JP4800389B2 - 光導波路工程で損失を低減するテーパー部を備える光学素子 - Google Patents

光導波路工程で損失を低減するテーパー部を備える光学素子 Download PDF

Info

Publication number
JP4800389B2
JP4800389B2 JP2008532857A JP2008532857A JP4800389B2 JP 4800389 B2 JP4800389 B2 JP 4800389B2 JP 2008532857 A JP2008532857 A JP 2008532857A JP 2008532857 A JP2008532857 A JP 2008532857A JP 4800389 B2 JP4800389 B2 JP 4800389B2
Authority
JP
Japan
Prior art keywords
ridge waveguide
region
ridge
waveguide
mmi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008532857A
Other languages
English (en)
Other versions
JP2009510505A (ja
Inventor
ロバート・グラハム・ウォーカー
ケルビン・プロシーク
Original Assignee
オクラロ・テクノロジー・ピーエルシー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/267,400 external-priority patent/US20080008416A1/en
Application filed by オクラロ・テクノロジー・ピーエルシー filed Critical オクラロ・テクノロジー・ピーエルシー
Publication of JP2009510505A publication Critical patent/JP2009510505A/ja
Application granted granted Critical
Publication of JP4800389B2 publication Critical patent/JP4800389B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1228Tapered waveguides, e.g. integrated spot-size transformers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2808Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using a mixing element which evenly distributes an input signal over a number of outputs
    • G02B6/2813Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using a mixing element which evenly distributes an input signal over a number of outputs based on multimode interference effect, i.e. self-imaging
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements with at least one potential jump barrier, e.g. PN, PIN junction
    • G02F1/025Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements with at least one potential jump barrier, e.g. PN, PIN junction in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/217Multimode interference type

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Integrated Circuits (AREA)
  • Semiconductor Lasers (AREA)

Description

本発明は、半導体光学素子に関し、特に、光学的に結合された複数の構成要素が同一の半導体構造(例えば、同一の半導体チップ)内に作製される、集積半導体光学素子に関する。本発明は、具体的には、リッジ(またはリブ)導波路を含む半導体光学素子に関する(リッジ導波路は、半導体構造の表面を横切って延在するリッジを備える)。
一般的に、リッジ導波路は、面内に光を閉じ込めるように設計されている層を有する、元の均一な多層平面導波路から残存する材料を備える。一般的に、リッジは、リッジの両側から材料を掘削するように使用する選択エッチング処理によって形成される。通常、強導波路は、少なくとも光学的に誘導されたモードがリッジの壁に露光するほど深く掘削することによってもたらされる。弱導波路は、それよりも浅い掘削からもたらされ、その中の高屈折率の「コア」層(光学モードを垂直に閉じ込める)が除去されない。一般的に、弱導波路の掘削は、このコア層の上側境界で停止またはその上で停止し、強い導波路の掘削は、このコア層の下側境界の下で停止して、通常、導波路に誘導される光学モードのピーク強度レベルがリッジ内に収まるようにしている。しかしながら、リッジ導波路の横方向閉じ込めの強度は、エッチ深さに応じて、ゼロ、弱、強へと連続的段階付けされてもよい。それぞれの種類によって異なる利点や不利点があり、さまざまな目的に応じて、単一の光学誘導波素子内で両方の種類を使用することが要求されなくてもよい。
弱導波路および強導波路が直接結合される複合導波路に沿って透過される光学モードは、二種類の導波路間の界面から部分的に反射され、後方散乱を生成する。
特許文献1は、集積半導体光学素子を開示している。この集積半導体光学素子におけるリッジ導波路は、基本光学的放射モードよりも高次である光学的放射モードを除去する導波空間フィルターを備える。導波空間フィルターは、導波路のリッジの両側に比較的浅くエッチングされた領域のあるリッジ導波路の主要部分に比べて、導波路のリッジの両側に比較的深くエッチングされる領域を有するリッジ導波路部分を備える。一方、二つの開示されたバージョンにおいて、素子は、比較的深くエッチングされる領域に作製される混合領域を含む。
国際公開WO 02/31587号パンフレット
本発明は、比較的低いリッジ(例えば、浅くエッチングされたリッジ)を有するリッジ導波路と、比較的高いリッジ(例えば、深くエッチングされたリッジ)を有するリッジ導波路との間の遷移によって、光の後方散乱(例えば、反射)を最小にする半導体光学素子を提供しようと試みるものである。後方散乱された光は、光学的構成要素(例えば、レーザー)に悪影響を及ぼす可能性があるため、後方散乱を抑制することは、多くの場合において重要である。リッジ導波路の比較的低いリッジと比較的高いリッジとの間の遷移により、著しい光の後方散乱が発生する可能性がある。しかしながら、素子に集積される異なる光学的構成要素の必要性に応じて、リッジの高さが調節可能になるため、単一および同一の半導体光学素子、例えば、導波路レーザーおよび変調器上に作製される異なるリッジの高さ(つまり、異なる深さにエッチングされたリッジ)を有するリッジ導波路を備えることが有利であることが可能である。このような素子において、例えば、導波路のリッジの両側に比較的浅くエッチングされた領域を、レーザーのリッジ導波路が有する(つまり、リッジが比較的低い高さを有する)ことによって、レーザーの能動層を介したエッチングによる望ましくない結果を回避可能にすることが有利となりうる。また、光変調器のリッジ導波路が、リッジの両側にエッチングされた溝の床面上に比較的高く延出するリッジを有すること(例えば、リッジの両側を比較的深くエッチングして)によって、変調器を介して光が横方向に強力に閉じ込められるようにして、変調器が、実質的に全光学モードを効果的に変調できるようにすることも有利となりうる。これは、異なるリッジ高さを有するリッジ導波路を結合したことで考えられる多くの利点のうちの単なる一つに過ぎない。
したがって、本発明の第一の側面は、第一および第二のリッジ導波路を含む半導体構造を備える光学素子であって、各導波路は、半導体構造の表面を横切って延在するリッジを備え、第一の導波路のリッジは、表面の第一の領域上に第一の高さを有し、第二の導波路のリッジは、表面の第二の領域上にそれよりも高い第二の高さを有し、半導体構造は、第一および第二のリッジ導波路の間に位置する多モード干渉(MMI)領域を含み、かつその間に遷移を提供し、(a)MMI領域の少なくとも一部の幅はテーパー状であり、ならびに/あるいは(b)第一および/または第二のリッジ導波路の少なくとも一部の幅は、MMI領域から離れて延出する方向にテーパー状である、光学素子を提供する。
第一および第二のリッジ導波路の間を伝播する光が、多モード干渉領域内の「再画像」の複合効果により著しく後方散乱することなくリッジの高さで遷移可能であり、かつMMI領域および/またはリッジ導波路のテーパー部により誘導可能であるという利点を有する。
本発明の好適な実施形態において、MMI領域は、リッジ導波路のリッジを備え、リッジは、半導体構造の表面の領域を横切って延在する。
本明細書で使用の際、MMI領域および/またはリッジ導波路に関する用語の「幅」は、MMI領域および/またはリッジ導波路の長手方向軸に実質的に垂直であり、かつ半導体構造の表面に実質的に平行である横方向寸法を言及する。半導体構造は、半導体チップを備えることが好ましい。
好ましくは、MMI領域の少なくとも一部の幅は、第二のリッジ導波路側に延出する方向にテーパー状である。いくつかの実施形態において、実質的に全体のMMI領域の幅は、第二のリッジ導波路側に延出する方向にテーパー状である。付加的にまたは代替的に、MMI領域と直接隣接している第一のリッジ導波路および/または第二のリッジ導波路のリッジの少なくとも一部の幅は、テーパー状であってもよい。
本発明の好適な実施形態において、第一のリッジ導波路は比較的弱い誘導導波路であり、第二のリッジ導波路は比較的強い誘導導波路である。したがって、第一のリッジ導波路のリッジの少なくとも一部は、第二のリッジ導波路のリッジの少なくとも一部よりも幅広であることが好ましい。MMI領域に直接隣接する第一のリッジ導波路のリッジの少なくとも一部は、MMI領域に直接隣接する第二のリッジ導波路のリッジの少なくとも一部よりも幅広であることがさらに好ましい。
本発明のほとんどの実施形態において、半導体構造の上述の表面は少なくとも二つのレベルを有し、表面の第一の領域は第一のレベルにあり、表面の第二の領域は第二のレベルにあり、第二のレベルは第一のレベルよりも低い。半導体構造のこの「表面」は、通常は、半導体構造のエッチング領域の「床面」であり、そのエッチング領域は、異なる深さにエッチングされて、表面のレベルを画定する。したがって、第一のリッジ導波路のリッジの上面と、第二のリッジ導波路のリッジの上面とは、実質的に同一平面上にあってもよく、二つのリッジの高さの違いは、半導体構造の表面の異なるレベルによって(少なくとも部分的に)決定される。MMI領域の上面は、第一のリッジ導波路のリッジの上面と、第二のリッジ導波路のリッジの上面とのうちの片方または両方と、実質的に同一平面上にあってもよい(またはなくてもよい)。素子を通って伝播するその上面に存在する光は、通常ほとんど存在しないため、リッジ導波路および/またはMMI領域の上面が同一平面上にあることが、光学的に正常に機能させるために必ずしも必要ではない(しかしながら、作製処理の結果、多くの場合その上面が近似レベルになることがある)。光は、導波路の一つ以上のコア層によって主に誘導され、コア層は、上面の下に間隔があけられ、その上下の層よりも高い屈折率を有する。通常、導波路および/またはMMI領域のこのコア層が、実施的に整合されることが重要である。
好ましくは、MMI領域の少なくとも一部は、半導体構造の表面の第二の領域の少なくとも一部に横切って延在する。例えば、実質的に、MMI領域全体は、半導体構造の表面の第二の領域の一部を横切って延在してもよい。あるいは、MMI領域は、半導体構造の表面の第一および第二の領域の両方の一部を横切って延在してもよい。
半導体構造の実質的にエッチングされていない領域(「緩衝帯」と呼ばれれる場合もある)が、半導体構造の「表面」の第一および第二の領域の間に位置することが有利であることが可能である。通常、MMI領域は、第二の領域の一部を横切って延在するため、非エッチング領域は、通常、第一のリッジ導波路とMMI領域との間に位置する。第一および第二の領域の二つの異なるレベルは、通常は、二つの個別のエッチング工程で作製され、エッチング領域を誤って重複することによって、その間に意図せぬ二重エッチング領域を生成する可能性がある(緩衝帯が存在しない場合)。このような二重エッチング領域を回避するために(ならびに、それによる光学的な悪影響を回避するために)、非エッチング緩衝帯は、半導体構造の「表面」の第一および第二の領域の間に設けられて、二つの異なるエッチ深さを分けるようにする。また、MMI領域および第二のリッジ導波路は、少なくともいくつかの素子に関して、第一の半導体材料が選択的にエッチングされた領域に「再成長」された第二の半導体材料上に作製されてもよい。第一および第二の(再成長)半導体材料の間の界面は、有利には、非エッチング緩衝帯内に位置してもよい。
第一のリッジ導波路はMMI領域の入力導波路として機能してもよく、その場合、第二のリッジ導波路は、MMI領域の出力導波路として機能する。すなわち、使用の際、光は、第一のリッジ導波路に沿って、次にMMI領域を通り、次に第二のリッジ導波路に沿って伝播してもよい。しかしながら、本発明のその他の使用または実施形態において、光の伝播方向はこの逆であってもよく、つまり、第二のリッジ導波路が入力導波路であり、第一のリッジ導波路が出力導波路になる。
第一および/または第二のリッジ導波路は、単一モード導波路であることが好ましい。MMI領域は、通常、第一および/または第二のリッジ導波路よりも幅広である。
MMI領域は、一対一の再画像のために設計されてもよく、つまり、MMI領域の入力/出力導波路であるだけの第一および第二のリッジ導波路を含んでもよい。あるいは、MMI領域は、2×l結合器であってもよく、つまり、二つの入力導波路および単一の出力導波路を含んでもよく、あるいは二つの出力導波路および単一の入力導波路を含むl×2スプリッタであってもよい。さらなる代替として、MMI領域は、2x2MMI領域であってもよく、つまり二つの入力導波路および二つの出力導波路を含んでもよい。より一般的には、MMI領域は、M×NのMMI領域であってもよく、つまり、いかなる数の入力導波路および出力導波路を含んでもよい。しかしながら、本発明は、本明細書において、二つの導波路、つまり第一および第二のリッジ導波路のみの間の遷移を主に想定している。
本発明のいくつかの好適な実施形態において、素子は、MMI領域に連結する、および/または第一のリッジ導波路と第二のリッジ導波路とのうちの片方または両方と連結する第一の電極をさらに備えてもよい。電極は、電場(好ましくは可変電場)をMMI領域、ならびに/あるいは第一のリッジ導波路および/または第二のリッジ導波路に加え、そこを通って伝播する光の吸収をもたらすように配置されてもよい。したがって、素子は、例えば光減衰器または光変調器を有利に備えてもよい。
MMI領域および/または第一のリッジ導波路と第二のリッジ導波路とのうちの片方または両方は、第一の電極に加えられた電場の変動によって光の吸収の変動をもたらす一つ以上の能動領域と、第一の電極に加えられた電場の変動によって光のいかなる吸収の変動も実質的にもたらさない一つ以上の受動領域(例えば、電気的に絶縁または半絶縁領域)とを有利に備えてもよい。能動領域および受動領域を備えるMMI領域および/または導波路の相対的比率は、MMI領域および/または導波路の長さの少なくとも一部に沿って変化する。能動領域および受動領域を含むMMI領域および/または導波路の相対的比率を変動することにより、MMI領域および/または導波路に沿った光吸収プロファイルは、既定かつ制御される方法で変化してもよい。具体的には、このような能動領域および受動領域を使用することによって、光吸収プロファイルのピークの高さを減少可能にしてもよく(例えば、平坦化)、光吸収によって生成された熱量を減少させることができる。過度な熱発生は、例えば、致命的な光損傷(catastrophic optical damage; COD)および信頼性の低下をもたらすことから、熱発生におけるこのような減少は、非常に有利になることが可能である。
本発明の第二の側面は、単一および同一の半導体構造に集積される、本発明の第一の側面に記載の複数の光学素子を備える半導体光学素子を提供する。
本発明のいくつかの好適な実施形態について、添付の以下の図面1から7を参照し、一例として以下に説明する。
図1は、既知の種類(従来技術)の光学素子の概略図である。図2は、本発明に係る光学素子1の実施形態の概略図である。図1の既知の種類の光学素子と図2の本発明の実施形態は両方とも、第一のリッジ導波路5および第二のリッジ導波路7を含む半導体構造3を備える。各リッジ導波路は、半導体構造の表面9を横切って延在するリッジを備える。第一のリッジ導波路5のリッジ11は、半導体構造の表面9の第一の領域15上に第一の高さhを有する。第二のリッジ導波路7のリッジ13は、表面の第二の領域17上にそれより高い第二の高さHを有する。リッジ11と13の高さの違いは、半導体構造の表面9の第一および第二の領域15と17とのレベルの違いによってもたらされる。つまり、第一の領域15は、第二の領域17よりも高いレベルにある。さらに、第一のリッジ導波路5のリッジ11は、第二のリッジ導波路7のリッジ13よりも幅広い。第一および第二の導波路5および7のコア導波層35および37(図2参照)は、実質的に垂直整合される。第一および第二の領域15および17の二つのレベルが存在する目的は、異なる度合いの横方向閉じ込め、つまり、第一および第二のリッジの異なる幅の間の遷移を提供することにある(前述のとおり、幅は、各導波路の長手方向軸に垂直方向でかつ表面9に平行方向、つまりは高さに垂直方向に測定される。図lおよび2の素子において、第一および第二のリッジ導波路は同一直線上にあり、その長手方向軸は、使用の際の光の伝播方向を示す矢印Aで示される)。第一のリッジ導波路5は弱誘導導波路であり、第二のリッジ導波路7は強誘導導波路である。第一のリッジ導波路は第二のリッジ導波路の「上流」の半導体構造3上に作製されるレーザーの導波路を備えてもよい(図示せず)。第二のリッジ導波路は、例えば、第一のリッジ導波路の「下流」の半導体構造3上に作製される光変調器の導波路を備えてもよい(図示せず)。
図1の既知の種類の素子の第一および第二のリッジ導波路5および7に沿って透過する光学モードは、二つの導波路間の界面18から部分的に反射して、後方散乱を生成する。この問題を解決するために、図2の本発明の実施形態の半導体構造3は、第一および第二のリッジ導波路5および7の間に位置する多モード干渉(multimode interference; MMI)領域19を備え、第一および第二のリッジ導波路の間に遷移が提供される。MMI領域19の幅Wは、第二のリッジ導波路7側に延出する方向にテーパー状である。第一のリッジ導波路、MMI領域、および第二のリッジ導波路の上面は、図示されるように全て同一平面上にあってもよいが、必ずしもそうとは限らない。上述のように、第一および第二のリッジ導波路ならびにMMI領域におけるピーク光強度の水平面(実際は、コア導波層35と37との中間)は、同一平面上にあることが好ましい。第一のリッジ導波路5は、MMI領域19のための入力導波路を備え、矢印Aで示される。第二のリッジ導波路7は、MMI領域のための出力導波路を備える。第一のリッジ導波路5は、MMI領域の任意の「緩衝帯」21を介してMMI領域19に接触する。緩衝帯21は、MMI領域よりも幅広い半導体構造3の一部として示される。これは、緩衝帯が半導体構造の非エッチング領域を備えるからである(当技術で既知であるように、構造の特徴は、構造の選択された部分をエッチングすることによって画定される)。前述のように、第一および第二の領域15および17の二つの異なるレベルは、通常は、二つの個別のエッチング工程で作製され、エッチング領域を誤って重複することによって、その間に意図せぬ二重エッチング領域を生成する可能性がある(緩衝帯が存在しない場合)。このような二重エッチング領域を回避するために(ならびに、それによる光学的な悪影響を回避するために)、非エッチング緩衝帯は、第一および第二の領域の間に設けられて、二つの異なるエッチ深さを分けるようにする。また、MMI領域および第二のリッジ導波路は、少なくともいくつかの素子に関して、第一の半導体材料31が選択的にエッチングされた領域に「再成長」された第二の半導体材料33上に作製されてもよい。第一および第二の(再成長)半導体材料の間の界面39は、有利には、非エッチング緩衝帯21内に位置してもよい。
図2の本発明の実施形態は、第一および第二のリッジ導波路5および7の間の伝播光が、多モード干渉領域19内の「再画像」の複合効果により第一の導波路5へ著しく後方散乱(例えば、反射)することなくリッジの高さ(半導体表面9の高さの遷移によってもたらされる)で遷移可能であり、かつMMI領域のテーパー部により誘導可能であるという利点を有する。本発明の発明者は、MMI領域によってもたらされる再画像と、MMI領域または第二のリッジ導波路のいずれか(またはその両方)の光伝播方向のテーパー部とを組み合わせることによって、第一および第二のリッジ導波路の間の遷移が、後方散乱を最小可能にすることを発見した。発生し得るいかなる後方散乱も、第一のリッジ導波路に効果的に再結合しないことが考えられる(MMI領域の再画像と、MMI領域および/または第二のリッジ導波路のテーパー部とに起因する)。
図3の概略図の本発明の実施形態は、MMI領域19がテーパー状でないこと以外は図2のものと類似しているが、第二のリッジ導波路7はテーパー状である。具体的には、第二のリッジ導波路7の幅は、MMI領域19に直接隣接する第二のリッジ導波路の一部に沿って、光の伝播方向(矢印Aに示される)にテーパー状である。これは、非テーパー状のMMI領域が、入射光学モードをその出力時に圧縮せずに再画像するからである。したがって、強誘導出力導波路7は、通常、入力導波路5と同様の初期幅(MMI領域に隣接する幅)を有し、導波路がMMI領域から延出するにつれて所望のより狭い幅までテーパー状になる必要がある。
前述の通り、本発明のいかなる実施形態も、(例えば、図3に示されるように)第二のリッジ導波路のテーパー状の部分を備えてもよいことを理解されたい。したがって、例えば、図2の実施形態も、例えば図3に示されるように、第二のリッジ導波路のテーパー状の部分を備えてもよい。付加的にまたは代替的に、本発明のいかなる実施形態も、第一のリッジ導波路のテーパー状の部分を備えてもよく、その部分は、MMI領域に直接隣接することが好ましく、また、MMI領域から離れる方向にテーパー状になることが好ましい(つまり、第二のリッジ導波路のいかなるテーパー部とも反対方向にテーパー状になる)。
MMI領域が、第二のリッジ導波路7に隣接し、そこから第二のリッジ導波路が突出する端面を備えるような本発明の実施形態(例えば、図1および2の実施形態)について、第二のリッジ導波路の両側の端面は、第二のリッジ導波路の長手方向軸に実質的に垂直であってもよい。しかしながら、代替的に、第二のリッジ導波路(および/または第一のリッジ導波路)の片側または両側の端面は、第二のリッジ導波路の長手方向軸に垂直にならないように角度付けされてもよい(例えば、端面と長手方向軸とのMMI領域の内角は90度未満でもよい)。このような角度付けによって、MMI領域からの後方散乱を抑制し易くできる。第一のリッジ導波路5に隣接するMMI領域の反対端面に、同様の角度付けが存在してもしなくてもよい。
図4は、図2に示される本発明の実施形態の変形を示す。ここで、MMI領域19は第二のリッジ導波路7の幅まで直接テーパー状になり、緩衝帯21は存在しない(上述のように、本発明のいかなる実施形態も、緩衝帯21を含んでも含まなくてもよい)。本実施形態は、後方散乱の可能性を最小限に抑えるが、絶対透過効率を犠牲にする可能性がある。すなわち、MMI領域の出力端に段部が存在しないことによって、散乱の源が除去されるが、多重モードが狭い導波路に集中することによって、高次モードで伝播する光パワーの一部が、異なる次数の光学モードを再画像せずに(通常、図2の実施形態で発生する)、少なくとも部分的に押し出されて損失し、異なる次数のモードの間の結合が発生する場合がある。
図5は、図2に示される本発明の実施形態の別の変形を示す。ここで、緩衝帯21は存在しない。さらに、本実施形態において、第一の電極23は、MMI領域19の上面に位置し、第二の電極25(例えば、接地電極であってもよい)は、半導体構造の底面に位置する。第一の電極23は、MMI領域19に可変電場を加えるように配置され、MMI領域を通って伝播する光の吸収を引き起こすようにする。したがって、図5の素子は、光変調器(特に、電界吸収型光変調器)を備えてもよく、または可変光減衰器を備えてもよい。例えば、MMI領域19は、レーザー(図示せず)に生成される光を変調するように配置される光変調器を備えてもよく、そのレーザーも素子上に作製される(その素子は、レーザーおよび光変調器を備える集積光学素子である)。したがって、第一のリッジ導波路5を介してMMI領域に入る矢印Aに示される光は、半導体光学素子1上のMMI領域の上流に位置する集積レーザー素子から生成されることが好ましい。単一モード導波路ではなくMMI領域で光減衰を実行する利点は、MMI領域に入る際に、光があまり閉じ込められなくなり(つまり、より分散する)、これにより、基板のより広い範囲に光パワーが吸収可能になって、熱管理が改善される(光減衰器において、光吸収プロファイルは、通常、減衰器の入力領域で高強度ピークを含み、そこで光吸収の多くが発生する。これにより、大量の熱が生成されるため、致命的な光損傷が引き起こされる)。
図6は、図4の実施形態と実質的に同一の本発明の実施形態を示すが、図6の実施形態は、第一の電極23および第二の電極25(これも接地電極であってもよい)を備える。図5の実施形態と同様に、図6の素子は、光変調器または可変光減衰器を備えてもよい(光変調器のほうが好ましい)。図5と図6のバージョンの違いの一つは、図6のバージョンの上面電極23が、第二のリッジ導波路の上面の長さの一部に沿って延出することにある(MMI領域の上面全体に実質的に延在していることに加えて)。図6の上面電極23の面積は、図5のものよりも小さいが、第二のリッジ導波路7上の上面電極23の領域が、より閉じ込められた(より「集中した」)光の領域に電場を加えるため、同じ光変調度を提供することができる。上面電極23が小さいことから、変調器が低容量になり、例えば、変調速度が速くなるという点において、これは図5よりも優位な利点である。光の強度は、導波路7に到達すると低くなるため、過度な熱発生をもたらすことなく、より簡潔に減衰可能であるため、致命的な光損傷という上述の問題を回避できる。
およびの本発明の実施形態は、図およびの実施形態のそれぞれの変形である(但し、図8の実施形態は緩衝帯21を備えるが、図6の実施形態はそれを備えない)。図およびの実施形態において、上面電極23は、MMI領域19の前部(光の伝播方向の前部)に存在しない。いずれの場合においても、電極23は、電極が被覆するMMI領域19の幅の割合が、比較的小さい幅の割合からMMI領域の幅全体まで、光の伝播方向に増加するように成形される。さらに、MMI領域19は、第一の電極23に加えられた電場の変動によって光の吸収の変動をもたらす能動領域29と、第一の電極に加えられた電場の変動によって光のいかなる吸収の変動も実質的にもたらさない受動領域27(受動領域は、いかなる既知の手段によって生成されてもよく、その手段には、選択イオン注入、選択拡散、選択領域成長、ならびに成長および選択エッチングが含まれてもよい)とを備える。図示されるように、能動および受動領域を備えるMMI領域19の幅の相対的比率は、受動である幅の割合が幅全体からゼロに減少するように、MMI領域の長さの部分に沿って変化する。能動および受動領域を含むMMI領域および/または導波路の相対的比率を変動することにより、MMI領域に沿った光吸収プロファイルは、既定かつ制御される方法で変化してもよい。具体的には、このような能動および受動領域を使用することによって、光吸収プロファイルのピークの高さを減少可能にしてもよく(例えば、平坦化)、対応する領域(例えば、入力領域)における光吸収に生成された熱量を減少させることができる。過度な熱発生は、例えば、致命的な光損傷(catastrophic optical damage; COD)および信頼性の低下をもたらすことから、熱発生におけるこのような減少は、非常に有利になることが可能である。(代替の実施形態において、電極は、MMI領域のその他の一つ以上の部分になくてもよく、ならびに/あるいは、別の方法で形作られてもよく、ならびに/あるいはMMI領域は、異なる形状で設けられてもよく、および/または能動および受動領域が配置されて、いかなる特定の所望の光吸収プロファイルを提供するようにしてもよい)。
本発明のさらなる側面において、集積半導体光学素子は、本発明の第一の側面に係る、二つ(またはそれ以上)の素子を備える。ここで、一方の素子は、比較的強い誘導導波路と比較的弱い誘導導波路との間の光を結合し、他方の素子は比較的弱い誘導導波路(そのような導波路と同一であってもなくてもよい)と比較的強い誘導導波路(そのような導波路と同一であってもなくてもよい)との間の光を結合する。
当然ながら、本発明の範囲から逸脱することなく上述の実施形態に変更が加えられてもよいことは理解されたい。
従来技術に係る素子の概略図である。 本発明の第一の実施形態の概略図である。 本発明の第二の実施形態の概略図である。 本発明の第三の実施形態の概略図である。 本発明の第四の実施形態の概略図である。 本発明の第五の実施形態の概略図である。 本発明の第六の実施形態の概略図である。 本発明の第七の実施形態の概略図である。
符号の説明
1 半導体光学素子
3 半導体構造
5 リッジ導波路
7 リッジ導波路
9 半導体表面
11 リッジ
13 リッジ
15 領域
17 領域
18 界面
19 MMI領域(多モード干渉領域)
21 非エッチング緩衝帯
23 上面電極
25 電極
27 受動領域
29 能動領域
31 半導体材料
33 半導体材料
35 コア導波層
39 界面

Claims (19)

  1. 第一および第二のリッジ導波路を含む半導体構造を備える光学素子であって、各リッジ導波路は、前記半導体構造の表面を横切って延在するリッジを備え、記第一のリッジ導波路のは、前記表面の第一の領域上に第一の高さを有し、記第二のリッジ導波路のは、前記表面の第二の領域上に前記第一の高さより高い第二の高さを有し、前記半導体構造は、前記第一のリッジ導波路の端と前記第二のリッジ導波路の端との間に位置すると共に前記第一のリッジ導波路の端および前記第二のリッジ導波路の端に隣接して位置する多モード干渉(multimode interference; MMI)領域を含んで、かつ前記第一のリッジ導波路の端と前記第二のリッジ導波路の端との間の遷移を提供し、前記MMI領域の少なくとも一部の幅は、テーパー状である、光学素子。
  2. 前記MMI領域は、リッジ導波路備え、前記リッジは、前記半導体構造の前記表面の領域を横切って延在する、請求項1に記載の素子。
  3. 前記MMI領域の少なくとも一部は、前記半導体構造の前記表面の前記第二の領域の一部を横切って延在する、請求項2に記載の素子。
  4. 実質的に、前記MMI領域全体は、前記半導体構造の前記表面の前記第二の領域の一部を横切って延在する、請求項3に記載の素子。
  5. 前記MMI領域は、前記半導体構造の前記表面の第一および第二の領域の両方の一部を横切って延在する、請求項3に記載の素子。
  6. 前記半導体構造の前記表面の前記第一および第二の領域の間に位置する、前記半導体構造の実質的にエッチングされていない緩衝帯を含む、請求項1から5のいずれか1項に記載の素子。
  7. 実質的に、前記MMI領域全体の幅は、前記第二のリッジ導波路側に延出する方向にテーパー状である、請求項1〜6のいずれか1項に記載の素子。
  8. 前記MMI領域は、端面と側壁とを備え、前記側壁間の間隔が前記第二のリッジ導波路側に延出する方向において低減するように前記MMI領域の幅がテーパー状である、請求項1〜7のいずれか1項に記載の素子。
  9. 前記第一のリッジ導波路の端が前記第二のリッジ導波路の端よりも広い、請求項1〜8のいずれか1項に記載の素子。
  10. 前記MMI領域は、
    前記第一のリッジ導波路の両側に位置すると共に前記第一のリッジ導波路に隣接する端面を備え、
    前記第二のリッジ導波路の両側に位置すると共に前記第二のリッジ導波路に隣接する端面を更に備える、請求項1〜9のいずれか1項に記載の素子。
  11. 前記第一の領域は第一の半導体材料を含み、前記第二の領域は第二の半導体材料を含む、請求項1から10のいずれか1項に記載の素子。
  12. 前記第二の半導体材料は、前記第一の半導体材料がエッチングで除去された場所に再成長した、請求項11に記載の素子。
  13. 前記半導体構造の前記表面は、少なくとも二つのレベルを有し、前記表面の前記第一の領域は第一のレベルにあり、前記表面の前記第二の領域は第二のレベルにあり、前記第二のレベルは前記第一のレベルよりも低い、請求項1から12のいずれか1項に記載の素子。
  14. 前記第一のリッジ導波路の前記リッジの上面と、前記第二のリッジ導波路の前記リッジの上面とは、実質的に同一平面上にある、請求項1から13のいずれか1項に記載の素子。
  15. 前記MMI領域の上面は、前記第一のリッジ導波路の前記リッジの上面と、前記第二のリッジ導波路の前記リッジの上面とのうちの片方または両方と実質的に同一平面上にある、請求項1から14のいずれか1項に記載の素子。
  16. (a)前記MMI領域と、(b)前記第一のリッジ導波路と前記第二のリッジ導波路とのうちの片方または両方、のうちの片方または両方と連結する第一の電極をさらに備え、前記電極は、該電極に電場を印加するのに適するように構成され、該電極を通って伝播する光の吸収をもたらす請求項1から14のいずれか1項に記載の素子。
  17. 前記半導体構造の前記第一の電極と反対側に位置する第二の電極をさらに備える、請求項16に記載の素子。
  18. (a)前記MMI領域と、(b)前記第一のリッジ導波路と前記第二のリッジ導波路とのうちの片方または両方、のうちの片方または両方は、印加された電場の変動により光の吸収の変動がもたらされるように構成された一つ以上の能動領域と、印加された電場の変動により光のいかなる吸収の変動も実質的にもたらされないように構成された一つ以上の受動領域とを含む、請求項16又は17に記載の素子。
  19. 単一および同一の半導体構造に集積される、請求項1から18のいずれか1項に記載の複数の光学素子を備える半導体光学素子。
JP2008532857A 2005-09-27 2006-09-26 光導波路工程で損失を低減するテーパー部を備える光学素子 Active JP4800389B2 (ja)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US23706705A 2005-09-27 2005-09-27
US11/237,067 2005-09-27
US11/267,400 US20080008416A1 (en) 2002-02-12 2005-11-03 Opto-electronic device
US11/267,400 2005-11-03
US11/315,415 2005-12-21
US11/315,415 US7184207B1 (en) 2005-09-27 2005-12-21 Semiconductor optical device
PCT/GB2006/003562 WO2007036704A1 (en) 2005-09-27 2006-09-26 Optical device comprising taper to reduce loss at waveguide steps

Publications (2)

Publication Number Publication Date
JP2009510505A JP2009510505A (ja) 2009-03-12
JP4800389B2 true JP4800389B2 (ja) 2011-10-26

Family

ID=37451018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008532857A Active JP4800389B2 (ja) 2005-09-27 2006-09-26 光導波路工程で損失を低減するテーパー部を備える光学素子

Country Status (4)

Country Link
US (1) US7184207B1 (ja)
EP (1) EP1929344B1 (ja)
JP (1) JP4800389B2 (ja)
WO (1) WO2007036704A1 (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4505470B2 (ja) * 2005-01-20 2010-07-21 富士通株式会社 光導波路デバイス及び半導体デバイス
SE531378C8 (sv) 2007-06-27 2009-07-07 Syntune Ab Övergångsdel mellan två optiska vägledare
SE532380C2 (sv) 2008-09-23 2009-12-29 Syntune Ab Vågledare för utkoppling med låg reflex.
JP5120330B2 (ja) * 2009-04-27 2013-01-16 三菱電機株式会社 半導体光素子とその製造方法
JP4444368B1 (ja) * 2009-07-30 2010-03-31 古河電気工業株式会社 集積型半導体レーザ素子および半導体レーザモジュールならびに光伝送システム
KR20110064148A (ko) * 2009-12-07 2011-06-15 한국전자통신연구원 광 소자 모듈
JP2011258785A (ja) * 2010-06-10 2011-12-22 Nippon Telegr & Teleph Corp <Ntt> 光導波路およびそれを用いた光半導体装置
JP5437932B2 (ja) * 2010-06-29 2014-03-12 日本電信電話株式会社 可変光減衰器
GB2483283A (en) * 2010-09-03 2012-03-07 Oclaro Technology Ltd Optoelectronic device with tapered waveguide
JP2012248812A (ja) * 2011-05-31 2012-12-13 Sumitomo Electric Ind Ltd 半導体光集積素子の製造方法
US9075192B2 (en) 2012-09-24 2015-07-07 Finisar Sweden Ab Optical waveguide splitter
US9097852B2 (en) * 2013-03-15 2015-08-04 Mitsubishi Electric Research Laboratories, Inc. Multi-mode interference device
US9116298B2 (en) * 2013-03-15 2015-08-25 Mitsubishi Electric Research Laboratories, Inc. Multi-mode interference device
JP6369036B2 (ja) * 2014-02-04 2018-08-08 日本電気株式会社 光導波路及び光導波路の製造方法
EP3203282B1 (en) * 2014-10-02 2022-01-26 Nec Corporation Rib type optical waveguide and optical multiplexer/demultiplexer using same
WO2018134940A1 (ja) * 2017-01-19 2018-07-26 三菱電機株式会社 光変調器集積半導体レーザ
CN107230927B (zh) * 2017-06-29 2019-05-14 中国计量大学 基于SMF-SIMF-GIMF-SMF光纤结构的2μm锁模光纤激光器
JP7323786B2 (ja) * 2019-01-17 2023-08-09 日亜化学工業株式会社 半導体レーザ素子
US10684414B1 (en) 2019-01-29 2020-06-16 Ciene Corporation Interconnect between different multi-quantum well waveguides in a semiconductor photonic integrated circuit
US10852478B1 (en) 2019-05-28 2020-12-01 Ciena Corporation Monolithically integrated gain element
WO2020243279A1 (en) 2019-05-28 2020-12-03 Ciena Corporation Monolithically integrated gain element
US11837838B1 (en) * 2020-01-31 2023-12-05 Freedom Photonics Llc Laser having tapered region
US20230168430A1 (en) * 2021-11-29 2023-06-01 Ciena Corporation Optical waveguide coupling using fabricated waveguide coupling structures
CN114397730A (zh) * 2022-01-26 2022-04-26 北京邮电大学 一种用于波导耦合的双悬臂倒锥模斑转换结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6310995B1 (en) * 1998-11-25 2001-10-30 University Of Maryland Resonantly coupled waveguides using a taper
US6718094B1 (en) * 1997-09-12 2004-04-06 Avanex Corporation Large surface amplifier with multimode interferometer
JP2004511820A (ja) * 2000-10-09 2004-04-15 ブッカム・テクノロジー・ピーエルシー 導波空間フィルタ
WO2006077641A1 (ja) * 2005-01-20 2006-07-27 Fujitsu Limited 光導波路デバイス及び半導体デバイス

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960007884B1 (ko) 1993-04-24 1996-06-15 국방과학연구소 광섬유 격자를 이용한 광섬유소자
US5799119A (en) 1996-07-03 1998-08-25 Northern Telecom Limited Coupling of strongly and weakly guiding waveguides for compact integrated mach zehnder modulators
JP3833313B2 (ja) 1996-08-30 2006-10-11 株式会社日立製作所 半導体レーザ素子
JP3434986B2 (ja) * 1996-09-13 2003-08-11 日本電信電話株式会社 光合分波回路
US5889906A (en) 1997-05-28 1999-03-30 Lucent Technologies Inc. Signal router with coupling of multiple waveguide modes for provicing a shaped multi-channel radiation pattern
JP3244114B2 (ja) 1997-08-18 2002-01-07 日本電気株式会社 半導体光アンプ
JP2001209018A (ja) 2000-01-26 2001-08-03 Nec Corp モニタ付き光変調器
US6571038B1 (en) 2000-03-01 2003-05-27 Lucent Technologies Inc. Multimode interference coupler with tunable power splitting ratios and method of tuning
GB2367377A (en) * 2000-09-13 2002-04-03 Bookham Technology Plc Silicon rib waveguide with MMI device
GB2368131A (en) 2000-10-11 2002-04-24 Marconi Caswell Ltd Flared optical waveguide coupler
JP3991615B2 (ja) * 2001-04-24 2007-10-17 日本電気株式会社 半導体光アンプおよび半導体レーザ
EP1280289B1 (en) 2001-07-27 2010-11-10 Nippon Telegraph And Telephone Corporation Polarization mode dispersion compensating device using optical XOR circuit
US20030113063A1 (en) 2001-12-18 2003-06-19 Yet-Zen Liu Method and apparatus for enhancing power saturation in semiconductor optical amplifiers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6718094B1 (en) * 1997-09-12 2004-04-06 Avanex Corporation Large surface amplifier with multimode interferometer
US6310995B1 (en) * 1998-11-25 2001-10-30 University Of Maryland Resonantly coupled waveguides using a taper
JP2004511820A (ja) * 2000-10-09 2004-04-15 ブッカム・テクノロジー・ピーエルシー 導波空間フィルタ
WO2006077641A1 (ja) * 2005-01-20 2006-07-27 Fujitsu Limited 光導波路デバイス及び半導体デバイス

Also Published As

Publication number Publication date
EP1929344A1 (en) 2008-06-11
WO2007036704A1 (en) 2007-04-05
JP2009510505A (ja) 2009-03-12
US7184207B1 (en) 2007-02-27
EP1929344B1 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
JP4800389B2 (ja) 光導波路工程で損失を低減するテーパー部を備える光学素子
JP5082414B2 (ja) 光半導体装置および光導波路装置
US5799119A (en) Coupling of strongly and weakly guiding waveguides for compact integrated mach zehnder modulators
JP5359750B2 (ja) 光導波路素子
EP2639630A1 (en) Curved optical waveguide
JP4406023B2 (ja) 光集積素子
JP6996381B2 (ja) 光導波路素子
JP5711287B2 (ja) 光制御デバイス
US7796846B2 (en) Optical integrated device and method of manufacturing the same
US8644653B2 (en) Compact multimode interference element
JP5144608B2 (ja) 光変調器
JP2008198944A (ja) 半導体光集積素子
KR100601987B1 (ko) 도파로 및 이를 채용한 커플링 광학소자
JP2011022345A (ja) スポットサイズ変換光導波路部を有する光学素子
TW202029600A (zh) 光半導體積體元件
JP4482486B2 (ja) 半導体スターカプラ型光合流分岐回路及び半導体アレイ回折格子
JP7207087B2 (ja) 光導波路素子
US6975795B2 (en) Refractive index grating, and mode coupler having a refractive index grating
EP3304153B1 (en) Optical waveguiding part
JP6230259B2 (ja) 光集積素子
JP7205678B1 (ja) 方向性結合器及びその製造方法
US7643712B2 (en) Optical module and optical switching device
US20230168430A1 (en) Optical waveguide coupling using fabricated waveguide coupling structures
JP2005345729A (ja) 平面導波路素子および波長多重光通信装置
JP5962800B2 (ja) 光制御デバイス

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110509

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4800389

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250