JP4796722B2 - Piezoelectric oscillator substrate - Google Patents

Piezoelectric oscillator substrate Download PDF

Info

Publication number
JP4796722B2
JP4796722B2 JP2001299834A JP2001299834A JP4796722B2 JP 4796722 B2 JP4796722 B2 JP 4796722B2 JP 2001299834 A JP2001299834 A JP 2001299834A JP 2001299834 A JP2001299834 A JP 2001299834A JP 4796722 B2 JP4796722 B2 JP 4796722B2
Authority
JP
Japan
Prior art keywords
insulating layer
capacitor
conductive pattern
piezoelectric oscillator
pattern layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001299834A
Other languages
Japanese (ja)
Other versions
JP2003110362A (en
Inventor
光太郎 矢島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Crystal Device Corp
Original Assignee
Kyocera Crystal Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Crystal Device Corp filed Critical Kyocera Crystal Device Corp
Priority to JP2001299834A priority Critical patent/JP4796722B2/en
Publication of JP2003110362A publication Critical patent/JP2003110362A/en
Application granted granted Critical
Publication of JP4796722B2 publication Critical patent/JP4796722B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、絶縁基板の表裏主面上に電子回路パターンが設けられ発振回路を形成した圧電発振器用基板に関する。
【0002】
【従来技術】
従来、圧電振動子に直列に接続したバリキャップ・ダイオードの印加電圧を可変して、発振周波数を電圧制御する電圧制御圧電発振器が知られている。図4には電圧制御圧電発振器の回路図の一例を示す。
【0003】
トランジスタ401のベースに圧電振動子402の一端を接続している。そして圧電振動子402の他端をバリキャップ・ダイオード(電圧可変容量素子)403を介して接地している。そして、バリキャップ・ダイオード403と圧電振動子402との直列接続点に抵抗404を介して制御電圧Vcを印加し、制御電圧に応じて圧電振動子402の負荷容量を制御して発振周波数を可変するようにしている。そして、トランジスタ401のベースには抵抗405及び406を介して電源Vcc及び接地電位に接続している。また、トランジスタ401のコレクタは抵抗407を介して電源Vccに接続し、トランジスタ401のエミッタは抵抗408を介して接地している。そしてコンデンサ409及び410をトランジスタ401のベース−エミッタ間及びエミッタ−接地間に挿入し、エミッタからコンデンサ411を介して発振出力を取り出すようにしている。
【0004】
従来は、図5のように、図4に図示した発振回路を形成する回路パターン層502を絶縁基板501の表裏主面上に形成し、そのパターン上に、図4に図示した圧電振動子402に該当する圧電振動子503、図4に図示したコンデンサ409に該当するコンデンサ505及び図4に図示したコンデンサ410に該当するコンデンサ504等の回路素子類を実装して圧電発振器を形成していた。
【0005】
【発明が解決しようとする課題】
前記従来技術の場合、絶縁基板の表裏主面上に形成した回路パターンにより浮遊容量CFが発生する。図4には浮遊容量CFを発振回路上に明示した。この浮遊容量CFのため、図6のように電圧制御圧電発振器の回路設計時における理論上の発振周波数可変幅(図6に示したグラフ内実線の傾き)と、実際の発振周波数可変幅(図6に示したグラフ内点線の傾き)に差が生じ、且つ発振周波数可変幅が小さくなってしまう。また発振周波数の調整も正確に行えずに、圧電発振器の特性にも悪影響を及ぼしてしまう、という課題が生じている。
【0006】
【課題を解決するための手段】
この発明は前記従来技術の課題を鑑みて成されたものであり、表裏主面に形成した導体パターン層を含めて、3つの層の導体パターン層が互いに絶縁体で形成した層を挿んだ積層構造の圧電発振器用基板において、該圧電発振器用基板は、主に第1の絶縁層と第2の絶縁層とが積層したものであり、該第1の絶縁層の一方の主面上には、圧電発振器を構成する電子部品が搭載され、且つ該電子部品間を電気的に接続して電圧制御圧電発振回路をなす回路パターンを形成する第1の導電パターン層が形成されており、該第2の絶縁層における第1の絶縁層に対向する面には、該電圧制御発振回路におけるトランジスタのベースとアースとの間に直列に接続された2つコンデンサ素子に該当する該電子部品である第1のコンデンサと第2のコンデンサとの間を導通する該第1の導電パターン層と電気的に接続する第2の導電パターン層が形成されており、該第2の絶縁層における第1の絶縁層と対向する面とは反対の面上には、アース接続されている第3の導電パターン層が形成されていることを特徴とする圧電発振器用基板である。
【0007】
この構造の基板により、基板全体の浮遊容量CFを、第1の導電パターン層と第2の導電パターン層との間に生じる第1の浮遊容量CF1と、第2の導電パターン層と第3の導電パターン層との間に生じる第2の浮遊容量CF2に分けることができる。又、この第1の浮遊容量CF1は、電圧制御発振回路におけるトランジスタのベースとアースとの間に直列に接続された2つコンデンサ素子のうちの一方のコンデンサ素子に該当する第1のコンデンサと並列に接続した構成となっている。さらに、第2の浮遊容量CF2は、他方のコンデンサ素子に該当する第2のコンデンサと並列に接続した構成となっている。このとき、第1及び第2のコンデンサの容量値を微調整することで、電圧制御発振回路におけるトランジスタのベースとアースとの間に直列に接続された2つコンデンサ素子のそれぞれ容量値を、基板の浮遊容量を含めた容量値とでき、実装後も回路設計時における理論上の発振周波数可変幅を得られる作用を奏する。
【0008】
【発明の実施の形態】
以下に、この発明の実施形態について図面に基づいて説明する。図1はこの発明における圧電発振器用基板の一例である電圧制御圧電発振器用基板の斜視分解図である。図2は図1に示した切断線A1−A2で切断した際の切断分解図である。尚、図1及び図2において、説明を明りょうにするため一部搭載電子部品を図示せず、また各寸法も一部誇張して図示している。図3は図1に図示した電圧制御圧電発振器の回路図である。
【0009】
即ち、図1に示した電圧制御圧電発振器用基板101は、第1の絶縁層102及び第2の絶縁層103を主体として構成され、第1の絶縁層102の一方の主面上には、第1の導体パターン層104(パターンは図示せず)が銅箔等により形成されている。この第1の導電パターン層104の上に、圧電発振器を構成する圧電振動子110,第1のコンデンサ111及び第2のコンデンサ112等の電子部品が搭載されている。尚、第1のコンデンサ111は、図3に示した回路図では、コンデンサ309に該当し、第2のコンデンサ112はコンデンサ310に該当する。
【0010】
さらに、第1の絶縁層102は、第1の絶縁層102の他方の主面において、第2の絶縁層103と接合し積層構造を形成する。第2の絶縁層103の第1の絶縁層102と接合する面上には、第2の導電パターン層105が形成されている。第2の絶縁層103の接合面に相対する面上には第3の導電パターン層106が形成され、且つ第3の導電パターン層106はアースに接続されている。
【0011】
第1の導電パターン層104に形成した圧電発振回路パターンにおいて、第1のコンデンサ111と第2のコンデンサ112の直列接続点(図3の回路図では直列接続点311に該当する)には第1の絶縁層102を貫通してなるスルーホール113が形成され、第2の導電パターン層105と電気的に接続されている。
【0012】
前記構造を形成することにより、第1の導電パターン層104と第2の導電パターン層105との間に生じる浮遊容量312は、図3に示した回路図のように、コンデンサ309(図1では第1のコンデンサ111)と並列に接続した構成となる。また、第2の導電パターン層105と第2の導電パターン層106との間に生じる浮遊容量313は、図3に示した回路図のように、コンデンサ310(図1では第2のコンデンサ112)と並列に接続した構成となる。
【0013】
尚、浮遊容量312及び313のそれぞれの容量値Cは、第1乃至3の導電パターン層104,105及び106に形成した回路パターンによる浮遊容量要因となる部分の対向面積S、第1乃至3の導電パターン層間隔d、及び第1及び第2の絶縁層の誘電率εεから、それぞれ
C=εε×S/d
より算出できる。基板に使用する各々の絶縁層の誘電率や厚さなどにより、多少変化するが、浮遊容量の値は通常は数pFぐらいになる。
【0014】
そして、前記数式より算出された浮遊容量312の容量値とコンデンサ309(第1のコンデンサ111)の容量値との和が、理論上のコンデンサ309(第1のコンデンサ111)の容量値と同じとなるように、コンデンサ309(第1のコンデンサ111)の容量値を調整する。又、前記数式より算出された浮遊容量313の容量値とコンデンサ310(第2のコンデンサ112)の容量値との和が、理論上のコンデンサ310(第2のコンデンサ112)の容量値と同じとなるように、コンデンサ310(第2のコンデンサ112)の容量値を調整する。これにより、Vc制御による発振周波数可変幅の理論値と実際値との差がなくなり、浮遊容量が生じたことによる発振周波数可変幅の縮小をなくすことができる。
【0015】
尚、前記実施例では、第2の導電パターン層を第2の絶縁層の接合面上に形成したが、これは第1の絶縁層側の接合面上に形成してもよい。又、前記実施例では電圧制御圧電発振器を例示したが、本発明は他のコルピッツ発振器の基板にも使用できる。
【0016】
【発明の効果】
本発明の圧電発振器用基板によって、実装時に浮遊容量が発生しても、理論上の発振周波数可変幅を得ることができるという効果を奏する。
【図面の簡単な説明】
【図1】図1は、本発明の一実施形態例を示す圧電発振器用基板の斜視分解図である。
【図2】図2は、図1に示した圧電発振器用基板を、図1のA1−A2で切断した断面分解図である。
【図3】図3は、図1及び2に示した圧電発振器用基板上に構成する電圧制御圧電発振回路図である。
【図4】図4は、従来の圧電発振器用基板の斜視図である。
【図5】図5は、図4に示した圧電発振器用基板上に構成する従来の電圧制御圧電発振回路図である。
【図6】図6は、従来の圧電発振器用基板における制御電圧Vcと発振周波数fの相関グラフである。
【符号の説明】
101 圧電発振器用基板
102 第1の絶縁層
103 第2の絶縁層
104 第1の導電パターン層
105 第2の導電パターン層
106 第3の導電パターン層
113 スルーホール
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a piezoelectric oscillator substrate in which an electronic circuit pattern is provided on the front and back main surfaces of an insulating substrate to form an oscillation circuit.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a voltage-controlled piezoelectric oscillator that controls the oscillation frequency by changing the applied voltage of a varicap diode connected in series to a piezoelectric vibrator is known. FIG. 4 shows an example of a circuit diagram of a voltage controlled piezoelectric oscillator.
[0003]
One end of the piezoelectric vibrator 402 is connected to the base of the transistor 401. The other end of the piezoelectric vibrator 402 is grounded via a varicap diode (voltage variable capacitance element) 403. Then, a control voltage Vc is applied to a series connection point between the varicap diode 403 and the piezoelectric vibrator 402 via a resistor 404, and the oscillation frequency is varied by controlling the load capacitance of the piezoelectric vibrator 402 according to the control voltage. Like to do. The base of the transistor 401 is connected to the power supply Vcc and the ground potential via resistors 405 and 406. The collector of the transistor 401 is connected to the power supply Vcc via a resistor 407, and the emitter of the transistor 401 is grounded via a resistor 408. Capacitors 409 and 410 are inserted between the base and emitter of the transistor 401 and between the emitter and ground, and the oscillation output is extracted from the emitter via the capacitor 411.
[0004]
Conventionally, as shown in FIG. 5, a circuit pattern layer 502 for forming the oscillation circuit shown in FIG. 4 is formed on the front and back main surfaces of the insulating substrate 501, and the piezoelectric vibrator 402 shown in FIG. A piezoelectric oscillator is formed by mounting circuit elements such as the piezoelectric vibrator 503 corresponding to the above, the capacitor 505 corresponding to the capacitor 409 illustrated in FIG. 4, and the capacitor 504 corresponding to the capacitor 410 illustrated in FIG. 4.
[0005]
[Problems to be solved by the invention]
In the case of the prior art, the stray capacitance CF is generated by the circuit pattern formed on the main surface of the insulating substrate. FIG. 4 clearly shows the stray capacitance CF on the oscillation circuit. Due to this stray capacitance CF, as shown in FIG. 6, the theoretical oscillation frequency variable width (inclination of the solid line in the graph shown in FIG. 6) at the time of circuit design of the voltage controlled piezoelectric oscillator and the actual oscillation frequency variable width (FIG. 6), and the oscillation frequency variable width is reduced. In addition, there is a problem that the oscillation frequency cannot be adjusted accurately and the characteristics of the piezoelectric oscillator are adversely affected.
[0006]
[Means for Solving the Problems]
The present invention has been made in view of the above-described problems of the prior art, and the conductor pattern layers of the three layers including the conductor pattern layers formed on the front and back main surfaces are inserted with layers formed of insulators from each other. In the piezoelectric oscillator substrate having a laminated structure, the piezoelectric oscillator substrate is mainly formed by laminating a first insulating layer and a second insulating layer, and is formed on one main surface of the first insulating layer. Includes a first conductive pattern layer on which electronic components constituting the piezoelectric oscillator are mounted, and a circuit pattern that forms a voltage-controlled piezoelectric oscillation circuit by electrically connecting the electronic components is formed, The surface of the second insulating layer facing the first insulating layer is the electronic component corresponding to two capacitor elements connected in series between the base of the transistor and the ground in the voltage controlled oscillation circuit. First capacitor and second capacitor A second conductive pattern layer that is electrically connected to the first conductive pattern layer that is electrically connected to the sensor, and a surface of the second insulating layer that faces the first insulating layer is A piezoelectric oscillator substrate is characterized in that a third conductive pattern layer connected to the ground is formed on the opposite surface .
[0007]
With the substrate having this structure, the stray capacitance CF of the entire substrate is generated between the first conductive pattern layer and the second conductive pattern layer, the first stray capacitance CF1 , the second conductive pattern layer, and the third conductive pattern layer. divided into a second stray capacitance CF2 generated between the conductive pattern layer may Rukoto. The first stray capacitance CF1 is in parallel with the first capacitor corresponding to one of the two capacitor elements connected in series between the base of the transistor and the ground in the voltage controlled oscillation circuit. It is the structure connected to. Further, the second stray capacitance CF2 is connected in parallel with the second capacitor corresponding to the other capacitor element. At this time, by finely adjusting the capacitance values of the first and second capacitors, the capacitance values of the two capacitor elements connected in series between the base of the transistor and the ground in the voltage-controlled oscillation circuit can be obtained from the substrate. The capacitance value including the stray capacitance can be obtained, and the theoretical oscillation frequency variable width at the time of circuit design can be obtained even after mounting.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an exploded perspective view of a voltage controlled piezoelectric oscillator substrate which is an example of a piezoelectric oscillator substrate according to the present invention. FIG. 2 is an exploded view taken along the cutting line A1-A2 shown in FIG. In FIG. 1 and FIG. 2, some mounted electronic components are not shown for clarity of explanation, and some dimensions are exaggerated. FIG. 3 is a circuit diagram of the voltage controlled piezoelectric oscillator shown in FIG.
[0009]
That is, the voltage-controlled piezoelectric oscillator substrate 101 shown in FIG. 1 is mainly composed of the first insulating layer 102 and the second insulating layer 103, and on one main surface of the first insulating layer 102, A first conductor pattern layer 104 (pattern not shown) is formed of copper foil or the like. On the first conductive pattern layer 104, electronic components such as a piezoelectric vibrator 110, a first capacitor 111, and a second capacitor 112 constituting a piezoelectric oscillator are mounted. Note that the first capacitor 111 corresponds to the capacitor 309 and the second capacitor 112 corresponds to the capacitor 310 in the circuit diagram shown in FIG.
[0010]
Further, the first insulating layer 102 is bonded to the second insulating layer 103 on the other main surface of the first insulating layer 102 to form a stacked structure. A second conductive pattern layer 105 is formed on the surface of the second insulating layer 103 that is bonded to the first insulating layer 102. A third conductive pattern layer 106 is formed on a surface opposite to the bonding surface of the second insulating layer 103, and the third conductive pattern layer 106 is connected to the ground.
[0011]
In the piezoelectric oscillation circuit pattern formed on the first conductive pattern layer 104, the first connection point (corresponding to the series connection point 311 in the circuit diagram of FIG. 3) of the first capacitor 111 and the second capacitor 112 is the first. A through hole 113 penetrating through the insulating layer 102 is formed, and is electrically connected to the second conductive pattern layer 105.
[0012]
By forming the structure, the stray capacitance 312 generated between the first conductive pattern layer 104 and the second conductive pattern layer 105 is a capacitor 309 (in FIG. 1) as shown in the circuit diagram of FIG. The first capacitor 111) is connected in parallel. Further, the stray capacitance 313 generated between the second conductive pattern layer 105 and the second conductive pattern layer 106 is a capacitor 310 (second capacitor 112 in FIG. 1) as shown in the circuit diagram of FIG. And connected in parallel.
[0013]
The capacitance value C of each of the stray capacitances 312 and 313 is the opposing area S of the portion that causes stray capacitance due to the circuit patterns formed in the first to third conductive pattern layers 104, 105, and 106, and the first to third values. From the conductive pattern layer interval d and the dielectric constants ε 1 ε 0 of the first and second insulating layers, C = ε 1 ε 0 × S / d, respectively.
Can be calculated. Although it varies somewhat depending on the dielectric constant and thickness of each insulating layer used for the substrate, the value of the stray capacitance is usually about several pF.
[0014]
The sum of the capacitance value of the stray capacitance 312 and the capacitance value of the capacitor 309 (first capacitor 111) calculated from the above formula is the same as the theoretical capacitance value of the capacitor 309 (first capacitor 111). Thus, the capacitance value of the capacitor 309 (first capacitor 111) is adjusted. Further, the sum of the capacitance value of the stray capacitance 313 and the capacitance value of the capacitor 310 (second capacitor 112) calculated from the above equation is the same as the theoretical capacitance value of the capacitor 310 (second capacitor 112). Thus, the capacitance value of the capacitor 310 (second capacitor 112) is adjusted. As a result, the difference between the theoretical value and the actual value of the oscillation frequency variable width by the Vc control is eliminated, and the reduction of the oscillation frequency variable width due to the stray capacitance can be eliminated.
[0015]
In the above embodiment, the second conductive pattern layer is formed on the bonding surface of the second insulating layer. However, it may be formed on the bonding surface on the first insulating layer side. In the above embodiment, the voltage controlled piezoelectric oscillator is exemplified, but the present invention can also be used for other Colpitts oscillator substrates.
[0016]
【The invention's effect】
With the piezoelectric oscillator substrate of the present invention, the theoretical oscillation frequency variable width can be obtained even when stray capacitance is generated during mounting.
[Brief description of the drawings]
FIG. 1 is a perspective exploded view of a piezoelectric oscillator substrate according to an embodiment of the present invention.
FIG. 2 is an exploded cross-sectional view of the piezoelectric oscillator substrate shown in FIG. 1 cut along A1-A2 in FIG.
FIG. 3 is a voltage-controlled piezoelectric oscillation circuit configured on the piezoelectric oscillator substrate shown in FIGS. 1 and 2;
FIG. 4 is a perspective view of a conventional piezoelectric oscillator substrate.
FIG. 5 is a conventional voltage-controlled piezoelectric oscillation circuit configured on the piezoelectric oscillator substrate shown in FIG. 4;
FIG. 6 is a correlation graph between a control voltage Vc and an oscillation frequency f in a conventional piezoelectric oscillator substrate.
[Explanation of symbols]
101 substrate 102 for piezoelectric oscillator first insulating layer 103 second insulating layer 104 first conductive pattern layer 105 second conductive pattern layer 106 third conductive pattern layer 113 through hole

Claims (1)

表裏主面に形成した導体パターン層を含めて、3つの層の導体パターン層が互いに絶縁体で形成した層を挿んだ積層構造の圧電発振器用基板において、
該圧電発振器用基板は、主に第1の絶縁層と第2の絶縁層とが積層したものであり、
該第1の絶縁層の一方の主面上には、圧電発振器を構成する電子部品が搭載され、且つ該電子部品間を電気的に接続して電圧制御圧電発振回路をなす回路パターンを形成する第1の導電パターン層が形成されており
該第2の絶縁層における第1の絶縁層に対向する面には、該電圧制御発振回路におけるトランジスタのベースとアースとの間に直列に接続された2つコンデンサ素子に該当する該電子部品である第1のコンデンサと第2のコンデンサとの間を導通する該第1の導電パターン層と電気的に接続する第2の導電パターン層が、該第1の導電パターン層と相対するように形成されており
該第2の絶縁層における第1の絶縁層と対向する面とは反対の面上には、アース接続されている第3の導電パターン層が、該第2の導電パターン層と相対するように形成されている
ことを特徴とする圧電発振器用基板。
In the piezoelectric oscillator substrate having a laminated structure in which the conductor pattern layers of the three layers including the conductor pattern layers formed on the front and back main surfaces are inserted with layers formed of insulators,
The piezoelectric oscillator substrate is mainly formed by laminating a first insulating layer and a second insulating layer,
On one main surface of the first insulating layer, electronic components constituting a piezoelectric oscillator are mounted, and a circuit pattern that forms a voltage-controlled piezoelectric oscillation circuit is formed by electrically connecting the electronic components. A first conductive pattern layer is formed ;
On the surface of the second insulating layer facing the first insulating layer, the electronic component corresponding to two capacitor elements connected in series between the base of the transistor and the ground in the voltage controlled oscillation circuit as the second conductive pattern layer to connect certain first capacitor and the second electrically to the first conductive pattern layer to conduct between the capacitor and the relative and the first conductive pattern layer Formed ,
On the surface of the second insulating layer opposite to the surface facing the first insulating layer, the third conductive pattern layer connected to the ground is opposed to the second conductive pattern layer. A piezoelectric oscillator substrate, characterized in that it is formed .
JP2001299834A 2001-09-28 2001-09-28 Piezoelectric oscillator substrate Expired - Fee Related JP4796722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001299834A JP4796722B2 (en) 2001-09-28 2001-09-28 Piezoelectric oscillator substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001299834A JP4796722B2 (en) 2001-09-28 2001-09-28 Piezoelectric oscillator substrate

Publications (2)

Publication Number Publication Date
JP2003110362A JP2003110362A (en) 2003-04-11
JP4796722B2 true JP4796722B2 (en) 2011-10-19

Family

ID=19120514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001299834A Expired - Fee Related JP4796722B2 (en) 2001-09-28 2001-09-28 Piezoelectric oscillator substrate

Country Status (1)

Country Link
JP (1) JP4796722B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6738588B2 (en) 2014-09-02 2020-08-12 セイコーエプソン株式会社 Oscillators, electronics, and mobiles

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955625A (en) * 1995-08-11 1997-02-25 Toyo Commun Equip Co Ltd Oscillator
JP3500833B2 (en) * 1996-01-31 2004-02-23 ミツミ電機株式会社 Ceramic package structure for oscillator module
JP3479467B2 (en) * 1999-03-16 2003-12-15 日本電波工業株式会社 Crystal oscillator
JP3313671B2 (en) * 1999-08-12 2002-08-12 日本電気株式会社 Digitally controlled oscillator
JP2001144539A (en) * 1999-11-18 2001-05-25 Citizen Watch Co Ltd Voltage controlled piezoelectric oscillator

Also Published As

Publication number Publication date
JP2003110362A (en) 2003-04-11

Similar Documents

Publication Publication Date Title
EP0843374A3 (en) Voltage-controlled variable-passband filter and high-frequency circuit module incorporating same
JPH1051234A (en) Voltage control oscillator and its control method
KR100293420B1 (en) Laminated type electronic component
EP0907244A2 (en) Piezoelectric resonator and electronic component using the same resonator
JP4796722B2 (en) Piezoelectric oscillator substrate
EP0437976B1 (en) Voltage-controlled oscillator mounted on laminated printed circuit board
JP3402369B2 (en) Oscillator module
US6028390A (en) Piezoelectric resonator and electronic component including same
US20020084724A1 (en) Electronic component
JP3402258B2 (en) Delay line
JP4720487B2 (en) Microwave oscillator
KR100397741B1 (en) Resonator
JPH07307575A (en) Multilayered circuit board
JP4678127B2 (en) High frequency oscillator
JPH0555721A (en) Trimmer capacitor
JPH06310369A (en) Trimming capacitor
JP3678968B2 (en) Circuit board
JPH11214925A (en) Frequency adjusting method for voltage-controlled oscillator
JP2001244739A (en) Voltage-controlled oscillator and its frequency adjustment method
JPH0936603A (en) Antenna switch
JPH1051236A (en) High-frequency circuit such as vco using multi-layer board
JP2001189237A (en) Capacitor element
JPH11186693A (en) High-frequency circuit board
JPH05110319A (en) Tri-plate type strip line resonator
JP5027287B2 (en) Voltage controlled oscillator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110801

R150 Certificate of patent or registration of utility model

Ref document number: 4796722

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees