JP4798144B2 - オルタネータ制御装置 - Google Patents

オルタネータ制御装置 Download PDF

Info

Publication number
JP4798144B2
JP4798144B2 JP2008021817A JP2008021817A JP4798144B2 JP 4798144 B2 JP4798144 B2 JP 4798144B2 JP 2008021817 A JP2008021817 A JP 2008021817A JP 2008021817 A JP2008021817 A JP 2008021817A JP 4798144 B2 JP4798144 B2 JP 4798144B2
Authority
JP
Japan
Prior art keywords
alternator
vehicle
battery
filter
filter processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008021817A
Other languages
English (en)
Other versions
JP2009183116A (ja
Inventor
宏忠 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008021817A priority Critical patent/JP4798144B2/ja
Priority to PCT/JP2009/051502 priority patent/WO2009096489A1/ja
Priority to US12/863,676 priority patent/US8504240B2/en
Priority to CN2009801035185A priority patent/CN101933221B/zh
Priority to DE112009000249T priority patent/DE112009000249T5/de
Publication of JP2009183116A publication Critical patent/JP2009183116A/ja
Application granted granted Critical
Publication of JP4798144B2 publication Critical patent/JP4798144B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator

Description

本発明は、オルタネータ制御装置に関し、更に詳しくは、車両に搭載されたオルタネータの制御の基準となる基準物理量に基づいて制御量を設定し、設定された制御量に基づいてオルタネータを制御するオルタネータ制御装置に関するものである。
車両に搭載されているオルタネータは、通常、エンジンが発生するエンジントルクにより発電するものである。つまり、オルタネータが発電することで、エンジンが駆動する際の負荷となる。従って、車両には、オルタネータが発電することで発生するオルタ負荷トルクが作用することとなる。ここで、オルタネータは、車両に搭載されているバッテリと接続されている。従って、バッテリは、オルタネータが発電することで充電される。通常、バッテリを充電する充電制御は、オルタネータ制御装置がオルタネータを制御することで行われる。
ここで、バッテリは、車両に搭載されているワイパー、ヘッドライト、EPS(電動パワーステアリング)、VGRS(ギヤ比可変ステアリング)などの装置が電気負荷として接続されている。これらの装置が作動することで電気負荷が変動し、バッテリ、電気負荷を含む車両の電気系統における電圧が変動する。特に、EPS(電動パワーステアリング)、VGRS(ギヤ比可変ステアリング)などは、作動すると電気負荷が大きく変動し、車両の電気系統における電圧が大きく変動する虞がある。オルタネータ制御装置は、バッテリ電圧と、オルタネータの制御の基準となる基準物理量である目標電圧との偏差に基づいて、制御量であるオルタネータの目標発電電流値が設定され、オルタネータの発電電流が変更される。従って、オルタネータの発電トルク、すなわちエンジンに対するオルタ負荷トルクは、電気負荷の変動により変動することとなる。
そこで、オルタ負荷トルクの変動を抑制する従来技術が提案されている。例えば、特許文献1では、オルタネータ駆動トルク(オルタ負荷トルク)の減少を減速時燃料カットからの燃料噴射によりエンジンの発生トルク(エンジントルク)を増加させることで、相殺するものである。つまり、特許文献1にでは、オルタ負荷トルクの変動をエンジントルクにより相殺する技術が開示されている。
特開2006−94624号公報
ところで、オルタ負荷トルクが変動することでエンジントルクが変動するため、車両の挙動が変化する虞がある。特許文献1では、オルタ負荷トルクの変動をエンジントルクにより相殺するがエンジンは、大きなエンジントルクを発生することを目的としているため、エンジントルクと比較して小さい負荷トルクの変動を相殺する際の精度に問題がある。また、要求されたエンジントルクを発生するまでの応答性にも問題がある。
また、オルタ負荷トルクの変動を単に車両挙動の変化を抑制するように制御することも考えられるが、この場合車両の電気系統における電圧の変動を抑制できず、電気負荷である装置の作動状況が変化するという問題がある。また、バッテリの耐久性が悪化するという問題もある。
そこで、本発明は、上記に鑑みてなされたものであって、本発明にかかるオルタネータ制御装置では、少なくともオルタ負荷トルクの変動に起因した車両挙動の変化を確実に抑制することができるオルタネータ制御装置を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明では、車両に搭載されたオルタネータの制御の基準となる基準物理量に基づいて制御量を設定し、前記設定された制御量に基づいて前記オルタネータを制御するオルタネータ制御装置において、前記基準物理量、前記制御量あるいは当該基準物理量から当該制御量を設定するまでに用いられる変換物理量のいずれかであるフィルタ対象量をフィルタ処理するフィルタ処理手段を備え、前記フィルタ処理手段は、前記フィルタ対象量の波形のうち前記車両のピッチ共振周波数、ヨー共振周波数、ロール共振周波数の少なくともいずれかの周波数の成分を減衰あるいは除去するフィルタ処理を行うことを特徴とする。
また、上記オルタネータ制御装置において、前記フィルタ処理手段は、前記車両の車速、当該車両の走行する路面の摩擦状況、当該車両の舵角速度の少なくともいずれかに基づいて前記周波数のゲインを設定することが好ましい。
また、上記オルタネータ制御装置において、前記車両には、オルタネータが発電することで、充電されるバッテリが搭載され、前記フィルタ処理手段は、前記バッテリの状態に基づいて前記フィルタ処理を禁止あるいは制限することが好ましい。
また、上記オルタネータ制御装置において、前記バッテリのバッテリ電圧を検出するバッテリ電圧検出推定手段を備え、前記フィルタ処理手段は、前記検出されたバッテリ電圧が下限電圧値未満あるいは上限電圧値を超える場合に、前記フィルタ処理を禁止あるいは制限することが好ましい。
また、上記オルタネータ制御装置において、前記車両に搭載された駆動系装置は、複数の制御モードに基づいて制御されるものであり、前記上限電圧値あるいは前記下限電圧値の少なくともいずれか一方は、前記制御モードに基づいて変更されることが好ましい。
また、上記オルタネータ制御装置において、前記制御モードは、少なくとも車両に伝達される出力向上を要求するスポーツモードおよび燃費向上を要求するエコモードを有し、前記下限電圧値は、前記制御モードがスポーツモード時よりもエコモード時に高くなるように設定されることが好ましい。
また、上記オルタネータ制御装置において、前記フィルタ処理手段は、前記車速の低下に伴い前記周波数のゲインを低く設定することが好ましい。
また、上記オルタネータ制御装置において、前記フィルタ処理手段は、前記車速が下限車速以下である場合に前記フィルタ処理を禁止あるいは制限することが好ましい。
また、上記オルタネータ制御装置において、前記下限車速は、前記車両が略停止状態の場合における車速であることが好ましい。
本発明にかかるオルタネータ制御装置は、周波数の成分を減衰あるいは除去するフィルタ処理を行うことで、周波数の成分に対応するフィルタ対象量の変化を抑制することで、車両挙動が変化するオルタネータの負荷変動を抑制することができる。従って、オルタ負荷トルクの変動に起因したエンジントルクの変動により、タイヤの接地荷重変化の発生が抑制でき、車両挙動の変化を確実に抑制することができる。これにより、車両の操縦安定性を向上することができるという効果を奏することができる。
以下、本発明につき図面を参照しつつ詳細に説明する。なお、下記の実施の形態により本発明が限定されるものではない。また、下記の実施の形態における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。
図1は、実施の形態にかかるオルタネータ制御装置を備える車両の概略構成例を示す図である。図2は、オルタネータ制御装置の構成例を示す図である。図3は、目標電圧設定マップを示す図である。図4は、下限電圧値設定マップを示す図である。図5は、上限電圧値設定マップを示す図である。図6は、ゲインGa設定マップを示す図である。図7は、ゲインGb設定マップを示す図である。図8は、ゲインGc設定マップを示す図である。図1に示すように、車両1は、エンジン2と、オルタネータ3と、バッテリ4と、エンジンECΜ5と、オルタネータ制御装置であるオルタコントローラ6とが搭載されている。なお、7は、エンジン2が発生する制駆動力を変速比に基づいて変換する変速機である。また、8は、変速機7により変換されたエンジン2が発生する制駆動力を車輪10Rに伝達する差動装置である。また、9は、車両1に搭載されている図示しないワイパー、ヘッドライト、EPS(電動パワーステアリング)、VGRS(ギヤ比可変ステアリング)などの電気負荷としての装置であり、バッテリ4に充電された電力あるいはオルタネータ3の発電により供給される電力により、作動するものである。また、10F,10Rは、車両1に作用する制駆動力を路面に伝達する車輪であり、10Fは前輪、10Rは後輪である。実施の形態では、車両1に作用する制駆動力は、後輪10Rを介して路面に伝達される。また、11は、エンジン2とオルタネータ3とを連結し、エンジン2が発生する制駆動力およびオルタネータ3が発生するオルタ制駆動力を互いに伝達する伝達部材であり、例えばベルトやチェーンなどである。ここで、車両1に搭載される駆動系装置は、少なくともエンジン2と、変速機7と、差動装置8とにより構成されている。なお、12は、車両1の各車輪10F,10Rの車輪速度を検出する車輪速度センサであり、検出された各車輪10F,10Rの車輪速度により車両1の車速Vを検出する車速検出手段である。また、13は、車両1が走行する路面の路面摩擦係数μを推定する路面摩擦推定装置であり、車両1の走行する路面の摩擦状況を示す路面摩擦係数μを推定するものである。また、14は、運転者が操作し、車両1を旋回させる図示しないハンドルの操舵角を検出する舵角センサであり、検出された操舵角により舵角速度Xを検出する舵角速度検出手段である。ここで、検出された車輪速度に基づいて車両1の車速Vを算出することで検出する手段、路面摩擦推定装置13により路面摩擦係数μを推定(例えば、任意の1つの車輪のスリップ率に基づいて路面摩擦係数μを推定)する手段、検出された操舵角に基づいて舵角速度Xを算出することで検出する手段は、既に公知技術であるため、ここでの説明は省略する。なお、舵角速度Xは、ハンドルを右方向に操舵し車両1が右旋回する場合をプラス、ハンドルを左方向に操舵し車両1が左旋回する場合をマイナスとする。
エンジン2は、車両1に搭載され、エンジントルクTeを発生するものであり、エンジンECΜ5により運転が制御されるものである。エンジン2は、クランクシャフト21を介して変速機7と連結されており、発生したエンジントルクTeが変速機7に伝達される。ここで、変速機7は、差動装置8と連結されており、伝達されたエンジン2が発生したエンジントルクTeが変速比に基づいて変換されて差動装置8に伝達される。また、差動装置8は、車輪10Rと連結されており、伝達されたエンジン2が発生したエンジントルクTe(変速機7により変速比に基づいて変換されたエンジントルクTe)が車輪10Rに伝達される。エンジン2は、オルタネータ3が発生する発電トルク、すなわちオルタ負荷トルクTlと比較して大きいトルクを発生することができる。
オルタネータ3は、車両1に搭載され、エンジン2のエンジントルクTeにより発電するものである。また、オルタネータ3は、オルタ負荷トルクTlをエンジン2に作用させるものでもある。オルタネータ3は、例えば、図示しない整流器が設けられた三相交流発電機であり、交流電流で発電された電力を直流電流に変換して出力するものである。オルタネータ3は、エンジン2の頻度の高いエンジン回転数で、電気負荷9およびバッテリ4に電力を供給するのに最適な電圧の電力を発電できるように構成されている。オルタネータ3は、回転子31と図示しない固定子により構成されており、回転子31が伝達部材11を介して、エンジン2のクランクシャフト21と連結されている。従って、オルタネータ3は、エンジン2の制駆動力が伝達部材11を介して回転子31に伝達され、回転子31が固定子に対して回転することで、発電するものである。また、オルタネータ3は、発電することで発生する負荷を増減することで、オルタ制駆動力を発生するものである。例えばエンジン2のエンジントルクTeが一定の状態で、現在のオルタネータ3の負荷を減少させると、オルタ負荷トルクTlが減少し、変速機7および差動装置8を介して車輪10Rに作用する駆動トルクTdが増加する。一方、エンジン2のエンジントルクTeが一定で、例えば現在のオルタネータ3の負荷を増加させると、オルタ負荷トルクTlが増加し、駆動トルクTdが減少する。なお、オルタネータ3は、オルタコントローラ6と接続されている。バッテリ4の充電制御は、オルタコントローラ6によりオルタネータ3の発電が制御されることで行われる。
バッテリ4は、蓄電装置であり、オルタネータ3と電気負荷9とに接続されている。バッテリ4は、定格電圧の二次電池により構成されており、オルタネータ3が発電した電力を蓄電するものである。なお、バッテリ4は、バッテリ電圧センサ41が設けられている。バッテリ電圧センサ41は、バッテリ電圧検出手段であり、バッテリ4の現在のバッテリ電圧Vr(V)を検出するものである。バッテリ電圧センサ41は、オルタコントローラ6と接続されており、検出されたバッテリ電圧Vrは、オルタコントローラ6に出力される。また、バッテリ4は、バッテリ電流センサ42が設けられている。バッテリ電流センサ42は、充放電電流検出手段であり、バッテリ4が充電される際の電流値およびバッテリ4が放電される際の電流値である充放電電流値Ix(A)を検出するものである。バッテリ電流センサ42は、オルタコントローラ6と接続されており、検出された充放電電流値Ixは、オルタコントローラ6に出力される。
エンジンECΜ5は、エンジン2の運転制御および変速機7の変速制御を行うものである。エンジンECΜ5は、運転者の意志に基づいて設定、あるいは車両1の自動走行制御において算出される車両1に要求される要求制駆動力に基づいて、噴射信号、点火信号、バルブ開度信号などをエンジン2に出力するとともに、変速信号などを変速機7に出力し、これらの出力信号により、図示しない燃料噴射弁によりエンジン2に供給される燃料の燃料供給量や噴射タイミングなどの燃料噴射制御、図示しない点火プラグの点火制御、エンジン2の図示しない吸気経路に設けられた図示しないスロットルバルブのバルブ開度制御、変速機7の変速制御などが行われる。ここで、エンジンECΜ5は、複数の制御モードを有し、各制御モードに応じたエンジン2の運転制御および変速機7の変速制御を行う。制御モードは、運転者が手動であるいは車両1の運転状況に応じて選択されるものである。制御モードは、実施の形態では、車両1に伝達される出力向上を要求、すなわち燃費よりも駆動トルクTdの増加を優先するスポーツモード、燃費向上を要求、すなわち駆動トルクTdよりも燃費の向上を優先するするエコモード、スポーツモードとエコモードとの中間、すなわち駆動トルクTdの増加と燃費の向上との両立を図るノーマルモードがある。なお、エンジンECΜ5は、オルタコントローラ6と接続されており、エンジンECΜ5に入力されたエンジン2の運転状態に基づく情報、例えば上記制御モードなどは、適宜オルタコントローラ6に出力される。ここで、エンジンECΜ5のハード構成は、主に演算処理を行うCPΜ(Central Processing Μnit)、プログラムや情報を格納するメモリ(SRAMなどのRAM、EEPROMなどのROM(Read Only Memory))、入出力インターフェースなどから構成され、既知のエンジンECΜと同様であるため、詳細な説明は省略する。
オルタコントローラ6は、オルタネータ制御装置を構成するものであり、オルタネータ3を制御するものである。また、オルタコントローラ6は、バッテリ4の充電状態を監視するものでもある。オルタコントローラ6は、図2に示すように、目標電圧設定部61と、目標発電トルク設定部62と、フィルタ処理部63と、目標電流値設定部64と、オルタネータ制御部65とを有する。ここで、オルタコントローラ6のハード構成は、エンジンECΜ5とほぼ同様であるため、詳細な説明は省略する。なお、66は、後述する目標電圧設定マップ、上限電圧値設定マップ、下限電圧値設定マップ、Ga設定マップ、Gb設定マップ、Gc設定マップなどを記憶する記憶部である。また、実施の形態では、オルタコントローラ6をエンジンECΜ170と別個に構成したが本発明はこれに限定されるものではなく、エンジンECΜ170の機能の一つであっても良い。
目標電圧設定部61は、目標電圧V(V)を設定するものである。実施の形態では、目標電圧V(V)が車両1に搭載されたオルタネータ3の制御の基準となる基準物理量である。目標電圧設定部61は、例えば、車両1の加減速状態およびバッテリの充電状態であるSOC値A(%)に基づいて目標電圧Vを設定するものである。具体的には、目標電圧設定部61は、車両1の加減速状態と、SOC値Aと、記憶部66に記憶されている目標電圧設定マップとに基づいて目標電圧Vを設定する。なお、目標電圧設定部61により設定された目標電圧Vは、目標発電トルク設定部62に出力される。なお、SOC値Aは、バッテリ電流センサ42により検出され、オルタコントローラ6に出力された充放電電流値Ixに基づいて算出される。オルタコントローラ6は、例えば、検出された充放電電流値Ixの時間積分値をバッテリ4のバッテリ容量Kで除算した値をSOC値Aとして算出する。
ここで、目標電圧設定マップは、図3に示すように、加減速状態とSOC値Aと目標電圧Vとの関係に基づいた設定マップであり、車両1の加減速状態と、SOC値Aとから目標電圧Vを設定することができるものである。目標電圧設定マップでは、実施の形態では、予め目標電圧VがLOW、MID、HIGHの3つに設定されており、電圧としての大きさはLOW<MID<HIGHの関係となる。また、目標電圧設定マップでは、予め加減速状態が減速中、定常走行中、加速中の3つに設定されている。また、目標電圧設定マップでは、予めSOC値Aと、閾値B,Cとの関係で、バッテリ4の充電状態が充電状態大、充電状態中、充電状態小の3つに設定されている。ここで、閾値Bはバッテリ4のSOC値Aが十分に大きいと判断される値であり、閾値Cはバッテリ4のSOC値Aが十分に小さいと判断される値であり、閾値B>閾値Cの関係となる。充電状態大とはSOC値Aが閾値B以上の状態であり、充電状態中とはSOC値Aが閾値B未満であり閾値Cを超える状態であり、充電状態小とは、SOC値Aが閾値C以下の状態をいう。目標電圧設定マップは、車両1が減速中であると目標電圧Vが定常走行中あるいは加速中と比較して高めに設定され、車両1が加速中であると目標電圧Vが減速中あるいは定常走行中と比較して低めに設定される。また、目標電圧設定マップは、充電状態大でバッテリ4のSOC値Aが十分に大きい場合は、積極的にバッテリ4の充電を行う必要がないので、充電状態中あるいは充電状態小と比較して目標電圧Vが低めに設定される。一方、目標電圧設定マップは、充電状態小でバッテリ4のSOC値Aが十分に小さい場合は、積極的にバッテリ4の充電を行う必要があるので、充電状態大あるいは充電状態中と比較して目標電圧Vが高めに設定される。なお、充電状態大とは、SOC値Aが閾値Bを超える状態であり、充電状態中とはSOC値Aが閾値B以下であり閾値C以上の状態であり、充電状態小とはSOC値Aが閾値C未満の状態であっても良い。
目標発電トルク設定部62は、目標発電トルクToを設定するものである。実施の形態では、目標発電トルクToが目標電圧設定部61により設定された基準物理量である目標電圧Vから目標電流値設定部64により設定された制御量である目標電流値Ioを設定するまでに用いられる変換物理量であり、フィルタ対象量である。目標発電トルク設定部62は、実施の形態では、上記目標電圧設定部61により設定された目標電圧Vと、バッテリ電圧センサ41により検出され、オルタコントローラ6に出力されたバッテリ電圧Vrとの偏差Vdを算出し、算出された偏差Vdに電圧値を発電トルクに変換するゲインg1を乗算した値を目標発電トルクToとして算出する。なお、目標発電トルク設定部62により設定された目標発電トルクToは、フィルタ対象量としてフィルタ処理部63に出力される。
フィルタ処理部63は、フィルタ処理手段であり、フィルタ対象量である目標発電トルクToをフィルタ処理するものである。ここで、車両挙動のうち、車両1のピッチングによる図示しないタイヤの接地荷重変化の発生が車両運動に影響を最も与え、操縦安定性に影響を与える。実施の形態では、フィルタ処理部63は、目標発電トルクToの波形のうち、車両1のピッチングに影響を与える車両1のピッチ共振周波数の成分を減衰あるいは除去するフィルタ処理を行うものである。フィルタ処理部63は、少なくともフィルタ処理禁止判断部63aと、フィルタ設定部63bとを有するものである。
フィルタ処理禁止判断部63aは、フィルタ処理部63による目標発電トルクToのフィルタ処理を禁止するか否かを判断するものである。フィルタ処理禁止判断部63aは、目標発電トルクToのフィルタ処理を禁止する場合はフィルタ処理禁止フラグをON(F=1)し、禁止しない場合はフィルタ処理禁止フラグをOFF(F=0)とする。フィルタ処理禁止判断部63aは、車両1の車速Vおよびバッテリの状態に基づいてフィルタ処理を禁止するか否かを判断する。フィルタ処理部63は、フィルタ処理禁止判断部63aにより目標発電トルクToのフィルタ処理を禁止すると判断されると、目標発電トルクToのフィルタ処理をせずに、目標発電トルクToをそのまま目標電流値設定部64に出力する。
フィルタ処理禁止判断部63aは、車速センサ12により検出された車速Vが下限車速Vo以下である場合に、フィルタ処理部63による目標発電トルクToのフィルタ処理を禁止すると判断する。ここで、下限車速Voは、車両1が略停止状態の場合における車速、例えば車速センサ12では実際に検出することができない車速(例えば、数km/h程度)である。車両1が略停止状態では、車両挙動の変化を許容することができるため、バッテリ4の充電制御を優先し、バッテリ4の効率的な充電を図ることができる。
フィルタ処理禁止判断部63aは、バッテリの状態としてバッテリ電圧センサ41により検出されたバッテリ電圧Vrが下限電圧値VA未満である場合に、バッテリ4の放電能力に制限があるので、フィルタ処理部63による目標発電トルクToのフィルタ処理を禁止すると判断する。また、フィルタ処理禁止判断部63aは、検出されたバッテリ電圧Vrが上限電圧値VBを超える場合に、バッテリ4の充電能力に制限があるので、フィルタ処理部63による目標発電トルクToのフィルタ処理を禁止すると判断する。なお、フィルタ処理禁止判断部63aは、検出されたバッテリ電圧Vrが下限電圧値VA以下、あるいは上限電圧値VB以上である場合に、フィルタ処理部63による目標発電トルクToのフィルタ処理を禁止すると判断しても良い。
ここで、下限電圧値VAは、エンジンECΜ5からオルタコントローラ6に出力され、取得した制御モードおよび電気負荷9である装置の作動状態に基づいて設定されるものである。具体的には、フィルタ処理禁止判断部63aは、取得した制御モードと、運転者が作動変化を認識し易い電気負荷9である図示しないヘッドライトおよびワイパーの作動状態と、記憶部66に記憶されている下限電圧値設定マップとに基づいて下限電圧値VAを設定する。下限電圧値設定マップは、図4に示すように、制御モードとヘッドライトおよびワイパーのON/OFF状態との関係に基づいた設定マップであり、制御モードとヘッドライトおよびワイパーのON/OFF状態とから下限電圧値VAを設定することができるものである。下限電圧値設定マップでは、実施の形態では、制御モードがスポーツモード、ノーマルモード、エコモードの3つに設定されており、目標発電トルクToのフィルタ処理による車両挙動の変化の抑制の重要度はスポーツモード>ノーマルモード>エコモードの関係となる。また、下限電圧値設定マップは、ヘッドライトおよびワイパーともにOFFのOFF状態と、ヘッドライトあるいはワイパーの少なくともいずれかがONのON状態の2つに設定されており、目標発電トルクToのフィルタ処理による作動状態の変化の抑制の重要度は、OFF状態<ON状態の関係となる。下限電圧値設定マップでは、制御モードがスポーツモードで目標発電トルクToのフィルタ処理による車両挙動の変化の抑制が優先される場合は、目標発電トルクToのフィルタ処理を積極的に行いたいので、ノーマルモードあるいはエコモードと比較して下限電圧値VAが低く設定されている。一方、制御モードがエコモードで、目標発電トルクToのフィルタ処理による車両挙動の変化よりも燃費が優先される場合は、オルタネータ3により効率的な発電を行いたいので、ノーマルモードあるいはスポーツモードと比較して下限電圧値VAが高く設定されている。また、下限電圧値設定マップでは、ON状態である場合は、OFF状態である場合と比較して、各制御モードに対応する下限電圧値VAが高く設定されている。これは、ON状態では、目標発電トルクToのフィルタ処理により、オルタネータ3の発電量が減少し、電圧変動が大きくなる(バッテリ4、電気負荷9を含む車両1の電気系統における電圧が低下する)ため、ヘッドライトあるいはワイパーの少なくともいずれかがONであり、その作動状態の変化が大きくなることで運転者に違和感を与えることを抑制するためである。
また、上限電圧値VBは、エンジンECΜ5からオルタコントローラ6に出力され、取得した制御モードに基づいて設定されるものである。具体的には、フィルタ処理禁止判断部63aは、取得した制御モードと、記憶部66に記憶されている上限電圧値設定マップとに基づいて上限電圧値VBを設定する。上限電圧値設定マップは、図5に示すように、制御モードに基づいた設定マップであり、制御モードから上限電圧値VBを設定することができるものである。上限電圧値設定マップでは、実施の形態では、制御モードがスポーツモード、ノーマルモード、エコモードの3つに設定されているが、車両1の電気系統における電圧上昇による不具合防止のため、制御モードに拘わらず一定の値が上限電圧値VBとして設定される。
また、フィルタ処理禁止判断部63aは、図2に示すように、バッテリの状態としてバッテリ電圧Vr以外のその他のバッテリ状態が良好でない場合に、フィルタ処理部63による目標発電トルクToのフィルタ処理を禁止すると判断する。フィルタ処理禁止判断部63aは、実施の形態では、バッテリ4の劣化状態、故障状態、制御状態などによりバッテリ4が良好であるか否かを判断する。フィルタ処理禁止判断部63aは、バッテリ4が劣化している状態、故障している状態、リフレッシュ制御状態の少なくともいずれかである場合に、バッテリ4が良好でないと判断する。
フィルタ設定部63bは、フィルタSを設定するものである。フィルタ設定部63bは、周波数fおよびゲインGに基づいてフィルタSを設定するものである。フィルタ設定部63bは、実施の形態では、目標発電トルクToの波形のうち周波数fの成分の減衰量をゲインGとしてフィルタSを設定する。ゲインGの増加に伴い目標発電トルクToの波形のうち周波数fの成分を多く減衰させるフィルタSを設定し、ゲインGが1である場合に、目標発電トルクToの波形のうち周波数fの成分を除去するフィルタSを設定する。
フィルタ設定部63bは、車両1の車両モデルに基づいて周波数fを算出する。フィルタ設定部63bは、実施の形態では、予め記憶部66に記憶されている車両1の車両モデルに基づいて算出されるピッチ共振周波数(例えば、1.5Hz〜2Hz)を周波数fとして算出する。ここで、実施の形態では、図示しないサスペンションECUにより上記複数の制御モードに応じて図示しないサスペンションのバネ特性が変更されるので、フィルタ設定部63bは、車両モデルおよび制御モードに基づいて周波数fを算出する。これは、サスペンションのバネ特性に基づいて同一車両1であっても、ピッチ共振周波数が変化するためである。なお、フィルタ設定部63bは、上記複数の制御モードに拘わらず、サスペンションのバネ特性を手動あるいは自動で変更することができる場合、車両モデルおよびサスペンションのバネ特性に基づいて周波数fを算出することとなる。なお、車両モデルには、ピッチ慣性モーメントI、ピッチ回転バネ定数K、ピッチ回転減衰係数C、外乱M(ピッチ慣性モーメントIと、ピッチ回転バネ定数Kと、ピッチ回転減衰係数Cと、ピッチ角θとに基づいて算出される)などがある。ピッチ共振周波数は、ピッチ回転バネ定数Kとピッチ回転モーメントとに基づくものであるので、サスペンションのバネ特性が変更されると変化する。
また、フィルタ設定部63bは、算出された周波数fのゲインGを設定する。フィルタ設定部63bは、実施の形態では、車両1の車速Vと、車両1の走行する路面の摩擦状況と、車両1の舵角速度Xとに基づいてゲインGを設定する。具体的には、フィルタ設定部63bは、車速センサ12により検出され、オルタコントローラ6に出力された車両1の車速Vおよび予め記憶部66に記憶されているゲインGa設定マップに基づいてゲインGaを算出し、路面摩擦推定装置13により推定され、オルタコントローラ6に出力された路面摩擦係数μおよびゲインGb設定マップに基づいてゲインGbを算出し、舵角センサ14により検出され、オルタコントローラ6に出力された図示しないハンドルの舵角速度Xの絶対値|X|および予め記憶部66に記憶されているゲインGc設定マップに基づいてゲインGcを算出し、各ゲインGa,Gb,Gcを乗算した値をゲインGとして設定する。
ここで、ゲインGa設定マップは、図6に示すように、車両1の車速VとゲインGaとの関係に基づいた設定マップであり、車両1の車速VからゲインGaを算出することができるものである。ゲインGa設定マップは、車両1の車速Vが低い場合は高い場合と比較して、ゲインGaが低くなるように設定されている。つまり、フィルタ処理部63のフィルタ設定部63bは、車両1の車速Vの低下に伴い周波数fのゲインGを低く設定することとなる。ゲインGa設定マップは、実施の形態では、車両1の車速Vに応じてゲインGaが0.5〜1の間で算出されるように設定されており、車両1の車速Vが0km/hから第1所定車速まではゲインGaが0.5、第1所定車速から第2所定車速まではゲインGaが0.5〜1に増加、第2所定車速以上ではゲインGaが1.0となるように設定されている。車両1は、車速Vの増加に伴いオルタ負荷トルクTlの変動に基づくエンジントルクTeの変動に敏感となる。ゲインGa設定マップでは、車速Vが高い場合は低い場合と比較して目標発電トルクToの波形のうち周波数fの成分を多く減衰できるようにゲインGaが大きく算出される。従って、フィルタ処理部63により目標発電トルクToをフィルタ処理することで、車速Vが高い場合は低い場合と比較して車両1のピッチ方向の振動を抑制でき、車両挙動の変化を抑制することができる。また、車両1は、車速Vの減少に伴いオルタ負荷トルクTlの変動に基づくエンジントルクTeの変動に鈍感となるので、車速Vが低い場合は高い場合と比較して、車両挙動の変化を許容できるので、バッテリ4の充電制御を優先し、バッテリ4の効率的な充電を図ることができる。
ここで、ゲインGb設定マップは、図7に示すように、路面摩擦係数μとゲインGbとの関係に基づいた設定マップであり、路面摩擦係数μからゲインGbを算出することができるものである。ゲインGb設定マップは、路面摩擦係数μが低い場合は高い場合と比較して、ゲインGaが高くなるように設定されている。つまり、フィルタ処理部63のフィルタ設定部63bは、路面摩擦係数μの低下に伴い周波数fのゲインGを高く設定することとなる。ゲインGb設定マップは、実施の形態では、路面摩擦係数μに応じてゲインGbが0.5〜1の間で算出されるように設定されており、路面摩擦係数μが0から第1所定値まではゲインGaが1、第1所定値から第2所定値まではゲインGbが1〜0.5に減少、第2所定値以上ではゲインGaが0.5となるように設定されている。車両1は、路面摩擦係数μが低いと滑りやすくなるため、路面摩擦係数μの減少に伴いオルタ負荷トルクTlの変動に基づくエンジントルクTeの変動に敏感となる。ゲインGb設定マップでは、路面摩擦係数μが低い場合は高い場合と比較して目標発電トルクToの波形のうち周波数fの成分を多く減衰できるようにゲインGbが大きく算出される。従って、フィルタ処理部63により目標発電トルクToをフィルタ処理することで、路面摩擦係数μが低い場合は高い場合と比較して車両1のピッチ方向の振動を抑制でき、車両挙動の変化を抑制することができる。また、車両1は、路面摩擦係数μの増加に伴いオルタ負荷トルクTlの変動に基づくエンジントルクTeの変動に鈍感となるので、路面摩擦係数μが高い場合は低い場合と比較して、車両挙動の変化を許容できるので、バッテリ4の充電制御を優先し、バッテリ4の効率的な充電を図ることができる。
ここで、ゲインGc設定マップは、図8に示すように、舵角速度の絶対値|X|とゲインGcとの関係に基づいた設定マップであり、舵角速度の絶対値|X|からゲインGcを算出することができるものである。ゲインGc設定マップは、舵角速度の絶対値|X|が大きい場合は小さい場合と比較して、ゲインGcが高くなるように設定されている。つまり、フィルタ処理部63のフィルタ設定部63bは、舵角速度の絶対値|X|の増加に伴い周波数fのゲインGを高く設定することとなる。ゲインGc設定マップは、実施の形態では、舵角速度の絶対値|X|に応じてゲインGcが0.5〜1の間で算出されるように設定されており、舵角速度の絶対値|X|が0から第1所定絶対値まではゲインGcが0.5、第1所定絶対値から第2所定絶対値まではゲインGcが0.5〜1に増加、第2所定絶対値以上ではゲインGcが1.0となるように設定されている。車両1は、旋回初期時にオルタ負荷トルクTlの変動に基づくエンジントルクTeの変動に敏感となり、舵角速度の絶対値|X|の増加に伴い敏感となる。ゲインGc設定マップでは、舵角速度の絶対値|X|が高い場合は低い場合と比較して目標発電トルクToの波形のうち周波数fの成分を多く減衰できるようにゲインGcが大きく算出される。従って、フィルタ処理部63により目標発電トルクToをフィルタ処理することで、舵角速度の絶対値|X|が高い場合は低い場合と比較して車両1のピッチ方向の振動を抑制でき、車両挙動の変化を抑制することができる。また、車両1は、舵角速度の絶対値|X|の減少に伴いオルタ負荷トルクTlの変動に基づくエンジントルクTeの変動に鈍感となるので、舵角速度の絶対値|X|が低い場合は高い場合と比較して、車両挙動の変化を許容できるので、バッテリ4の充電制御を優先し、バッテリ4の効率的な充電を図ることができる。
目標電流値設定部64は、目標電流値Io(A)を設定するものである。実施の形態では、目標電流値Io(A)が、オルタネータ3を制御する制御量である。目標電流値設定部64は、上記目標発電トルク設定部62により設定され、フィルタ処理部63によりフィルタ処理が行われた目標発電トルクTo、あるいは上記目標発電トルク設定部62により設定され、フィルタ処理部63によりフィルタ処理が行われていない目標発電トルクToに、トルクを電流値に変換するゲインg2を乗算した値を目標電流値Ioとして設定する。なお、目標電流値設定部64により設定された目標電流値Ioは、オルタネータ制御部65に出力される。
オルタネータ制御部65は、オルタネータ3を制御するものである。オルタネータ制御部65は、オルタネータ3のフィールド電流を増減することでオルタネータ3を制御する。オルタネータ制御部65は、上記目標電流値設定部63により設定された目標電流値Ioに基づいてオルタネータ3のフィールド電流を増減する。従って、オルタコントローラ6は、設定された目標電流値Ioに基づいてオルタネータ3を制御する。
次に、オルタコントローラ6の動作について説明する。ここでは、オルタコントローラ6によるオルタネータ制御方法について説明する。図9は、フィルタ処理禁止判断方法のフロー図である。図10は、フィルタS設定方法のフロー図である。図11は、オルタネータ制御方法のフロー図である。なお、オルタコントローラ6は、所定の制御周期に基づいて、オルタネータ制御方法を実行する。
まず、オルタコントローラ6によるフィルタ処理禁止判断について説明する。フィルタ処理部63のフィルタ処理禁止判断部63aは、図9に示すように、まず車速V、バッテリ電圧Vr、その他バッテリ状態を取得する(ステップST11)。ここでは、フィルタ処理禁止判断部63aは、車速センサ12により検出され、オルタコントローラ6に出力された車両1の車速Vを取得し、バッテリ電圧センサ41により検出され、オルタコントローラ6に出力されたバッテリ電圧Vrを取得し、上記取得されたバッテリ電圧Vrおよびバッテリ電流センサ42により検出され、オルタコントローラ6に出力された充放電電流値Ixなどに基づいて判断されるバッテリ4の劣化状態、故障状態、制御状態を取得する。
次に、フィルタ処理禁止判断部63aは、取得した車速Vが下限車速Vo以下であるか否かを判断する(ステップST12)。ここでは、フィルタ処理禁止判断部63aは、取得した車速Vが予め設定されている下限車速Vo以下であるか否かを判断することで、車両1の車速Vに基づいて目標発電トルクToのフィルタ処理を行う必要があるか否かを判断する。
次に、フィルタ処理禁止判断部63aは、取得した車速Vが下限車速Vo以下であると判断する(ステップST12肯定)と、フィルタ処理禁止フラグをON(F=1)して、現在の制御周期を終了し、次の制御周期に移行する(ステップST17)。
また、フィルタ処理禁止判断部63aは、取得した車速Vが下限車速Voを超えると判断する(ステップST12否定)と、取得したバッテリ電圧Vrが下限電圧値VA未満であるか否かを判断する(ステップST13)。ここでは、フィルタ処理禁止判断部63aは、現在モードと、ヘッドライトおよびワイパーのON/OFF状態と、下限電圧値設定マップとに基づいて下限電圧値VAを予め設定し、取得したバッテリ電圧Vrが設定された下限電圧値VA未満であるか否かを判断することで、バッテリ状態に基づいて目標発電トルクToのフィルタ処理を行う必要があるか否かを判断する。
次に、フィルタ処理禁止判断部63aは、取得したバッテリ電圧Vrが下限電圧値VA未満であると判断する(ステップST13肯定)と、フィルタ処理禁止フラグをON(F=1)して、現在の制御周期を終了し、次の制御周期に移行する(ステップST17)。
また、フィルタ処理禁止判断部63aは、取得したバッテリ電圧Vrが下限電圧値VA以上であると判断する(ステップST13否定)と、取得したバッテリ電圧Vrが上限電圧値VBを超えるか否かを判断する(ステップST14)。ここでは、フィルタ処理禁止判断部63aは、上限電圧値設定マップに基づいて上限電圧値VBを予め設定し、取得したバッテリ電圧Vrが設定された上限電圧値VBを超えるか否かを判断することで、バッテリ状態に基づいて目標発電トルクToのフィルタ処理を行う必要があるか否かを判断する。
次に、フィルタ処理禁止判断部63aは、取得したバッテリ電圧Vrが上限電圧値VBを超えると判断する(ステップST14肯定)と、フィルタ処理禁止フラグをON(F=1)して、現在の制御周期を終了し、次の制御周期に移行する(ステップST17)。
また、フィルタ処理禁止判断部63aは、取得したバッテリ電圧Vrが上限電圧値VB以下であると判断する(ステップST14否定)と、取得したその他のバッテリ状態に基づいてバッテリ状態が良好であるか否かを判断する(ステップST15)。ここでは、フィルタ処理禁止判断部63aは、その他のバッテリ状態であるバッテリ4の劣化状態、故障状態、制御状態などに基づいて、バッテリ4が劣化している状態、故障している状態あるいはリフレッシュ制御状態の少なくともいずれかであるか否かを判断することで、バッテリ状態に基づいて目標発電トルクToのフィルタ処理を行う必要があるか否かを判断する。
次に、フィルタ処理禁止判断部63aは、取得したその他のバッテリ状態に基づいてバッテリ状態が良好でないと判断する(ステップST15否定)と、フィルタ処理禁止フラグをON(F=1)して、現在の制御周期を終了し、次の制御周期に移行する(ステップST17)。
また、フィルタ処理禁止判断部63aは、取得したその他のバッテリ状態に基づいてバッテリ状態が良好であると判断する(ステップST15肯定)と、フィルタ処理禁止フラグをOFF(F=0)して、現在の制御周期を終了し、次の制御周期に移行する(ステップST16)。
次に、オルタコントローラ6によるフィルタSの設定について説明する。フィルタ処理部63のフィルタ設定部63bは、図10に示すように、まず現在モード、車両モデル、車速V、路面摩擦係数μ、舵角速度Xを取得する(ステップST20)。ここでは、フィルタ設定部63bは、エンジンECΜ5からオルタコントローラ6に出力された制御モードを取得し、予め記憶部66に記憶されている車両1の車両モデルを取得し、車速センサ12により検出され、オルタコントローラ6に出力された車両1の車速Vを取得し、路面摩擦推定装置13により推定され、オルタコントローラ6に出力された路面摩擦係数μを取得し、舵角センサ14により検出され、オルタコントローラ6に出力された舵角速度Xを取得する。
次に、フィルタ設定部63bは、周波数fを算出する(ステップST21)。ここでは、フィルタ設定部63bは、取得された車両1の車両モデルおよび取得された制御モード(現在モード)に基づいて周波数fを算出する。
次に、フィルタ設定部63bは、ゲインGaを算出する(ステップST22)。ここでは、フィルタ設定部63bは、取得された車両1の車速Vと、ゲインGa設定マップとに基づいて、ゲインGaを算出する。
次に、フィルタ設定部63bは、ゲインGbを算出する(ステップST23)。ここでは、フィルタ設定部63bは、取得された路面摩擦係数μと、ゲインGb設定マップとに基づいて、ゲインGbを算出する。
次に、フィルタ設定部63bは、ゲインGcを算出する(ステップST24)。ここでは、フィルタ設定部63bは、取得された舵角速度の絶対値|X|と、ゲインGc設定マップとに基づいて、ゲインGcを算出する。
次に、フィルタ設定部63bは、ゲインGを設定する(ステップST25)。ここでは、フィルタ設定部63bは、上記算出された各ゲインGa,Gb,Gcを乗算した値をゲインGとして設定する。
次に、フィルタ設定部63bは、フィルタSを設定する(ステップST26)。ここでは、フィルタ設定部63bは、周波数fおよびゲインGに基づいてフィルタSを設定して、現在の制御周期を終了し、次の制御周期に移行する。
そして、オルタコントローラ6によるオルタネータ制御方法について説明する。オルタコントローラ6は、図11に示すように、バッテリ電圧Vr、フィルタ処理禁止フラグF、フィルタSを取得する(ステップST30)。ここでは、オルタコントローラ6は、バッテリ電圧センサ41により検出され、オルタコントローラ6に出力されたバッテリ電圧Vrを取得し、フィルタ処理禁止判断部63aにより判断されたフィルタ処理禁止フラグFを取得し、フィルタ設定部63bにより設定されたフィルタSを取得する。
次に、オルタコントローラ6の目標電圧設定部61は、目標電圧Vを設定する(ステップST31)。ここでは、目標電圧設定部61は、車両1の加減速状態と、SOC値Aと、目標電圧設定マップとに基づいて目標電圧Vを設定する。
次に、オルタコントローラ6の目標発電トルク設定部62は、偏差Vdを算出する(ステップST32)。ここでは、目標発電トルク設定部62は、上記目標電圧設定部61により設定された目標電圧Vと、バッテリ電圧センサ41により検出され、オルタコントローラ6に出力されたバッテリ電圧Vrとの偏差Vdを算出する。
次に、目標発電トルク設定部62は、目標発電トルクToを設定する(ステップST33)。ここは、目標発電トルクToは、上記算出された偏差Vdにゲインg1を乗算した値を目標発電トルクToとして設定し、設定された目標発電トルクToをフィルタ処理部63に出力する。
次に、フィルタ処理部63は、フィルタ処理禁止フラグFが0であるか否かを判断する(ステップST34)。ここでは、フィルタ処理部63は、上記設定された目標発電トルクToのフィルタ処理を禁止するか否かを判断する。
次に、フィルタ処理部63は、フィルタ処理禁止フラグFが0であると判断する(ステップST34肯定)と、フィルタSに基づき目標発電トルクToのフィルタ処理を行う(ステップST35)。ここでは、フィルタ処理部63は、設定された目標発電トルクToの波形のうち、周波数fの成分をゲインGに基づいて減衰あるいは除去するように、目標発電トルクToのフィルタ処理を行い、フィルタ処理が行われた目標発電トルクToを目標電流値設定部64に出力する。
また、フィルタ処理部63は、フィルタ処理禁止フラグFが1であると判断する(ステップST34否定)と、フィルタSに基づいた目標発電トルクToのフィルタ処理を行わず、フィルタ処理が行われていない目標発電トルクToを目標電流値設定部64に出力する。
次に、オルタコントローラ6の目標電流値設定部64は、目標電流値Ioを設定する(ステップST36)。ここでは、目標電流値設定部64は、上記フィルタ処理が行われた目標発電トルクToあるいはフィルタ処理が行われていない目標発電トルクToのいずれかにゲインg2を乗算した値を目標電流値Ioとして設定する。
次に、目標電流値設定部64は、設定した目標電流値Ioをオルタネータ制御部65に出力する(ステップST37)。
次に、オルタネータ制御部65は、上記設定された目標電流値Ioに基づいてオルタネータ3を制御する(ステップST38)。
以上のように、実施の形態にかかるオルタネータ制御装置は、目標発電トルクToに対して周波数fの成分を減衰あるいは除去するフィルタ処理を行うことで、周波数の成分に対応する目標発電トルクToの変化を抑制する。従って、目標発電トルクToの変化を抑制することで、車両挙動が変化するオルタネータ3の負荷変動を抑制することができる。これにより、オルタ負荷トルクの変動に起因したエンジントルクの変動により、車両1のピッチ方向の振動を抑制でき、タイヤの接地荷重変化の発生が抑制でき、車両挙動の変化を確実に抑制することができる。これにより、車両の操縦安定性を向上することができる。また、車両挙動の変化を許容できる場合は、フィルタ処理を禁止、あるいは目標発電トルクToに対して周波数fの成分の減衰量を小さくしてフィルタ処理を行い、バッテリ4の充電制御を優先し、バッテリ4の効率的な充電を図ることができる。
なお、上記実施の形態では、車速Vに基づいたゲインGaと、路面摩擦係数μに基づいたゲインGbと、舵角速度Xに基づいたゲインGcとからゲインGを設定するが、本発明はこれに限定されるものではなく、上記3つのゲインGa,Gb,Gcのうちいずれか1つをゲインGとしても、いずれか2つからゲインGを設定しても良い。
また、上記実施の形態では、フィルタ対象量を目標発電トルクToとしたが、本発明はこれに限定されるものではなく、基準物理量である目標電圧Vや制御量である目標電流値Ioをフィルタ対象量としても良い。つまり、フィルタ処理部63は、目標電圧Vや目標電流値Ioをフィルタ処理しても良い。また、変換物理量を目標発電トルクToとしたが本発明はこれに限定されるものではなく、オルタネータ3の目標発電量Woを変換物理量としても良く、この場合は、フィルタ処理部63が目標発電量Woのフィルタ処理を行う。
また、上記実施の形態では、フィルタ処理部63は、車両1の車速V、バッテリ電圧Vrおよびその他のバッテリ状態に基づいて目標発電トルクToのフィルタ処理を禁止するが、本発明はこれに限定されるものではなく、車両1の車速V、バッテリ電圧Vrおよびその他のバッテリ状態に基づいて目標発電トルクToのフィルタ処理を制限しても良い。例えば、車両1の車速V、バッテリ電圧Vrおよびその他のバッテリ状態に基づいて周波数fのゲインGを小さく設定しても良い。
以上のように、オルタネータ制御装置は、車両に搭載されたオルタネータの制御の基準となる基準物理量に基づいて制御量を設定し、設定された制御量に基づいてオルタネータを制御するオルタネータ制御装置に有用であり、特に、オルタ負荷トルクの変動に起因した車両挙動の変化を確実に抑制するのに適している。
実施の形態にかかるオルタネータ制御装置を備える車両の概略構成例を示す図である。 オルタネータ制御装置の構成例を示す図である。 目標電圧設定マップを示す図である。 下限電圧値設定マップを示す図である。 上限電圧値設定マップを示す図である。 ゲインGa設定マップを示す図である。 ゲインGb設定マップを示す図である。 ゲインGc設定マップを示す図である。 フィルタ処理禁止判断方法のフロー図である。 フィルタS設定方法のフロー図である。 オルタネータ制御方法のフロー図である。
符号の説明
1 車両
2 エンジン
3 オルタネータ
4 バッテリ
5 エンジンECΜ
6 オルタコントローラ(オルタネータ制御装置)
61 目標電圧設定部
62 目標発電トルク設定部
63 フィルタ処理部(フィルタ処理手段)
63a フィルタ処理禁止判断部
63b フィルタ設定部
64 目標電流値設定部
65 オルタネータ制御部
66 記憶部
7 変速機
8 差動装置
9 電気負荷
10F 前輪
10R 後輪
11 伝達部材
12 車速センサ
13 路面摩擦推定装置
14 舵角センサ

Claims (9)

  1. 車両に搭載されたオルタネータの制御の基準となる基準物理量に基づいて制御量を設定し、前記設定された制御量に基づいて前記オルタネータを制御するオルタネータ制御装置において、
    前記基準物理量、前記制御量あるいは当該基準物理量から当該制御量を設定するまでに用いられる変換物理量のいずれかであるフィルタ対象量をフィルタ処理するフィルタ処理手段を備え、
    前記フィルタ処理手段は、前記フィルタ対象量の波形のうち前記車両のピッチ共振周波数、ヨー共振周波数、ロール共振周波数の少なくともいずれかの周波数の成分を減衰あるいは除去するフィルタ処理を行うことを特徴とするオルタネータ制御装置。
  2. 前記フィルタ処理手段は、前記車両の車速、当該車両の走行する路面の摩擦状況、当該車両の舵角速度の少なくともいずれかに基づいて前記周波数のゲインを設定することを特徴とする請求項1に記載のオルタネータ制御装置。
  3. 前記車両には、オルタネータが発電することで、充電されるバッテリが搭載され、
    前記フィルタ処理手段は、前記バッテリの状態に基づいて前記フィルタ処理を禁止あるいは制限することを特徴とする請求項1または2に記載のオルタネータ制御装置。
  4. 前記バッテリのバッテリ電圧を検出するバッテリ電圧検出推定手段を備え、
    前記フィルタ処理手段は、前記検出されたバッテリ電圧が下限電圧値未満あるいは上限電圧値を超える場合に、前記フィルタ処理を禁止あるいは制限することを特徴とする請求項3に記載のオルタネータ制御装置。
  5. 前記車両に搭載された駆動系装置は、複数の制御モードに基づいて制御されるものであり、
    前記上限電圧値あるいは前記下限電圧値の少なくともいずれか一方は、前記制御モードに基づいて変更されることを特徴とする請求項4に記載のオルタネータ制御装置。
  6. 前記制御モードは、少なくとも車両に伝達される出力向上を要求するスポーツモードおよび燃費向上を要求するエコモードを有し、
    前記下限電圧値は、前記制御モードがスポーツモード時よりもエコモード時に高くなるように設定されることを特徴とする請求項5に記載のオルタネータ制御装置。
  7. 前記フィルタ処理手段は、前記車速の低下に伴い前記周波数のゲインを低く設定することを特徴とする請求項2〜6のいずれか1つに記載のオルタネータ制御装置。
  8. 前記フィルタ処理手段は、前記車速が下限車速以下である場合に前記フィルタ処理を禁止あるいは制限することを特徴とする請求項2〜6のいずれか1つに記載のオルタネータ制御装置。
  9. 前記下限車速は、前記車両が略停止状態の場合における車速であることを特徴とする請求項8に記載のオルタネータ制御装置。
JP2008021817A 2008-01-31 2008-01-31 オルタネータ制御装置 Expired - Fee Related JP4798144B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008021817A JP4798144B2 (ja) 2008-01-31 2008-01-31 オルタネータ制御装置
PCT/JP2009/051502 WO2009096489A1 (ja) 2008-01-31 2009-01-29 オルタネータ制御装置
US12/863,676 US8504240B2 (en) 2008-01-31 2009-01-29 Alternator controlling apparatus
CN2009801035185A CN101933221B (zh) 2008-01-31 2009-01-29 交流发电机控制装置
DE112009000249T DE112009000249T5 (de) 2008-01-31 2009-01-29 Alternatorsteuerungsgerät

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008021817A JP4798144B2 (ja) 2008-01-31 2008-01-31 オルタネータ制御装置

Publications (2)

Publication Number Publication Date
JP2009183116A JP2009183116A (ja) 2009-08-13
JP4798144B2 true JP4798144B2 (ja) 2011-10-19

Family

ID=40912834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008021817A Expired - Fee Related JP4798144B2 (ja) 2008-01-31 2008-01-31 オルタネータ制御装置

Country Status (5)

Country Link
US (1) US8504240B2 (ja)
JP (1) JP4798144B2 (ja)
CN (1) CN101933221B (ja)
DE (1) DE112009000249T5 (ja)
WO (1) WO2009096489A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5324623B2 (ja) * 2011-06-24 2013-10-23 本田技研工業株式会社 車両用駆動制御装置
US8612113B2 (en) * 2011-06-30 2013-12-17 Ford Global Technologies, Llc Method for controlling vehicle launch
KR101349404B1 (ko) 2011-11-28 2014-01-15 현대자동차주식회사 자동변속기의 변속레버용 시프트/틸트 록킹 장치 및 방법
KR20130063159A (ko) * 2011-12-06 2013-06-14 현대자동차주식회사 시프트 바이 와이어용 자동변속장치
GB2511829B (en) * 2013-03-14 2015-11-25 Jaguar Land Rover Ltd Vehicle speed control system
US20150015214A1 (en) * 2013-07-09 2015-01-15 Remy Technologies, L.L.C. Active vibration damping using alternator
EP3044638B1 (en) * 2013-09-11 2021-07-14 Volvo Construction Equipment AB Self adjusting generator speed control
US9896105B2 (en) * 2015-07-08 2018-02-20 Toyota Motor Engineering & Manufacturing North America, Inc. Systems and methods for controlling a vehicle's deceleration level by controlling the alternator output
DE102015011517B3 (de) * 2015-09-03 2016-09-08 Audi Ag Verfahren zum Bestimmen einer aktuellen Niveaulage eines Fahrzeugs
JP6848770B2 (ja) * 2017-08-31 2021-03-24 株式会社オートネットワーク技術研究所 車載用の電力制御システム
EP3831695B1 (en) * 2019-07-18 2022-07-27 NSK Ltd. Electric power steering control device
US11670952B2 (en) * 2019-10-18 2023-06-06 Fca Us Llc Voltage estimation for automotive battery charging system control

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5198698A (en) * 1991-02-11 1993-03-30 Best Power Technology, Inc. Auxiliary power supply system for providing dc power on demand
US5430647A (en) * 1992-12-07 1995-07-04 Ford Motor Company Method and apparatus for maintaining vehicular ride height
KR100193068B1 (ko) * 1996-09-06 1999-06-15 오상수 차량 교류발전기의 제어장치
JPH1122504A (ja) * 1997-07-03 1999-01-26 Nissan Motor Co Ltd 内燃機関のトルク変動低減装置
EP1050945B1 (en) * 1998-11-18 2009-11-04 Mitsubishi Denki Kabushiki Kaisha Controller of ac generator for vehicle
US6671607B2 (en) * 2000-05-16 2003-12-30 Nissan Motor Co., Ltd. Vehicle speed control system
JP3518509B2 (ja) * 2000-12-28 2004-04-12 トヨタ自動車株式会社 ロールオーバ判定装置
CA2528145A1 (en) * 2003-06-02 2004-12-16 Magnetic Applications Inc. Controller for permanent magnet alternator
JP2006094624A (ja) * 2004-09-24 2006-04-06 Hitachi Ltd 車両用発電機の発電制御装置
JP2006298293A (ja) * 2005-04-25 2006-11-02 Denso Corp 車両制御装置
JP4587121B2 (ja) 2005-05-31 2010-11-24 株式会社デンソー 補機付きのエンジンの制御装置
JP4067539B2 (ja) 2005-06-14 2008-03-26 トヨタ自動車株式会社 車両制御装置
US7564224B2 (en) * 2005-11-08 2009-07-21 Denso Corporation Power-generator control method and apparatus using externally applied periodic signal
JP4936851B2 (ja) * 2006-10-18 2012-05-23 日立オートモティブシステムズ株式会社 車両および車両制御装置
JP4835480B2 (ja) * 2007-03-19 2011-12-14 トヨタ自動車株式会社 車両の制振制御装置
EP2001070B1 (en) * 2007-05-28 2011-06-22 Honda Motor Co., Ltd. Electric power supply system

Also Published As

Publication number Publication date
DE112009000249T5 (de) 2011-03-31
JP2009183116A (ja) 2009-08-13
US20100289460A1 (en) 2010-11-18
US8504240B2 (en) 2013-08-06
CN101933221A (zh) 2010-12-29
CN101933221B (zh) 2013-03-27
WO2009096489A1 (ja) 2009-08-06

Similar Documents

Publication Publication Date Title
JP4798144B2 (ja) オルタネータ制御装置
KR102518238B1 (ko) 차량의 코스트 리젠 토크 적용 방법
US8417428B2 (en) Alternator controlling apparatus and alternator controlling method
JP3167935B2 (ja) ハイブリッド車両の制御装置
JP3286517B2 (ja) リーンバーンエンジンを搭載した車両の制御装置
US8335625B2 (en) Slip control device and method for a vehicle
JP2008006945A (ja) ハイブリッド車両の制御装置
JP2013177121A (ja) ハイブリッド駆動装置
JP4803324B2 (ja) 車両のモータトラクション制御装置
WO2022018814A1 (ja) 車載アクチュエータ制御方法、及び車載アクチュエータ制御装置
JP4483697B2 (ja) 発電制御システム
JP4710299B2 (ja) 車両のモータトラクション制御装置
US20140343815A1 (en) Vehicle control system
JP2009153281A (ja) 電動車両の制御装置
JP4895877B2 (ja) 電動車輌
JP2006136175A (ja) 車両のモータトラクション制御装置
JP4218487B2 (ja) 内燃機関制御装置およびプログラム
JP7172836B2 (ja) 制動力制御装置
JPH11125129A (ja) 車 輌
JP2006136174A (ja) 車両のモータトラクション制御装置
US9523337B2 (en) Idling stop control device
JP7251298B2 (ja) 制動力制御装置
JP7447720B2 (ja) エンジン制御方法、及びエンジン制御装置
JP7388304B2 (ja) 車両の走行制御装置
JP2007203884A (ja) 車両の定速走行制御システム

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees