JP4811268B2 - エンジン機構制御装置 - Google Patents

エンジン機構制御装置 Download PDF

Info

Publication number
JP4811268B2
JP4811268B2 JP2006345640A JP2006345640A JP4811268B2 JP 4811268 B2 JP4811268 B2 JP 4811268B2 JP 2006345640 A JP2006345640 A JP 2006345640A JP 2006345640 A JP2006345640 A JP 2006345640A JP 4811268 B2 JP4811268 B2 JP 4811268B2
Authority
JP
Japan
Prior art keywords
engine mechanism
model unit
limit
engine
feedforward
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006345640A
Other languages
English (en)
Other versions
JP2008157083A (ja
Inventor
和彦 田添
英夫 中村
秀明 米澤
健吾 藤原
哲 瀬川
敏博 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006345640A priority Critical patent/JP4811268B2/ja
Publication of JP2008157083A publication Critical patent/JP2008157083A/ja
Application granted granted Critical
Publication of JP4811268B2 publication Critical patent/JP4811268B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Valve Device For Special Equipments (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

この発明は、エンジンの運転をコントロールするエンジン機構の制御装置に関する。
エンジンには、エンジン運転をコントロールするための種々の電制機構が設けられている。たとえば特許文献1では、エンジン運転をコントロールするための電制機構である電制スロットルを制御する装置が開示されている。この特許文献1では、目標開度を達成するための電流指令値を算出するとともに、目標開度に対する実開度のズレを外乱として前記電流指令値を補正することで、実開度を制御目標開度に一致させている。
特開平9−158764号公報
しかし、前述した従来の制御装置では、応答性を向上させるためにフィードバック型モデルマッチング補償部の規範応答を速めると結果的に耐外乱性が向上するが、耐外乱性とトレードオフの関係にあるロバスト安定性が低下する。また、耐外乱性を向上させるために外乱補償部のカットオフ周波数を上げると同様にロバスト安定性が低下する。つまり、適切なロバスト安定性を保ちながら、応答性および耐外乱性を向上させるには限界があり、さらなる高い応答性、高い耐外乱性を実現することができない、という課題があった。
本発明は、このような従来の問題点に着目してなされたものであり、エンジン運転をコントロールするための電制機構を、実際に出力可能な指令値で制御することで、高い応答性と、高い耐外乱性を得ることのできるエンジン機構制御装置を提供することを目的とする。
本発明は以下のような解決手段によって前記課題を解決する。なお、理解を容易にするために本発明の実施形態に対応する符号を付するが、これに限定されるものではない。
本発明は、エンジン運転をコントロールするエンジン機構を制御するエンジン機構制御装置であって、制御目標値を入力し、制御対象であるエンジン機構(10、30)をその制御目標値通りに制御するためのフィードフォワード制御信号を出力するモデル規範型制御部(B31)と、前記フィードフォワード制御信号に基づいて規範応答値を算出する制御対象モデル部と、を含むフィードフォワード補償器(B3)と、前記規範応答値及び前記エンジン機構の実際の応答値に基づいてフィードバック制御信号を出力するフィードバック補償器(B4)と、を備え、前記制御対象モデル部は、前記モデル規範型制御部から出力される信号を入力する第1制御対象モデル部と、前記第1制御対象モデル部から出力された信号の上下限値を制限する制限モデル部と、前記制限モデル部で制限された信号に基づいて規範応答値を算出する第2制御対象モデル部と、をさらに含み、前記フィードフォワード補償器は、前記第1制御対象モデル部と同一の伝達関数を有し、前記制限モデル部で制限された信号を進み補償してフィードフォワード制御信号を出力する進み補償部をさらに含み、前記制限モデル部(B32、B302)で制限されたフィードフォワード制御信号及び前記フィードバック補償器(B4)から出力されたフィードバック制御信号によって前記エンジン機構(10、30)を制御することを特徴とする。
本発明によれば、モデル規範型制御部から出力され、制御対象モデル部に入力されるまでに制限されたフィードフォワード制御信号及びフィードバック補償器から出力されたフィードバック制御信号によってエンジン機構を制御するようにしたので、実際の制御対象を制御可能な出力で制御対象モデル部の演算をすることができる。そのため、より現実に合致し、高い応答性と、高い耐外乱性を得ることができるのである。
以下では図面等を参照して本発明を実施するための最良の形態について説明する。
(第1実施形態)
図1は、本発明によるエンジン機構の制御装置の第1実施形態の構成を示す図である。
本実施形態では、エンジン機構としての電制スロットルを制御する。
本実施形態のエンジン機構の制御装置1は、コントローラ70と、電流制御アンプ11と、スロットル駆動モータ12とを有し、スロットル駆動モータ12によってスロットルバルブ10の実開度θを調整する。
コントローラ70は、電源電圧VB、スロットル目標開度θcom及びスロットル実開度θを入力し、スロットル実開度θがスロットル目標開度θcomに一致するように、スロットル駆動モータ12を制御するための電流指令値Icomを出力する。なおスロットル目標開度θcomは、運転者のアクセルペダルの踏込量などから算出される。コントローラ70は中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)及び入出力インタフェース(I/Oインタフェース)を備えたマイクロコンピュータで構成される。複数のマイクロコンピュータでコントローラ70を構成してもよい。
電流制御アンプ11は、スロットル駆動モータ12に流れる実際の電流と、コントローラ70からの電流指令値Icomとが一致するようにパワートランジスタのスイッチング時間を制御する。
スロットル駆動モータ12は、たとえば直流モータである。スロットル駆動モータ12は、ギヤ13によって減速され、スロットルバルブ10の軸10aを駆動する。軸10aの一端には、角度センサ14が設置される。
角度センサ14はスロットルバルブ10の実開度θを検出する。角度センサ14は、たとえばアナログ信号を出力するポテンショメータである。なお角度センサ14は、ポテンショメータではなく、光学式エンコーダであってもよい。光学式エンコーダを使用すれば、スロットルバルブ10の実開度θを一層高精度に検出できる。ポテンショメータから出力されたアナログ信号は、増幅器及びA/D変換器で構成されるセンサ信号処理回路で増幅されてディジタル信号に変換されて、コントローラ70に入力される。
スロットルバルブ10には、スロットルバルブ10を閉弁するように作用する閉弁バネと、開弁するように作用する開弁バネと、が設けられる。両バネは、スロットル駆動モータ12による駆動力がないときに、スロットルバルブ10をデフォルト開度に保持する。このように、スロットルバルブ10は、万一、スロットル駆動モータ12に電流が流れない事態が生じても、一定のデフォルト開度に保持され、吸気を確保して走行可能なフェイルセーフ構造となっている。
図2は、コントローラのエンジン機構制御に関する機能を示すブロック図である。なお各ブロックには後述のフローチャートのステップ番号に対応する番号を、冒頭にBを付加して付番した。各ブロックの具体的な制御内容の詳細はフローチャートに沿って後述する。
コントローラ70は、スロットル目標開度θcom及びスロットル実開度θに基づいてスロットル駆動モータを制御するための電流指令値Icomを出力する。コントローラ70は、フィードフォワード補償器B3と、フィードバック補償器B4と、外乱補償器B6と、を有する。
フィードフォワード補償器B3は、スロットル目標開度θcomを入力し、フィードフォワード電流指令値Icom_FF及びスロットル規範応答開度θsimを出力する。なおフィードフォワード補償器B3の具体的な構成については後述するが、フィードフォワード補償器B3は内部に制限モデルB32を有する。この制限モデルB32は電流制限値算出器B2で計算された制限値を使用する。
電流制限値算出器B2は、電源電圧VB又は逆起電力推定値VREVなどを入力し、電流制限値ILMTを出力する。
フィードバック補償器B4は、スロットル規範応答開度θsim及びスロットル実開度θを入力し、スロットル実開度θがスロットル規範応答開度θsimに一致するようにフィードバック電流指令値Icom_FBを出力する。
加算器B5は、フィードフォワード電流指令値Icom_FFとフィードバック電流指令値Icom_FBと入力し、両者を足し合わせて電流指令値Icom1を出力する。
外乱補償器B6は、電流指令値Icom及びスロットル実開度θを入力し、両者に基づいて外乱補償値Idisを出力する。外乱補償器B6の具体的な構成については後述する。
減算器B7は、電流指令値Icom1から外乱補償値Idisを減算することで、外乱やパラメータ変動による影響を排除した電流指令値Icomを出力する。そしてこの電流指令値Icomによってスロットル駆動モータ12が作動しスロットルバルブ10の実開度θが調整される。
図3は、フィードフォワード補償器B3の詳細構成を説明する図である。
フィードフォワード補償器B3は、モデル規範型制御部B31と、制限モデルB32と、制御対象モデルB33と、を有する。フィードフォワード補償器B3は、スロットル目標開度θcomを入力して、フィードフォワード電流指令値Icom_FF及びスロットル規範応答開度θsimを出力する。
モデル規範型制御部B31は、スロットル目標開度θcom及びスロットル規範応答開度θsimを入力して制限前電流指令値Icom0を出力する。モデル規範型制御部B31は、通常使用されるものでよいが、たとえば後述のモデルマッチング補償を使用すればよい。
制限モデルB32は、制御対象(電流制御アンプ11からスロットルバルブ10にかけての機構)に流す電流を制限する構造を模したモデルである。すなわち、車両状態によってスロットル駆動モータ12を駆動するための電源電圧VBが制限され、電流も制限される。また直流モータには逆起電力が発生し、これによっても電流が制限される。さらに電流駆動回路にはモータの巻線抵抗などの内部抵抗があり、これによっても電流が制限される。このような電流制限構造を模したものが制限モデルB32である。制限モデルB32は、制限前電流指令値Icom0を入力してフィードフォワード電流指令値Icom_FFを出力する。このようにフィードフォワード電流指令値Icom_FFは、モデル規範型制御部B31の出力を制限モデルB32で制限したものである。
制御対象モデルB33は、制御対象(電流制御アンプ11からスロットルバルブ10にかけての機構)を伝達関数としたモデルである。制御対象モデルB33は、フィードフォワード電流指令値Icom_FFを入力してスロットル規範応答開度θsimを出力する。
図4は、モデル規範型制御部B31の一例であるモデルマッチング補償の詳細構成を説明する図である。
モデルマッチング補償は、制御ブロックB311と、制御ブロックB312と、減算器B313と、制御ブロックB314とで構成される。
制御ブロックB311はBmfで構成され、制御ブロックB312はL(z-1)で構成され、制御ブロックB314は1/R(z-1)で構成される。詳細には以下である。
なおこれらについて補足説明する。本件では、電流指令値Icomからスロットル実開度θまでの制御対象の連続系伝達特性Gp(s)を(K/(as2+bs+c))(以下、0次/2次と表わす)としている。これを離散化した伝達特性はGp(z-1)となり、次式(2)で表わされる。
p(z-1)のゼロ点(−bp1/bp0)は、サンプリングタイムを小さくすると−1に収束するので、Gp(z-1)の逆系を補償器に用いると不安定になってしまう。これを避けるために、次のようにモデルマッチング補償部を設計する。
所望の応答特性を連続系規範モデル伝達特性GM0(s)(0次/2次)で与える。これを離散化した規範モデル伝達特性GM0(z-1)とすると、上記制御対象の伝達特性Gp(z-1)と同様に、サンプリングタイムを小さくすると−1に収束するゼロ点を有する。したがって、モデルマッチング補償器の設計の際に両者を相殺させる目的で、規範モデル伝達特性GM0(z-1)のゼロ点を制御対象伝達特性Gp(z-1)のゼロ点で置き換えたGM(z-1)を規範モデル伝達特性として用いる。なお、サンプリングタイムが十分小さければ、GM(z-1)とGM0(z-1)との差はほとんどなく、実用上問題はない。
式(2.1)、式(3)より、モデルマッチング補償の制御ブロックB311、制御ブロックB312、制御ブロックB314が上述のように構成される。
減算器B313は、制御ブロックB311の出力信号値から、制御ブロックB312の出力信号値を減算する。
制御ブロックB314から制限前電流指令値Icom0が出力される。
図5は、外乱補償器B6の詳細構成を説明する図である。
外乱補償器B6は、電流指令値Icom及びスロットル実開度θを入力し、両者に基づいて外乱補償値Idisを出力する。外乱補償器B6は、制御ブロックB61と、制御ブロックB62と、制御ブロックB63と、減算器B64と、を有する。
制御ブロックB61は、電流指令値Icomを入力し、電動モータ12に流れる電流の上下限を制限するリミッタである。制御ブロックB61は、モータ電流が飽和したときに外乱補償器B6への入力を制限することで、外乱補償値Idisに誤差が溜まるのを防止して応答性能の悪化を防止する。なお、制限値は、図2に示す電流制限値算出器B2で算出された入力制限値ILMTを用いることによって、入力制限による誤差の蓄積を一層正確に防止できる。
制御ブロックB62は、制御ブロックB61で制限された電流値を入力し、電流指令値Icom2を出力する。制御ブロックB62は、定常ゲインが1であるローパスフィルタH0(z-1)に、Gp(z-1)のゼロ点を有するQ(z-1)を付加したフィルタH(z-1)である。制御ブロックB62は、制御ブロックB61で制限された電流指令値をローパスフィルタ処理して電流指令値Icom2を出力する。
制御ブロックB63は、フィルタH(z-1)/Gp(z-1)である。したがって、−1に収束するゼロ点が相殺されるので、制御ブロックB63は安定なデジタルフィルタとなる。制御ブロックB63は、電流指令値Icomからスロットル開度θまでの制御対象の離散系伝達特性Gp(z-1)と、スロットルバルブ10の実開度θとに基づいて電流指令値Icomを逆演算し、さらにローパスフィルタ処理して電流指令値Icom3を出力する。
減算器B64では、電流指令値Icom3から電流指令値Icom2を減算し、電流アンプからセンサ信号処理回路までの制御対象の外乱やパラメータ変動による電流指令値Icomのズレ量(外乱補償値)Idisを算出する。
外乱補償値Idisは、制御対象に外乱やパラメータ変動がない場合にはゼロとなる。これに対して、制御対象に外乱dやパラメータ変動Δがある場合には、スロットルバルブ開度θは次式(4)で表される。
H(z-1)のゲイン特性が1である周波数帯域では次式(5)で表される。
つまり、外乱dやパラメータ変動△の影響が完全にキャンセルされて、制御対象の動特性がノミナルモデルGp(z-1)に一定化される。H(z-1)のカットオフ周波数を上げると高周波数域まで同様な効果が得られるが、逆にハイゲインフィードバックとなり、安定余裕が減少するのでトレードオフ設計が必要となる。
以下ではコントローラ70の具体的な制御ロジックについてフローチャートに沿って説明する。図6はエンジン機構制御のメインルーチンのフローチャートである。なおコントローラ70はこの処理を微少時間(例えば10ミリ秒)サイクルで繰り返し実行する。
ステップS1においてコントローラ70は、スロットル実開度θ及び電源電圧VBを読み込む。
ステップS2においてコントローラ70は、電流制限値ILMTを算出する。具体的な算出ルーチンについては後述する。
ステップS3においてコントローラ70は、フィードフォワード処理を実行する。具体的な処理内容については後述する。
ステップS4においてコントローラ70は、フィードバック処理を実行する。
ステップS5においてコントローラ70は、フィードフォワード電流指令値Icom_FFに対してフィードバック電流指令値Icom_FBを加算して電流指令値Icom1を算出する。
ステップS6においてコントローラ70は、外乱補償値Idisを算出する。具体的には前述した図5のブロック図に基づいて演算する。
ステップS7においてコントローラ70は、電流指令値Icom1から外乱補償値Idisを減算して電流指令値Icomを算出する。
図7は、電流制限値算出のサブルーチンを示すフローチャートである。
ステップS21においてコントローラ70は、直流モータの逆起電力VREVを算出する。具体的には、まずスロットル実開度θに次式(6.1)の伝達関数で表される近似微分処理を行いスロットルバルブの角速度ωθを算出する。算出した角速度ωθに減速器のギア比やモータのトルク定数から決まる定数KREVを乗算することによって逆起電力VREVを算出する。近似微分処理は次式(6.1)の伝達関数で表されるが、実際にはタスティン近似などで離散化して得られた漸化式を用いて算出する。
なお本実施形態では、近似微分を用いて逆起電力を推定しているが、スロットル開度θ、前回の電流指令値Icom及び制御対象の数式モデルを用いたオブザーバを用いて角速度ωθを算出して逆起電力VREVを推定してもよい。
ステップS22においてコントローラ70は、電流駆動回路の内部抵抗Rsimを推定する。実際には、スロットル開度θ、電流指令値Icom及び下記の制御対象の数式モデルを用いた適応デジタルフィルタや拡張カルマンフィルタを用いて推定を行う。
これらによって求めた内部抵抗Rを、電流駆動回路の内部抵抗推定値Rsimとする。
ステップS23においてコントローラ70は、電流制限値ILMTを算出する。具体的には次式(8)によって算出する。
図8は、フィードフォワード処理のサブルーチンを示すフローチャートである。
ステップS330においてコントローラ70は、制御対象モデルB33において、フィードフォワード電流指令値Icom_FFを入力してスロットル規範応答開度θsimを算出する。
ステップS31においてコントローラ70は、モデルマッチング処理する。具体的には図4で説明したモデルマッチング補償処理する。
ステップS32においてコントローラ70は、電流制限処理してフィードフォワード電流指令値Icom_FFを算出する。具体的な処理ルーチンについては後述する。
図9は、電流制限処理のサブルーチンを示すフローチャートである。
ステップS321においてコントローラ70は、制限前電流指令値Icom0が電流制限値ILMTの負値(−ILMT)よりも小さいか否かを判定する。小さければステップS322へ処理を移行し、そうでなければステップS323へ処理を移行する。
ステップS322においてコントローラ70は、フィードフォワード電流指令値Icom_FFを電流制限値ILMTの負値(−ILMT)で制限する。
ステップS323においてコントローラ70は、制限前電流指令値Icom0が電流制限値ILMTよりも大きいか否かを判定する。大きければステップS325へ処理を移行し、そうでなければステップS324へ処理を移行する。
ステップS324においてコントローラ70は、制限前電流指令値Icom0をフィードフォワード電流指令値Icom_FFとしてセットする。
ステップS325においてコントローラ70は、フィードフォワード電流指令値Icom_FFを電流制限値ILMTで制限する。
図10は、時刻t11でスロットル開度を0°から75°に開くときの応答性評価結果を示す図である。
本実施形態によれば、電流は図10(A)の実線のように流れる。比較例では、電流は図10(A)の破線のように流れる。
このとき図10(B)に示すように、比較例では時刻t13でスロットル開度が75°に達するのに対して、本実施形態では時刻t12でスロットル開度が75°に達し、応答性が向上していることが分かる。
図11は、スロットル開度を21°に保持しているときに、時刻t21で外乱が加わったときの耐外乱性評価結果を示す図である。
本実施形態によれば、電流は図11(A)の実線のように流れる。比較例では、電流は図11(A)の破線のように流れる。
図11(B)に示すように、外乱を受けたときに、本実施形態は比較例に比べてスロットルがあまり開かず、耐外乱性が向上していることが分かる。
また本実施形態では、上述のように直流モータの逆起電力VREVをも考慮している。
逆起電力を考慮しないと、電流は図12(A−1)のように流れ、スロットル開度は図12(A−2)のようになった。このように実開度θが目標開度に到達するまでに時間がかかる。
ところが本願では逆起電力をも考慮するようにしたので、電流は図12(B−1)のように流れ、スロットル開度は図12(B−2)のようになった。このようにスロットル実開度θはスロットル規範応答開度θsimと一致し、短時間で目標開度に到達するようになった。
また本実施形態では、制限モデルB32で制限した電流で制御対象を制御するようにしたので、実電流と制御対象モデルB33へ流れる電流とが一致する。図13(A−1)のように、実電流と制御対象モデルB33へ流れる電流とが一致しない場合には、図13(A−2)のように、実開度θが目標開度に到達するまでに時間がかかってしまう。ところが、本実施形態では、図13(B−1)のように、実電流と制御対象モデルB33へ流れる電流とが一致するので、図13(B−2)のように、スロットル実開度θはスロットル規範応答開度θsimと一致し、短時間で目標開度に到達するようになった。
このように、モデル規範型制御部B31から出力され、制御対象モデル部B33に入力されるまでのフィードフォワード制御信号の上下限値を制限する制限モデル部B32を含み、その制限モデル部B32で制限されたフィードフォワード制御信号及びフィードバック補償器B4から出力されたフィードバック制御信号によって電制スロットル10を制御するようにしたので、実際の制御対象を制御可能な出力で制御対象モデル部B33の演算をすることができる。そのため、より現実に合致し、高い応答性と、高い耐外乱性を得ることができるのである。また制限モデル部B32には、直流モータの逆起電力VREVをも考慮することで、一層精緻に制御可能になる。
(第2実施形態)
以下では前述した実施形態と同様の機能を果たす部分には同一の符号を付して重複する説明を適宜省略する。
電制スロットルバルブは、上述のようにスロットル駆動モータ12に電流が流れていなければ、開弁バネ及び閉弁バネによって所定のデフォルト開度に保持されるが、このような構造ではスロットルバルブがデフォルト開度を通過するときにデフォルト開度で一時的に停止する。
アクチュエータの負荷トルクとスロットル開度との関係は図14のようになる。アクチュエータの負荷トルクは電流に略比例するので、この図はアクチュエータへ流す電流とスロットル開度との関係を示すと考えてよい。この図14から分かるように、スロットルバルブの開度は、デフォルト開度以外であれば電流に比例して増減するが、デフォルト開度のときは電流を増しても減らしても増減しない。このようにデフォルト開度を中心として不連続な段差が存在する。またデフォルト開度において開負荷トルクT_OPの大きさ(絶対値)が、閉負荷トルクT_CLの大きさ(絶対値)と同じとは限らない。
そこで本実施形態では、一層精度を向上させるために、デフォルト開度よりも高開度域であるか低開度域であるかで電流制限値を変更するようにした。
図15は、第2実施形態の電流制限値算出のサブルーチンを示すフローチャートである。
ステップS21、ステップS22は、第1実施形態と同様であるので、詳細な説明は省略する。
ステップS23においてコントローラ70は、上限値ILMT_HIGH_FIN及び下限値ILMT_LOW_FINを算出する。
具体的には、まず次式(9.1)(9.2)によって上限基準値ILMT_HIGH及び下限基準値ILMT_LOWを算出する。
そしてスロットル開度がデフォルト開度を超えているときには、アクチュエータのトルク特性に基づいて次式(10.1)によって開補正値ILMT_OPを算出し、さらに次式(10.2)(10.3)によって上限値ILMT_HIGH_FIN及び下限値ILMT_LOW_FINを算出する。
一方スロットル開度がデフォルト開度を超えていないときには、アクチュエータのトルク特性に基づいて次式(11.1)によって閉補正値ILMT_CLを算出し、さらに次式(11.2)(11.3)によって上限値ILMT_HIGH_FIN及び下限値ILMT_LOW_FINを算出する。
このようにして求めた上限値ILMT_HIGH_FIN及び下限値ILMT_LOW_FINを使用してリミット処理ルーチン(S32)では図16に示したように、電流制限処理してフィードフォワード電流指令値Icom_FFを算出する。
制限前電流指令値Icom0が下限値ILMT_LOW_FINよりも小さければ(ステップS321でYes)、フィードフォワード電流指令値Icom_FFを下限値ILMT_LOW_FINで制限する(ステップS322)。
制限前電流指令値Icom0が上限値ILMT_HIGH_FINよりも大きければ(ステップS323でYes)、フィードフォワード電流指令値Icom_FFを上限値ILMT_HIGH_FINで制限する(ステップS325)。
制限前電流指令値Icom0が下限値ILMT_LOW_FIN以上であって、かつ上限値ILMT_HIGH_FIN以下であれば、制限前電流指令値Icom0をフィードフォワード電流指令値Icom_FFとしてセットする(ステップS324)。
以上のようにすることで、スロットルバルブを一層精緻に制御でき、精度が向上できた。すなわち図17(A)に見られるように比較例によればスロットルバルブをステップ的に開くときに、収束性が悪化していた。ところが本実施形態によれば、図17(B)に見られるように収束性が向上したのである。
(第3実施形態)
図18は、本発明によるエンジン機構の制御装置の第3実施形態の構成を示す図である。
本実施形態の電流制限値算出器B2は、図18に示すように、スロットルバルブ定常状態判定部B21と、制限値算出部B22と、を有する。
スロットルバルブ定常状態判定部B21は、スロットルバルブが定常状態であるか否かを判定する。定常状態とはスロットルバルブが一定開度を保持している状態であり、代表的な定常状態は、アイドル状態である。
制限値算出部B22は、外乱補償値Idisを入力し、上限値ILMT_HIGH_FIN及び下限値ILMT_LOW_FINを出力する。
図19は、電流制限値算出のサブルーチンを示すフローチャートである。
ステップS201においてコントローラ70は、外乱補償値IDISに対して次式(12)のローパスフィルタ処理する。ここでTdisはローパスフィルタ時定数であり、スロットル開度が定常状態であるときの外乱補償値変動代を考慮して設定される。実際にはタスティン近似などで離散化して得られた漸化式を用いて算出する。なおsはラプラス演算子である。
ステップS202においてコントローラ70は、スロットル目標開度θcomとスロットル実開度θとの偏差からスロットルバルブが定常状態か否かを判定する。偏差がスロットルサーボ性能の定常特性から決められる所定値よりも小さければ定常状態と判定し、そうでなければ過渡状態と判定する。定常状態のときはステップS203へ処理を移行し、過渡状態のときはステップS204へ処理を移行する。
ステップS203においてコントローラ70は、IDIS_LPFをIDIS_LMTとしてセットする。
ステップS204においてコントローラ70は、スロットルバルブの現在の開度領域を判定する。すなわちスロットル実開度θがデフォルト開度よりも大きければステップS205へ処理を移行し、そうでなければステップS209へ処理を移行する。
ステップS205においてコントローラ70は、IDIS_LMTの絶対値が開補正値ILMT_OPよりも大きいか否かを判定する。大きければステップS206へ処理を移行し、そうでなければステップS207へ処理を移行する。
ステップS206においてコントローラ70は、IDIS_LMTの絶対値をILMT_OP_FINとしてセットする。
ステップS207においてコントローラ70は、開補正値ILMT_OPをILMT_OP_FINとしてセットする。
ステップS208においてコントローラ70は、ILMT_HIGHからILMT_OP_FINを減算してILMT_HIGH_FINとしてセットするとともに、ILMT_LOWからILMT_OP_FINを減算してILMT_LOW_FINとしてセットする。
ステップS209においてコントローラ70は、IDIS_LMTの絶対値の負値(−|IDIS_LMT|)が閉補正値ILMT_CLよりも小さいか否かを判定する。小さければステップS210へ処理を移行し、そうでなければステップS211へ処理を移行する。
ステップS210においてコントローラ70は、IDIS_LMTの絶対値の負値(−|IDIS_LMT|)をILMT_CL_FINとしてセットする。
ステップS211においてコントローラ70は、閉補正値ILMT_CLをILMT_CL_FINとしてセットする。
ステップS212においてコントローラ70は、ILMT_HIGHからILMT_CL_FINを減算してILMT_HIGH_FINとしてセットするとともに、ILMT_LOWからILMT_CL_FINを減算してILMT_LOW_FINとしてセットする。
以上のようにすることで、スロットルバルブを一層精緻に制御でき、精度が向上できた。すなわち図20(A)に見られるように比較例によればスロットルバルブをステップ的に開くときに、収束性が悪化していた。ところが本実施形態によれば、図20(B)に見られるように収束性が向上したのである。
(第4実施形態)
図21は、本発明によるエンジン機構の制御装置の第4実施形態の構成を示す図である。
上述の第3実施形態では、制限値算出部B22は、外乱補償値Idisを入力し、上限値ILMT_HIGH_FIN及び下限値ILMT_LOW_FINを出力したが、本実施形態ではフィードバック電流指令値Icom_FBを入力して、上限値ILMT_HIGH_FIN及び下限値ILMT_LOW_FINを出力するようにした。
このような構成にしても、上記と同様の効果を得ることができる。
(第5実施形態)
図22は、本発明によるエンジン機構の制御装置の第5実施形態の構成を示す図である。
上述の第1実施形態から第4実施形態では、制限要素を有するエンジン機構としてのスロットルバルブを例示して説明した。しかしながら制限要素を有するエンジン機構としては、他にもたとえば可変動弁機構(Variable valve Timing Control;以下「VTC」という)があり、VTCの変換角度についても同様に制御することで応答性及び耐外乱性の向上という効果を得ることができる。以下では制限要素を有するエンジン機構としてのVTCの進角/遅角制御する場合について説明する。
本実施形態のエンジン機構の制御装置1は、コントローラ70と、ソレノイドバルブ40とを有し、ソレノイドバルブ40によって油路を切り替えてVTCに供給される作動油量を調整してVTCの変換角度θを制御する。
なおVTC30の構造は公知であるので、ここでは簡単に説明する。
VTC30は、カムシャフト31と、カムシャフト31と同軸であってベルト又はチェーンを介してエンジンのクランクシャフトと同期回転するカムシャフト駆動用スプロケット33と、を有し、油圧によってカムシャフト31とカムシャフト駆動用スプロケット33との相対角度(変換角度)を変更することで、吸気バルブ又は排気バルブの開閉タイミングを進角/遅角制御する。
カムシャフト31は、カムシャフト31と一体回転する複数枚のベーン32を備える。
カムシャフト駆動用スプロケット33には、ベーン32の回転を許容する空間が設けられる。その空間がベーン32によって進角油圧室33a及び遅角油圧室33bになっている。
進角油圧室33aは進角油路43aを介して通路切り換え用のソレノイドバルブ40に接続される。遅角油圧室33bは遅角油路43bを介して通路切り換え用のソレノイドバルブ40に接続される。
またソレノイドバルブ40には、進角油路43a及び遅角油路43bのほかに、途中にオイルパン45の作動油を圧送するオイルポンプ41が設けられたオイル供給路42と、オイルパン45に作動油を戻すドレン通路44と、が接続される。
エンジン機構制御装置1は、ソレノイドバルブ40への通電量を制御して油路を切り替えることで、進角油圧室33a及び遅角油圧室33bへの油圧を適宜変更、保持し、変換角度を変更、保持する。これにより、VTC30は、吸気バルブ又は排気バルブの開閉タイミング(バルブタイミング)を進角/遅角制御する。
具体的には、ソレノイドバルブ40への通電量を増大させると、通路Aに切り替わり、オイルパン45の作動油が、進角油路43aを通って進角油圧室33aに供給される。一方で、遅角油圧室33bの作動油が、遅角油路43b及びドレン通路44を通ってオイルパン45に排出される。これにより、進角油圧室33aの油圧が相対的に高くなり、バルブタイミングが進角する。
また、ソレノイドバルブ40への通電量を減少させると、通路Bに切り替わり、オイルパン45内の作動油が、遅角油路43bを通って進角油圧室33aに供給される。一方で、進角油圧室33aの作動油が、進角油路43a及びドレン通路44を通ってオイルパン45に排出される。これにより、遅角油圧室33bの油圧が相対的に高くなり、バルブタイミングが遅角する。
ソレノイドバルブ40への通電量の制御は、コントローラ70によって実行される。コントローラ70には、クランク角センサ71と、カム角センサ72と、水温センサ73と、が接続される。クランク角センサ71は、クランクシャフトの角度信号を出力するとともに、クランクシャフトの基準回転位置で基準クランク位置信号を出力する。カム角センサ72は、カムシャフト31の基準回転位置で基準カム位置信号を出力する。水温センサ73は、エンジン水温を出力する。
コントローラ70は、クランク角センサ71及びカム角センサ72によって検出されたクランクシャフトとカムシャフト31との基準回転位置のズレ角に基づいてVTC30の現在の変換角度(以下「実変換角度」という)θを検出する。そして、この実変換角度θが、エンジンの運転条件に基づいて設定される目標変換角度θcomに追従するように、ソレノイドバルブ40への通電量を制御する。
図23は、コントローラ70の基本構成を示すブロック図である。この図から明らかなようにコントローラ70の基本構成は、図2に示した第1実施形態のものと同様である。なお発明の理解を容易にするために外乱補償器は省略した。
本実施形態のコントローラ70は、電流制限値算出器B2及びフィードフォワード補償器B3の詳細構成が第1実施形態と異なるので、以下ではこの点を説明する。
本実施形態の電流制限値算出器B2は、エンジンの回転速度及び水温を入力し、角速度上限値ωLMT_H及び角速度下限値ωLMT_Lを算出する。
図24は、本実施形態のフィードフォワード補償器B3の詳細構成を説明する図である。
本実施形態のフィードフォワード補償器B3は、モデル規範型制御部B31と、制御対象モデルB30と、進み補償器B35とを有する。フィードフォワード補償器B3は、目標変換角度θcom及び規範応答変換角度θsimの前回値を入力して、フィードフォワード電流指令値Icom_FF及び規範応答変換角度θsimの今回値を出力する。
制御対象モデルB30は、制御ブロックB301と、内部制限ブロックB302と、制御ブロックB303とからなる。
制御ブロックB301は、モデル規範型制御部B31の出力に基づいて変換角速度ω1を算出する。制御ブロックB301の伝達関数をGp1(s)とする。なお制御ブロックB301の伝達関数Gp1(s)が1であれば、図3に示した第1実施形態のフィードフォワード補償器B3と同一になる。
内部制限ブロックB302は、変換角速度ω1に基づいて限界変換角速度ωlimitedを算出する。VTC30は、上述のように作動油の油圧によって変換角度を制御する。作動油の油圧はエンジンの回転速度によって変わるので、VTC30の変換角速度にはエンジンの回転速度が影響し、エンジンの回転速度によってVTC30の変換角速度が制限される。またエンジン水温によって作動油の温度が変わり、作動油の粘性も変化する。したがってVTC30の変換角速度にはエンジン水温によってVTC30の変換角速度が制限される。このような制限構造を模したものが内部制限ブロックB302である。
制御ブロックB303は、限界変換角速度ωlimitedに基づいて、規範応答変換角度θsimの今回値を出力する。制御ブロックB303の伝達関数をGp2(s)とする。
進み補償器B35は、限界変換角速度ωlimitedに基づいてフィードフォワード電流指令値Icom_FFを出力する。進み補償器B35は、伝達関数Gp1(s)の逆系に相当する演算をおこなう。
図25は、エンジン機構制御の第5実施形態のメインルーチンのフローチャートである。
ステップS1においてコントローラ70は、エンジンの回転速度及び水温並びに実変換角度θを読み込む。
ステップS2においてコントローラ70は、変換角速度上限値ωLMT_H及び変換角速度下限値ωLMT_Lを算出する。具体的にはあらかじめROMに格納された図28に示す特性のマップに基づいて変換角速度上限値ωLMT_H及び変換角速度下限値ωLMT_Lを求める。図28は変換角速度上限値マップの一例を示したものであるが、同様の変換角速度下限値マップもROMに格納されている。これらのマップはあらかじめ実験を通じて設定される。
ステップS3においてコントローラ70は、フィードフォワード処理を実行する。具体的な処理内容については後述する。
ステップS4以降は第1実施形態と同様であるので説明を省略する。
図26は、フィードフォワード処理のサブルーチンを示すフローチャートである。
ステップS31においてコントローラ70は、第1実施形態と同様のモデルマッチング処理する。
ステップS302においてコントローラ70は、制限処理して限界変換角速度ωlimitedを算出する。具体的な処理ルーチンについては後述する。
ステップS303においてコントローラ70は、制御対象モデルB303において、限界変換角速度ωlimitedを入力してスロットル規範応答開度θsimを算出する。
ステップS35においてコントローラ70は、進み補償器B35において、限界変換角速度ωlimitedに基づいてフィードフォワード電流指令値Icom_FFを出力する。
図27は、制限処理のサブルーチンを示すフローチャートである。
ステップS3021においてコントローラ70は、変換角速度ω1が変換角速度下限値ωLMT_Lよりも小さいか否かを判定する。小さければステップS3022へ処理を移行し、そうでなければステップS3023へ処理を移行する。
ステップS3022においてコントローラ70は、限界変換角速度ωlimitedを変換角速度下限値ωLMT_Lで制限する。
ステップS3023においてコントローラ70は、変換角速度ω1が変換角速度上限値ωLMT_Hよりも大きいか否かを判定する。大きければステップS3025へ処理を移行し、そうでなければステップS3024へ処理を移行する。
ステップS3024においてコントローラ70は、変換角速度ω1を限界変換角速度ωlimitedとしてセットする。
ステップS3025においてコントローラ70は、限界変換角速度ωlimitedを変換角速度上限値ωLMT_Hで制限する。
図29、図30は、第5実施形態の効果を示す図である。
以上のようにすることで、VTCの変換角度を精度よく制御できるようになった。すなわちVTCの変換角度をステップ的に変更するときに、比較例によれば図29(A)に見られるように収束性が悪かった。ところが本実施形態によれば図29(B)に見られるように収束性が向上したのである。
図30はフィードフォワード補償器のみで制御した場合の比較図でありフィードフォワード補償器の制限値が、実際のシステムの制限値よりも小さい場合は、VTCの変換角度をステップ的に変更するときに、比較例によれば図30(A)に見られるように定常偏差が生じてしまっていた。ところが本実施形態によれば図30(B)に見られるように定常偏差が生じないのである。
(第6実施形態)
図31は、本発明によるエンジン機構の制御装置の第6実施形態の構成を示す図である。
本実施形態の電流制限値算出器B2は、角速度制限値算出部B201及び時定数算出部B202を備え、エンジンの回転速度及び水温を入力し、角速度上限値ωLMT_H及び角速度下限値ωLMT_Lを算出するとともに、時定数T1を算出する。そして算出された角速度上限値ωLMT_H及び角速度下限値ωLMT_Lは、図32に示すように、電流上限値ILMT_H及び電流下限値ILMT_Lに変換され、飽和要素B302に入力される。また算出された時定数T1は、モデル規範型制御部B31及び制御ブロックB303に入力される。
このようにすることで、VTCの変換角度を一層精度よく制御できるようになる。
以上説明した実施形態に限定されることなく、その技術的思想の範囲内において種々の変形や変更が可能であり、それらも本発明の技術的範囲に含まれることが明白である。
本発明によるエンジン機構の制御装置の第1実施形態の構成を示す図である。 コントローラのエンジン機構制御に関する機能を示すブロック図である。 フィードフォワード補償器B3の詳細構成を説明する図である。 モデル規範型制御部B31の一例であるモデルマッチング補償の詳細構成を説明する図である。 外乱補償器B6の詳細構成を説明する図である。 エンジン機構制御のメインルーチンのフローチャートである。 電流制限値算出のサブルーチンを示すフローチャートである。 フィードフォワード処理のサブルーチンを示すフローチャートである。 電流制限処理のサブルーチンを示すフローチャートである。 時刻t11でスロットル開度を0°から75°に開くときの応答性評価結果を示す図である。 スロットル開度を21°に保持しているときに、時刻t21で外乱が加わったときの耐外乱性評価結果を示す図である。 逆起電力VREVを考慮することでの効果を説明する図である。 制限モデルB32で制限した電流で制御対象を制御することでの効果を説明する図である。 アクチュエータの負荷トルクとスロットル開度との関係を示す図である。 第2実施形態の電流制限値算出のサブルーチンを示すフローチャートである。 電流制限処理のサブルーチンを示すフローチャートである。 第2実施形態の効果を説明する図である。 本発明によるエンジン機構の制御装置の第3実施形態の構成を示す図である。 電流制限値算出のサブルーチンを示すフローチャートである。 第3実施形態の効果を説明する図である。 本発明によるエンジン機構の制御装置の第4実施形態の構成を示す図である。 本発明によるエンジン機構の制御装置の第5実施形態の構成を示す図である。 コントローラ70の基本構成を示すブロック図である。 本実施形態のフィードフォワード補償器B3の詳細構成を説明する図である。 エンジン機構制御の第5実施形態のメインルーチンのフローチャートである。 フィードフォワード処理のサブルーチンを示すフローチャートである。 制限処理のサブルーチンを示すフローチャートである。 変換角速度上限値マップの一例を示した図である。 第5実施形態の効果を説明する図である。 第5実施形態の効果を説明する図である。 本発明によるエンジン機構の制御装置の第6実施形態の構成を示す図である。 第6実施形態のフィードフォワード補償器B3の詳細構成を説明する図である。
符号の説明
10 スロットルバルブ(エンジン機構)
30 可変動弁機構VTC(エンジン機構)
70 コントローラ
B2 電流制限値算出器
B3 フィードフォワード補償器
B32 制限モデル
B33 制御対象モデル部
B4 フィードバック補償器
B6 外乱補償器

Claims (13)

  1. エンジン運転をコントロールするエンジン機構を制御するエンジン機構制御装置であって、
    制御目標値を入力し、制御対象であるエンジン機構をその制御目標値通りに制御するためのフィードフォワード制御信号を出力するモデル規範型制御部と、前記フィードフォワード制御信号に基づいて規範応答値を算出する制御対象モデル部と、を含むフィードフォワード補償器と、
    前記規範応答値及び前記エンジン機構の実際の応答値に基づいてフィードバック制御信号を出力するフィードバック補償器と、
    を備え、
    前記制御対象モデル部は、
    前記モデル規範型制御部から出力される信号を入力する第1制御対象モデル部と、
    前記第1制御対象モデル部から出力された信号の上下限値を制限する制限モデル部と、
    前記制限モデル部で制限された信号に基づいて規範応答値を算出する第2制御対象モデル部と、をさらに含み、
    前記フィードフォワード補償器は、前記第1制御対象モデル部と同一の伝達関数を有し、前記制限モデル部で制限された信号を進み補償してフィードフォワード制御信号を出力する進み補償部をさらに含み、
    前記制限モデル部で制限されたフィードフォワード制御信号及び前記フィードバック補償器から出力されたフィードバック制御信号によって前記エンジン機構を制御する、
    ことを特徴とするエンジン機構制御装置。
  2. 前記制御対象のエンジン機構は、モータによって開閉駆動される電制スロットルである、
    ことを特徴とする請求項1に記載のエンジン機構制御装置。
  3. 前記制限モデル部は、前記モータの逆起電力に基づいて設定された制限値で、前記フィードフォワード制御信号を制限する、
    ことを特徴とする請求項に記載のエンジン機構制御装置。
  4. 前記制限モデル部は、スロットルバルブがデフォルト開度からさらに開くときの開き始め負荷トルクに基づいて設定された制限値で、前記フィードフォワード制御信号を制限する、
    ことを特徴とする請求項又は請求項に記載のエンジン機構制御装置。
  5. 前記制限モデル部は、スロットルバルブがデフォルト開度からさらに閉じるときの閉じ始め負荷トルクに基づいて設定された制限値で、前記フィードフォワード制御信号を制限する、
    ことを特徴とする請求項から請求項までのいずれか1項に記載のエンジン機構制御装置。
  6. 前記制限モデル部は、外乱補償器を有し、外乱補償値に基づいて設定された制限値で前記フィードフォワード制御信号を制限する、
    ことを特徴とする請求項から請求項までのいずれか1項に記載のエンジン機構制御装置。
  7. 前記制限モデル部は、スロットルバルブが定常状態にあるときに制限値を更新する、
    ことを特徴とする請求項に記載のエンジン機構制御装置。
  8. 前記制御対象のエンジン機構は、ソレノイドバルブの移動によって作動油量を調整し変換角度を制御する可変動弁機構である、
    ことを特徴とする請求項1に記載のエンジン機構制御装置。
  9. 前記制限モデル部は、前記作動油の油圧に基づいて設定された制限値で、前記フィードフォワード制御信号を制限する、
    ことを特徴とする請求項に記載のエンジン機構制御装置。
  10. 前記制限モデル部は、エンジン回転速度に基づいて設定された制限値で、前記フィードフォワード制御信号を制限する、
    ことを特徴とする請求項1から請求項までのいずれか1項に記載のエンジン機構制御装置。
  11. 前記制限モデル部は、エンジン水温又はエンジン油温に基づいて設定された制限値で、前記フィードフォワード制御信号を制限する、
    ことを特徴とする請求項1から請求項10までのいずれか1項に記載のエンジン機構制御装置。
  12. 前記制限モデル部は、電流駆動回路の内部抵抗推定値に基づいて設定された制限値で、前記フィードフォワード制御信号を制限する、
    ことを特徴とする請求項1から請求項11までのいずれか1項に記載のエンジン機構制御装置。
  13. 前記制限モデル部は、電源電圧に基づいて設定された制限値で、前記フィードフォワード制御信号を制限する、
    ことを特徴とする請求項1から請求項12までのいずれか1項に記載のエンジン機構制御装置。
JP2006345640A 2006-12-22 2006-12-22 エンジン機構制御装置 Expired - Fee Related JP4811268B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006345640A JP4811268B2 (ja) 2006-12-22 2006-12-22 エンジン機構制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006345640A JP4811268B2 (ja) 2006-12-22 2006-12-22 エンジン機構制御装置

Publications (2)

Publication Number Publication Date
JP2008157083A JP2008157083A (ja) 2008-07-10
JP4811268B2 true JP4811268B2 (ja) 2011-11-09

Family

ID=39658282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006345640A Expired - Fee Related JP4811268B2 (ja) 2006-12-22 2006-12-22 エンジン機構制御装置

Country Status (1)

Country Link
JP (1) JP4811268B2 (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3498455B2 (ja) * 1995-12-08 2004-02-16 日産自動車株式会社 スロットルバルブの位置決め制御装置
JP3785750B2 (ja) * 1997-07-03 2006-06-14 日産自動車株式会社 スロットルバルブの位置決め制御装置
JP2004211669A (ja) * 2003-01-09 2004-07-29 Toshiba Corp サーボ弁制御装置およびサーボ弁制御システムの異常検出装置
JP2006170075A (ja) * 2004-12-15 2006-06-29 Denso Corp 内燃機関の可変バルブ制御装置
JP2006200398A (ja) * 2005-01-19 2006-08-03 Nissan Motor Co Ltd 可変動弁機構の制御装置

Also Published As

Publication number Publication date
JP2008157083A (ja) 2008-07-10

Similar Documents

Publication Publication Date Title
JP4539764B2 (ja) 内燃機関の制御装置
KR101074307B1 (ko) 내연 기관의 제어 장치
JPWO2008081643A1 (ja) Egrバルブ制御装置
EP1308615A2 (en) Electronic throttle control apparatus
CN104977949B (zh) 用于调节马达转速的方法
US20140117918A1 (en) Robust controller for electro-mechanical actuators employing sliding and second control modes
CN105074158A (zh) 阀控制装置以及阀控制方法
JP4539846B2 (ja) 内燃機関の出力制御装置
JP4425152B2 (ja) 制御装置
JP4830844B2 (ja) エンジン機構制御装置
JP4811268B2 (ja) エンジン機構制御装置
KR20020038459A (ko) 내연기관의 밸브타이밍 제어장치
JP2007198348A (ja) エンジンの制御装置
JP4930040B2 (ja) 状態量推定装置及び角速度推定装置
CN111828185B (zh) 废气再循环阀的控制方法、控制装置及控制系统
JP2008157181A (ja) 制御装置
WO2014014018A1 (ja) 内燃機関の制御装置
JP4300359B2 (ja) 内燃機関の制御装置
JP5303351B2 (ja) 内燃機関の制御装置
US20230299696A1 (en) Split gain transfer function for smart motor actuators
JP6018464B2 (ja) 電子制御装置
JP2008163748A (ja) スロットルバルブ制御装置
JP2005171793A (ja) 内燃機関の制御装置
JP3927434B2 (ja) 電動アクチュエータ駆動制御装置
JP5141306B2 (ja) 車両の制振制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110808

R150 Certificate of patent or registration of utility model

Ref document number: 4811268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees