JP4830570B2 - 排気ガス浄化システム - Google Patents

排気ガス浄化システム Download PDF

Info

Publication number
JP4830570B2
JP4830570B2 JP2006082207A JP2006082207A JP4830570B2 JP 4830570 B2 JP4830570 B2 JP 4830570B2 JP 2006082207 A JP2006082207 A JP 2006082207A JP 2006082207 A JP2006082207 A JP 2006082207A JP 4830570 B2 JP4830570 B2 JP 4830570B2
Authority
JP
Japan
Prior art keywords
exhaust gas
gas purification
exhaust
nox
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006082207A
Other languages
English (en)
Other versions
JP2007255343A (ja
Inventor
竜介 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2006082207A priority Critical patent/JP4830570B2/ja
Publication of JP2007255343A publication Critical patent/JP2007255343A/ja
Application granted granted Critical
Publication of JP4830570B2 publication Critical patent/JP4830570B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明は、内燃機関の排気ガスを排気通路内に浄化剤を噴射して排気ガスを浄化又は排気ガス浄化装置の再生を行う排気ガス浄化システムに関する。
自動車に対する排ガス規制は厳しさを増し、エンジン側の技術開発だけでは追いつけない状況となりつつある。そのため、排気ガスを後処理装置によって浄化することが必要不可欠であり、ディーゼルエンジンや一部のガソリンエンジン等の内燃機関や様々な燃焼装置の排気ガス中からNOx(窒素酸化物)を還元除去するためのNOx触媒や、これらの排気ガス中の粒子状物質(パティキュレート・マター:以下、PM)を除去するディーゼルパティキュレートフィルタ装置(以下、DPF装置)について、種々の研究や提案がなされている。
その中に、ディーゼルエンジン用のNOx低減触媒として、アンモニア選択還元型NOx触媒(Selective Catalystic Reduction:SCR触媒)やNOx吸蔵還元型触媒とNOx直接還元型触媒がある。
アンモニア選択還元型NOx触媒を備えた排気ガス浄化システムでは、エンジン出口からアンモニア選択還元型NOx触媒までの排気管の中に尿素水溶液、アンモニア、アンモニア水等のアンモニア系溶液(ここでは「浄化剤」という)を噴射し、排気ガスとアンモニア系溶液を混合し、発生したアンモニアのNOxとの選択的な還元反応により、NOxを浄化している。
この排気ガス浄化システムでは、現在は主にアンモニアを反応させるSCR触媒が主流であるが、添加する浄化剤は毒性のあるアンモニアの代りに排気ガス中でアンモニアに変化する無害の尿素水溶液を添加する方式に移行しつつある。
この尿素水溶液は排気管中に噴射すると、これ自身の熱容量と蒸発潜熱が大きいため、容易に気体にはならず、液滴状態のままとなり、この液滴状態が続くと排気ガス中での拡散性が著しく低下する。そのため、尿素噴霧が排気ガス中で偏り、十分に均一拡散できないままSCR触媒に尿素が到達し、尿素から変化したアンモニアが不均一に分散し、過剰な部分では未反応のアンモニアがそのまま大気中に排出し(アンモニアスリップ)、不足の部分では、未反応のNOxがそのまま大気中に排出される。
また、NOx吸蔵還元型触媒を備えた排気ガス浄化システムでは、NOx吸蔵還元型触媒は、酸化機能を持つ貴金属触媒と、アルカリ金属等のNOx吸蔵機能を持つNOx吸蔵材を担持しており、これらにより、排気ガス中の酸素濃度によってNOx吸蔵とNOx放出・浄化の二つの機能を発揮する。そして、NOx吸蔵推定量がNOx吸蔵飽和量になった時に、排気ガスの空燃比をリッチ状態にして、NOx吸蔵能力回復用の再生制御を行うが、この再生制御の一つに、排気管へ直接燃料等の炭化水素(ここでは「浄化剤」という)を供給する排気管内噴射リッチ制御がある。
また、NOx直接還元型触媒を備えた排気ガス浄化システムでは、NOx直接還元型触媒は、β型ゼオライト等の担体に触媒成分であるロジウム(Rh)やパラジウム(Pd)等の金属を担持し、NOxを直接還元する。そして、NOx還元性能が悪化してくると、排気ガスの空燃比をリッチ空燃比にして、触媒の活性物質を再生して活性化するNOx還元性能回復用の再生制御を行うが、この再生制御の一つに、排気管へ直接燃料等の炭化水素(ここでは「浄化剤」という)を供給する排気管内噴射リッチ制御がある。
また、排気ガス中のPM(粒子状物質)を捕集する連続再生型DPFを備えた排気ガス浄化システムでは、フィルタ部分に捕集され蓄積されたPMを燃焼除去してフィルタを再生するために、排気管内噴射により、排気管内に軽油燃料等の炭化水素(ここでは「浄化剤」という)を供給して、フィルタの上流側に配置した酸化触媒又はフィルタに担持された酸化触媒で、この炭化水素を酸化させることによって、フィルタの温度を上昇させてフィルタのPMを燃焼除去することが行われている。
これらの排気管内噴射においては、浄化剤が偏った状態で触媒や連続再生型DPFに到達すると、排気ガスのNOx浄化やNOx触媒の再生や連続再生型DPFの再生の効率が下がり、また、浄化剤が十分に消費されず、下流側に排出されてしまう。そのため、浄化剤を排気ガス中に略均一に供給し、排気ガスと浄化剤の混合濃度を均一化することが重要で、様々な工夫がなされている。
その一つに、排気中に還元剤を均一に拡散させるために、還元剤噴射装置(混入部)の下流位置の排気管内に、絞り部を設けて局所的に高流速で低圧の状態を造り、還元剤の気化を促すか、又は、還元剤噴射装置(混入部)の下流位置の排気管内に、撹拌部材を設けて乱流を起こし、排気流れの撹拌を促すエンジンの排気浄化構造も提案されている(例えば、特許文献1参照。)。
しかしながら、絞り部を設けた場合には、還元剤が噴霧状態の場合には、絞り部で流れの方向が中心方向に変化するため、慣性力が作用している噴霧状態の還元剤が絞り部の壁面に衝突して液状に付着するという問題がある。また、撹拌部材を設けた場合には、同様に、噴霧状態の還元剤が撹拌部材に衝突して液状に付着するという問題がある。
更に、還元剤と排出ガスとの混合物を形成するための装置で、排出ガスと還元剤を導入可能な混合物形成領域を備え、この混合物形成領域の壁部を少なくとも部分的に、隆起部及び凹部を備えて、特に波形に形成して、言い換えれば、排気管に波形管を用いて渦流を起こして還元剤を混合する装置及び排出ガス浄化装置が提案されている(例えば、特許文献2参照。)。
しかしながら、波形管を用いると、この凹部に煤が溜まり易く腐食の原因となったり、波形管は剛性が低くなるため、排気管の振動が誘因されたりするという問題がある。
また、圧縮空気と浄化剤を混合させて排気管中に噴霧させて、蒸発し易いように微細化を図るエアアシスト式という方法もあるが、この方法はエアタンクを装備している中・大型車でのみ可能な方法である。そのため、エアタンクを装備していない小型車では、均一拡散できるように、長い末広管を設けて蒸発と拡散ができる余地を与える方法が考えられている。しかしながら、この方法では、過渡運転による排ガス規制走行モードに対しては、応答性遅れのため排気ガス浄化制御が追随できなくなるという問題がある。そのため、浄化剤を如何に短時間で効率よく蒸発と拡散を行って均一に排気ガス浄化装置に到達させることが重要な課題となっている。
特開2002−213233号公報 特開2004−510909号公報
本発明は、上記の問題を解決するためになされたものであり、その目的は、エアアシスト方式が採用できない小型車であっても、排気管内において短い距離で効率良く浄化剤の蒸発及び拡散を促進できて、浄化剤を均一化した状態で排気ガス浄化装置に到達させることができる排気ガス浄化システムを提供することにある。
上記のような目的を達成するための排気ガス浄化システムに関連する排気ガス浄化方法は、内燃機関の排気通路に配設された排気ガス浄化装置で消費される浄化剤を、排気管内噴射装置によって前記排気ガス浄化装置より上流側の前記排気通路内に供給して排気ガスに混入させる排気ガス浄化方法において、前記排気通路に遮蔽部材を設けると共に、前記遮蔽部材の下流側に前記浄化剤を噴射して、前記浄化剤の微粒化を促進させることを特徴とする。
なお、この遮蔽部材の下流側とは、噴射(又は噴霧)された浄化剤の少なくとも一部が遮蔽部材で生じる渦流に巻き込まれる範囲の下流側のことをいう。また、この遮蔽部材の形状は、排気通路の一部を狭くして、排気ガスの流れに渦流を発生できれば良く、特に限定されない。また、遮蔽部材の大きさは、排気通路の断面の多くを覆う必要はなく、浄化剤の噴射口に直接、排気ガスが当たることを妨げることができる程度の大きさと位置でよい。
この構成により、排気通路(排気管)に設けた遮蔽部材により、安定した排気ガスの流れを故意に乱流化及び低速化させ、渦流を発生させて、この渦流が発生する部分の近傍の排気ガス中に浄化剤を噴射する。噴射され微粒化された浄化剤は、遮蔽部材によって発生する渦流と戻り流による淀み領域で微粒化した浄化剤が滞留し、徐々に下流へ流れて行くため、浄化剤の噴霧が偏って生じる局部的な排気ガス温度の低下が起こらず、浄化剤の蒸発が効率よく行われる。そのため、浄化剤は、排気管内において、短い距離で効率良く蒸発及び拡散し均一化した状態で排気ガス浄化装置に到達するようになる。
従って、浄化剤の噴射位置と排気ガス浄化装置の距離が短い配置であっても、浄化剤を均一に拡散させて排気ガス浄化装置へ送ることができる。そのため、過渡運転による排ガス規制走行モードであっても、応答遅れが少なくなり、浄化制御や再生制御の追従性が向上する。また、この遮蔽部材を設ける構成、即ち、排気通路の断面積を不連続に変化させる構成は単純となる。
更に、上記の排気ガス浄化方法において、前記排気通路内に噴射された浄化剤を分散部材に衝突させて、前記浄化剤の微粒化を促進させると、より微粒化及び均一分散化できる。この分散部材としては、浄化剤が衝突する部分を、浄化剤の噴射方向に対して、適当に(例えば、30°〜60°)に傾斜させた衝突板等がある。なお、噴射方向を排気ガスの流れに平行な方向とした場合には、分散部材を円錐の頂点を浄化剤の噴射口に対向させた円錐形状の棒状体で形成することもできる。
なお、浄化剤が衝突する面の形状は、通常は加工が容易であるため、平面が用いられるが、噴射された浄化剤の拡散分布を最適にするために、円柱面や球面や円錐面等の曲面を使用することもできる。
そして、上記のような目的を達成するための排気ガス浄化システムは、内燃機関の排気通路に排気ガス浄化装置を備えると共に、前記排気ガス浄化装置の上流に設けられ、浄化剤を前記排気ガス浄化装置に供給する排気管内噴射装置を備えている排気ガス浄化システムにおいて、前記排気管内噴射装置の上流に設けられると共に、前記排気管内噴射装置の噴射口に対して前記排気通路の軸方向に流れる排気ガスを遮るように設けられ、かつ、前記排気通路の軸方向に流れる排気ガスが排気管内噴射装置の噴射口に直接当たらない位置に設けられる遮蔽部材を備えて構成する。
この構成により、遮蔽部材で発生する排気ガスの渦流部分に又はその近傍に浄化剤を噴射することができるので、この渦流により、排気ガスとの混合が促進され、この混合により、浄化剤の分散均一化と蒸発が短距離で効率良く行われる。そのため、排気管内噴射装置の噴射口と排気ガス浄化装置との間が短くても、浄化剤は、均一分散状態で排気ガス浄化装置に到達する。また、排気通路に遮蔽部材を設ける構成は、構造が単純となる。
また、上記の排気ガス浄化システムで、前記排気通路内において、前記浄化剤の噴射経路に前記浄化剤の微粒化を促進させる分散部材を設けて構成すると、排気通路内に噴射された浄化剤を分散部材に衝突させて、浄化剤の微粒化を促進させることができ、より微粒化及び均一分散化できる。この分散機構としては、噴射の衝突によって微粒化作用と噴射方向を分散化させる衝突部材等を用いることができる。
そして、上記の排気ガス浄化システムにおいて、前記排気ガス浄化装置がアンモニア選択還元型NOx触媒を備えて形成され、前記浄化剤がアンモニア系溶液であるように構成される。このアンモニア系溶液としては、アンモニア選択還元型NOx触媒で使用されるアンモニア水、アンモニア水溶液、尿素水溶液等がある。
あるいは、上記の排気ガス浄化システムにおいて、前記排気ガス浄化装置が、上流側の酸化触媒と下流側のNOx吸蔵還元型触媒を備えて形成された排気ガス浄化装置、上流側の酸化触媒と下流側のNOx直接還元型触媒を備えて形成された排気ガス浄化装置、あるいは、酸化触媒を有する連続再生型ディーゼルパティキュレートフィルタを備えて形成された排気ガス浄化装置のいずれか一つで構成され、前記浄化剤が炭化水素であるように構成される。
これらの構成により、それぞれの排気ガス浄化システムにおいて、浄化剤を適宜、排気ガス中に均一的に混入して、排気ガス浄化装置に供給することができるので、効率よく、NOxの浄化、NOx吸蔵還元型触媒やNOx直接還元型触媒の再生、連続再生型ディーゼルパティキュレートフィルタの再生を行うことができる。
以上説明したように、本発明に係る排気ガス浄化システムによれば、排気管内において、短い距離で効率良く浄化剤の蒸発及び拡散を促進できて、浄化剤を均一分散状態で排気ガス浄化装置に供給することができる。
しかも、圧縮空気を使用しないので、エアアシスト方式が使えない小型車等においても使用可能となる。
以下、本発明に係る実施の形態の排気ガス浄化システムについて、図面を参照しながら説明する。
図1に、本発明の第1の実施の形態の排気ガス浄化システム1の構成を示す。この排気ガス浄化システム1では、エンジン(内燃機関)Eの排気通路4に、アンモニア選択還元型NOx触媒11を有する排気ガス浄化装置10が配置される。
このアンモニア選択還元型NOx触媒11は、コージェライトや酸化アルミニウムや酸化チタン等で形成されるハニカム構造の担持体(触媒構造体)に、チタニアーバナジウム、ゼオライト、酸化クロム、酸化マンガン、酸化モリブデン、酸化チタン、酸化タングステン等を担持して形成される。
このアンモニア選択還元型NOx触媒11では、酸素過剰の雰囲気で、排気通路4内に、尿素水溶液、アンモニア、アンモニア水等のアンモニア系溶液(浄化剤)Fを噴射して、アンモニアをアンモニア選択還元型NOx触媒11に供給して、排気ガス中のNOxに対してアンモニアと選択的に反応させることにより、NOxを窒素に還元して浄化する。
そのため、アンモニア選択還元型NOx触媒11の上流側の排気通路4に、NOxの還元剤となるアンモニア系溶液Fを噴射又は噴霧により供給するための排気管内噴射装置13を設ける。この排気管内噴射装置13は、図示しない貯蔵タンクから図示しない配管を経由して供給されてくるアンモニア系溶液Fを排気通路4内に直接噴射する。
また、アンモニア選択還元型NOx触媒11の温度を測定するために、上流側温度センサー15と下流側温度センサー16を、アンモニア選択還元型NOx触媒11の上流側と下流側、即ち、前後にそれぞれ配置する。この二箇所に設置した温度センサ15、16の温度差により、触媒11内の温度差を推定する。
更に、排気ガス浄化システム1の制御装置が、エンジンEの制御装置20に組み込まれ、エンジンEの運転制御と並行して、排気ガス浄化システム1の制御を行う。この排気ガス浄化システム1の制御装置は、排気管内噴射装置13のアンモニア系溶液Fの噴射制御を行う。
この噴射制御では、エンジンEの運転状態(回転数や負荷)によって、アンモニア系溶液Fの噴射量を変化させて、排気ガスGの流量が変化しても、より効率よく排気ガスG中のNOxを還元すると共に、排気ガス浄化装置10の下流側の浄化された排気ガスGc中へのアンモニアの流出(アンモニアスリップ)が極力少なくなるように制御する。
そして、本発明においては、図1〜図3に示すように、排気通路4における排気管内噴射装置13の噴射口13aの上流側に遮蔽板(遮蔽部材)14を設ける。この遮蔽板14の形状や、排気通路4への突出量dや閉塞率や、幅Bや円弧の角度α等は特に限定せず、排気ガスGが直接、噴射口13aに当たることを防ぐことができる大きさや配置で、かつ、排気通路の一部を狭くして、排気ガスの流れに渦流を発生できれば良い。また、遮蔽板14と噴射口13aの距離は、噴射(又は噴霧)された浄化剤の少なくとも一部が遮蔽部材で生じる渦流に巻き込まれる範囲であれば良い。
なお、この遮蔽板14の大きさと配置位置は、実験や数値計算によって定めることができるが、簡易的には、排気通路4の上流側の軸方向から見た場合に噴射口13aが遮蔽板14によって遮られて見えないような大きさや配置とすればよい。
また、図1の構成では、排気管内噴射装置13は、アンモニア系溶液Fを排気通路4の排気ガスGの流れの方向に対して垂直方向に噴射するように噴射口(開口部)13aを排気通路4の内壁に沿って設ける。つまり、噴射口13aから噴射されるアンモニア系溶液Fの流れの向きを排気通路4の軸方向と垂直な方向にする。
また、アンモニア系溶液Fの噴射中心の傾斜角度、噴射の拡がり範囲、噴射口13aの位置等もそれぞれの排気ガス浄化システム1の構造に対応させて最適な構成を採用することができる。つまり、排気ガスGの流れの方向に対して垂直方向に噴射する構成以外の、例えば、排気ガスGの流れの方向に対して並行な方向に噴射する構成も採用できる。
この構成によれば、排気通路4の直線状部分に遮蔽板14を設けて安定した排気ガスの流れに故意に渦流を発生させると共に、この遮蔽板14の下流側近傍に排気管内噴射装置13の噴射口13aを設けてアンモニア系溶液Fを噴射する構成により、アンモニア系溶液Fは、この遮蔽板14で発生する渦流により排気ガスGと混合し、拡散するので、排気ガス温度が均一化し、温度の低い部分が発生しないのでアンモニア系溶液Fの蒸発が効率よく行われ、排気通路4内において、短い距離で効率良く蒸発及び拡散し均一に排気ガス浄化装置10に到達する。そのため、排気管内噴射装置13の噴射口13aと排気ガス浄化装置10の距離が短い配置であっても、アンモニア系溶液Fを均一に拡散させて排気ガス浄化装置10へ供給することができる。
次に、第2の実施の形態について説明する。この第2の実施の形態においては、図4及び図5に示すように、第1の実施の形態の排気ガス浄化システム1の構成に加えて、排気通路4内において、アンモニア系溶液(浄化剤)Fの噴射経路にアンモニア系溶液Fの微粒化を促進させる分散部材としての衝突板17、17Aを設ける。この衝突板17、17Aの分散効果によりアンモニア系溶液Fの微粒化を促進させることができ、より微粒化及び均一分散化できる。
この衝突板17、17Aは、この衝突板17、17Aに噴射されてくるアンモニア系溶液Fを分散させる機能を有するものであれば良い。なお、この衝突板17、17Aに噴射の分散機能に加えて、排気ガスGの流れを渦流にする渦流発生機能を持たせると、アンモニア系溶液Fのより分散化、均一化を図ることができる。
図4に示す構成では、アンモニア系溶液Fが衝突する部分を、噴射方向に対して適当に(例えば、30°〜60°)に傾斜させた平面を有する衝突板17で形成する。この衝突板17は、アンモニア系溶液Fの噴射方向が排気ガスGの流れ方向に垂直か垂直に近い角度となる時に大きな効果を奏することができる。
また、図5に示す構成では、円錐の頂点を浄化剤の噴射口に対向させた円錐形状の棒状体で衝突板17Aを形成する。また、遮蔽板14は、噴射口13a部分に対して流れを遮蔽できればよいので、この斜線部分のみで遮蔽して、その他の部分14aはこの遮蔽部分を支持する支持部14aで構成する。この構成は、アンモニア系溶液Fの噴射方向が排気ガスGの流れ方向に平行か並行に近い角度となる時に大きな効果を奏することができる。
次に、第3及び第4の実施の形態の排気ガス浄化システムについて説明する。この第3及び第4の実施の形態の排気ガス浄化システムでは、排気ガス浄化装置10は、上流側の酸化触媒と下流側のNOx吸蔵還元型触媒を備えて形成され、浄化剤が炭化水素であるように構成される。その他の構成は、それぞれ第1及び2の実施の形態と同様である。
この酸化触媒は、コージェライト、炭化ケイ素、又はステンレス等の構造材で形成されたモノリス触媒に、白金やロジウムやパラジウム等の触媒金属を担持して形成される。また、NOx吸蔵還元型触媒は、酸化機能を持つ白金(Pt)等の貴金属触媒と、アルカリ金属やアルカリ土類金属や希土類等のNOx吸蔵機能を持つNOx吸蔵材を担持し、これらにより、排気ガス中の酸素濃度によってNOx吸蔵とNOx放出・浄化の二つの機能を発揮する。
そして、このNOx吸蔵還元型触媒は、通常運転時にNOxを触媒金属に吸蔵し、吸蔵能力が飽和に近づくと、適時、流入してくる排気ガスの空燃比をリッチ空燃比にして、吸蔵したNOxを放出させると共に、放出されたNOxを触媒の三元機能で還元する。
このNOx吸蔵還元型触媒を備えた排気ガス浄化システムでは、NOx吸蔵推定量がNOx吸蔵飽和量になった時に、排気管内噴射装置13により、排気通路4に直接燃料等の炭化水素(浄化剤)Fを供給する。この炭化水素Fを、上流側の酸化触媒で酸化することにより、排気ガスGの空燃比をリッチ状態にして、吸収したNOxを放出させる。この放出されたNOxを貴金属触媒により還元させる。この再生処理により、NOx吸蔵能力を回復する。
次に、第5及び第6の実施の形態の排気ガス浄化システムについて説明する。この第5及び第6の実施の形態の排気ガス浄化システムでは、排気ガス浄化装置10は、上流側の酸化触媒と下流側のNOx直接還元型触媒を備えて形成され、浄化剤が炭化水素であるように構成される。その他の構成は、それぞれ第1及び第2の実施の形態と同様である。
この酸化触媒は、第3及び第4の実施の形態と同様に、コージェライト、炭化ケイ素、又はステンレス等の構造材で形成されたモノリス触媒に、白金やロジウムやパラジウム等の触媒金属を担持して形成される。NOx直接還元型触媒は、β型ゼオライト等の担体に触媒成分であるロジウム(Rh)やパラジウム(Pd)等の金属を担持させて形成する。更に、金属の酸化作用を軽減し、NOx還元能力の保持に寄与するセリウム(Ce)を配合したり、下層に三元触媒を設けて酸化還元反応、特に排気ガスリッチ状態におけるNOxの還元反応を促進するようにしたり、NOxの浄化率を向上させるために単体に鉄(Fe)を加える等する。
そして、このNOx直接還元型触媒は、通常運転時のリーン状態でNOxを直接還元するが、この還元の際に触媒の活性物質である金属に酸素(O2 )が吸着して還元性能が悪化する。そのため、NOx還元性能が悪化してきた時に、排気管内噴射装置13により、排気通路4に直接燃料等の炭化水素(浄化剤)Fを供給する。この炭化水素Fを、上流側の酸化触媒で酸化することにより、排気ガスGの空燃比をリッチ状態にして、触媒の活性物質である金属を再生して活性化する。
次に、第7及び第8の実施の形態の排気ガス浄化システムについて説明する。この第7及び第8の実施の形態の排気ガス浄化システムでは、排気ガス浄化装置10は、酸化触媒を有する連続再生型ディーゼルパティキュレートフィルタを備えて形成され、浄化剤が炭化水素であるように構成される。その他の構成は、それぞれ第1及び第2の実施の形態と同様である。
なお、この酸化触媒を有する連続再生型ディーゼルパティキュレートフィルタとしては、上流側の酸化触媒と下流側のフィルタとから形成されるものや、酸化触媒を担持したフィルタから形成されるもの等がある。
この上流側の酸化触媒は、第3及び第4の実施の形態と同様に、コージェライト、炭化ケイ素、又はステンレス等の構造材で形成されたモノリス触媒に、白金やロジウムやパラジウム等の触媒金属を担持して形成される。フィルタは、多孔質のセラミックのハニカムのチャンネルの入口と出口を交互に目封じした、即ち、市松模様状に目封じしたモノリスハニカム型ウォールスルータイプのフィルタで形成される。このフィルタで排気ガス中のPM(粒子状物質)を捕集する。
また、酸化触媒を担持したフィルタは、モノリスハニカム型ウォールスルータイプのフィルタに、白金やロジウムやパラジウム等の触媒金属を担持して形成され、このフィルタで排気ガス中のPMを捕集する。
そして、フィルタ部分に捕集され蓄積されたPMを燃焼除去するために、排気管内噴射13により、排気通路4内に軽油燃料等の炭化水素(浄化剤)Fを供給して、フィルタの上流側に配置した酸化触媒又はフィルタに担持された酸化触媒で、この炭化水素Fを酸化させることによって、フィルタの温度を上昇させてフィルタのPMを燃焼除去する。
上記の第1〜第8の実施の形態の排気ガス浄化システムによれば、浄化剤Fを排気通路4内に供給する排気ガス浄化システム1において、遮蔽板14の下流側の近傍に噴射された浄化剤Fは、この遮蔽板14や衝突板17、17Aで発生する渦流により排気ガスとの混合が促進され、この混合により、浄化剤Fの分散均一化と蒸発が短距離で行われる。そのため、浄化剤Fは、短い距離で効率良く蒸発及び拡散し、均一化した状態で排気ガス浄化装置に到達する。
従って、浄化剤Fの噴射位置と排気ガス浄化装置10の距離が短い配置であっても、浄化剤Fを均一に拡散させて排気ガス浄化装置10へ供給することができる。
本発明の第2の実施の形態において、図4に示すように、遮蔽板(遮蔽部材)14と衝突板(分散部材)17を設けたものを実施例とし、図6に示すように、遮蔽板14を設けず衝突板17のみを設けたものを比較例1とした。また、図7に示すように、遮蔽板14を設けず、段差4bと衝突板17を設けたものを比較例2とした。
ここで、実施例1では、排気通路4の直径Dが90mmφで遮蔽板14の形状は図3に示す円弧状の形状であり、その突出量dは15mmで、直径Dの17%で、根本の広がり角度αは根本部に対して60度である。比較例2では、小径部4aの直径D1が50mmφ、大径部4cの直径D2が90mmφである。
実施例1における遮蔽板14と噴射口13aとの距離は50mmで、比較例2における段差4bと噴射口13aとの距離は145mmである。また、衝突板17に関しては、いずれも、衝突板17のアンモニア系溶液Fが衝突する面の中心は、壁面から10mmの距離に置かれ、その衝突面は排気ガスの流れに対しても、また、アンモニア系溶液Fの主噴射方向に対しても、45°傾斜している。
この実施例と比較例1、2に関して、NOx浄化試験を行った。このNOx浄化試験は、ガソリン13モードの9モード目(定格回転の60%回転、60%トルク)で行った。この結果を図8と図9に示す。
図8及び図9に示す横軸の当量比とは、理想状態でNOxと反応するアンモニアの比率である。当量比1の場合は、噴霧した尿素から発生するアンモニアの量が排気管中のNOxと1:1で反応する量である。
このNOx浄化率を比較した図8によれば、実施例(実線A)と比較例2(点線C)は、ほぼ理想状態のNOx浄化率で推移し、当量比1.0ではNOx浄化率が、目標NOx浄化率90%以上に対して、それぞれ99%、98%と目標値を上回っているが、それと比較して、比較例1(一点鎖線B)は当量比0.5付近から既に理想浄化率(当量比0.5の場合は浄化率50%)を若干下回り始め、当量比1.0においても82%というNOx浄化率となっていることが分かる。
また、図9によれば、アンモニアスリップは、実施例(実線A)と比較例2(点線C)では当量比1.0付近まで殆ど出ていないが、NOx浄化率が低い比較例1(一点鎖線B)では著しいことが分かる。
従って、排気管内噴射装置13の上流側の近傍に遮蔽板14を設けた排気管形状では、排気管に段差4bを設けることなく、段差付き排気管形状と同様に、高いNOx浄化率を得られることが分かる。
本発明に係る第1実施の形態の排気ガス浄化システムの全体構成を示す図である。 排気管内噴射装置の上流側に遮蔽板を設けた構成を示す部分図である。 遮蔽板と排気通路の関係を示す排気通路の断面図である。 第2の実施の形態の衝突板で形成される分散部材を設けた構成を示す部分図である。 第2の実施の形態の円錐を頭部に有する棒状体で形成される分散部材を設けた構成を示す部分図である。 比較例1の遮蔽板を設けず分散部材を設けた構成を示す部分図である。 比較例2の段差と分散部材を設けた構成を示す部分図である。 実施例と比較例1、2のNOx浄化率を示す図である。 実施例と比較例1、2のアンモニアスリップを示す図である。
符号の説明
E エンジン
1 排気ガス浄化システム
4 排気通路
10 排気ガス浄化装置
11 アンモニア選択還元型NOx触媒
13 排気管内噴射装置
13a 噴射口
14 遮蔽板(遮蔽部材)
17 衝突板(分散部材)
17A 円錐形状の棒状体
F アンモニア系溶液(浄化剤、液滴)
G 排気ガス
Gc 浄化された排気ガス

Claims (4)

  1. 内燃機関の排気通路に排気ガス浄化装置を備えると共に、前記排気ガス浄化装置の上流に設けられ、浄化剤を前記排気ガス浄化装置に供給する排気管内噴射装置を備えている排気ガス浄化システムにおいて、前記排気管内噴射装置の上流に設けられると共に、前記排気管内噴射装置の噴射口に対して前記排気通路の軸方向に流れる排気ガスを遮るように設けられ、かつ、前記排気通路の軸方向に流れる排気ガスが排気管内噴射装置の噴射口に直接当たらない位置に設けられる遮蔽部材を備えたことを特徴とする排気ガス浄化システム。
  2. 前記排気通路内において、前記浄化剤の噴射経路に前記浄化剤の微粒化を促進させる分散部材を設けたことを特徴とする請求項1記載の排気ガス浄化システム。
  3. 前記排気ガス浄化装置がアンモニア選択還元型NOx触媒を備えて形成され、前記浄化剤がアンモニア系溶液であることを特徴とする請求項1又は2に記載の排気ガス浄化システム。
  4. 前記排気ガス浄化装置が、上流側の酸化触媒と下流側のNOx吸蔵還元型触媒を備えて形成された排気ガス浄化装置、上流側の酸化触媒と下流側のNOx直接還元型触媒を備えて形成された排気ガス浄化装置、あるいは、酸化触媒を有する連続再生型ディーゼルパティキュレートフィルタを備えて形成された排気ガス浄化装置のいずれか一つで形成され、前記浄化剤が炭化水素であることを特徴とする請求項1又は2に記載の排気ガス浄化システム。
JP2006082207A 2006-03-24 2006-03-24 排気ガス浄化システム Active JP4830570B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006082207A JP4830570B2 (ja) 2006-03-24 2006-03-24 排気ガス浄化システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006082207A JP4830570B2 (ja) 2006-03-24 2006-03-24 排気ガス浄化システム

Publications (2)

Publication Number Publication Date
JP2007255343A JP2007255343A (ja) 2007-10-04
JP4830570B2 true JP4830570B2 (ja) 2011-12-07

Family

ID=38629822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006082207A Active JP4830570B2 (ja) 2006-03-24 2006-03-24 排気ガス浄化システム

Country Status (1)

Country Link
JP (1) JP4830570B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4959232B2 (ja) * 2006-06-12 2012-06-20 三浦工業株式会社 脱硝装置用混合促進器とそれを備える脱硝装置
JP4558816B2 (ja) 2008-06-05 2010-10-06 株式会社日本自動車部品総合研究所 内燃機関の排気浄化装置
JP5018723B2 (ja) * 2008-10-01 2012-09-05 トヨタ自動車株式会社 内燃機関の排気浄化装置
CN101856598A (zh) * 2010-05-28 2010-10-13 中电投远达环保工程有限公司 烟气混合元件及烟气脱硝系统
US8677738B2 (en) * 2011-09-08 2014-03-25 Tenneco Automotive Operating Company Inc. Pre-injection exhaust flow modifier
JP6785046B2 (ja) * 2016-02-26 2020-11-18 三菱パワー株式会社 排気ダクト及びボイラ並びに固体粒子の除去方法
KR101855828B1 (ko) * 2016-10-26 2018-05-11 주식회사 애니텍 선박 배가스에 포함된 황산화물 및 질소산화물과 세정액의 혼합 효율이 증대되는 습식 스크러버 장치
CN111420544B (zh) * 2020-05-09 2024-06-21 浙江南化防腐设备有限公司 双氧水低温脱硝装置与脱硝工艺

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11166410A (ja) * 1997-12-04 1999-06-22 Hino Motors Ltd 排ガス浄化装置
JPH11319491A (ja) * 1998-05-20 1999-11-24 Meidensha Corp 脱硝装置
DE10131803A1 (de) * 2001-06-30 2003-05-28 Bosch Gmbh Robert Mischeinrichtung für eine Abgasreinigungsanlage
JP4290056B2 (ja) * 2004-03-31 2009-07-01 日産ディーゼル工業株式会社 エンジンの排気浄化装置
JP2006046252A (ja) * 2004-08-06 2006-02-16 Isuzu Motors Ltd 排気ガス浄化方法及び排気ガス浄化装置を備えたエンジン

Also Published As

Publication number Publication date
JP2007255343A (ja) 2007-10-04

Similar Documents

Publication Publication Date Title
JP3938187B2 (ja) 排気ガス浄化方法及び排気ガス浄化システム
JP4961847B2 (ja) 排気ガス浄化方法及び排気ガス浄化システム
JP4830570B2 (ja) 排気ガス浄化システム
JP5814333B2 (ja) 排気処理方法
CN101627190B (zh) 内燃机的排气净化装置
US9458750B2 (en) Integrated exhaust treatment device having compact configuration
JP5251266B2 (ja) 排気ガス浄化装置及び排気ガス浄化システム
KR100998273B1 (ko) 내연기관의 배기정화장치
CN102454453B (zh) 具有降低的so3产生和改进的耐久性的排放scr nox后处理系统
JP2007198316A (ja) 内燃機関の排気浄化装置及び排気浄化方法
KR20060069355A (ko) 환원제 첨가 조절 방법
WO2009089156A1 (en) Mitigation of particulates and nox in engine exhaust
JP2009156078A (ja) 内燃機関の排気ガス浄化装置
KR20180068808A (ko) 배기가스 정화장치 및 제어 방법
JP2010019239A (ja) 排気浄化装置
JP2008240722A (ja) 排気ガス浄化装置
JP2018105248A (ja) 排気ガス浄化装置
JP2009156067A (ja) 内燃機関の排気ガス浄化装置
JP4622903B2 (ja) 添加剤供給装置
US10041391B2 (en) Apparatus for purifying exhaust gas
JP2007205308A (ja) 排気ガス浄化方法及び排気ガス浄化システム
US20140041370A1 (en) Exhaust Treatment System for Internal Combustion Engine
JP2008019820A (ja) 排気ガス浄化システム及び排気ガス浄化方法
JP2006266129A (ja) 排気ガス浄化システム
US20080261801A1 (en) Methods of Regenerating a Nox Absorbent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110621

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110905

R150 Certificate of patent or registration of utility model

Ref document number: 4830570

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3