery row 20_1 to 20_3 for which equal charge has been completed, the control device 1 continues to perform equal charge for each of the storage battery rows 20_1 to 20_3.
 一方、ステップS2において、均等充電が完了した蓄電池列20_1~20_3が存在する場合には、制御装置1は、均等充電が完了した蓄電池列20_1~20_3のスイッチ4_1~4_3をオフする(ステップS3)。 On the other hand, when there are storage battery trains 20_1 to 20_3 for which equal charge has been completed in step S2, control device 1 turns off switches 4_1 to 4_3 of storage battery trains 20_1 to 20_3 for which equal charge has been completed (step S3). .
 例えば、上述の例の場合、均等充電中の各蓄電池列20_1~20_3の充電電流がI2>I1>I3の関係にあるので、最も大きい充電電流I2の蓄電池列20_2が最初に満充電となる。監視部11は、蓄電池列20_2の均等充電が完了したと判定した場合、蓄電池管理部12に対して、そのことを通知する。その通知を受けた蓄電池管理部12は、スイッチ制御部13に対してスイッチ4_2を解放制御(オフ)するように指示し、図3Bに示すように、スイッチ制御部13がスイッチ4_2を解放制御して、蓄電池列20_2をPCS3から解列させる。 For example, in the case of the above-described example, since the charging currents of the storage battery columns 20_1 to 20_3 during equal charging are in the relationship of I2> I1> I3, the storage battery column 20_2 having the largest charging current I2 is first fully charged. When the monitoring unit 11 determines that the equal charging of the storage battery row 20_2 has been completed, the monitoring unit 11 notifies the storage battery management unit 12 of that. Receiving the notification, the storage battery management unit 12 instructs the switch control unit 13 to perform release control (off) of the switch 4_2, and the switch control unit 13 performs release control of the switch 4_2 as illustrated in FIG. 3B. Then, the storage battery array 20_2 is disconnected from the PCS 3.
 次に、制御装置1は、全ての蓄電池列20_1~20_3の均等充電が完了したか否かを判定する(ステップS4)。全ての蓄電池列20_1~20_3の均等充電が完了していない場合には、ステップS2に戻り、上述したステップS2からステップS4までの処理を再度実行する。 Next, the control device 1 determines whether or not the equal charging of all the storage battery rows 20_1 to 20_3 has been completed (step S4). When the equal charge of all the storage battery rows 20_1 to 20_3 has not been completed, the process returns to step S2, and the processes from step S2 to step S4 described above are executed again.
 例えば、蓄電池列20_2の均等充電が完了し、蓄電池列20_2をPCS3から解列された後において、均等充電中の蓄電池列20_2,20_3の充電電流はI1>I3の関係にある。そのため、蓄電池列20_1が、蓄電池列20_2の次に満充電となる。監視部11は、蓄電池列20_1の均等充電が完了したと判定した場合、蓄電池管理部12に対して、そのことを通知する。その通知を受けた蓄電池管理部12は、スイッチ制御部13に対してスイッチ4_1を解放制御(オフ)するように指示し、図3Cに示すように、スイッチ制御部13がスイッチ4_1を解放制御して、蓄電池列20_1をPCS3から解列させる。この直後は、まだ、蓄電池列20_3の均等充電が継続しているため、再びステップS2に戻る。 For example, after the equal charging of the storage battery train 20_2 is completed and the storage battery train 20_2 is disconnected from the PCS 3, the charging currents of the storage battery trains 20_2 and 20_3 during the equal charging have a relationship of I1> I3. Therefore, the storage battery row 20_1 is fully charged next to the storage battery row 20_2. When the monitoring unit 11 determines that the equal charge of the storage battery row 20_1 has been completed, the monitoring unit 11 notifies the storage battery management unit 12 of that. Receiving the notification, the storage battery management unit 12 instructs the switch control unit 13 to perform release control (off) of the switch 4_1. As illustrated in FIG. 3C, the switch control unit 13 performs release control of the switch 4_1. Then, the storage battery array 20_1 is disconnected from the PCS3. Immediately after this, since the equal charge of the storage battery row 20_3 is still continued, the process returns to step S2.
 その後、蓄電池列20_3が満充電となった場合、監視部11は、蓄電池列20_3の均等充電が完了したことを、蓄電池管理部12に通知する。その通知を受けた蓄電池管理部12は、スイッチ制御部13に対してスイッチ4_3を解放制御(オフ)するように指示し、図3Dに示すように、スイッチ制御部13がスイッチ4_3を解放制御して、蓄電池列20_3をPCS3から解列させる。これにより、全ての蓄電池列20_1~20_3の均等充電が完了する。 Thereafter, when the storage battery train 20_3 is fully charged, the monitoring unit 11 notifies the storage battery management unit 12 that the equal charge of the storage battery train 20_3 has been completed. Receiving the notification, the storage battery management unit 12 instructs the switch control unit 13 to perform release control (off) of the switch 4_3, and the switch control unit 13 performs release control of the switch 4_3 as illustrated in FIG. 3D. Then, the storage battery array 20_3 is disconnected from the PCS3. Thereby, the equal charge of all the storage battery rows 20_1 to 20_3 is completed.
 ステップS4において、制御装置1は、全ての蓄電池列20_1~20_3の均等充電が完了したと判断した場合、多並列蓄電池モジュール2の均等充電のための制御を終了する(ステップS5)。
 以上の手順により、本実施の形態に係る蓄電システム100の均等充電が行われる。
In step S4, when it is determined that the equal charging of all the storage battery rows 20_1 to 20_3 is completed, the control device 1 ends the control for the equal charging of the multi-parallel storage battery module 2 (step S5).
With the above procedure, equal charge of power storage system 100 according to the present embodiment is performed.
 次に、均等充電の完了の判定方法について説明する。
 本実施の形態に係る均等充電の完了の判定方法として、2つの例を以下に示す。
Next, a method for determining completion of equal charge will be described.
Two examples of the method for determining completion of equal charge according to the present embodiment are shown below.
 先ず、蓄電システム100による均等充電の完了の判定方法の第1の例について説明する。
 第1の例として、制御装置1は、前回実施した均等充電が完了してからの蓄電池列20の充電電流の積算値と前回実施した均等充電が完了してからの蓄電池列20の放電電流の積算値との比率が所定値となった場合に、蓄電池列20の前記均等充電が完了したと判定する。
First, a first example of a method for determining completion of equal charging by the power storage system 100 will be described.
As a first example, the control device 1 determines the integrated value of the charging current of the storage battery train 20 after completion of the previous equal charge and the discharge current of the storage battery train 20 after the previous equivalent charge is completed. When the ratio with the integrated value becomes a predetermined value, it is determined that the equal charge of the storage battery array 20 has been completed.
 図4は、均等充電時の蓄電池列20(鉛蓄電池)の充電電流および放電電流を示すタイミングチャートである。図4において、縦軸は、電流を表し、横軸は、時間を表している。また、参照符号302は、蓄電池列20の充電電流を表し、参照符号303は、蓄電池列20の放電電流を表している。 FIG. 4 is a timing chart showing the charging current and the discharging current of the storage battery train 20 (lead storage battery) during equal charging. In FIG. 4, the vertical axis represents current, and the horizontal axis represents time. Reference numeral 302 represents the charging current of the storage battery string 20, and reference numeral 303 represents the discharge current of the storage battery string 20.
 先ず、制御装置1の監視部11は、均等充電が完了したタイミングにおいて、蓄電池列20_1~20_n毎に充電電流および放電電流の積算を開始する。例えば、図4において、均等充電が完了した時刻t31において、監視部11は、各蓄電池列20_1~20_nの充電電流の積算を開始するとともに、各蓄電池列20_1~20_nの放電電流の積算を開始する。 First, the monitoring unit 11 of the control device 1 starts integration of the charging current and the discharging current for each of the storage battery rows 20_1 to 20_n at the timing when the uniform charging is completed. For example, in FIG. 4, at time t31 when the equal charging is completed, the monitoring unit 11 starts integrating the charging currents of the storage battery columns 20_1 to 20_n and starts integrating the discharging currents of the storage battery columns 20_1 to 20_n. .
 次に、監視部11は、蓄電池列20_1~20_n毎に、充電電流の積算値と放電電流の積算値との比率を算出する。具体的には、放電電流の積算値に対する充電電流の積算値の比率を算出する。 Next, the monitoring unit 11 calculates the ratio between the integrated value of the charging current and the integrated value of the discharge current for each of the storage battery columns 20_1 to 20_n. Specifically, the ratio of the integrated value of the charging current to the integrated value of the discharge current is calculated.
 次に、監視部11は、蓄電池列20_1~20_n毎に、算出した上記比率が比率基準値に到達したか否かを判定する。 Next, the monitoring unit 11 determines whether or not the calculated ratio has reached the ratio reference value for each of the storage battery columns 20_1 to 20_n.
 ここで、比率基準値とは、均等充電における定電圧充電期間の末期を判定するための基準となる値である。一般に、均等充電は、放電容量に対して100%以上(例えば、104%)となるように過充電が行われる。そのため、比率基準値は、100%を超える値、例えば101%~104%の範囲の値に設定することが好ましい。 Here, the ratio reference value is a value serving as a reference for determining the end of the constant voltage charging period in the uniform charging. In general, overcharge is performed so that the equal charge is 100% or more (for example, 104%) with respect to the discharge capacity. Therefore, the ratio reference value is preferably set to a value exceeding 100%, for example, a value in the range of 101% to 104%.
 監視部11は、上記比率が比率基準値に到達した蓄電池列20が存在しない場合、蓄電池列20_1~20_n毎の充電電流および放電電流の積算を継続する。一方、算出した比率が比率基準値に到達した蓄電池列20が存在する場合、監視部11は、算出した比率が比率基準値に到達した蓄電池列20について、均等充電が完了したと判定する。監視部11は、全ての蓄電池列20_1~20_nについて均等充電が完了したことを示す判定結果が得られるまで、上記の処理を繰り返し実行する。 The monitoring unit 11 continues the integration of the charging current and the discharging current for each of the storage battery arrays 20_1 to 20_n when there is no storage battery array 20 in which the above ratio has reached the ratio reference value. On the other hand, when there is a storage battery string 20 in which the calculated ratio has reached the ratio reference value, the monitoring unit 11 determines that the uniform charging has been completed for the storage battery string 20 in which the calculated ratio has reached the ratio reference value. The monitoring unit 11 repeatedly executes the above processing until a determination result indicating that the equal charge has been completed for all the storage battery columns 20_1 to 20_n is obtained.
 以上の手順でデータ処理を実行することにより、蓄電池列20_1~20_n毎に、均等充電の完了の有無を判定することができる。 By executing the data processing according to the above procedure, it is possible to determine whether or not the uniform charging is completed for each of the storage battery columns 20_1 to 20_n.
 次に、蓄電システム100による均等充電の完了の判定方法の第2の例について説明する。
 第2の例として、制御装置1は、均等充電における定電圧によって蓄電池列20を充電する定電圧充電期間において、蓄電池列20の充電電流が低下して所定値となった場合に、蓄電池列20の均等充電が完了したと判定する。
Next, a second example of a method for determining completion of equal charging by the power storage system 100 will be described.
As a second example, in the constant voltage charging period in which the storage battery train 20 is charged with a constant voltage in equal charge, the control device 1 reduces the storage current of the storage battery train 20 to a predetermined value when it reaches a predetermined value. It is determined that the equal charge is completed.
 図5は、定電圧-定電流充電方式または定電力-定電流充電方式によって均等充電を行ったときの定電圧充電期間における蓄電池列20の充電電流と充電状態(SOC:State Of Charge)との関係を示す図である。 FIG. 5 shows the state of charge (SOC: State Of Charge) of the storage battery train 20 during the constant voltage charging period when uniform charging is performed by the constant voltage-constant current charging method or the constant power-constant current charging method. It is a figure which shows a relationship.
 図5に示すように、蓄電池は、定電圧充電時、満充電に近くなるほど充電電流が小さくなる傾向がある。そこで、均等充電における定電圧充電期間において、蓄電池列20毎に充電電流を監視することで、均等充電の完了を検出することが可能となる。例えば、監視部11は、定電圧充電期間において、各蓄電池列20_1~20_nの充電電流が低下して所定の閾値Ithに到達したときに、均等充電が完了したと判定する。 As shown in FIG. 5, when the storage battery is charged at a constant voltage, the charge current tends to be smaller as the battery is nearly fully charged. Therefore, it is possible to detect the completion of the equal charge by monitoring the charge current for each storage battery train 20 during the constant voltage charge period in the equal charge. For example, in the constant voltage charging period, the monitoring unit 11 determines that the uniform charging has been completed when the charging current of each of the storage battery columns 20_1 to 20_n decreases and reaches a predetermined threshold value Ith.
 図6は、定電流-定電圧充電方式によって均等充電を行った時の各蓄電池列に流れる充電電流の時間的な変化の一例を示す図である。
 上述したように、蓄電池列20_1~20_3は、温度や鉛蓄電池セル200自体の特性(内部抵抗)により、定電流充電時の充電電流にばらつきが発生する可能性がある。例えば、上述の例のようにI2>I1>I3となった場合を考える。
FIG. 6 is a diagram illustrating an example of a temporal change in the charging current flowing through each storage battery row when equal charging is performed by the constant current-constant voltage charging method.
As described above, the storage battery rows 20_1 to 20_3 may vary in charging current during constant current charging depending on the temperature and the characteristics (internal resistance) of the lead storage battery cell 200 itself. For example, consider the case where I2>I1> I3 as in the above example.
 制御装置1の監視部11は、各蓄電池列20_1~20_3の充電電流を監視する。上述の例の場合、I2>I1>I3であるので、蓄電池列20_2の充電電流I2が最初に閾値Ithに到達する。監視部11は、蓄電池列20_2の充電電流I2が閾値Ithに到達したことを検知した場合、蓄電池列20_2の均等充電が完了したと判定する。 The monitoring unit 11 of the control device 1 monitors the charging currents of the storage battery columns 20_1 to 20_3. In the above example, since I2> I1> I3, the charging current I2 of the storage battery train 20_2 first reaches the threshold value Ith. When the monitoring unit 11 detects that the charging current I2 of the storage battery train 20_2 has reached the threshold value Ith, the monitoring unit 11 determines that the equal charging of the storage battery train 20_2 has been completed.
 次に、I1>I3であることから、蓄電池列20_1の充電電流I1が次に閾値Ithに到達する。監視部11は、蓄電池列20_1の充電電流I1が閾値Ithに到達したことを検知した場合、蓄電池列20_1の均等充電が完了したと判定する。 Next, since I1> I3, the charging current I1 of the storage battery train 20_1 next reaches the threshold value Ith. When the monitoring unit 11 detects that the charging current I1 of the storage battery row 20_1 has reached the threshold value Ith, the monitoring unit 11 determines that the equal charging of the storage battery row 20_1 has been completed.
 最後に、蓄電池列20_3の充電電流I3が次に閾値Ithに到達する。監視部11は、蓄電池列20_3の充電電流I3が閾値Ithに到達したことを検知した場合、蓄電池列20_3の均等充電が完了したと判定する。 Finally, the charging current I3 of the storage battery row 20_3 next reaches the threshold value Ith. When the monitoring unit 11 detects that the charging current I3 of the storage battery train 20_3 has reached the threshold value Ith, the monitoring unit 11 determines that the equal charge of the storage battery train 20_3 has been completed.
 このように、蓄電池列20毎に均等充電時の定電圧充電期間における充電電流を監視することで、蓄電池列20毎に均等充電の完了の有無を判定することができる。 As described above, by monitoring the charging current in the constant voltage charging period at the time of equal charging for each storage battery row 20, it is possible to determine whether or not the equal charge is completed for each storage battery row 20.
 なお、定電力-定電圧充電方式の場合も同様の手法により、蓄電池列20毎に均等充電の完了の有無を判定することができる。 In the case of the constant power-constant voltage charging method, it is possible to determine whether or not the uniform charging is completed for each storage battery array 20 by the same method.
 以上、本実施の形態に係る蓄電システム100は、少なくとも一つの鉛蓄電池セル200を含む蓄電池列20_1~20_nを並列に接続した多並列蓄電池モジュール2と、蓄電池列20_1~20_n毎に対応して設けられ、対応する蓄電池列20_1~20_nと交直変換装置(PCS)3との間に直列に接続されたスイッチ4_1~4_nと、蓄電池列20_1~20_nの状態を蓄電池列20_1~20_n毎に監視する制御装置1とを備えている。制御装置1は、スイッチ4_1~4_nをオンしてPCS3から蓄電池列20_1~20_nへ電力を供給することにより均等充電を行うとともに、蓄電池列20_1~20_n毎に均等充電が完了したか否かを判定し、均等充電が完了したと判定した蓄電池列20_1~20_nのスイッチ4_1~4_nをオフする。 As described above, power storage system 100 according to the present embodiment is provided corresponding to each of multiple parallel storage battery modules 2 in which storage battery arrays 20_1 to 20_n including at least one lead storage battery cell 200 are connected in parallel, and each storage battery array 20_1 to 20_n. Control for monitoring the states of the switches 4_1 to 4_n connected in series between the corresponding storage battery trains 20_1 to 20_n and the AC / DC converter (PCS) 3 and the storage battery trains 20_1 to 20_n for each of the storage battery trains 20_1 to 20_n. The apparatus 1 is provided. The control device 1 turns on the switches 4_1 to 4_n and supplies power from the PCS 3 to the storage battery trains 20_1 to 20_n to perform equal charging, and determines whether or not the uniform charging is completed for each of the storage battery trains 20_1 to 20_n. Then, the switches 4_1 to 4_n of the storage battery arrays 20_1 to 20_n determined to have completed the uniform charging are turned off.
 これによれば、均等充電時に行われるPCS3から蓄電池列20_1~20_nへの電力供給を、蓄電池列20_1~20_n毎に制御することができるので、各蓄電池列20_1~20_nの鉛蓄電池セル200自体の特性(内部抵抗)や温度等に起因して、均等充電時に各蓄電池列20_1~20_nに流れる充電電流がばらついた場合であっても、夫々の蓄電池列20_1~20_nを満充電状態にすることが可能となる。これにより、均等充電時の充電電流のばらつきに起因して、過充電や充電不足となる蓄電池列20_1~20_nの発生を防止することができるので、多並列蓄電池モジュール2の劣化を抑制することが可能となる。 According to this, since the power supply from the PCS 3 to the storage battery columns 20_1 to 20_n performed at the time of equal charge can be controlled for each of the storage battery columns 20_1 to 20_n, the lead storage battery cell 200 of each storage battery column 20_1 to 20_n itself can be controlled. Even when the charging current flowing through each of the storage battery rows 20_1 to 20_n varies during equal charge due to characteristics (internal resistance), temperature, etc., each of the storage battery rows 20_1 to 20_n can be fully charged. It becomes possible. As a result, it is possible to prevent the generation of the storage battery rows 20_1 to 20_n that are overcharged or insufficiently charged due to variations in the charging current at the time of equal charge, so that the deterioration of the multi-parallel storage battery module 2 can be suppressed. It becomes possible.
 また、蓄電システム100は、均等充電時のPCS3から各蓄電池列20_1~20_nへの電力の供給と遮断をスイッチ4_1~4_nによって切り替える構成を有しているので、上述した特許文献1の従来技術のように、各蓄電池列の充放電量を調整するための複雑な充放電制御機器を蓄電池列毎に別途設ける必要がないので、従来技術に比べて、蓄電システムのコストの増加を抑えることができる。 In addition, since the power storage system 100 has a configuration in which the power supply to the storage battery columns 20_1 to 20_n from the PCS 3 during the uniform charging is switched between the power storage systems 20_1 to 20_n by the switches 4_1 to 4_n. Thus, since it is not necessary to separately provide a complicated charge / discharge control device for adjusting the charge / discharge amount of each storage battery row for each storage battery row, an increase in the cost of the power storage system can be suppressed as compared with the prior art. .
 したがって、本実施の形態に係る蓄電システム100によれば、より簡単な構成によって、均等充電による蓄電池列間の充電状態のばらつきを抑えて、多並列蓄電池モジュールの劣化を抑制することが可能となる。 Therefore, according to the power storage system 100 according to the present embodiment, it is possible to suppress the deterioration of the multi-parallel storage battery module by suppressing the variation in the charging state between the storage battery columns due to the equal charge with a simpler configuration. .
 また、蓄電システム100において、制御装置1は、前回実施した均等充電が完了してからの蓄電池列20_1~20_nの充電電流の積算値と前回実施した均等充電が完了してからの蓄電池列20_1~20_nの放電電流の積算値との比率が所定値となった場合に、蓄電池列20_1~20_nの均等充電が完了したと判定する。 Further, in the power storage system 100, the control device 1 includes the integrated value of the charging currents of the storage battery trains 20_1 to 20_n after completion of the previous equal charge and the storage battery trains 20_1 to 20_1 after the previous equivalent charge is completed. When the ratio with the integrated value of the discharge current of 20_n becomes a predetermined value, it is determined that the equal charge of the storage battery rows 20_1 to 20_n has been completed.
 これによれば、均等充電の充電方式によらず、より正確に、蓄電池列20毎に均等充電の完了の有無を判定することができる。 According to this, it is possible to more accurately determine whether or not the equal charge is completed for each storage battery row 20 regardless of the charge method of the equal charge.
 また、蓄電システム100において、制御装置1は、均等充電における定電圧によって蓄電池列20_1~20_nを充電する定電圧充電期間において、蓄電池列20_1~20_nの充電電流が低下して所定値となった場合に、蓄電池列20_1~20_nの均等充電が完了したと判定する。 Further, in the power storage system 100, the control device 1 causes the charging current of the storage battery trains 20_1 to 20_n to decrease to a predetermined value during a constant voltage charging period in which the storage battery trains 20_1 to 20_n are charged with a constant voltage in equal charge. In addition, it is determined that the equal charging of the storage battery rows 20_1 to 20_n has been completed.
 これによれば、定電流-定電圧充電方式や定電力-定電圧充電方式のように均等充電の終了間際に定電圧充電を行う均等充電方式を採用した蓄電システムにおいて、より簡単かつ正確に、蓄電池列20毎に均等充電の完了の有無を判定することが可能となる。 According to this, in a power storage system that employs a uniform charging method that performs constant voltage charging just before the end of uniform charging, such as a constant current-constant voltage charging method and a constant power-constant voltage charging method, it is easier and more accurate. It is possible to determine whether or not the uniform charging is completed for each storage battery row 20.
 ≪実施の形態の拡張≫
 以上、本発明者らによってなされた発明を実施の形態に基づいて具体的に説明したが、本発明はそれに限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは言うまでもない。
<< Extended embodiment >>
Although the invention made by the present inventors has been specifically described based on the embodiments, it is needless to say that the present invention is not limited thereto and can be variously modified without departing from the gist thereof. Yes.
 例えば、上記実施の形態において、均等充電の定電圧充電期間を有する充電方式として、定電流-定電圧充電方式および定電力-定電圧充電方式を例示したが、これに限られない。 For example, in the above embodiment, the constant current-constant voltage charging method and the constant power-constant voltage charging method are exemplified as the charging method having a constant voltage charging period of equal charge, but is not limited thereto.
 例えば、初めに定電流充電を行い、蓄電池電圧が所定の閾値に達した後に前回の電流値よりも低い電流値での定電流充電を行うことを複数回繰り返し、最後に、所定の電圧で定電圧充電を行って鉛蓄電池を満充電状態まで回復させる多段充電方式であってもよい。 For example, constant current charging is performed first, and constant current charging at a current value lower than the previous current value after the storage battery voltage reaches a predetermined threshold is repeated a plurality of times. A multi-stage charging method may be used in which the lead storage battery is recovered to a fully charged state by performing voltage charging.
 例えば、制御装置1は、多段充電方式の定電圧充電期間において、蓄電池列20_1~20_nの充電電流が低下して所定値となった場合に、蓄電池列20_1~20_nの均等充電が完了したと判定することにより、定電流-定電圧充電方式および定電力-定電圧充電方式の場合と同様に、より簡単かつ正確に、蓄電池列20毎に均等充電の完了の有無を判定することができる。 For example, the control device 1 determines that the equal charging of the storage battery trains 20_1 to 20_n is completed when the charging current of the storage battery trains 20_1 to 20_n decreases to a predetermined value during the constant voltage charging period of the multistage charging method. Thus, as in the case of the constant current-constant voltage charging method and the constant power-constant voltage charging method, it is possible to determine whether or not the uniform charging is completed for each storage battery array 20 more easily and accurately.
 1…制御装置、2…蓄電池モジュール(多並列蓄電池モジュール)、3…交直変換装置(PCS)、4_1~4_n…スイッチ、5…電力供給部、6…負荷、11…監視部、12…蓄電池管理部、13…スイッチ制御部、20,20_1~20_n…蓄電池列、100…蓄電システム、200…鉛蓄電池セル、201…電圧センサ、202…電流センサ、Ith…閾値(所定値)。 DESCRIPTION OF SYMBOLS 1 ... Control apparatus, 2 ... Storage battery module (multi-parallel storage battery module), 3 ... AC / DC converter (PCS), 4_1-4_n ... Switch, 5 ... Electric power supply part, 6 ... Load, 11 ... Monitoring part, 12 ... Storage battery management , 13... Switch control unit, 20, 20_1 to 20_n... Storage battery row, 100... Power storage system, 200 .. lead storage battery cell, 201... Voltage sensor, 202 ... current sensor, Ith.

Claims (10)

  1.  少なくとも一つの鉛蓄電池セルを含む蓄電池列を複数並列に接続した多並列蓄電池モジュールと、
     前記多並列蓄電池モジュールの電力の授受を制御する交直変換装置と、
     前記蓄電池列毎に対応して設けられ、対応する前記蓄電池列と前記交直変換装置との間に直列に接続されたスイッチと、
     前記蓄電池列の状態を前記蓄電池列毎に監視し、前記スイッチのオン/オフを制御する制御装置と、を備え、
     前記制御装置は、前記スイッチをオンして前記交直変換装置から前記蓄電池列へ電力を供給することにより、前記蓄電池列を満充電状態にするための均等充電を行うとともに、前記蓄電池列毎に前記均等充電が完了したか否かを判定し、前記均等充電が完了したと判定した前記蓄電池列の前記スイッチをオフする
     ことを特徴とする蓄電システム。
    A multi-parallel storage battery module in which a plurality of storage battery arrays including at least one lead storage battery cell are connected in parallel;
    An AC / DC converter for controlling power transfer of the multi-parallel storage battery module;
    A switch that is provided corresponding to each storage battery row, and that is connected in series between the corresponding storage battery row and the AC / DC converter;
    A controller for monitoring the state of the storage battery row for each storage battery row and controlling on / off of the switch,
    The control device turns on the switch and supplies power from the AC / DC converter to the storage battery train, thereby performing equal charge for making the storage battery train fully charged, and for each storage battery train, It is determined whether or not the equal charge has been completed, and the switch of the storage battery array that has been determined that the equal charge has been completed is turned off.
  2.  請求項1に記載の蓄電システムにおいて、
     前記制御装置は、前回実施した前記均等充電が完了してからの前記蓄電池列の充電電流の積算値と前回実施した前記均等充電が完了してからの前記蓄電池列の放電電流の積算値との比率が所定値となった場合に、前記蓄電池列の前記均等充電が完了したと判定する
     ことを特徴とする蓄電システム。
    The power storage system according to claim 1,
    The control device includes: an integrated value of the charging current of the storage battery string after completion of the equivalent charging performed last time and an integrated value of the discharging current of the storage battery string after completion of the uniform charging performed last time. When the ratio reaches a predetermined value, it is determined that the equal charge of the storage battery array is completed.
  3.  請求項1に記載の蓄電システムにおいて、
     前記制御装置は、前記均等充電における定電圧によって前記蓄電池列を充電する定電圧充電期間において、前記蓄電池列の充電電流が低下して所定値となった場合に、前記蓄電池列の前記均等充電が完了したと判定する
     ことを特徴とする蓄電システム。
    The power storage system according to claim 1,
    In the constant voltage charging period in which the storage battery train is charged with the constant voltage in the equal charge, the control device performs the equal charge of the storage battery train when the charge current of the storage battery train decreases to a predetermined value. A power storage system characterized by determining that it has been completed.
  4.  請求項3に記載の蓄電システムにおいて、
     前記均等充電は、定電流によって前記蓄電池列の充電を開始し、前記蓄電池列の電圧が所定の電圧に到達した後に定電圧によって前記蓄電池列を充電する定電流-定電圧充電方式によって行われる
     ことを特徴とする蓄電池システム。
    The power storage system according to claim 3,
    The equal charge is performed by a constant current-constant voltage charging method in which charging of the storage battery train is started by a constant current, and the storage battery train is charged by a constant voltage after the voltage of the storage battery train reaches a predetermined voltage. A storage battery system characterized by
  5.  請求項3に記載の蓄電システムにおいて、
     前記均等充電は、定電力によって前記蓄電池列の充電を開始し、前記蓄電池列の電圧が所定の電圧に到達した後に定電圧によって前記蓄電池列を充電する定電力-定電圧充電方式によって行われる
     ことを特徴とする蓄電池システム。
    The power storage system according to claim 3,
    The equal charge is performed by a constant power-constant voltage charging method in which charging of the storage battery train is started by constant power and the storage battery train is charged by constant voltage after the voltage of the storage battery row reaches a predetermined voltage. A storage battery system characterized by
  6.  少なくとも一つの鉛蓄電池セルを含む蓄電池列を複数並列に接続した多並列蓄電池モジュールと、前記多並列蓄電池モジュールの電力の授受を制御する交直変換装置と、前記蓄電池列毎に対応して設けられ、対応する前記蓄電池列と前記交直変換装置との間に直列に接続されたスイッチと、前記蓄電池列の状態を前記蓄電池列毎に監視し、前記スイッチのオン/オフを制御する制御装置とを備えた蓄電システムにおける前記多並列蓄電池モジュールの充電制御方法であって、
     前記制御装置が、前記スイッチをオンして前記交直変換装置から前記蓄電池列へ電力を供給することにより、前記蓄電池列を満充電状態にするための均等充電を開始する第1ステップと、
     前記制御装置が、前記蓄電池列毎に前記均等充電が完了したか否かを判定する第2ステップと、
     前記制御装置が、前記均等充電が完了したと判定した前記蓄電池列の前記スイッチをオフする第3ステップとを含む
     ことを特徴とする充電制御方法。
    A multi-parallel storage battery module in which a plurality of storage battery arrays including at least one lead storage battery cell are connected in parallel, an AC / DC converter for controlling power transmission / reception of the multi-parallel storage battery module, and each storage battery array are provided correspondingly, A switch connected in series between the corresponding storage battery array and the AC / DC converter, and a control device that monitors the state of the storage battery array for each storage battery array and controls on / off of the switch. A charge control method for the multi-parallel storage battery module in the storage system,
    A first step in which the control device turns on the switch and supplies power from the AC / DC converter to the storage battery train to start equal charge for bringing the storage battery train into a fully charged state;
    A second step in which the control device determines whether or not the equal charge has been completed for each storage battery row;
    A charge control method comprising: a third step of turning off the switch of the storage battery array in which the control device determines that the equal charge has been completed.
  7.  請求項6に記載の充電制御方法において、
     前記第2ステップは、前記制御装置が、前回実施した前記均等充電が完了してからの前記蓄電池列の充電電流の積算値と前回実施した前記均等充電が完了してからの前記蓄電池列の放電電流の積算値との比率が所定値となった場合に、前記蓄電池列の前記均等充電が完了したと判定するステップを含む
     ことを特徴とする充電制御方法。
    The charge control method according to claim 6, wherein
    In the second step, an integrated value of the charging current of the storage battery train after the controller performs the previous equal charge and the discharge of the storage battery train after the previous equivalent charge is completed. The charge control method characterized by including the step which determines that the said equal charge of the said storage battery row | line | column was completed when the ratio with the integrated value of electric current becomes a predetermined value.
  8.  請求項6に記載の充電制御方法において、
     前記第2ステップは、前記制御装置が、前記均等充電における定電圧によって前記蓄電池列を充電する定電圧充電期間において、前記蓄電池列の充電電流が低下して所定値となった場合に、前記蓄電池列の前記均等充電が完了したと判定するステップを含む
     ことを特徴とする充電制御方法。
    The charge control method according to claim 6, wherein
    In the constant voltage charging period in which the control device charges the storage battery train with a constant voltage in the equal charge, the storage battery is reduced when the charging current of the storage battery array decreases to a predetermined value. A charge control method comprising: determining that the equal charge of the column is completed.
  9.  請求項8に記載の充電制御方法において、
     前記均等充電は、定電流によって前記蓄電池列の充電を開始し、前記蓄電池列の電圧が所定の電圧に到達した後に定電圧によって前記蓄電池列を充電する定電流-定電圧充電方式によって行われる
     ことを特徴とする充電制御方法。
    The charge control method according to claim 8,
    The equal charge is performed by a constant current-constant voltage charging method in which charging of the storage battery train is started by a constant current, and the storage battery train is charged by a constant voltage after the voltage of the storage battery train reaches a predetermined voltage. A charge control method characterized by the above.
  10.  請求項8に記載の充電制御方法において、
     前記均等充電は、定電力によって前記蓄電池列の充電を開始し、前記蓄電池列の電圧が所定の電圧に到達した後に定電圧によって前記蓄電池列を充電する定電力-定電圧充電方式によって行われる
     ことを特徴とする充電制御方法。
    The charge control method according to claim 8,
    The equal charge is performed by a constant power-constant voltage charging method in which charging of the storage battery train is started by constant power and the storage battery train is charged by constant voltage after the voltage of the storage battery row reaches a predetermined voltage. A charge control method characterized by the above.
PCT/JP2019/012333 2018-03-26 2019-03-25 Power storage system and charging control method WO2019188889A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980022775.XA CN111937269A (en) 2018-03-26 2019-03-25 Power storage system and charge control method
JP2020510024A JPWO2019188889A1 (en) 2018-03-26 2019-03-25 Power storage system and charge control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-057476 2018-03-26
JP2018057476 2018-03-26

Publications (1)

Publication Number Publication Date
WO2019188889A1 true WO2019188889A1 (en) 2019-10-03

Family

ID=68061586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012333 WO2019188889A1 (en) 2018-03-26 2019-03-25 Power storage system and charging control method

Country Status (3)

Country Link
JP (1) JPWO2019188889A1 (en)
CN (1) CN111937269A (en)
WO (1) WO2019188889A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022209244A1 (en) * 2021-03-30 2022-10-06 古河電気工業株式会社 Power storage device and equalization charging method
WO2023238711A1 (en) * 2022-06-06 2023-12-14 エナジーウィズ株式会社 Renewable energy electric power generation system and method for charging electric power storage device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57180333A (en) * 1981-04-30 1982-11-06 Shin Kobe Electric Machinery Charger
JP2003244854A (en) * 2002-02-13 2003-08-29 Mitsubishi Heavy Ind Ltd Charge and discharge controller for storage apparatus, charge and discharge control method, and power storage system
JP2004179097A (en) * 2002-11-29 2004-06-24 Shin Kobe Electric Mach Co Ltd Uniform charging system of lead battery
WO2013054672A1 (en) * 2011-10-11 2013-04-18 新神戸電機株式会社 Lead storage battery system
JP2014023361A (en) * 2012-07-20 2014-02-03 Toyota Motor Corp Power storage system, and control method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012128252A1 (en) * 2011-03-18 2012-09-27 三洋電機株式会社 Power storage system
JP2014036528A (en) * 2012-08-09 2014-02-24 Nippon Soken Inc Insulated charging device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57180333A (en) * 1981-04-30 1982-11-06 Shin Kobe Electric Machinery Charger
JP2003244854A (en) * 2002-02-13 2003-08-29 Mitsubishi Heavy Ind Ltd Charge and discharge controller for storage apparatus, charge and discharge control method, and power storage system
JP2004179097A (en) * 2002-11-29 2004-06-24 Shin Kobe Electric Mach Co Ltd Uniform charging system of lead battery
WO2013054672A1 (en) * 2011-10-11 2013-04-18 新神戸電機株式会社 Lead storage battery system
JP2014023361A (en) * 2012-07-20 2014-02-03 Toyota Motor Corp Power storage system, and control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022209244A1 (en) * 2021-03-30 2022-10-06 古河電気工業株式会社 Power storage device and equalization charging method
WO2023238711A1 (en) * 2022-06-06 2023-12-14 エナジーウィズ株式会社 Renewable energy electric power generation system and method for charging electric power storage device

Also Published As

Publication number Publication date
CN111937269A (en) 2020-11-13
JPWO2019188889A1 (en) 2021-03-25

Similar Documents

Publication Publication Date Title
US9231440B2 (en) Power supply apparatus and controlling method of the same
US8653792B2 (en) Power storage system including a plurality of battery modules and on/off devices or voltage converters
US7928691B2 (en) Method and system for cell equalization with isolated charging sources
US9564768B2 (en) Discharge device for electricity storage device
US20090267565A1 (en) Method and system for cell equalization with charging sources and shunt regulators
US20130020997A1 (en) Battery System
JPH0997629A (en) Plural lithium ion secondary battery charging method
US9472960B2 (en) Regulating device, battery assembly device and regulating method
CN105210256A (en) Power supply apparatus
US20180278064A1 (en) Storage battery management device, method, and computer program product
JP5664310B2 (en) DC power supply
WO2019188889A1 (en) Power storage system and charging control method
JP5861063B2 (en) Power storage device and power supply system
JP5314626B2 (en) Power supply system, discharge control method, and discharge control program
JP2003288951A (en) Charging method for lead storage battery
JP7382940B2 (en) Energy storage system and charging control method
JP7317801B2 (en) Energy storage system and measurement method
CN108432085B (en) Balanced Battery Charging System
JP7097456B2 (en) Power storage system and charge control method
JP2010263755A (en) Charge control method
CN112768793A (en) Active equalization compensation method, device and system for battery pack and electronic equipment
WO2023037599A1 (en) Power storage system and method for controlling charging thereof
US20240106254A1 (en) Power Storage System
JP7246996B2 (en) Storage system and charge control method
WO2023238712A1 (en) Battery pack charging method and power storage system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776887

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020510024

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19776887

Country of ref document: EP

Kind code of ref document: A1