JPWO2019188889A1 - Power storage system and charge control method - Google Patents

Power storage system and charge control method Download PDF

Info

Publication number
JPWO2019188889A1
JPWO2019188889A1 JP2020510024A JP2020510024A JPWO2019188889A1 JP WO2019188889 A1 JPWO2019188889 A1 JP WO2019188889A1 JP 2020510024 A JP2020510024 A JP 2020510024A JP 2020510024 A JP2020510024 A JP 2020510024A JP WO2019188889 A1 JPWO2019188889 A1 JP WO2019188889A1
Authority
JP
Japan
Prior art keywords
storage battery
charging
battery row
row
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020510024A
Other languages
Japanese (ja)
Inventor
中村 秀人
秀人 中村
純夫 可知
純夫 可知
渉 手塚
渉 手塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Furukawa Battery Co Ltd
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD., Furukawa Battery Co Ltd filed Critical THE FURUKAW ELECTRIC CO., LTD.
Publication of JPWO2019188889A1 publication Critical patent/JPWO2019188889A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/569Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

多並列蓄電池モジュールを有する蓄電システムにおいて、より簡単な構成で、均等充電による蓄電池列間の充電状態のばらつきを抑える。蓄電システム(100)は、少なくとも一つの鉛蓄電池セル(200)を含む蓄電池列(20)を複数並列に接続した多並列蓄電池モジュール(2)と、前記蓄電池列毎に対応して設けられ、対応する前記蓄電池列と交直変換装置(3)との間に直列に接続されたスイッチ(4_1〜4_n)と、制御装置(1)とを備え、前記制御装置は、前記スイッチをオンして前記交直変換装置から前記蓄電池列へ電力を供給することにより、前記蓄電池列を満充電状態にするための均等充電を行うとともに、前記蓄電池列毎に前記均等充電が完了したか否かを判定し、前記均等充電が完了したと判定した前記蓄電池列の前記スイッチをオフすることを特徴とする。In a power storage system having a multi-parallel storage battery module, a simpler configuration suppresses variations in the charging state between storage battery rows due to equal charging. The power storage system (100) is provided and supported for each of the storage battery rows and a multi-parallel storage battery module (2) in which a plurality of storage battery rows (20) including at least one lead storage battery cell (200) are connected in parallel. A switch (4_1 to 4_n) connected in series between the storage battery array and the AC / DC converter (3) and a control device (1) are provided, and the control device turns on the switch to perform the AC / DC. By supplying power from the conversion device to the storage battery row, uniform charging is performed to bring the storage battery row into a fully charged state, and it is determined for each storage battery row whether or not the uniform charging is completed. It is characterized in that the switch of the storage battery row determined to have completed uniform charging is turned off.

Description

本発明は、蓄電システムおよび充電制御方法に関し、例えば鉛蓄電池の充電を制御する蓄電システム、および鉛蓄電池の充電を制御する充電制御方法に関する。 The present invention relates to a power storage system and a charge control method, for example, a power storage system that controls charging of a lead storage battery, and a charge control method that controls charging of a lead storage battery.

鉛蓄電池は、長期間の充放電の繰り返しにより、容量が低下し劣化する。鉛蓄電池を用いた蓄電システムでは、鉛蓄電池の劣化の一因であるサルフェーションを除去するために、鉛蓄電池を満充電状態にする均等充電を定期的に行っている。 Lead-acid batteries deteriorate in capacity due to repeated charging and discharging for a long period of time. In a power storage system using a lead-acid battery, in order to remove sulfation, which is one of the causes of deterioration of the lead-acid battery, the lead-acid battery is regularly charged evenly to a fully charged state.

近年、鉛蓄電池の大容量化の要求により、単一の鉛蓄電池セル(単電池)または複数の鉛蓄電池セルを直列に接続した蓄電池列(「ストリング」とも称する。)を複数並列に接続した多並列蓄電池モジュールを備えた蓄電システムが普及しつつある。 In recent years, due to the demand for larger capacity of lead-acid batteries, a single lead-acid battery cell (single battery) or a storage battery row (also referred to as a "string") in which a plurality of lead-acid battery cells are connected in series is connected in parallel. Power storage systems equipped with parallel storage battery modules are becoming widespread.

従来の多並列蓄電池モジュールを備えた蓄電システムでは、多並列蓄電池全体で均等充電を管理している。そのため、各蓄電池列の鉛蓄電池セル自体の特性(内部抵抗)や温度等に起因して、均等充電時に蓄電池列間に流れる充電電流がばらつくことにより、過充電や充電不足となる蓄電池列が発生し、多並列蓄電池モジュールの劣化が進行するという問題があった。 In a conventional power storage system equipped with a multi-parallel storage battery module, uniform charging is managed for the entire multi-parallel storage battery. Therefore, due to the characteristics (internal resistance) and temperature of the lead-acid battery cell itself in each storage battery row, the charging current flowing between the storage battery rows varies during uniform charging, resulting in a storage battery row that is overcharged or undercharged. However, there is a problem that the deterioration of the multi-parallel storage battery module progresses.

この問題を解決するための従来技術として、交直変換装置(PCS:Power Conversion System)と蓄電池列との間に充放電量を制御する充放電制御機器(チョッパ)を接続し、各蓄電池列に接続された充放電制御機器が対応する蓄電池列の充放電量を調整することで、均等充電時に過充電や充電不足となることを防止する技術が知られている(特許文献1参照)。 As a conventional technique for solving this problem, a charge / discharge control device (chopper) for controlling the charge / discharge amount is connected between the AC / DC converter (PCS: Power Conversion System) and the storage battery row, and the charge / discharge control device (chopper) is connected to each storage battery row. There is known a technique for preventing overcharging or insufficient charging during uniform charging by adjusting the charge / discharge amount of the corresponding storage battery row of the charged / discharged control device (see Patent Document 1).

特許第6247039号公報Japanese Patent No. 6247039

しかしながら、上述した特許文献1に開示された従来技術では、各蓄電池列の充放電量を調整するための充放電制御機器を蓄電池列毎に設ける必要があり、蓄電システムのコストが高くなるという課題がある。 However, in the prior art disclosed in Patent Document 1 described above, it is necessary to provide a charge / discharge control device for adjusting the charge / discharge amount of each storage battery row for each storage battery row, which causes a problem that the cost of the power storage system increases. There is.

本発明は、上述した課題に鑑みてなされたものであり、本発明の目的は、多並列蓄電池モジュールを備えた蓄電システムにおいて、より簡単な構成で、均等充電による蓄電池列間の充電状態のばらつきを抑えることにある。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to have a simpler configuration in a power storage system including a multi-parallel storage battery module, and to vary the charging state between storage battery rows due to uniform charging. Is to suppress.

本発明の代表的な実施の形態に係る蓄電システムは、少なくとも一つの鉛蓄電池セルを含む複数の蓄電池列を並列に接続した多並列蓄電池モジュールと、前記多並列蓄電池モジュールの電力の授受を制御する交直変換装置と、前記蓄電池列毎に対応して設けられ、対応する前記蓄電池列と前記交直変換装置との間に直列に接続されたスイッチと、前記蓄電池列の状態を前記蓄電池列毎に監視し、前記スイッチのオン/オフを制御する制御装置とを備え、前記制御装置は、前記スイッチをオンして前記交直変換装置から前記蓄電池列へ電力を供給することにより、前記蓄電池列を満充電状態にするための均等充電を行うとともに、前記蓄電池列毎に前記均等充電が完了したか否かを判定し、前記均等充電が完了したと判定した前記蓄電池列の前記スイッチをオフすることを特徴とする。 The power storage system according to a typical embodiment of the present invention controls the transfer of power between a multi-parallel storage battery module in which a plurality of storage battery rows including at least one lead storage battery cell are connected in parallel and the multi-parallel storage battery module. The AC / DC conversion device, a switch provided for each storage battery row and connected in series between the corresponding storage battery row and the AC / DC conversion device, and the state of the storage battery row are monitored for each storage battery row. A control device for controlling the on / off of the switch is provided, and the control device fully charges the storage battery row by turning on the switch and supplying power from the AC / DC conversion device to the storage battery row. It is characterized in that even charging for the state is performed, and whether or not the equal charging is completed is determined for each storage battery row, and the switch of the storage battery row determined to be completed is turned off. And.

本発明に係る多並列蓄電池モジュールを有する蓄電システムによれば、より簡単な構成で、均等充電による蓄電池列間の充電状態のばらつきを抑えることが可能となる。 According to the power storage system having the multi-parallel storage battery module according to the present invention, it is possible to suppress the variation in the charging state between the storage battery rows due to uniform charging with a simpler configuration.

本発明の一実施の形態に係る蓄電システムの構成を示す図である。It is a figure which shows the structure of the power storage system which concerns on one Embodiment of this invention. 実施の形態に係る蓄電システムにおける均等充電時の充電制御方法の流れを示すフロー図である。It is a flow chart which shows the flow of the charge control method at the time of equal charge in the power storage system which concerns on embodiment. 実施の形態に係る蓄電システムにおける均等充電時の充電制御方法を説明するための図である。It is a figure for demonstrating the charge control method at the time of equal charge in the power storage system which concerns on embodiment. 実施の形態に係る蓄電システムにおける均等充電時の充電制御方法を説明するための図である。It is a figure for demonstrating the charge control method at the time of equal charge in the power storage system which concerns on embodiment. 実施の形態に係る蓄電システムにおける均等充電時の充電制御方法を説明するための図である。It is a figure for demonstrating the charge control method at the time of equal charge in the power storage system which concerns on embodiment. 実施の形態に係る蓄電システムにおける均等充電時の充電制御方法を説明するための図である。It is a figure for demonstrating the charge control method at the time of equal charge in the power storage system which concerns on embodiment. 均等充電時の蓄電池列(鉛蓄電池)の充電電流および放電電流を示すタイミングチャートである。It is a timing chart which shows the charge current and discharge current of the storage battery row (lead-acid battery) at the time of equal charge. 定電圧−定電流充電方式または定電力−定電流充電方式によって均等充電を行ったときの定電圧充電期間における蓄電池列の充電電流と充電状態(SOC)との関係を示す図である。It is a figure which shows the relationship between the charge current of the storage battery row and the charge state (SOC) in the constant voltage charging period at the time of performing uniform charge by the constant voltage-constant current charging method or the constant power-constant current charging method. 定電流−定電圧充電方式によって均等充電を行った時の各蓄電池列に流れる充電電流の時間的な変化の一例を示す図である。It is a figure which shows an example of the temporal change of the charging current which flows in each storage battery row at the time of performing uniform charge by a constant current-constant voltage charging system.

1.実施の形態の概要
先ず、本願において開示される発明の代表的な実施の形態について概要を説明する。なお、以下の説明では、一例として、発明の構成要素に対応する図面上の参照符号を、括弧を付して記載している。
1. 1. Outline of Embodiment First, an outline of a typical embodiment of the invention disclosed in the present application will be described. In the following description, as an example, reference numerals on drawings corresponding to the components of the invention are described in parentheses.

〔1〕本発明の代表的な実施の形態に係る蓄電システム(100)は、少なくとも一つの鉛蓄電池セル(200)を含む複数の蓄電池列(20,20_1〜20_n)を並列に接続した多並列蓄電池モジュール(2)と、前記多並列蓄電池モジュールの電力の授受を制御する交直変換装置(3)と、前記蓄電池列毎に対応して設けられ、対応する前記蓄電池列と前記交直変換装置との間に直列に接続されたスイッチ(4_1〜4_n)と、前記蓄電池列の状態を前記蓄電池列毎に監視し、前記スイッチのオン/オフを制御する制御装置(1)とを備え、前記制御装置は、前記スイッチをオンして前記交直変換装置から前記蓄電池列へ電力を供給することにより、前記蓄電池列を満充電状態にするための均等充電を行うとともに、前記蓄電池列毎に前記均等充電が完了したか否かを判定し、前記均等充電が完了したと判定した前記蓄電池列の前記スイッチをオフすることを特徴とする。 [1] The power storage system (100) according to a typical embodiment of the present invention is a multi-parallel connection in which a plurality of storage battery rows (20, 20_1 to 20_n) including at least one lead storage battery cell (200) are connected in parallel. The storage battery module (2), the AC / DC conversion device (3) that controls the transfer of power of the multi-parallel storage battery module, and the AC / DC conversion device that is provided corresponding to each storage battery row and corresponds to the storage battery row and the AC / DC conversion device. The control device includes a switch (4-1 to 4_n) connected in series between them, and a control device (1) that monitors the state of the storage battery row for each storage battery row and controls on / off of the switch. By turning on the switch and supplying power from the AC / DC conversion device to the storage battery row, equal charging is performed to bring the storage battery row into a fully charged state, and the uniform charging is performed for each storage battery row. It is characterized in that it is determined whether or not the charging is completed, and the switch of the storage battery row that is determined to have completed the uniform charging is turned off.

〔2〕上記蓄電システムにおいて、前記制御装置は、前回実施した前記均等充電が完了してからの前記蓄電池列の充電電流の積算値と前回実施した前記均等充電が完了してからの前記蓄電池列の放電電流の積算値との比率が所定値となった場合に、前記蓄電池列の前記均等充電が完了したと判定してもよい。 [2] In the power storage system, the control device uses the integrated value of the charging current of the storage battery row after the completion of the uniform charging performed last time and the storage battery row after the completion of the uniform charging performed last time. When the ratio to the integrated value of the discharge current of the above becomes a predetermined value, it may be determined that the uniform charging of the storage battery row is completed.

〔3〕上記蓄電システムにおいて、前記制御装置は、前記均等充電における定電圧によって前記蓄電池列を充電する定電圧充電期間において、前記蓄電池列の充電電流が低下して所定値(Ith)となった場合に、前記蓄電池列の前記均等充電が完了したと判定してもよい。 [3] In the power storage system, the control device reduces the charging current of the storage battery row to a predetermined value (Ith) during the constant voltage charging period in which the storage battery row is charged by the constant voltage in the uniform charging. In this case, it may be determined that the uniform charging of the storage battery row is completed.

〔4〕上記蓄電システムにおいて、前記均等充電は、定電流によって前記蓄電池列の充電を開始し、前記蓄電池列の電圧が所定の電圧に到達した後に定電圧によって前記蓄電池列を充電する定電流−定電圧充電方式によって行われてもよい。 [4] In the power storage system, in the uniform charging, charging of the storage battery row is started by a constant current, and after the voltage of the storage battery row reaches a predetermined voltage, the constant current that charges the storage battery row by a constant voltage- It may be carried out by a constant voltage charging method.

〔5〕上記蓄電システムにおいて、前記均等充電は、定電力によって前記蓄電池列の充電を開始し、前記蓄電池列の電圧が所定の電圧に到達した後に定電圧によって前記蓄電池列を充電する定電力−定電圧充電方式によって行われてもよい。 [5] In the power storage system, in the uniform charging, charging of the storage battery row is started by a constant power, and after the voltage of the storage battery row reaches a predetermined voltage, the constant power that charges the storage battery row by a constant voltage- It may be carried out by a constant voltage charging method.

〔6〕本発明の代表的な実施の形態に係る充電制御方法は、少なくとも一つの鉛蓄電池セル(200)を含む複数の蓄電池列(20,20_1〜20_n)を並列に接続した多並列蓄電池モジュール(2)と、前記多並列蓄電池モジュールの電力の授受を制御する交直変換装置(3)と、前記蓄電池列毎に対応して設けられ、対応する前記蓄電池列と前記交直変換装置との間に直列に接続されたスイッチ(4_1〜4_n)と、前記蓄電池列の状態を前記蓄電池列毎に監視し、前記スイッチのオン/オフを制御する制御装置(1)とを備えた蓄電システムにおける前記多並列蓄電池モジュールの充電制御方法であって、前記制御装置が、前記スイッチをオンして前記交直変換装置から前記蓄電池列へ電力を供給することにより、前記蓄電池列を満充電状態にするための均等充電を開始する第1ステップ(S1)と、前記制御装置が、前記蓄電池列毎に前記均等充電が完了したか否かを判定する第2ステップ(S2)と、前記制御装置が、前記均等充電が完了したと判定した前記蓄電池列の前記スイッチをオフする第3ステップ(S3)とを含むことを特徴とする。 [6] The charge control method according to a typical embodiment of the present invention is a multi-parallel storage battery module in which a plurality of storage battery rows (20, 20_1 to 20_n) including at least one lead storage battery cell (200) are connected in parallel. (2), an AC / DC converter (3) that controls the transfer of power of the multi-parallel storage battery module, and an AC / DC converter (3) that is provided corresponding to each storage battery row and is provided between the corresponding storage battery row and the AC / DC converter. The multiple in a power storage system including a switch (4-1 to 4_n) connected in series and a control device (1) that monitors the state of the storage battery row for each storage battery row and controls on / off of the switch. A charging control method for a parallel storage battery module, wherein the control device turns on the switch and supplies power from the AC / DC conversion device to the storage battery row to make the storage battery row fully charged. The first step (S1) for starting charging, the second step (S2) for the control device to determine whether or not the uniform charging is completed for each storage battery row, and the control device for the uniform charging. It is characterized by including a third step (S3) of turning off the switch of the storage battery row determined to be completed.

〔7〕上記充電制御方法において、前記第2ステップは、前記制御装置が、前回実施した前記均等充電が完了してからの前記蓄電池列の充電電流の積算値と前回実施した前記均等充電が完了してからの前記蓄電池列の放電電流の積算値との比率が所定値となった場合に、前記蓄電池列の前記均等充電が完了したと判定するステップを含んでもよい。 [7] In the charge control method, in the second step, the integrated value of the charging current of the storage battery row after the uniform charging performed last time by the control device and the uniform charging performed last time are completed. Then, when the ratio of the discharge current of the storage battery row to the integrated value becomes a predetermined value, the step of determining that the uniform charging of the storage battery row is completed may be included.

〔8〕上記充電制御方法において、前記第2ステップは、前記制御装置が、前記均等充電における定電圧によって前記蓄電池列を充電する定電圧充電期間において、前記蓄電池列の充電電流が低下して所定値(Ith)となった場合に、前記蓄電池列の前記均等充電が完了したと判定するステップを含んでもよい。 [8] In the charge control method, in the second step, the charging current of the storage battery row is reduced during the constant voltage charging period in which the control device charges the storage battery row by the constant voltage in the uniform charging. When the value (Ith) is reached, the step of determining that the uniform charging of the storage battery row is completed may be included.

〔9〕上記充電制御方法において、前記均等充電は、定電流によって前記蓄電池列の充電を開始し、前記蓄電池列の電圧が所定の電圧に到達した後に定電圧によって前記蓄電池列を充電する定電流−定電圧充電方式によって行われてもよい。 [9] In the charge control method, in the uniform charging, charging of the storage battery row is started by a constant current, and after the voltage of the storage battery row reaches a predetermined voltage, the storage battery row is charged by the constant current. -It may be carried out by a constant voltage charging method.

〔10〕上記充電制御方法において、前記均等充電は、定電力によって前記蓄電池列の充電を開始し、前記蓄電池列の電圧が所定の電圧に到達した後に定電圧によって前記蓄電池列を充電する定電力−定電圧充電方式によって行われてもよい。 [10] In the charge control method, in the uniform charging, charging of the storage battery row is started by a constant power, and after the voltage of the storage battery row reaches a predetermined voltage, the constant power is charged by the constant voltage. -It may be carried out by a constant voltage charging method.

2.実施の形態の具体例
以下、本発明の実施の形態の具体例について図を参照して説明する。なお、以下の説明において、各実施の形態において共通する構成要素には同一の参照符号を付し、繰り返しの説明を省略する。また、図面は模式的なものであり、各要素の寸法の関係、各要素の比率などは、現実と異なる場合があることに留意する必要がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。
2. Specific Examples of Embodiments Hereinafter, specific examples of embodiments of the present invention will be described with reference to the drawings. In the following description, the same reference numerals will be given to the components common to each embodiment, and the repeated description will be omitted. In addition, it should be noted that the drawings are schematic, and the relationship between the dimensions of each element, the ratio of each element, etc. may differ from the reality. Even between drawings, there may be parts where the relationship and ratio of dimensions are different from each other.

≪実施の形態1≫
図1は、本発明の一実施の形態に係る蓄電システムの構成を示す図である。
同図に示される蓄電システム100は、例えばサイクルユースの鉛蓄電池を備えた蓄電システムである。蓄電システム100は、例えば、通常時に電力供給部5(商用電源)から負荷6に給電し、停電の発生時には、電源バックアップ用の鉛蓄電池から負荷6に給電する。
<< Embodiment 1 >>
FIG. 1 is a diagram showing a configuration of a power storage system according to an embodiment of the present invention.
The power storage system 100 shown in the figure is, for example, a power storage system including a lead storage battery for cycle use. For example, the power storage system 100 supplies power to the load 6 from the power supply unit 5 (commercial power supply) during normal operation, and supplies power to the load 6 from the lead storage battery for power supply backup when a power failure occurs.

電力供給部5は、蓄電システム100および負荷6に電力を供給する機能部である。電力供給部5は、例えば、商用電源である。なお、電力供給部5は、商用電源に加えて、太陽光発電(PV:Photovoltaics)等の再生可能エネルギーに基づいて電力を発生させる発電設備を有していてもよい。 The power supply unit 5 is a functional unit that supplies electric power to the power storage system 100 and the load 6. The power supply unit 5 is, for example, a commercial power source. In addition to the commercial power source, the power supply unit 5 may have a power generation facility that generates electric power based on renewable energy such as photovoltaic power generation (PV: Photovoltaics).

蓄電システム100は、蓄電池モジュール2、交直変換装置3、スイッチ4_1〜4_n(nは2以上の整数)、および制御装置1を備えている。 The power storage system 100 includes a storage battery module 2, an AC / DC conversion device 3, switches 4_1 to 4_n (n is an integer of 2 or more), and a control device 1.

蓄電池モジュール2は、電力を充放電可能に構成された鉛蓄電池を含む。蓄電池モジュール2は、少なくとも一つの鉛蓄電池セルを含む蓄電池列を複数並列に接続した多並列蓄電池モジュールである。 The storage battery module 2 includes a lead storage battery configured to be able to charge and discharge electric power. The storage battery module 2 is a multi-parallel storage battery module in which a plurality of storage battery rows including at least one lead storage battery cell are connected in parallel.

具体的に、蓄電池モジュール2は、図1に示すように、m(mは1以上の整数)個の鉛蓄電池セル200が直列に接続された複数の蓄電池列20_1〜20_nを並列に接続した構造を有している。以下、蓄電池モジュール2を「多並列蓄電池モジュール2」とも称する。また、それぞれの蓄電池列20_1〜20_nを区別しない場合には、単に、「蓄電池列20」と表記する場合がある。 Specifically, as shown in FIG. 1, the storage battery module 2 has a structure in which a plurality of storage battery rows 20_1 to 20_n in which m (m is an integer of 1 or more) lead storage battery cells 200 are connected in series are connected in parallel. have. Hereinafter, the storage battery module 2 is also referred to as a “multi-parallel storage battery module 2”. Further, when the respective storage battery rows 20_1 to 20_n are not distinguished, it may be simply referred to as "storage battery row 20".

また、蓄電池モジュール2は、各蓄電池列20_1〜20_nの出力電圧(蓄電電圧)を計測する電圧センサ201と、各蓄電池列20_1〜20_nの充電電流および放電電流を計測する電流センサ202とを、蓄電池列20_1〜20_n毎に有している。 Further, the storage battery module 2 includes a voltage sensor 201 that measures the output voltage (storage voltage) of each storage battery row 20_1 to 20_n, and a current sensor 202 that measures the charge current and discharge current of each storage battery row 20_1 to 20_n. It is provided for each column 20_1 to 20_n.

交直変換装置(以下、「PCS(Power Conditioning System)とも称する。)3は、後述する制御装置1によって制御され、電力供給部5、蓄電池モジュール2、および負荷6の間で相互に電力を変換し、電力供給部5、蓄電池モジュール2、および負荷6の間での電力の授受を制御する電力変換部である。 The AC / DC conversion device (hereinafter, also referred to as “PCS (Power Conditioning System)) 3 is controlled by a control device 1 described later, and converts power between the power supply unit 5, the storage battery module 2, and the load 6 to each other. , A power conversion unit that controls the transfer of electric power between the power supply unit 5, the storage battery module 2, and the load 6.

例えば、PCS3は、電力供給部5からの交流電力(AC)を直流電力(DC)に変換して蓄電池モジュール2に供給する。PCS3は、例えば、DC/DCコンバータ、AC/DCコンバータ(AC/DC)、およびスイッチ回路等を含んで構成されている。 For example, the PCS 3 converts the alternating current power (AC) from the power supply unit 5 into direct current power (DC) and supplies it to the storage battery module 2. The PCS3 includes, for example, a DC / DC converter, an AC / DC converter (AC / DC), a switch circuit, and the like.

スイッチ4_1〜4_nは、PCS3と多並列蓄電池モジュール2との間の接続と遮断を切り替える装置である。図1に示すように、スイッチ4_1〜4_nは、蓄電池列20_1〜20_n毎に対応して設けられ、対応する蓄電池列20_1〜20_nとPCS3との間に直列に接続されている。スイッチ4_1〜4_nは、例えば電磁スイッチ(リレー)である。 Switches 4-1 to 4_n are devices for switching connection and disconnection between the PCS 3 and the multi-parallel storage battery module 2. As shown in FIG. 1, the switches 4_1 to 4_n are provided corresponding to each of the storage battery rows 20_1 to 20_n, and are connected in series between the corresponding storage battery rows 20_1 to 20_n and the PCS3. The switches 4_1 to 4_n are, for example, electromagnetic switches (relays).

制御装置1は、蓄電システム100全体の統括的な制御を行う装置である。制御装置1は、各蓄電池列20_1〜20_nの状態を、蓄電池列20_1〜20_n毎に監視し、スイッチ4_1〜4_nのオン/オフを制御する。 The control device 1 is a device that comprehensively controls the entire power storage system 100. The control device 1 monitors the state of each storage battery row 20_1 to 20_n for each storage battery row 20_1 to 20_n, and controls the on / off of the switches 4_1 to 4_n.

図1に示すように、制御装置1は、監視部11、蓄電池管理部12、およびスイッチ制御部13を有する。
監視部11は、多並列蓄電池モジュール2の電圧センサ201および電流センサ202によって計測された物理量を逐次取得し、当該物理量に基づいて多並列蓄電池モジュール2の状態を監視するデータ処理装置である。監視部11は、例えば、BMU(Battery Management Unit)である。
As shown in FIG. 1, the control device 1 includes a monitoring unit 11, a storage battery management unit 12, and a switch control unit 13.
The monitoring unit 11 is a data processing device that sequentially acquires the physical quantities measured by the voltage sensor 201 and the current sensor 202 of the multi-parallel storage battery module 2 and monitors the state of the multi-parallel storage battery module 2 based on the physical quantities. The monitoring unit 11 is, for example, a BMU (Battery Management Unit).

蓄電池管理部12は、蓄電システム100の各構成要素の統括的な制御を司る装置である。蓄電池管理部12は、例えばEMS(Energy Management System)である。
具体的に、蓄電池管理部12は、PCS3を駆動することにより、多並列蓄電池モジュール2の充放電制御を行う。例えば、蓄電池管理部12は、監視部11による多並列蓄電池モジュール2の監視結果に基づいて、定電流−定電圧充電(CCCV)方式や定電力−定電圧充電方式等の各種充電方式で多並列蓄電池モジュール2の均等充電を実行する。
The storage battery management unit 12 is a device that controls the overall control of each component of the power storage system 100. The storage battery management unit 12 is, for example, an EMS (Energy Management System).
Specifically, the storage battery management unit 12 controls the charge / discharge of the multi-parallel storage battery module 2 by driving the PCS3. For example, the storage battery management unit 12 uses various charging methods such as a constant current-constant voltage charging (CCCV) method and a constant power-constant voltage charging method based on the monitoring result of the multi-parallel storage battery module 2 by the monitoring unit 11. Equal charging of the storage battery module 2 is performed.

ここで、定電流−定電圧充電(CCCV)方式とは、定電流によって蓄電池列20_1〜20_nの充電を開始し、蓄電池列20_1〜20_nの電圧が所定の電圧に到達した後に定電圧によって蓄電池列20_1〜20_nを充電する充電方式である。 Here, in the constant current-constant voltage charging (CCCV) method, charging of the storage battery rows 20_1 to 20_n is started by a constant current, and after the voltage of the storage battery rows 20_1 to 20_n reaches a predetermined voltage, the storage battery row is driven by a constant voltage. It is a charging method for charging 20_1 to 20_n.

また、定電力−定電圧充電方式とは、定電力によって蓄電池列20_1〜20_nの充電を開始し、蓄電池列20_1〜20_nの電圧が所定の電圧に到達した後に定電圧によって蓄電池列20_1〜20_nを充電する充電方式である。 Further, in the constant power-constant voltage charging method, charging of the storage battery rows 20_1 to 20_n is started by constant power, and after the voltage of the storage battery rows 20_1 to 20_n reaches a predetermined voltage, the storage battery rows 20_1 to 20_n are charged by the constant voltage. It is a charging method for charging.

スイッチ制御部13は、監視部11または蓄電池管理部12からの指示に応じて、スイッチ4_1〜4_nのオン/オフを切り替える機能部である。例えば、スイッチ4_1〜4_nがリレーである場合、スイッチ制御部13は、監視部11または蓄電池管理部12からの指示に応じてリレーのオン/オフを切り替えるための駆動信号を生成する信号生成回路である。 The switch control unit 13 is a functional unit that switches on / off of switches 4_1 to 4_n in response to an instruction from the monitoring unit 11 or the storage battery management unit 12. For example, when the switches 4_1 to 4_n are relays, the switch control unit 13 is a signal generation circuit that generates a drive signal for switching on / off of the relay in response to an instruction from the monitoring unit 11 or the storage battery management unit 12. is there.

監視部11および蓄電池管理部12は、例えば、ハードウェア資源としての、CPU(Central Processing Unit)等プロセッサと、RAM(Random Access Memory)やROM(Read Only Memory)等の記憶装置と、I/F回路等の周辺回路とを有するデータ処理装置において、上記記憶装置に記憶されたプログラムに従って上記プロセッサが各種演算を実行して周辺回路を制御することにより、実現される。 The monitoring unit 11 and the storage battery management unit 12 include, for example, a processor such as a CPU (Central Processing Unit) as hardware resources, a storage device such as a RAM (Random Access Memory) or a ROM (Read Only Memory), and an I / F. In a data processing device having a peripheral circuit such as a circuit, the processor controls the peripheral circuit by executing various operations according to a program stored in the storage device.

制御装置1は、多並列蓄電池モジュール2を構成する鉛蓄電池の劣化を防止するために、多並列蓄電池モジュール2の蓄電池列20_1〜20_nを満充電状態にする均等充電を定期的に実行する。 In order to prevent deterioration of the lead-acid batteries constituting the multi-parallel storage battery module 2, the control device 1 periodically executes uniform charging to fully charge the storage battery rows 20_1 to 20_n of the multi-parallel storage battery module 2.

制御装置1は、スイッチ4_1〜4_nをオンしてPCS3から蓄電池列20_1〜20_nへ電力を供給することにより、蓄電池列20_1〜20_nを満充電状態にするための均等充電を行うとともに、蓄電池列20_1〜20_n毎に均等充電が完了したか否かを判定し、均等充電が完了したと判定した蓄電池列20_1〜20_nのスイッチ4_1〜4_nをオフする。 The control device 1 turns on the switches 4_1 to 4_n and supplies electric power from the PCS 3 to the storage battery rows 20_1 to 20_n to perform uniform charging to fully charge the storage battery rows 20_1 to 20_n, and the storage battery row 20_1 It is determined whether or not the equal charging is completed every ~ 20_n, and the switches 4_1 to 4_n of the storage battery rows 20_1 to 20_n which are determined to have completed the equal charging are turned off.

以下、蓄電システム100における均等充電時の充電制御方法について、図を用いて詳細に説明する。 Hereinafter, the charge control method at the time of uniform charging in the power storage system 100 will be described in detail with reference to the drawings.

図2は、蓄電システム100における均等充電時の充電制御方法の流れを示すフロー図である。図3A〜図3Dは、蓄電システム100における均等充電時の充電制御方法を説明するための図である。 FIG. 2 is a flow chart showing a flow of a charge control method at the time of uniform charging in the power storage system 100. 3A to 3D are diagrams for explaining a charge control method at the time of uniform charging in the power storage system 100.

ここでは、図3A〜図3Dに示すように、蓄電システム100における多並列蓄電池モジュール2が、直列に接続された4個(m=4)の鉛蓄電池セル200を有する3つの蓄電池列20_1〜20_3を並列に接続した構造を有する場合を例にとり、説明する。 Here, as shown in FIGS. 3A to 3D, the multi-parallel storage battery module 2 in the power storage system 100 has three storage battery rows 20_1 to 20_3 having four (m = 4) lead-acid battery cells 200 connected in series. Will be described by taking an example of having a structure in which the above are connected in parallel.

また、図3A〜図3Dにおいて、均等充電中の各蓄電池列20_1〜20_3の充電電流をそれぞれI1,I2,I3とし、各蓄電池列20_1〜20_3の特性等のばらつきにより、I2>I1>I3であるとする。なお、図3A〜図3Dにおいて、電圧センサ201および電流センサ202の図示を省略している。 Further, in FIGS. 3A to 3D, the charging currents of the storage battery rows 20_1 to 20_3 during uniform charging are set to I1, I2, and I3, respectively, and I2> I1> I3 due to variations in the characteristics of the storage battery rows 20_1 to 20_3. Suppose there is. Note that the voltage sensor 201 and the current sensor 202 are not shown in FIGS. 3A to 3D.

先ず、図3Aに示すように、制御装置1は、スイッチ4_1〜4_3をオンしてPCS3から蓄電池列20_1〜20_3へ電力を供給することにより、蓄電池列20_1〜20_3の均等充電を開始する(ステップS1)。 First, as shown in FIG. 3A, the control device 1 starts uniform charging of the storage battery rows 20_1 to 20_3 by turning on the switches 4_1 to 4_3 and supplying power from the PCS 3 to the storage battery rows 20_1 to 20_3 (step). S1).

例えば、監視部11が蓄電池管理部12に対して均等充電の実行を要求する。蓄電池管理部12は、監視部11からの要求に応じて、スイッチ制御部13を介してスイッチ4_1〜4_3をオンさせる(または、オンしていることを確認する)とともに、所定の充電方式(例えば、定電流−定電圧充電方式)で均等充電を行うように、PCS3を駆動して、蓄電池列20_1〜20_3への電力の供給を開始する。 For example, the monitoring unit 11 requests the storage battery management unit 12 to execute uniform charging. The storage battery management unit 12 turns on (or confirms that the switches 4_1 to 4_3 are turned on) via the switch control unit 13 in response to a request from the monitoring unit 11, and also performs a predetermined charging method (for example, confirming that the switches are turned on). , Constant current-constant voltage charging method), the PCS3 is driven to start supplying electric power to the storage battery rows 20_1 to 20_3.

次に、制御装置1は、均等充電が完了した蓄電池列20_1〜20_3があるか否かを判定する(ステップS2)。具体的には、監視部11が、各蓄電池列20_1〜20_3の電圧センサ201および電流センサ202から取得した各蓄電池列20_1〜20_3の出力電圧および電流の計測結果に基づいて、蓄電池列20_1〜20_3の均等充電が完了したか否かを判定する。なお、具体的な判定方法については、後述する。 Next, the control device 1 determines whether or not there are storage battery rows 20_1 to 20_3 for which uniform charging has been completed (step S2). Specifically, the monitoring unit 11 measures the output voltage and current of each storage battery row 20_1 to 20_3 acquired from the voltage sensor 201 and the current sensor 202 of each storage battery row 20_1 to 20_3, and the storage battery row 20_1 to 20_3 It is determined whether or not the equal charging of the above is completed. The specific determination method will be described later.

ステップS2において、均等充電が完了した蓄電池列20_1〜20_3が存在しない場合には、制御装置1は、引き続き各蓄電池列20_1〜20_3の均等充電を継続する。 In step S2, when the storage battery rows 20_1 to 20_3 for which uniform charging has been completed do not exist, the control device 1 continues equal charging of each storage battery row 20_1 to 20_3.

一方、ステップS2において、均等充電が完了した蓄電池列20_1〜20_3が存在する場合には、制御装置1は、均等充電が完了した蓄電池列20_1〜20_3のスイッチ4_1〜4_3をオフする(ステップS3)。 On the other hand, in step S2, when the storage battery rows 20_1 to 20_3 for which uniform charging has been completed exists, the control device 1 turns off the switches 4_1 to 4_3 of the storage battery rows 20_1 to 20_3 for which uniform charging has been completed (step S3). ..

例えば、上述の例の場合、均等充電中の各蓄電池列20_1〜20_3の充電電流がI2>I1>I3の関係にあるので、最も大きい充電電流I2の蓄電池列20_2が最初に満充電となる。監視部11は、蓄電池列20_2の均等充電が完了したと判定した場合、蓄電池管理部12に対して、そのことを通知する。その通知を受けた蓄電池管理部12は、スイッチ制御部13に対してスイッチ4_2を解放制御(オフ)するように指示し、図3Bに示すように、スイッチ制御部13がスイッチ4_2を解放制御して、蓄電池列20_2をPCS3から解列させる。 For example, in the case of the above example, since the charging currents of the storage battery rows 20_1 to 20_3 during uniform charging have a relationship of I2> I1> I3, the storage battery row 20_2 having the largest charging current I2 is first fully charged. When the monitoring unit 11 determines that the uniform charging of the storage battery row 20_2 is completed, the monitoring unit 11 notifies the storage battery management unit 12 of that fact. Upon receiving the notification, the storage battery management unit 12 instructs the switch control unit 13 to release control (off) the switch 4_2, and as shown in FIG. 3B, the switch control unit 13 controls the release of the switch 4_2. Then, the storage battery row 20_2 is disconnected from the PCS3.

次に、制御装置1は、全ての蓄電池列20_1〜20_3の均等充電が完了したか否かを判定する(ステップS4)。全ての蓄電池列20_1〜20_3の均等充電が完了していない場合には、ステップS2に戻り、上述したステップS2からステップS4までの処理を再度実行する。 Next, the control device 1 determines whether or not uniform charging of all the storage battery rows 20_1 to 20_3 is completed (step S4). If the uniform charging of all the storage battery rows 20_1 to 20_3 is not completed, the process returns to step S2, and the above-described processes from step S2 to step S4 are executed again.

例えば、蓄電池列20_2の均等充電が完了し、蓄電池列20_2をPCS3から解列された後において、均等充電中の蓄電池列20_2,20_3の充電電流はI1>I3の関係にある。そのため、蓄電池列20_1が、蓄電池列20_2の次に満充電となる。監視部11は、蓄電池列20_1の均等充電が完了したと判定した場合、蓄電池管理部12に対して、そのことを通知する。その通知を受けた蓄電池管理部12は、スイッチ制御部13に対してスイッチ4_1を解放制御(オフ)するように指示し、図3Cに示すように、スイッチ制御部13がスイッチ4_1を解放制御して、蓄電池列20_1をPCS3から解列させる。この直後は、まだ、蓄電池列20_3の均等充電が継続しているため、再びステップS2に戻る。 For example, after the uniform charging of the storage battery row 20_2 is completed and the storage battery row 20_2 is disconnected from the PCS3, the charging currents of the storage battery rows 20_2 and 20_3 during the uniform charging have a relationship of I1> I3. Therefore, the storage battery row 20_1 is fully charged next to the storage battery row 20_1. When the monitoring unit 11 determines that the uniform charging of the storage battery row 20_1 is completed, the monitoring unit 11 notifies the storage battery management unit 12 of that fact. Upon receiving the notification, the storage battery management unit 12 instructs the switch control unit 13 to release control (off) the switch 4_1, and as shown in FIG. 3C, the switch control unit 13 controls the release of the switch 4_1. Then, the storage battery row 20_1 is disconnected from the PCS3. Immediately after this, even charging of the storage battery row 20_3 is still continued, so the process returns to step S2 again.

その後、蓄電池列20_3が満充電となった場合、監視部11は、蓄電池列20_3の均等充電が完了したことを、蓄電池管理部12に通知する。その通知を受けた蓄電池管理部12は、スイッチ制御部13に対してスイッチ4_3を解放制御(オフ)するように指示し、図3Dに示すように、スイッチ制御部13がスイッチ4_3を解放制御して、蓄電池列20_3をPCS3から解列させる。これにより、全ての蓄電池列20_1〜20_3の均等充電が完了する。 After that, when the storage battery row 20_3 is fully charged, the monitoring unit 11 notifies the storage battery management unit 12 that the uniform charging of the storage battery row 20_3 is completed. Upon receiving the notification, the storage battery management unit 12 instructs the switch control unit 13 to release control (off) the switch 4_3, and as shown in FIG. 3D, the switch control unit 13 controls the release of the switch 4_3. Then, the storage battery row 20_3 is disconnected from the PCS3. As a result, uniform charging of all the storage battery rows 20_1 to 20_3 is completed.

ステップS4において、制御装置1は、全ての蓄電池列20_1〜20_3の均等充電が完了したと判断した場合、多並列蓄電池モジュール2の均等充電のための制御を終了する(ステップS5)。
以上の手順により、本実施の形態に係る蓄電システム100の均等充電が行われる。
In step S4, when the control device 1 determines that the equal charging of all the storage battery rows 20_1 to 20_3 is completed, the control device 1 ends the control for equal charging of the multi-parallel storage battery module 2 (step S5).
By the above procedure, the power storage system 100 according to the present embodiment is uniformly charged.

次に、均等充電の完了の判定方法について説明する。
本実施の形態に係る均等充電の完了の判定方法として、2つの例を以下に示す。
Next, a method for determining the completion of uniform charging will be described.
Two examples are shown below as a method for determining the completion of uniform charging according to the present embodiment.

先ず、蓄電システム100による均等充電の完了の判定方法の第1の例について説明する。
第1の例として、制御装置1は、前回実施した均等充電が完了してからの蓄電池列20の充電電流の積算値と前回実施した均等充電が完了してからの蓄電池列20の放電電流の積算値との比率が所定値となった場合に、蓄電池列20の前記均等充電が完了したと判定する。
First, a first example of a method for determining the completion of uniform charging by the power storage system 100 will be described.
As a first example, in the control device 1, the integrated value of the charging current of the storage battery row 20 since the last uniform charging was completed and the discharge current of the storage battery row 20 since the last uniform charging was completed. When the ratio with the integrated value reaches a predetermined value, it is determined that the uniform charging of the storage battery row 20 is completed.

図4は、均等充電時の蓄電池列20(鉛蓄電池)の充電電流および放電電流を示すタイミングチャートである。図4において、縦軸は、電流を表し、横軸は、時間を表している。また、参照符号302は、蓄電池列20の充電電流を表し、参照符号303は、蓄電池列20の放電電流を表している。 FIG. 4 is a timing chart showing the charge current and the discharge current of the storage battery row 20 (lead-acid battery) at the time of uniform charging. In FIG. 4, the vertical axis represents current and the horizontal axis represents time. Further, reference numeral 302 represents a charging current of the storage battery row 20, and reference numeral 303 represents a discharging current of the storage battery row 20.

先ず、制御装置1の監視部11は、均等充電が完了したタイミングにおいて、蓄電池列20_1〜20_n毎に充電電流および放電電流の積算を開始する。例えば、図4において、均等充電が完了した時刻t31において、監視部11は、各蓄電池列20_1〜20_nの充電電流の積算を開始するとともに、各蓄電池列20_1〜20_nの放電電流の積算を開始する。 First, the monitoring unit 11 of the control device 1 starts integrating the charging current and the discharging current for each of the storage battery rows 20_1 to 20_n at the timing when the uniform charging is completed. For example, in FIG. 4, at time t31 when uniform charging is completed, the monitoring unit 11 starts integrating the charging currents of the storage battery rows 20_1 to 20_n and also starts integrating the discharge currents of the storage battery rows 20_1 to 20_n. ..

次に、監視部11は、蓄電池列20_1〜20_n毎に、充電電流の積算値と放電電流の積算値との比率を算出する。具体的には、放電電流の積算値に対する充電電流の積算値の比率を算出する。 Next, the monitoring unit 11 calculates the ratio of the integrated value of the charging current and the integrated value of the discharging current for each of the storage battery rows 20_1 to 20_n. Specifically, the ratio of the integrated value of the charging current to the integrated value of the discharge current is calculated.

次に、監視部11は、蓄電池列20_1〜20_n毎に、算出した上記比率が比率基準値に到達したか否かを判定する。 Next, the monitoring unit 11 determines whether or not the calculated ratio has reached the ratio reference value for each of the storage battery rows 20_1 to 20_n.

ここで、比率基準値とは、均等充電における定電圧充電期間の末期を判定するための基準となる値である。一般に、均等充電は、放電容量に対して100%以上(例えば、104%)となるように過充電が行われる。そのため、比率基準値は、100%を超える値、例えば101%〜104%の範囲の値に設定することが好ましい。 Here, the ratio reference value is a value that serves as a reference for determining the end of the constant voltage charging period in uniform charging. In general, uniform charging is overcharged so as to be 100% or more (for example, 104%) with respect to the discharge capacity. Therefore, the ratio reference value is preferably set to a value exceeding 100%, for example, a value in the range of 101% to 104%.

監視部11は、上記比率が比率基準値に到達した蓄電池列20が存在しない場合、蓄電池列20_1〜20_n毎の充電電流および放電電流の積算を継続する。一方、算出した比率が比率基準値に到達した蓄電池列20が存在する場合、監視部11は、算出した比率が比率基準値に到達した蓄電池列20について、均等充電が完了したと判定する。監視部11は、全ての蓄電池列20_1〜20_nについて均等充電が完了したことを示す判定結果が得られるまで、上記の処理を繰り返し実行する。 When there is no storage battery row 20 whose ratio has reached the ratio reference value, the monitoring unit 11 continues to integrate the charging current and the discharging current for each storage battery row 20_1 to 20_n. On the other hand, when there is a storage battery row 20 whose calculated ratio has reached the ratio reference value, the monitoring unit 11 determines that the uniform charging of the storage battery row 20 whose calculated ratio has reached the ratio reference value has been completed. The monitoring unit 11 repeatedly executes the above process until a determination result indicating that uniform charging is completed for all the storage battery rows 20_1 to 20_n is obtained.

以上の手順でデータ処理を実行することにより、蓄電池列20_1〜20_n毎に、均等充電の完了の有無を判定することができる。 By executing the data processing in the above procedure, it is possible to determine whether or not the uniform charging is completed for each of the storage battery rows 20_1 to 20_n.

次に、蓄電システム100による均等充電の完了の判定方法の第2の例について説明する。
第2の例として、制御装置1は、均等充電における定電圧によって蓄電池列20を充電する定電圧充電期間において、蓄電池列20の充電電流が低下して所定値となった場合に、蓄電池列20の均等充電が完了したと判定する。
Next, a second example of a method for determining the completion of uniform charging by the power storage system 100 will be described.
As a second example, in the constant voltage charging period in which the storage battery row 20 is charged by the constant voltage in uniform charging, the control device 1 reduces the charging current of the storage battery row 20 to a predetermined value, the storage battery row 20 It is determined that the equal charging is completed.

図5は、定電圧−定電流充電方式または定電力−定電流充電方式によって均等充電を行ったときの定電圧充電期間における蓄電池列20の充電電流と充電状態(SOC:State Of Charge)との関係を示す図である。 FIG. 5 shows the charging current and the charging state (SOC: State Of Charge) of the storage battery row 20 in the constant voltage charging period when uniform charging is performed by the constant voltage-constant current charging method or the constant power-constant current charging method. It is a figure which shows the relationship.

図5に示すように、蓄電池は、定電圧充電時、満充電に近くなるほど充電電流が小さくなる傾向がある。そこで、均等充電における定電圧充電期間において、蓄電池列20毎に充電電流を監視することで、均等充電の完了を検出することが可能となる。例えば、監視部11は、定電圧充電期間において、各蓄電池列20_1〜20_nの充電電流が低下して所定の閾値Ithに到達したときに、均等充電が完了したと判定する。 As shown in FIG. 5, when the storage battery is charged at a constant voltage, the charging current tends to decrease as it approaches full charge. Therefore, it is possible to detect the completion of uniform charging by monitoring the charging current for each storage battery row 20 during the constant voltage charging period in uniform charging. For example, the monitoring unit 11 determines that uniform charging is completed when the charging current of each storage battery row 20_1 to 20_n decreases and reaches a predetermined threshold value Is during the constant voltage charging period.

図6は、定電流−定電圧充電方式によって均等充電を行った時の各蓄電池列に流れる充電電流の時間的な変化の一例を示す図である。
上述したように、蓄電池列20_1〜20_3は、温度や鉛蓄電池セル200自体の特性(内部抵抗)により、定電流充電時の充電電流にばらつきが発生する可能性がある。例えば、上述の例のようにI2>I1>I3となった場合を考える。
FIG. 6 is a diagram showing an example of a temporal change in the charging current flowing through each storage battery row when uniform charging is performed by the constant current-constant voltage charging method.
As described above, in the storage battery rows 20_1 to 20_3, the charging current at the time of constant current charging may vary depending on the temperature and the characteristics (internal resistance) of the lead storage battery cell 200 itself. For example, consider the case where I2>I1> I3 as in the above example.

制御装置1の監視部11は、各蓄電池列20_1〜20_3の充電電流を監視する。上述の例の場合、I2>I1>I3であるので、蓄電池列20_2の充電電流I2が最初に閾値Ithに到達する。監視部11は、蓄電池列20_2の充電電流I2が閾値Ithに到達したことを検知した場合、蓄電池列20_2の均等充電が完了したと判定する。 The monitoring unit 11 of the control device 1 monitors the charging current of each storage battery row 20_1 to 20_3. In the case of the above example, since I2> I1> I3, the charging current I2 of the storage battery row 20_2 first reaches the threshold value Is. When the monitoring unit 11 detects that the charging current I2 of the storage battery row 20_2 has reached the threshold value Is, it determines that the uniform charging of the storage battery row 20_2 is completed.

次に、I1>I3であることから、蓄電池列20_1の充電電流I1が次に閾値Ithに到達する。監視部11は、蓄電池列20_1の充電電流I1が閾値Ithに到達したことを検知した場合、蓄電池列20_1の均等充電が完了したと判定する。 Next, since I1> I3, the charging current I1 of the storage battery row 20_1 then reaches the threshold value Is. When the monitoring unit 11 detects that the charging current I1 of the storage battery row 20_1 has reached the threshold value Is, it determines that the uniform charging of the storage battery row 20_1 is completed.

最後に、蓄電池列20_3の充電電流I3が次に閾値Ithに到達する。監視部11は、蓄電池列20_3の充電電流I3が閾値Ithに到達したことを検知した場合、蓄電池列20_3の均等充電が完了したと判定する。 Finally, the charging current I3 of the storage battery row 20_3 then reaches the threshold Is. When the monitoring unit 11 detects that the charging current I3 of the storage battery row 20_3 has reached the threshold value Is, it determines that the uniform charging of the storage battery row 20_3 is completed.

このように、蓄電池列20毎に均等充電時の定電圧充電期間における充電電流を監視することで、蓄電池列20毎に均等充電の完了の有無を判定することができる。 In this way, by monitoring the charging current in the constant voltage charging period at the time of uniform charging for each storage battery row 20, it is possible to determine whether or not equal charging is completed for each storage battery row 20.

なお、定電力−定電圧充電方式の場合も同様の手法により、蓄電池列20毎に均等充電の完了の有無を判定することができる。 In the case of the constant power-constant voltage charging method, it is possible to determine whether or not uniform charging is completed for each storage battery row 20 by the same method.

以上、本実施の形態に係る蓄電システム100は、少なくとも一つの鉛蓄電池セル200を含む蓄電池列20_1〜20_nを並列に接続した多並列蓄電池モジュール2と、蓄電池列20_1〜20_n毎に対応して設けられ、対応する蓄電池列20_1〜20_nと交直変換装置(PCS)3との間に直列に接続されたスイッチ4_1〜4_nと、蓄電池列20_1〜20_nの状態を蓄電池列20_1〜20_n毎に監視する制御装置1とを備えている。制御装置1は、スイッチ4_1〜4_nをオンしてPCS3から蓄電池列20_1〜20_nへ電力を供給することにより均等充電を行うとともに、蓄電池列20_1〜20_n毎に均等充電が完了したか否かを判定し、均等充電が完了したと判定した蓄電池列20_1〜20_nのスイッチ4_1〜4_nをオフする。 As described above, the power storage system 100 according to the present embodiment is provided corresponding to the multi-parallel storage battery module 2 in which the storage battery rows 20_1 to 20_n including at least one lead storage battery cell 200 are connected in parallel, and the storage battery rows 20_1 to 20_n. Control to monitor the status of the switches 4_1 to 4_n connected in series between the corresponding storage battery rows 20_1 to 20_n and the AC / DC converter (PCS) 3 and the storage battery rows 20_1 to 20_n for each storage battery row 20_1 to 20_n. It is provided with the device 1. The control device 1 performs uniform charging by turning on switches 4_1 to 4_n and supplying power from the PCS 3 to the storage battery rows 20_1 to 20_n, and determines whether or not uniform charging is completed for each storage battery row 20_1 to 20_n. Then, the switches 4_1 to 4_n of the storage battery rows 20_1 to 20_n, which are determined to have completed uniform charging, are turned off.

これによれば、均等充電時に行われるPCS3から蓄電池列20_1〜20_nへの電力供給を、蓄電池列20_1〜20_n毎に制御することができるので、各蓄電池列20_1〜20_nの鉛蓄電池セル200自体の特性(内部抵抗)や温度等に起因して、均等充電時に各蓄電池列20_1〜20_nに流れる充電電流がばらついた場合であっても、夫々の蓄電池列20_1〜20_nを満充電状態にすることが可能となる。これにより、均等充電時の充電電流のばらつきに起因して、過充電や充電不足となる蓄電池列20_1〜20_nの発生を防止することができるので、多並列蓄電池モジュール2の劣化を抑制することが可能となる。 According to this, the power supply from the PCS 3 to the storage battery rows 20_1 to 20_n, which is performed during uniform charging, can be controlled for each storage battery row 20_1 to 20_n. Even if the charging current flowing through each storage battery row 20_1 to 20_n varies during uniform charging due to characteristics (internal resistance), temperature, etc., each storage battery row 20_1 to 20_n can be fully charged. It will be possible. As a result, it is possible to prevent the storage battery rows 20_1 to 20_n from being overcharged or insufficiently charged due to the variation in the charging current during uniform charging, so that the deterioration of the multi-parallel storage battery module 2 can be suppressed. It will be possible.

また、蓄電システム100は、均等充電時のPCS3から各蓄電池列20_1〜20_nへの電力の供給と遮断をスイッチ4_1〜4_nによって切り替える構成を有しているので、上述した特許文献1の従来技術のように、各蓄電池列の充放電量を調整するための複雑な充放電制御機器を蓄電池列毎に別途設ける必要がないので、従来技術に比べて、蓄電システムのコストの増加を抑えることができる。 Further, since the power storage system 100 has a configuration in which power supply and cutoff from the PCS 3 to each storage battery row 20_1 to 20_n at the time of uniform charging is switched by switches 4_1 to 4_n, the above-mentioned prior art of Patent Document 1 As described above, since it is not necessary to separately provide a complicated charge / discharge control device for adjusting the charge / discharge amount of each storage battery row for each storage battery row, it is possible to suppress an increase in the cost of the power storage system as compared with the conventional technology. ..

したがって、本実施の形態に係る蓄電システム100によれば、より簡単な構成によって、均等充電による蓄電池列間の充電状態のばらつきを抑えて、多並列蓄電池モジュールの劣化を抑制することが可能となる。 Therefore, according to the power storage system 100 according to the present embodiment, it is possible to suppress the variation in the charging state between the storage battery rows due to uniform charging and suppress the deterioration of the multi-parallel storage battery module by a simpler configuration. ..

また、蓄電システム100において、制御装置1は、前回実施した均等充電が完了してからの蓄電池列20_1〜20_nの充電電流の積算値と前回実施した均等充電が完了してからの蓄電池列20_1〜20_nの放電電流の積算値との比率が所定値となった場合に、蓄電池列20_1〜20_nの均等充電が完了したと判定する。 Further, in the power storage system 100, the control device 1 has the integrated value of the charging currents of the storage battery rows 20_1 to 20_n since the last uniform charging was completed and the storage battery rows 20_1 to 20_1 after the last uniform charging was completed. When the ratio to the integrated value of the discharge current of 20_n becomes a predetermined value, it is determined that the uniform charging of the storage battery rows 20_1 to 20_n is completed.

これによれば、均等充電の充電方式によらず、より正確に、蓄電池列20毎に均等充電の完了の有無を判定することができる。 According to this, regardless of the charging method of equal charging, it is possible to more accurately determine whether or not equal charging is completed for each storage battery row 20.

また、蓄電システム100において、制御装置1は、均等充電における定電圧によって蓄電池列20_1〜20_nを充電する定電圧充電期間において、蓄電池列20_1〜20_nの充電電流が低下して所定値となった場合に、蓄電池列20_1〜20_nの均等充電が完了したと判定する。 Further, in the power storage system 100, when the charging current of the storage battery rows 20_1 to 20_n decreases to a predetermined value during the constant voltage charging period in which the storage battery rows 20_1 to 20_n are charged by the constant voltage in the uniform charging. It is determined that the uniform charging of the storage battery rows 20_1 to 20_n is completed.

これによれば、定電流−定電圧充電方式や定電力−定電圧充電方式のように均等充電の終了間際に定電圧充電を行う均等充電方式を採用した蓄電システムにおいて、より簡単かつ正確に、蓄電池列20毎に均等充電の完了の有無を判定することが可能となる。 According to this, in a power storage system that employs a constant voltage charging method that performs constant voltage charging just before the end of uniform charging, such as a constant current-constant voltage charging method and a constant power-constant voltage charging method, it is easier and more accurate. It is possible to determine whether or not equal charging is completed for each storage battery row 20.

≪実施の形態の拡張≫
以上、本発明者らによってなされた発明を実施の形態に基づいて具体的に説明したが、本発明はそれに限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは言うまでもない。
<< Expansion of embodiment >>
The inventions made by the present inventors have been specifically described above based on the embodiments, but it goes without saying that the present invention is not limited thereto and can be variously modified without departing from the gist thereof. No.

例えば、上記実施の形態において、均等充電の定電圧充電期間を有する充電方式として、定電流−定電圧充電方式および定電力−定電圧充電方式を例示したが、これに限られない。 For example, in the above-described embodiment, the constant current-constant voltage charging method and the constant power-constant voltage charging method have been exemplified as the charging methods having a constant voltage charging period for uniform charging, but the present invention is not limited thereto.

例えば、初めに定電流充電を行い、蓄電池電圧が所定の閾値に達した後に前回の電流値よりも低い電流値での定電流充電を行うことを複数回繰り返し、最後に、所定の電圧で定電圧充電を行って鉛蓄電池を満充電状態まで回復させる多段充電方式であってもよい。 For example, first constant current charging is performed, and after the storage battery voltage reaches a predetermined threshold, constant current charging at a current value lower than the previous current value is repeated a plurality of times, and finally, constant current charging is performed at a predetermined voltage. A multi-stage charging method may be used in which voltage charging is performed to restore the lead-acid battery to a fully charged state.

例えば、制御装置1は、多段充電方式の定電圧充電期間において、蓄電池列20_1〜20_nの充電電流が低下して所定値となった場合に、蓄電池列20_1〜20_nの均等充電が完了したと判定することにより、定電流−定電圧充電方式および定電力−定電圧充電方式の場合と同様に、より簡単かつ正確に、蓄電池列20毎に均等充電の完了の有無を判定することができる。 For example, the control device 1 determines that uniform charging of the storage battery rows 20_1 to 20_n is completed when the charging current of the storage battery rows 20_1 to 20_n decreases to a predetermined value during the constant voltage charging period of the multi-stage charging method. By doing so, it is possible to more easily and accurately determine whether or not uniform charging is completed for each storage battery row 20 as in the case of the constant current-constant voltage charging method and the constant power-constant voltage charging method.

1…制御装置、2…蓄電池モジュール(多並列蓄電池モジュール)、3…交直変換装置(PCS)、4_1〜4_n…スイッチ、5…電力供給部、6…負荷、11…監視部、12…蓄電池管理部、13…スイッチ制御部、20,20_1〜20_n…蓄電池列、100…蓄電システム、200…鉛蓄電池セル、201…電圧センサ、202…電流センサ、Ith…閾値(所定値)。 1 ... Control device, 2 ... Storage battery module (multi-parallel storage battery module), 3 ... AC / DC conversion device (PCS), 4_1 to 4_n ... Switch, 5 ... Power supply unit, 6 ... Load, 11 ... Monitoring unit, 12 ... Storage battery management Unit, 13 ... Switch control unit, 20, 20_1 to 20_n ... Storage battery row, 100 ... Power storage system, 200 ... Lead-acid battery cell, 201 ... Voltage sensor, 202 ... Current sensor, Is ... Threshold (predetermined value).

Claims (10)

少なくとも一つの鉛蓄電池セルを含む蓄電池列を複数並列に接続した多並列蓄電池モジュールと、
前記多並列蓄電池モジュールの電力の授受を制御する交直変換装置と、
前記蓄電池列毎に対応して設けられ、対応する前記蓄電池列と前記交直変換装置との間に直列に接続されたスイッチと、
前記蓄電池列の状態を前記蓄電池列毎に監視し、前記スイッチのオン/オフを制御する制御装置と、を備え、
前記制御装置は、前記スイッチをオンして前記交直変換装置から前記蓄電池列へ電力を供給することにより、前記蓄電池列を満充電状態にするための均等充電を行うとともに、前記蓄電池列毎に前記均等充電が完了したか否かを判定し、前記均等充電が完了したと判定した前記蓄電池列の前記スイッチをオフする
ことを特徴とする蓄電システム。
A multi-parallel storage battery module in which a plurality of storage battery rows including at least one lead-acid battery cell are connected in parallel, and
An AC / DC converter that controls the transfer of power to the multi-parallel storage battery module,
A switch provided corresponding to each storage battery row and connected in series between the corresponding storage battery row and the AC / DC conversion device.
A control device that monitors the state of the storage battery row for each storage battery row and controls the on / off of the switch is provided.
The control device turns on the switch and supplies electric power from the AC / DC conversion device to the storage battery row to perform uniform charging for fully charging the storage battery row, and for each storage battery row, the control device performs uniform charging. A power storage system characterized in that it is determined whether or not equal charging is completed, and the switch of the storage battery row determined that equal charging is completed is turned off.
請求項1に記載の蓄電システムにおいて、
前記制御装置は、前回実施した前記均等充電が完了してからの前記蓄電池列の充電電流の積算値と前回実施した前記均等充電が完了してからの前記蓄電池列の放電電流の積算値との比率が所定値となった場合に、前記蓄電池列の前記均等充電が完了したと判定する
ことを特徴とする蓄電システム。
In the power storage system according to claim 1,
In the control device, the integrated value of the charging current of the storage battery row after the completion of the uniform charging performed last time and the integrated value of the discharge current of the storage battery row after the completion of the uniform charging performed last time A power storage system characterized in that when the ratio reaches a predetermined value, it is determined that the uniform charging of the storage battery row is completed.
請求項1に記載の蓄電システムにおいて、
前記制御装置は、前記均等充電における定電圧によって前記蓄電池列を充電する定電圧充電期間において、前記蓄電池列の充電電流が低下して所定値となった場合に、前記蓄電池列の前記均等充電が完了したと判定する
ことを特徴とする蓄電システム。
In the power storage system according to claim 1,
In the constant voltage charging period in which the storage battery row is charged by the constant voltage in the uniform charging, the control device performs the uniform charging of the storage battery row when the charging current of the storage battery row decreases to a predetermined value. A power storage system characterized in that it is determined to be completed.
請求項3に記載の蓄電システムにおいて、
前記均等充電は、定電流によって前記蓄電池列の充電を開始し、前記蓄電池列の電圧が所定の電圧に到達した後に定電圧によって前記蓄電池列を充電する定電流−定電圧充電方式によって行われる
ことを特徴とする蓄電池システム。
In the power storage system according to claim 3,
The uniform charging is performed by a constant current-constant voltage charging method in which charging of the storage battery row is started by a constant current and the storage battery row is charged by a constant voltage after the voltage of the storage battery row reaches a predetermined voltage. A storage battery system featuring.
請求項3に記載の蓄電システムにおいて、
前記均等充電は、定電力によって前記蓄電池列の充電を開始し、前記蓄電池列の電圧が所定の電圧に到達した後に定電圧によって前記蓄電池列を充電する定電力−定電圧充電方式によって行われる
ことを特徴とする蓄電池システム。
In the power storage system according to claim 3,
The uniform charging is performed by a constant power-constant voltage charging method in which charging of the storage battery row is started by a constant power, and after the voltage of the storage battery row reaches a predetermined voltage, the storage battery row is charged by a constant voltage. A storage battery system featuring.
少なくとも一つの鉛蓄電池セルを含む蓄電池列を複数並列に接続した多並列蓄電池モジュールと、前記多並列蓄電池モジュールの電力の授受を制御する交直変換装置と、前記蓄電池列毎に対応して設けられ、対応する前記蓄電池列と前記交直変換装置との間に直列に接続されたスイッチと、前記蓄電池列の状態を前記蓄電池列毎に監視し、前記スイッチのオン/オフを制御する制御装置とを備えた蓄電システムにおける前記多並列蓄電池モジュールの充電制御方法であって、
前記制御装置が、前記スイッチをオンして前記交直変換装置から前記蓄電池列へ電力を供給することにより、前記蓄電池列を満充電状態にするための均等充電を開始する第1ステップと、
前記制御装置が、前記蓄電池列毎に前記均等充電が完了したか否かを判定する第2ステップと、
前記制御装置が、前記均等充電が完了したと判定した前記蓄電池列の前記スイッチをオフする第3ステップとを含む
ことを特徴とする充電制御方法。
A multi-parallel storage battery module in which a plurality of storage battery rows including at least one lead storage battery cell are connected in parallel, an AC / DC conversion device for controlling the transfer of power of the multi-parallel storage battery module, and a corresponding to each storage battery row are provided. A switch connected in series between the corresponding storage battery row and the AC / DC conversion device, and a control device that monitors the state of the storage battery row for each storage battery row and controls on / off of the switch. This is a charging control method for the multi-parallel storage battery module in a power storage system.
A first step in which the control device turns on the switch and supplies electric power from the AC / DC conversion device to the storage battery row to start uniform charging for making the storage battery row fully charged.
A second step in which the control device determines whether or not the uniform charging is completed for each storage battery row, and
A charging control method comprising the third step of turning off the switch of the storage battery row, which is determined to have completed the uniform charging.
請求項6に記載の充電制御方法において、
前記第2ステップは、前記制御装置が、前回実施した前記均等充電が完了してからの前記蓄電池列の充電電流の積算値と前回実施した前記均等充電が完了してからの前記蓄電池列の放電電流の積算値との比率が所定値となった場合に、前記蓄電池列の前記均等充電が完了したと判定するステップを含む
ことを特徴とする充電制御方法。
In the charge control method according to claim 6,
In the second step, the integrated value of the charging current of the storage battery row after the control device completes the uniform charging performed last time and the discharge of the storage battery row after the uniform charging performed last time is completed. A charging control method comprising a step of determining that the uniform charging of the storage battery row is completed when the ratio to the integrated value of the current reaches a predetermined value.
請求項6に記載の充電制御方法において、
前記第2ステップは、前記制御装置が、前記均等充電における定電圧によって前記蓄電池列を充電する定電圧充電期間において、前記蓄電池列の充電電流が低下して所定値となった場合に、前記蓄電池列の前記均等充電が完了したと判定するステップを含む
ことを特徴とする充電制御方法。
In the charge control method according to claim 6,
The second step is the storage battery when the charging current of the storage battery row decreases to a predetermined value during the constant voltage charging period in which the control device charges the storage battery row by the constant voltage in the uniform charging. A charge control method comprising the step of determining that the equal charge of a row is complete.
請求項8に記載の充電制御方法において、
前記均等充電は、定電流によって前記蓄電池列の充電を開始し、前記蓄電池列の電圧が所定の電圧に到達した後に定電圧によって前記蓄電池列を充電する定電流−定電圧充電方式によって行われる
ことを特徴とする充電制御方法。
In the charge control method according to claim 8,
The uniform charging is performed by a constant current-constant voltage charging method in which charging of the storage battery row is started by a constant current and the storage battery row is charged by a constant voltage after the voltage of the storage battery row reaches a predetermined voltage. A charge control method characterized by.
請求項8に記載の充電制御方法において、
前記均等充電は、定電力によって前記蓄電池列の充電を開始し、前記蓄電池列の電圧が所定の電圧に到達した後に定電圧によって前記蓄電池列を充電する定電力−定電圧充電方式によって行われる
ことを特徴とする充電制御方法。
In the charge control method according to claim 8,
The uniform charging is performed by a constant power-constant voltage charging method in which charging of the storage battery row is started by a constant power, and after the voltage of the storage battery row reaches a predetermined voltage, the storage battery row is charged by a constant voltage. A charge control method characterized by.
JP2020510024A 2018-03-26 2019-03-25 Power storage system and charge control method Pending JPWO2019188889A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018057476 2018-03-26
JP2018057476 2018-03-26
PCT/JP2019/012333 WO2019188889A1 (en) 2018-03-26 2019-03-25 Power storage system and charging control method

Publications (1)

Publication Number Publication Date
JPWO2019188889A1 true JPWO2019188889A1 (en) 2021-03-25

Family

ID=68061586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020510024A Pending JPWO2019188889A1 (en) 2018-03-26 2019-03-25 Power storage system and charge control method

Country Status (3)

Country Link
JP (1) JPWO2019188889A1 (en)
CN (1) CN111937269A (en)
WO (1) WO2019188889A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022209244A1 (en) * 2021-03-30 2022-10-06 古河電気工業株式会社 Power storage device and equalization charging method
WO2023238711A1 (en) * 2022-06-06 2023-12-14 エナジーウィズ株式会社 Renewable energy electric power generation system and method for charging electric power storage device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57180333A (en) * 1981-04-30 1982-11-06 Shin Kobe Electric Machinery Charger
JP2003244854A (en) * 2002-02-13 2003-08-29 Mitsubishi Heavy Ind Ltd Charge and discharge controller for storage apparatus, charge and discharge control method, and power storage system
JP2004179097A (en) * 2002-11-29 2004-06-24 Shin Kobe Electric Mach Co Ltd Uniform charging system of lead battery
WO2013054672A1 (en) * 2011-10-11 2013-04-18 新神戸電機株式会社 Lead storage battery system
JP2014023361A (en) * 2012-07-20 2014-02-03 Toyota Motor Corp Power storage system, and control method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012128252A1 (en) * 2011-03-18 2012-09-27 三洋電機株式会社 Power storage system
JP2014036528A (en) * 2012-08-09 2014-02-24 Nippon Soken Inc Insulated charging device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57180333A (en) * 1981-04-30 1982-11-06 Shin Kobe Electric Machinery Charger
JP2003244854A (en) * 2002-02-13 2003-08-29 Mitsubishi Heavy Ind Ltd Charge and discharge controller for storage apparatus, charge and discharge control method, and power storage system
JP2004179097A (en) * 2002-11-29 2004-06-24 Shin Kobe Electric Mach Co Ltd Uniform charging system of lead battery
WO2013054672A1 (en) * 2011-10-11 2013-04-18 新神戸電機株式会社 Lead storage battery system
JP2014023361A (en) * 2012-07-20 2014-02-03 Toyota Motor Corp Power storage system, and control method

Also Published As

Publication number Publication date
WO2019188889A1 (en) 2019-10-03
CN111937269A (en) 2020-11-13

Similar Documents

Publication Publication Date Title
US9231440B2 (en) Power supply apparatus and controlling method of the same
JP6522890B2 (en) Battery rack and method of driving the same
JP5857247B2 (en) Power management system
JP5838313B2 (en) Storage battery charge / discharge control device and storage battery charge / discharge control method
JP4967162B2 (en) Secondary battery pack
US11791501B2 (en) Direct current power supplying system
JP5625045B2 (en) Electrical system and method for charging a rechargeable battery
CN104578237A (en) Battery pack, energy storage system, and method of charging battery pack
JP2014511095A (en) Rechargeable battery system and method of operating the same
JPH0997629A (en) Plural lithium ion secondary battery charging method
JPWO2019188889A1 (en) Power storage system and charge control method
JP5314626B2 (en) Power supply system, discharge control method, and discharge control program
WO2012049955A1 (en) Power management system
JP2013094033A (en) Power storage device and power supply system
JP2012088086A (en) Power management system
JP7382940B2 (en) Energy storage system and charging control method
JP7317801B2 (en) Energy storage system and measurement method
KR20180049545A (en) Battery pack with multi-charging function and energy storage system considered extensibility of battery pack
JP7097456B2 (en) Power storage system and charge control method
KR20180049543A (en) Energy storage system considered extensibility of battery pack and method for controlling therefor
JP2010263755A (en) Charge control method
WO2023238712A1 (en) Battery pack charging method and power storage system
KR101736419B1 (en) Charging method for battery capable of prevent overcharge
JP7246996B2 (en) Storage system and charge control method
WO2023037599A1 (en) Power storage system and method for controlling charging thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220207

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20220208

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20220209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230307