JP4793361B2 - 時刻修正装置、時刻修正装置付き計時装置及び時刻修正方法 - Google Patents

時刻修正装置、時刻修正装置付き計時装置及び時刻修正方法 Download PDF

Info

Publication number
JP4793361B2
JP4793361B2 JP2007251747A JP2007251747A JP4793361B2 JP 4793361 B2 JP4793361 B2 JP 4793361B2 JP 2007251747 A JP2007251747 A JP 2007251747A JP 2007251747 A JP2007251747 A JP 2007251747A JP 4793361 B2 JP4793361 B2 JP 4793361B2
Authority
JP
Japan
Prior art keywords
time
information
correction
base station
seasonal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007251747A
Other languages
English (en)
Other versions
JP2009085606A (ja
Inventor
治 浦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2007251747A priority Critical patent/JP4793361B2/ja
Publication of JP2009085606A publication Critical patent/JP2009085606A/ja
Application granted granted Critical
Publication of JP4793361B2 publication Critical patent/JP4793361B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えばCDMA(Code Division Multiple Access、符号分割多重接続)方式の携帯電話通信網で基地局から発信される信号に含まれる時刻情報に基づいて時刻修正を行う時刻修正装置、時刻修正装置付き計時装置及び時刻修正方法に関するものである。
現在、CDMA方式の携帯電話通信網で基地局から携帯電話機に対して発信される信号には、時刻情報が含まれ、この時刻情報は、GPS(Global Positioning System)衛星の原子時計に基づくGPS時刻に合致した極めて精度の高い時刻情報となっている。
したがって、このCDMA方式の携帯電話通信網で基地局から送信されるGPS時刻データを端末が取得し、このGPS時刻データを用いて内蔵時計の時刻データを補正しようとする提案がなされている(例えば、特許文献1)。
一方、利用者が、生活習慣などで、わざと時刻を進めたオフセット時間を設定したい場合などに、設定したオフセット時間をそのまま確保しつつ時刻修正を行う手段も提案されている(例えば、特許文献2)。
特開2000−321383号公報(要約等) 特開平11−234758号公報(段落0003、0004等)
ところで、地域によっては、季節時間、いわゆるサマータイムを採用している場合もある。そして、このサマータイムを採用しているか否かの情報は、基地局から送信されるデータに含まれている。従がって、この情報を利用して、その地域におけるサマータイムに合わせることも可能となっている。
しかし、このサマータイムの情報は、誤って挿入されることもある。そして、このサマータイムの挿入の時期等については、基地局ごとに異なるものであるが、その詳細は明確となっていない。
そのため、基地局から送信されてくるデータをそのまま使用してしまうと、誤ったサマータイムのデータであっても、そのまま採用して、時刻修正に利用してしまうという問題があった。
また、このようなCDMA方式の携帯電話通信網で基地局から送信される時刻データは、送信時の時刻データではなく、送信時から一定の時間、例えば320ms(ミリ秒)後のデータとなっている。これは、時刻データを受信した携帯電話機がそのデータを処理した後、時刻同期を行うことを考慮したものである。
すなわち、基地局から時刻データを取得した携帯電話機は、その内部で基地局からの信号と同期を取るための準備をし、その準備が終了した後、当該時刻データに基づき、当該基地局の信号と時刻同期を行う構成となっている。
そのため、基地局から送信されてくる時刻データをオフセットのない時刻データとしてしまうと、内部処理をして時刻同期をするには間に合わず、同期が取れず、その結果通信できないという問題がある。
そこで、CDMA方式の携帯電話通信網で基地局から送信される時刻データは、一定時間(320ms)後の時刻データとなっており、携帯電話機は、このような未来時刻を受信する構成となっている。
そして、このような未来時刻を受信して、時刻修正を行おうとすると、時刻自体が受信時の時刻でないため、その未来時刻になるまで待って、時刻修正を行わなければならず、これは、受信機側が、その未来時刻になるまで基地局と通信を行い続けることを意味し、消費電力が大となるという問題があった。そのため、このように消費電力が大きい受信機は、時計等のような超低電力が要求される機器には搭載できないという問題があり、現実には、時計等で高精度な時刻修正を行うことはできないという問題もあった。
そこで、本発明は、CDMA方式等の携帯電話通信網の基地局を利用して、仮に基地局から発信される信号に誤った季節時間の情報が挿入されていた場合であっても、基地局の設置されている地域における季節時間の実施期間を判断して、時刻修正に反映する高精度な時刻修正が可能であり、かつ、超低電力が要求されるときでも、消費電力が大きくならない時刻修正装置、時刻修正装置付き計時装置及び時刻修正方法を提供することを目的とする。
本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態又は適用例として実現することが可能である。
[適用例1]
基地局が発信する一定時間経過後の未来時刻情報を含む特定信号を受信する受信部と、受信側時刻情報を管理する時刻情報管理部と、前記特定信号に含まれる基地局識別情報と季節時間修正情報を取得する特定情報取得部と、前記受信側時刻情報を修正時刻情報に基づいて修正する受信側時刻修正部と、前記基地局識別情報に基づいて前記季節時間修正情報の有効性を判断する季節時間情報判断部と、を有し、前記修正時刻情報は、前記受信部の受信した前記特定信号の前記未来時刻情報に基づいて生成される情報となっており、前記受信側時刻情報を前記受信側時刻修正部が修正した後に、前記季節時間修正情報判断部が前記季節時間修正情報を有効と判断した場合には、更に、前記季節時間修正情報を反映して、修正することを特徴とする時刻修正装置。
前記構成によれば、受信側時刻情報は、時刻情報管理部により、管理されている。そして、特定情報取得部は、基地局から発信されている特定信号に含まれる基地局識別情報と季節時間情報を取得する。また、受信側時刻修正部は、受信側時刻情報を修正時刻情報に基づいて修正する。この修正時刻情報は前記受信部の受信した前記特定信号の前記未来時刻情報に基づいて生成される情報となっている。そして、季節時間情報判断部は、基地局識別情報に基づいて季節時間修正情報の有効性を判断し、有効と判断した場合には、その季節時間修正情報を反映して、受信側時刻情報は更に修正される。
このため、受信側時刻情報は、基地局から発信される信号の未来時刻情報に基づいて生成される修正時刻情報により修正された後、更に、季節時間修正情報により修正される。しかも、この季節時間修正情報は、基地局識別情報に基づいて季節時間情報判断部により、その有効性が判断される。そして、この季節時間修正情報が有効な場合に、更に、受信側時刻情報がこの季節時間修正情報に基づいて修正される。
従がって、仮に、季節時間修正情報が誤って挿入されている場合でも、季節時間情報判断部により判断して、有効な場合に季節時間修正情報で修正するので、高精度な時刻修正が可能となる。
また、受信側時刻情報は、未来時刻情報に基づいて生成される修正時刻情報により修正される。このため、例えば、未来時刻情報が受信時から320ms(ミリ秒)後であっても、この未来時刻情報を含む修正時刻情報により修正され、受信側は、未来時刻になるまで通信しながら待つ必要がなく、時刻修正を行うことができるので、低消費電力が実現できる。
[適用例2]
好ましくは、前記基地局識別情報に基づいて識別される地域情報と、前記地域情報に対応する前記季節時間修正情報の有効期間情報とが記憶されており、前記季節時間情報判断部は、前記基地局識別情報に対応する前記地域情報を抽出して、その抽出した前記地域情報に対応する前記季節時間情報の前記有効期間情報から、前記特定信号に含まれる前記季節時間修正情報の有効性を判断するようになっていることを特徴とする時刻修正装置。
前記構成によれば、基地局識別情報に基づいて地域情報が識別される。そして、その地域情報に対応するように季節時間修正情報の有効期間情報が記憶されている。そのため、その基地局識別情報に基づいて、その基地局の設置されている地域での季節時間修正情報の有効期間が分かる。従がって、基地局識別情報に対応する地域情報を抽出して、その抽出した地域情報に対応した有効期間情報から季節時間情報の有効性が判断できる。
[適用例3]
好ましくは、前記季節時間修正情報は、前記基地局の設置地域における季節時間の採用の有無を表示する情報となっており、前記季節時間情報判断部が前記季節時間修正情報を有効と判断した場合には、前記季節時間修正情報の前記季節時間の採用の有無を反映して前記受信側時刻情報を修正する構成となっていることを特徴とする時刻修正装置。
前記構成によれば、季節時間修正情報は、基地局の設置地域における季節時間の採用の有無を表示する情報となっている。そして、季節時間情報判断部が、季節時間修正情報を有効と判断すると、その季節時間の採用の有無を反映して、受信側時刻情報が修正される。
このため、季節時間、例えば、サマータイムの採用している地域の基地局からの情報により、受信側時刻情報を修正する場合には、その基地局の設置されている地域で、サマータイムの実施期間(つまり、有効期間)であるかの判断を行い、有効期間である場合には、その情報を反映できる。
[適用例4]
好ましくは、前記修正時刻情報は、前記未来時刻情報と前記未来時刻情報を変更する時刻変更情報に基づいて生成されていることを特徴とする時刻修正装置。
前記構成によれば、修正時刻情報は、未来時刻情報と未来時刻情報を変更する時刻変更情報に基づいて生成されている。このため、例えば、未来時刻情報が、受信時から320ms(ミリ秒)後という、極めて近い未来時刻であった場合にも、この未来時刻情報に、時刻変更情報として、例えば、1.68s(秒)を加算することにより、修正時刻情報は、全体として受信時から2s(秒)後となる。そして、時刻修正装置としては、時刻を修正するまで、2s(秒)という時間を確保することができる。
そのため、時刻修正装置の制御装置(CPU等)の処理能力が低く、未来時刻情報の取得に時間を要する場合であっても、その時間に合わせて任意の処理時間を設定することが容易となる。
[適用例5]
好ましくは、前記受信部は、前記基地局から発信された前記特定信号と同期を取る信号同期部と、前記信号同期部で同期を取った前記特定信号から前記未来時刻情報を取得する時刻情報取得部と、を有すると共に、前記信号同期部が前記基地局からの前記特定信号を受信してから前記未来時刻情報を取得処理するまでの時間である受信処理遅延時間情報を格納する受信処理遅延時間情報格納部と、前記基地局を識別するための基地局識別時差情報を格納する基地局識別時差情報格納部と、前記受信側時刻情報修正部により前記受信側時刻情報を修正する修正タイミング情報を生成する修正タイミング情報生成部と、を有し、修正タイミング情報の開始タイミングは、前記特定信号のメッセージ情報の受信終了時である時刻修正装置。
前記構成によれば、受信部は、基地局から発信された特定信号と同期を取る信号同期部と、信号同期部で同期を取った特定信号から未来時刻情報を取得する時刻情報取得部と、を有すると共に、信号同期部が基地局からの特定信号を受信してから前記未来時刻情報を取得処理するまでの時間である受信処理遅延時間情報を格納する受信処理遅延時間情報格納部と、基地局を識別するための基地局識別時差情報を格納する基地局識別時差情報格納部と、を有している。そして、修正タイミング情報の開始タイミングは、特定信号のメッセージ情報の受信終了時である。修正タイミング情報は、前記受信処理遅延時間情報及び前記基地局識別時差情報に基づいて生成される。
この修正タイミング情報は、特定信号のメッセージ情報の受信終了時のタイミングでカウントが開始され、例えば2s(秒)後のタイミングで、修正時刻情報に時刻情報を修正すると、以下のような誤差が生じる。
基地局からの信号は、基地局を識別するための基地局識別時差情報、例えば0.052ms(ミリ秒)×Nという時差が生じている。また、時刻修正装置は実際に信号を受信して、同期し、メッセージ情報である、例えば、シンクチャネルメッセージを受信処理するまでに時間がかかる。これは受信処理遅延時間であり、例えば、53ms(ミリ秒)がかかる。
一方、修正タイミング情報は、例えばタイマーのカウント情報であり、それは、メッセージ情報の受信終了時からカウントされる情報である。
つまり、実際に修正タイミング情報生成部が修正タイミング情報を、例えばタイマーで生成を開始するまでの間に、基地局識別時差情報と受信処理遅延時間を足した時間が既に経過していることになり、この足した時間分だけ基地局の例えばGPS時刻と相違していることになる。これでは、正確な時刻修正ができない。
そこで、前記構成では、修正タイミング情報から、上述の受信処理遅延時間情報(53ms等)及び基地局識別時差情報(0.052ms(ミリ秒)×N)を減じることで、GPS時刻に極めて近い時刻に修正することができる構成としている。
[適用例6]
好ましくは、前記時刻情報取得部は、時刻情報抽出信号を介して前記特定信号から前記未来時刻情報を抽出する構成と共に、この時刻情報抽出信号を生成する時刻情報抽出信号生成部を備える構成となっており、前記時刻情報抽出信号生成部は、前記特定信号の基本周波数を分周し、前記時刻情報抽出信号を生成する分周カウンタ部を有する構成となっていることを特徴とする時刻修正装置。
前記構成によれば、時刻情報取得部は、時刻情報抽出信号を介して特定信号から未来時刻情報を抽出して、この時刻情報抽出信号を生成する時刻情報抽出信号生成部を備えるようになっている。そして、時刻情報抽出信号生成部は、特定信号の基本周波数を分周し、時刻情報抽出信号を生成する分周カウンタ部を有するようになっている 。これは、例えば、特定信号の基本周波数、1.2288MHzを、生成しようとする時刻情報抽出信号(例えば、walshコード(32))の長さ分(例えば、64chips)だけ分周カウンタ部で分周(64分周)することで、walshコード(32)の信号(信号「0」が32個連続し、その後、信号「1」が32個連続する)を生成できるようになっている。
このように、walshコード(32)等の時刻情報抽出信号を、極めて簡単な回路構成等で生成することができ、また、回路規模等を、従来より小さくすることができるので、消費電力を小さくすることができる。
[適用例7]
基地局が発信する一定時間経過後の未来時刻情報を含む特定信号を受信する受信部と、受信側時刻情報を管理する時刻情報管理部と、前記特定信号に含まれる基地局識別情報と季節時間修正情報を取得する特定情報取得部と、前記受信側時刻情報を修正時刻情報に基づいて修正する受信側時刻修正部と、前記基地局識別情報に基づいて前記季節時間修正情報の有効性を判断する季節時間情報判断部と、を有し、前記修正時刻情報は、前記受信部の受信した前記特定信号の前記未来時刻情報に基づいて生成される情報となっており、前記受信側時刻情報を前記受信側時刻修正部が修正した後に、前記季節時間修正情報判断部が前記季節時間修正情報を有効と判断した場合には、更に、前記季節時間修正情報を反映して、修正することを特徴とする時刻修正装置付き計時装置。
[適用例8]
基地局が発信する一定時間経過後の未来時刻情報を含む特定信号を受信する受信部と、受信側時刻情報を管理する時刻情報管理部と、前記特定信号に含まれる基地局識別情報と季節時間修正情報を取得する特定情報取得部と、前記受信側時刻情報を修正時刻情報に基づいて修正する受信側時刻修正部と、前記基地局識別情報に基づいて前記季節時間修正情報の有効性を判断する季節時間情報判断部と、を有し、前記修正時刻情報は、前記受信部の受信した前記特定信号の前記未来時刻情報に基づいて生成される情報となっており、前記受信側時刻情報を前記受信側時刻修正部が修正した後に、前記季節時間修正情報判断部が前記季節時間修正情報を有効と判断した場合には、更に、前記季節時間修正情報を反映して、修正することを特徴とする時刻修正方法。
以下、この発明の好適な実施の形態を添付図面等を参照しながら、詳細に説明する。
尚、以下に述べる実施の形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの態様に限られるものではない。
図1は、本発明に係る時刻修正装置付き計時装置である例えば、時刻修正装置付き腕時計10(以下「腕時計」という)を示す概略図であり、図2は、図1の腕時計10の内部の主なハードウエア構成等を示す概略図である。
図1に示すように、腕時計10は、その表面に文字板12、長針、短針等の針13等が配置されると共に、各種メッセージが表示されるLED等からなるディスプレイ14が形成されている。なお、ディスプレイ14は、LEDの他、LCD、アナログ表示等でも構わない。
図1に示すように、腕時計10は、アンテナ11を有しており、このアンテナ11は、基地局である例えば、CDMA基地局15a、15b等からの信号を受信する構成となっている。つまり、CDMA基地局15a等は、CDMA方式の携帯電話通信網の基地局となっている。
しかし、本実施の形態の腕時計10は携帯電話機能を有していないためCDMA基地局15a等と電話通信をするものではなく、CDMA基地局15a等から送信される信号から時刻情報等を受信し、その信号に基づいて時刻修正をしようとするものである。CDMA基地局15a等から送信される信号の内容については後述する。
また、図1に示すように、腕時計10には、その利用者が操作可能なりゅうず28が形成されている。このりゅうず28は、腕時計10の利用者が操作可能な外部入力部となっている。
先ず、図1の腕時計10のハードウエア構成等について説明する。図2に示すように、腕時計10はIF(interface(インターフェイス))、I/O(input/output(入出力))、電源ライン20を備え、IF、I/O、電源ライン20には、CPU(Central Processing Unit)21、RAM(Random Access Memory)22、ROM(Read Only Memory)23等が接続されている。
また、IF、I/O、電源ライン20には、CDMA基地局15a等からの信号を受信する受信部である例えば、CDMA基地局電波受信機24が接続されている。このCDMA基地局電波受信機24は、図1のアンテナ11を有している。
また、IF、I/O、電源ライン20には、時計機構であるIC(半導体集積回路)等からなるリアルタイムクロック(RTC)25や温度補償回路付き水晶発振回路(TCXO)26等も接続されている。
このように、図2のRTC25等は、受信側時刻情報を管理する時刻情報管理部の一例となっている。
また、IF、I/O、電源ライン20には、電池27、ディスプレイ14及びタイマー29等も接続されている。タイマー29の機能等については後述する。
このように、IF、I/O、電源ライン20は、すべてのデバイスを接続する機能を有し、アドレスやデータバス、電源ライン、各種I/Oを有する内部配線である。CPU21は、所定のプログラムの処理を行う他、IF、I/O、電源ライン20に接続されたROM23等を制御している。ROM23は、各種プログラムや各種情報等を格納している。
図3は、図2のCDMA基地局電波受信機24の主な構成を示す概略図である。
各構成について説明する前に、その前提となるCDMA方式で使用される「スペクトラム拡散」について説明する。
通常、信号を電波に乗せるために加工する作業を「変調」と呼んでいる。例えば、データ等は、デジタル信号に変換され、その後「変調」が実施される。通常の「変調」は、ある特定の周波数帯域を使い、信号を基準となる搬送周波数に乗せることになる。これでは、通信が特定周波数帯に限られてしまい、周波数帯の有効利用が困難となっていた。
そこで、広い周波数帯を利用する方法として採用されたのがCDMA方式である。CDMA方式では、上述の「変調」の後、さらに「拡散変調」を行う。
「拡散変調」には「PNコード」(+1と−1又は0と1がランダムに並ぶコード)とよばれる拡散符号が用いられる。
そして、拡散変調では、この拡散符号を信号と掛け合わせ、高周波のデジタル信号とする。この結果、信号が広帯域に拡散され、出力も小さくなる。
このように拡散された信号(高周波デジタル信号)を、受信機側が受信し、受信した信号に、もう一度、上述した「PNコード」と同じ拡散符号を掛け合わせ(逆拡散)、復調等をすることで、発信元の信号とすることができ、データ等を取得することができる構成となっている。
かかる前提で、図3を説明する。図3に示すように、アンテナ11には、高周波受信部16が接続されている。この高周波受信部16で、アンテナ11で受信されたCDMA基地局15a等の電波をダウンコンバートする構成となっている。
また、この高周波受信部16には、ベースバンド部17が接続されている。このベースバンド部17内には、パイロットPN同期部17aが設けられている。このパイロットPN同期部17aでは、後述するように、高周波受信部16でダウンコンバートされたパイロットチャネルの信号に、パイロットPNコードをミキシングして信号の同期をとる構成となっている。このように、パイロットPN同期部17aは、信号同期部の一例となっている。このパイロットPNコードは、上述の「PNコード」のうち、同期用のコードを指す。
パイロットPN同期部17aには、図3に示すように、スタートタイミング発生装置17bが接続されている。
すなわち、パイロットPN同期部17aは、上述の信号の同期をとると、そのタイミングをスタートタイミング発生装置17bに入力し、この入力を受けて、スタートタイミング発生装置17bが、スタートタイミングを発生する構成となっている。
スタートタイミング発生装置17bは、図3に示すように、64分周カウンタ17cと接続されている。このため、スタートタイミング発生装置17bで生成されたスタートタイミングは、64分周カウンタ17cに入力され、分周が開始される構成となっている。
64分周カウンタ17cでは、後述するように、パイロットPNのチップレートである周波数(1.2288MHz)を64分周することで、walshコード(32)を生成する。このように生成されたwalshコード(32)は、アンテナ11が受信したシンクチャネルの信号にミキシングされ、時刻情報が取り出される。これらの信号の処理については、後述する。
スタートタイミング発生装置17bは、64分周カウンタ17cが、基本周波数である例えば、パイロットPNチップレート(1.2288MHz)の分周を開始する開始タイミングを供給する構成となっている。
また、64分周カウンタ17cは、パイロットPN信号の基本単位である、1.2288MHzという周波数を分周し、時刻情報抽出信号である例えば、walshコード(32)を生成する構成となっている。
また、ベースバンド部17は、図3に示すように、デジタルフィルタ17d及びデインターリーブ及び復号化部17eを備えている。つまり、アンテナ11で受信した電波は、上述のように、walshコード(32)がミキシングされた後、デジタルフィルタ17dを通してデインターリーブ及び復号化部17e等を経て、復調され、後述するシンクチャネルメッセージとして取得される構成となっている。
すなわち、デインターリーブ及び復号化部17eを経て、初めて送信された信号を復調等することができ、CDMA基地局15a等が発信した元のデータを取得することができる。
図4乃至図7は、腕時計10の主なソフトウエア構成等を示す概略図であり、図4は全体図である。
図4に示すように、腕時計10は、制御部18を有し、制御部18は、図4に示す各種プログラム格納部30内の各種プログラム、第1の各種データ格納部40内の各種データ及び第2の各種データ格納部50内の各種データを処理する構成となっている。
また、図4には、各種プログラム格納部30、第1の各種データ格納部40及び第2の各種データ格納部50と分けて示してあるが、実際に、このようにデータが分けて格納されているわけではなく、説明上の便宜のために分けて記載したものである。
なお、図4の第1の各種データ格納部40には、主に予め格納されているデータをまとめて示した。また、第2の各種データ格納部50には、第1の各種データ格納部40内のデータ等を各種プログラム格納部30内のプログラムで処理した後のデータ等を主に示した。
図5は、図4の各種プログラム格納部30内のデータを示す概略図であり、図6は、図4の第1の各種データ格納部40内のデータを示す概略図である。また、図7は、図4の第2の各種データ格納部50内のデータを示す概略図である。
図8及び図10は、本実施の形態にかかる腕時計10の主な動作等を示す概略フローチャートである。
以下、図8及び図10のフローチャートにしたがって本実施の形態に係る腕時計10の動作等を説明しつつ、その関連で図5乃至図7の各種プログラムや各種データ等を説明する。
フローチャートの説明に入る前にCDMA方式の携帯電話システムのうち、本実施の形態と関連ある部分を説明する。
CDMA方式の携帯電話システムは米国クアルコム社が開発した方式が1993年に米国の標準方式の一つ「IS95」に採用されたことから本格的な運用が開始されており、これ以降、IS95A、IS95B、CDMA2000という改訂を経て現在に至っている。また、日本国ではARIB STD−T64に準じて携帯電話システムが運用されている。
このようなCDMA方式は下り(CDMA基地局15a等から移動局、本実施の形態では腕時計10)は同期通信であるため、腕時計10がCDMA基地局15a等の信号と同期する必要がある。CDMA基地局15a等から送信される信号は、具体的には、パイロットチャネル信号と、シンクチャネル信号を有している。パイロットチャネル信号は、CDMA基地局15a等ごとに、異なったタイミングで発信されている信号であり、例えば、パイロットPN信号である。
図11は、CDMA基地局15a、15bから送信される信号の同期タイミング等を示す概略図である。
これらのCDMA基地局15a、15bから送信される信号は、同じであるため、この信号がどのCDMA基地局15a等から発信したかを識別するため、各CDMA基地局15a等は、それぞれ他のCDMA基地局15a等と異なるタイミングで信号を発信している。
具体的には、このタイミングの相違は、CDMA基地局15a等が発信するパイロットPN信号の相違として表れる。例えば、図11(b)のCDMA基地局15bの信号は、図11(a)のCDMA基地局15aの信号より僅かに遅れたタイミングで信号を発信している。具体的には、64chip(0.052ms(ミリ秒))分だけ、パイロットPNオフセットを設けている。
このように多数のCDMA基地局15a等が存在しても、各CDMA基地局15a等が64chipの整数倍だけ、それぞれ異なるパイロットPNオフセットを設けることで、受信する腕時計10は、どのCDMA基地局15a等からの信号を受信したかを容易に把握することができる構成となっている。
このパイロットPNオフセットが、基地局識別時差情報の一例となっている。
また、CDMA基地局15a等から発信される信号(特定信号の一例)には、シンクチャネル信号があり、これが図12のシンクチャネルメッセージである。図12は、シンクチャネルメッセージ(メッセージ情報の一例)の内容を示す概略図である。
図12に示すように、シンクチャネルメッセージには、上述したパイロットPN信号のデータ、例えば、パイロットPNオフセットデータが64chip(0.052ms)×N(0〜512)であることを示すデータが含まれている。このデータは、図12では「PILOT_PN」で表されている。
また、シンクチャネルメッセージには、GPS時刻データであるシステム時間のデータも含まれている。
システム時間は、1980年1月6日0時からの80ms単位の積算時間となっている。このデータは、図12では「SYS_TIME」で表されている。
また、シンクチャネルメッセージには、世界協定時(UTC)に換算するための「うるう秒」のデータも含まれている。このデータは、図12では、「LP_SEC」で表されている。
また、シンクチャネルメッセージには、腕時計10が所在する国又は地域のUTCに対する時差データである、ローカルオフセット時間が含まれている。すなわち、例えば、日本の場合は、UTCに9時間プラスされた時間である旨のデータ等が格納されている。
このデータは、図12では、「LTM_OFF」で表される。
また、シンクチャネルメッセージには、腕時計10が所在する国や地域がサマータイム等を採用しているか否かのサマータイムデータも含まれている。日本の場合は、サマータイム制を採用していないため、そのデータは「0」となる。このデータは、図12では、「DAYLT」で表される。
この「DAYLT」は、誤って挿入されることがあり、また、その挿入される時期は、明確にはなっていない。
そのため、「DAYLT」のデータが「1」であるが、実際には、サマータイムを実施している時期でない場合は、このまま、「DAYLT=1」を反映してしまうと、1時間ずれた時刻となってしまう。
従がって、本発明では、後述するように、基地局の設置地域に関係する情報となっている基地局識別情報の一例である図12の「SID」で表されているシステムID(SID)データを取得して、この「SID」に基づいて、基地局の設置地域を識別する。そして、その設置地域におけるサマータイム実施期間(有効期間)を、後述する図15のデータ表と対応させ、サマータイムの有効期間か否かの判断を行うようになっている。そして、その判断結果により、この取得した「DAYLT」のデータを反映させて修正するようになっている。
つまり、図12のシンクチャネルメッセージには、以上のような内容のデータが含まれるが、具体的には、各データは時系列に順番に送信される、送信される信号は、図11に示す、80ms単位からなるスーパーフレーム単位で送信され、シンクチャネルメッセージの最後のデータが含まれるのが、図11のラストスーパーフレームとなる。
すなわち、図11のラストスーパーフレームの最後のタイミング(図11(a)の「E」及び(b)の「EE」で示す部分)が、シンクチャネルメッセージの受信完了のタイミングとなっている。
つまり、上述のシンクチャネルメッセージに含まれるシステム時間は、このラストスーパーフレームの最後のタイミング(「E」「EE」)を基準として定められている。
具体的には、CDMA方式では、図12のシンクチャネルメッセージの上述のシステム時刻は、図11の「E」「EE」における時刻とはなっておらず、4スーパーフレーム(320ms)後における時刻、すなわち、図11の「F」「FF」における時刻となっている。この時刻が未来時刻情報の一例となる。
これは、CDMAがそもそも携帯電話で通信するためのシステムであることに基づく。つまり、携帯電話機は、CDMA基地局15a等から図12に示す、シンクチャネルメッセージを受信した後、CDMA基地局15a等との同期通信をするための準備を携帯電話機内で行う必要がある。
具体的には、次のステージである「待ち受け状態」へ遷移するための準備をした後、CDMA基地局15a等と同期をとり通信することになる。
そこで、この準備時間を考慮して、CDMA基地局15a等は、予め未来の時刻である320ms後の時間を、事前に送信し、この時間を受信した携帯電話機が内部で処理を行い、準備が終わった後、この時刻でCDMA基地局15a等と同期を取りに行くと同期を取りやすくなるという構成となっている。換言すれば、この4スーパーフレーム(320ms)が携帯電話機側の準備時間となっている。
このように、腕時計10が基地局15bの信号を受信した場合で、パイロットPNオフセットを換算した際のラストスーパーフレームの最後のタイミングは、理論上、「EE」の時点となるはずである。
しかし、上述の4スーパーフレーム後の未来時刻情報を含む、図11(b)の基地局15b等の信号は、図3の腕時計10のアンテナ11で受信され、その高周波受信部16を介して、ベースバンド部17のパイロットPN同期部17aで同期され、デインターリーブ及び復号化部17eで処理されて初めて受信が可能となる。
このデインターリーブ及び復号化部17e等における処理時間が、図11(c)の復調、復号処理遅延時間であり、例えば53msとなっている。
したがって、この復調、復号処理遅延時間を勘案した場合、実際は、腕時計10が基地局15bの信号を受信した場合で、パイロットPNオフセットを換算した際のラストスーパーフレームの最後のタイミングは、理論上の「EE」の時点ではなく、図11(c)の「EEE」にずれることになる。
このような復調、復号処理遅延時間が、受信処理遅延時間情報の一例となっている。
以上が、本実施の形態におけるCDMA方式の携帯電話システムの概略であり、以上の前提で、以下、本実施の形態を説明する。
腕時計10の時刻修正をする場合は、先ず、腕時計10の図2に示すCDMA基地局電波受信機24は、図8のST1に示すように、図1のCDMA基地局15a等から送信される電波のうち、パイロットチャネルの信号電波を受信するためのパイロットチャネルスキャンを行う。
その後、ST2で、CDMA基地局電波受信機24は、CDMA基地局15a等からのパイロットチャネル信号を受信する。具体的には、図5のパイロットチャネル信号受信プログラム31が動作する。
次に、図8のST3で、受信したパイロットチャネル信号にパイロットPNコードをミキシングして同期をとり、walshコード(0)を重ねて(逆拡散)、データを取得する。
具体的には、図5のパイロットPN同期プログラム32が動作し、図3のパイロットPN同期部17aが、図6のパイロットPN同期用データ41であるパイロットPNコード(CDMA基地局15a等から送信されるパイロットPNコードと同じコード)及びwalshコード(0)を図3に示すようにミキシングして同期をとる。このとき、ミキシングされるwalshコードは(0)であるため、特別なコードを用意する必要がない。
このように、受信したパイロットチャネル信号には、パイロットPNコードが含まれているため、CDMA基地局電波受信機24側でも、同じパイロットPNコードと、受信するためのwalshコード(0)が必要となる。この構成によりCDMA基地局電波受信機24は、CDMA基地局15a等からのパイロットチャネル信号と同期を取り、逆拡散することができ、データを取得することができる。
図13(a)は、CDMA基地局電波受信機24が、パイロットチャネル信号と同期をとる状態を示す概略図である。
図13(a)に示すように、パイロットチャネル信号には、ゼロ「0」が15個連続して並ぶ部分があり、この最後のゼロ「0」の部分(図13(a)の縦矢印で示す部分)で同期をとる構成となっており、このような同期をとるためのデータが図6のパイロットPN同期用データ41に含まれている。
次にST4で、パイロットPN同期プログラム32が、CDMA基地局15a等のパイロットチャネル信号と同期が完了したか否かを判断し、同期が完了しない場合は、ST5で、腕時計10が有するサービスエリアテーブルを全て参照したか(一巡したか)判断し、全て参照していない場合は、ST6に進む。
ST6では、日本、アメリカ、中国、カナダ等におけるCDMA基地局15a等のデータである図6のサービスエリアデータ42を参照し、そのデータに基づきST1のパイロットチャネルスキャンを行う。
つまり、例えば、腕時計10は、日本のCDMA基地局15a等を探しているが、実際はアメリカに所在していたという場合は、ST3でパイロットチャネル信号と同期を取ることができない。そこで、ST6でアメリカのCDMA基地局15a等のデータを取得し、そのデータに基づき、ST1のパイロットチャネルスキャンを行う。
一方、ST6で、腕時計10が持っているサービスエリアデータ42を全て参照したにもかかわらずパイロットチャネル信号との同期を取ることができないときは、ST7に進む。ST7では、ユーザに時刻修正が行われていないことを示すため、例えば、図1の秒針を3秒動かすことで、その旨をユーザに知らせる。そして、時刻修正をユーザ判断に任せ、終了する。このようにすることで、通常とは違うことを腕時計10のユーザに知らせることができる。
一方、ST4で、パイロットチャネル信号との同期が完了したときは、ST8へ進み、ST8で、スタートタイミング発生装置17bがスタートタイミングを64分周カウンタ17cに入力する。
図5のスタートタイミング発生装置制御プログラム33が動作し、スタートタイミングが生成され、図3の64分周カウンタ17cに入力される。
図13(b)を示して具体的に説明する。図13(b)は、スタートタイミングと64分周カウンタ17cの動作の関係等を示す概略図である。
図13(b)の64分周カウンタ出力は、図示されているように、図13(a)のパイロットチャネル信号との同期タイミングである、図示された縦矢印部分となっており、スタートタイミングの信号も、この縦矢印部分で64分周カウンタ17cに入力される。
そして、ST9では、スタートタイミング発生装置17bから入力されたスタートタイミングで64分周カウンタ17cが動作し、分周を開始する。
つまり、図5の64分周カウンタ制御プログラム34によって64分周カウンタ17cが動作し、図6のパイロットPNチップレート周波数データ43である例えば、1.2288MHzを64分周し、図13(b)で示すようなコードを生成する。
このコードは、コード長が、64chipsで、前半の32chipsがゼロ「0」信号で、後半の32chipsが「1」信号となるため、図12のシンクチャネルメッセージのデータを取得するためのwalshコード(32)と同一となる。
図14は、64分周カウンタ17cがパイロットPNのチップレートである1.2288MHzを分周してwalshコード(32)を生成する過程を示す概略図である。
図14に示すように、パイロットPNのチップレートである1.2288MHzは、デジタルとしては、「0」と「1」の信号となる。
このような信号である、1.2288MHzを分周カウンタ17cで64分周すると、図14に示すように、前半の32chipsが「0」で、後半の32chipsが「1」からなる、walshコード(32)となる。
ST9では、その後、図5のwalshコード32データミキシングプログラム35が動作する。先ず、CDMA基地局15a等から受信した信号であるパイロットチャネル信号に、パイロットPNコードをミキシングして同期をとり、パイロットPNコードの先頭により認識できる同期タイミングで、64分周カウンタ17cが生成したwalshコード(32)を用いて逆拡散させる。さらに、デジタルフィルタ17dやデインターリーブ及び復号化部17e等を介して、図12のシンクチャネルメッセージを受信する。
このシンクチャネルメッセージには、図12に示すように未来時刻情報であるシステム時間(SYS_TIME等)が含まれている。このため、上述のCDMA基地局15a等から発信された信号は、未来時刻情報を含む特定信号の一例となっており、未来時刻情報は、walshコード(32)を介して、CDMA基地局15a等から発信された信号から抽出される構成となっている。
また、図3の64分周カウンタ17cは、walshコード(32)という時刻情報抽出信号のみを供給する時刻情報抽出信号提供部(時刻情報抽出信号生成部)の一例となっている。
次に、図9のST10では、図5のシンクチャネルメッセージ受信終了判断等プログラム36が動作し、シンクチャネルメッセージの受信が完了したか否かを判断し、シンクチャネルメッセージの受信が完了していないときは、ST11でタイムアウトか否かを判断し、タイムアウトの場合は、再び、図8のST9でシンクチャネルメッセージを受信し直す。
このように本実施の形態によれば、CDMA基地局15a等から発信されたシンクチャネル信号からシンクチャネルメッセージを抽出するに必要なwalshコード(32)を64分周カウンタ17c等によって生成することができるので、従来のように、64種類のwalshコードを生成するためのwalshコード生成装置を設ける必要がない。
このため、回路規模等を小さくすることができ、消費電力を小さくすることができる。
本実施の形態では、パイロットPNのチップレートである基本の周波数1.2288MHzを、64分周カウンタ17cで分周するだけで、図13(b)及び図14に示すような、walshコード(32)を生成することができるので、極めて簡単な回路構成等とすることができ、特に消費電力を小さくすることができる。
また、64分周カウンタ17cの分周は、パイロットPN信号との同期タイミングを基準としたスタートタイミング発生装置17bのスタートタイミング信号に基づいて行なわれるので、確実に、シンクチャネル信号からシンクチャネルメッセージを取得できる構成となっている。
一方、ST10でシンクチャネルメッセージの受信が完了したと判断されると、ST12へ進む。ST12では、タイマー29がカウントを開始する。具体的には、図5のタイマー制御プログラム133が動作し、タイマー29を動作させる。タイマー29のデータは、図7のタイマーデータ51として記憶される。また、ST12では、ST10で受信完了したシンクチャネルメッセージのシステム時間(GPS時刻)、うるう秒、ローカルオフセット時間等を演算する。
なお、この演算は図3のベースバンド部17内で処理しても良いし、ベースバンド部17以外の演算部で処理しても構わない。
具体的には、システム時間を基本に、うるう秒データ等に基づいてUTC時刻を算出し、このUTC時刻に基づき、ローカルオフセット時間で、例えば、9時間を加え、日本時刻等とする。
また、日本の場合は、サマータイムを採用していないため、サマータイム時間の補正は実質的行う必要がない。しかし、アメリカのようにサマータイム制を採用する国にあっては、サマータイム時間の補正を行う必要があるが、ここで、サマータイムの補正を行うと、サマータイムの実施している地域であることは、分かるものの、その実施の時期については、不明である。そのため、実際にはサマータイムの実施時期ではないにも係らず、サマータイムの補正を行ってしまい、1時間ずれた時間となってしまう場合もある。
ところで、後述するように、これを防ぐために、本実施形態においては、受信の完了したシンクチャネルメッセージの「SID」(システムID)のデータを使用する。この「SID」(システムID)データは、基地局の地域情報を知ることができるデータとなっている。
従がって、ここでは、一旦、サマータイムの補正を行わず、保留しておき、シンクチャネルメッセージのシステム時間(GPS時刻)、うるう秒、ローカルオフセット時間から基礎ローカル時刻を算出するようになっている。
そして、腕時計10が、例えば、図11(b)の基地局15bの信号を受信した場合は、受信後の4スーパーフレーム後の時刻、すなわち図11(b)の「FF」で示す時点での時刻である「基礎ローカル時刻」を算出し、図7の基礎ローカル時刻データ52として登録する。具体的には、図5の基礎ローカル時刻算出プログラム37が動作する。
この基礎ローカル時刻データ52は、腕時計10が受信した時点(図11(b)の「EE」時点)から4スーパーフレーム(320ms(ミリ秒))後の時刻である。
なお、基礎ローカル時刻算出プログラム37が、時刻情報取得部の一例となっている。
そして、ST13で、このシンクチャネルメッセージのシステムID(SID)及び、DALYT(サマータイムの情報)を抽出して記憶する。つまり、図5のシステムID(SID)データ/サマータイム情報取得プログラム137が、受信の完了したシンクチャネルメッセージから、システムID(SID)とDALYT(サマータイムの情報)を取得して、図7のシステムID(SID)データ56、サマータイム情報(DAYLT)データ57として記憶する。
ここで、CDMA方式で使用される通常の携帯電話機器であれば、制御装置(CPU等)の処理能力が高いため、この320msの時間があれば、シンクチャネルメッセージから、時刻修正用の時刻情報を取得することはできる。
しかし、本実施の形態にかかる腕時計10は、携帯電話機等でないことから、コストを低減する必要性に鑑み、制御装置(CPU等)の処理能力は低くされている。
したがって、図11(b)の「EE」時点で受信が完了しても、その後320ms(ミリ秒)では、ST12の演算等が間に合わないこととなる。
特に、腕時計10の場合は、カレンダ、時刻の計算、受信インターフェイス、そして、後述する1s(秒)以下の端数処理等のタイミング補正等を瞬時に演算し、実行する必要があり、処理能力の低い制御装置では、実行が困難であった。
そこで、本実施の形態では、たとえ、処理能力が低い制御装置等であっても、上述の時刻修正を可能にするため、図9のST14以下の工程を実行する。
先ず、ST14では、ST12で求めた基礎ローカル時刻データ52に1.68s(秒)を加算し、全体で受信時から2s(秒)後の時刻データを求める。
これを図11で説明すると、ST12で求めた基礎ローカル時刻データ52は、図11(b)では、「FF」時点(「EE」から320ms(ミリ秒)後)の時刻であるため
この時刻に「1.68s(秒)」を足すことで、全体として2秒後(図11(b)では「GG」時点)のデータとする。
これにより、腕時計10は、上述の時刻修正の演算や実行等をする時間として「2s(秒)」という時間が確保されるので、たとえ、処理能力が低い制御装置を有する腕時計10でも、余裕を持って時刻修正をすることができることになる。
ただし、本実施の形態では、図11(b)の「GG」で示す時点を正確にするためや、時刻修正し易くするため、以下のような修正を行う。
先ず、上述の図11(b)の「GG」時点における、時刻が1s(秒)以下の端数を有する場合は、腕時計10の修正する際、不便であるため、その端数を切り捨てて、最終的な修正用の時刻である最終ローカル時刻を求め、図7の最終ローカル時刻データ53として登録する。
この「1.68s(秒)」のデータは、具体的には、図6の加算時間データ44として登録されており、図5の最終ローカル時刻算出プログラム38が、このデータを参照して実行する。
また、本実施の形態では、この加算時間データ44が時刻変換情報の一例となっているが、加算時間データ44は、ST12で求めた基礎ローカル時刻データ52より適正に決定しても良い。
ST14で、受信時から2s(秒)後(ただし、1s(秒)以下の端数切捨て)の時刻(最終ローカル時刻データ53)が明らかになったため、受信時から2秒後のタイミング(具体的には、タイマーデータ51を参照して2秒後を把握)で時刻修正をすればよいように思えるが、実際は、誤差が生じている。
すなわち、図10(b)の「GG」の時点では、図10(b)に示すように、基地局15bからの信号は、システム時刻に比べ基地局固有の時差であるパイロットPNオフセット分だけ遅延している。
また、このように遅延している基地局15bの信号を受信した腕時計10は、さらに、図10(c)に示すデインターリーブ及び復号化部17e等における処理時間である復調、復号処理遅延時間を足した分だけ、さらに遅延等することとなる。
すなわち、図10(c)の基地局15bの受信データ(腕時計10のデータ)は、システム時間に比べ、パイロットPNオフセット及び復調、復号処理遅延時間を足した分だけ遅延していることとなる(図10の「GGG」)。
このような、状況下で、ST13で求めた最終ローカル時刻データ53に、基地局15(b)のシンクチャネルメッセージの受信終了時から2秒後(ただし、最終ローカル時刻データ53を算出したときに1s(秒)以下切り捨てた端数がある場合には、端数を減算)のタイミングで、RTC25を修正すると、以下のようになる。
すなわち、図10(a)の「G」のタイミングの時刻であるにもかかわらず、図10(c)の「GGG」のタイミングで時刻修正することとなり、図10の「G」と「GGG」との差分だけ誤差が生じることになる(切り捨て端数なしの場合)。
そこで、ST15では、上述の2s(秒)から、基地局15bのパイロットPNオフセット(0.052ms×N)と、腕時計10の復調、復号処理遅延時間(53ms)を減算する工程を実施し、誤差を修正している。
また、最終ローカル時刻データ53を算出したときに切り捨てた端数がある場合には、端数も減算することにより、タイミング時刻を求める。
具体的には、パイロットPNオフセット(0.052ms×N)は、図6のパイロットPNオフセット時間データ45として登録され、復調、復号処理遅延時間(53ms)は、図6の復調、復号処理遅延時間データ46として登録されている。このため、図5のタイミング時刻算出プログラム39がこれらのデータを参照して、タイミング時刻データを求め、図7のタイミング時刻データ54として登録する。
このようにST15で求められたタイミング時刻データ54は、2秒(ただし、最終ローカル時刻データ53を算出したときに1s(秒)以下切り捨てた端数がある場合には、端数を減算)から、基地局15bのパイロットPNオフセット(0.052ms×N)と、腕時計10の復調、復号処理遅延時間(53ms)を減算し、図11の「GGG」と「G」の誤差を修正したデータとなっている。
このため、基地局15(b)のシンクチャネルメッセージ受信終了時を基準として、このタイミング時刻データ54の時間で、RTC25を修正すれば、図11の「G」のタイミングで、最終ローカル時刻データ52の時刻で時刻修正をすることができることになる。
そこで、図10のST16では、タイマーデータ51とタイミング時刻データ54に基づき、最終ローカル時刻データ53にRTC25の時刻を修正すれば、サマータイムの時刻補正を保留した状態の時刻修正をすることができることとなる。このとき、同時にCDMA基地局電波受信機24の電源をOFFとする。
このように、精度良く修正されたRTC25に基づいて、図1の針13等も修正され、腕時計10の利用者は、サマータイムの時刻補正が必要ない場合には、正しく修正された時刻を利用することができる。
ところで、この時刻修正は、320msという限られた時間ではなく2sという余裕のある時間内に実行されるため、腕時計10に処理能力の高い制御装置等を搭載する必要がない。
また、腕時計10の生産コスト等を低減しつつ、CDMA方式の精度の高い時刻情報に基づいて時刻修正をすることもできる。
ST16は、図5のRTC時刻修正プログラム131が動作して実行されると共に、CDMA基地局電波受信機24の電源をOFFとする。また、RTC時刻修正プログラム131が、受信側時刻情報修正部の一例であり、基礎ローカル時刻データ52が、未来時刻情報及び時刻変更情報に基づいて生成される修正時刻情報の一例である。
また、タイマー29が、修正タイミング情報を生成する修正タイミング情報生成部の一例である。タイミング時刻データ54が、修正タイミング情報の一例となっている。
次に、図10のST17に進む。ST17では、取得したシステムID(SID)データ56により、当該基地局の設置されている地域を識別する。
具体的には、システムID(SID)データに対応する地域情報のデータが、受信側である腕時計10内部の図6のシステムID(SID)/地域対応データ48に記憶されている。そして、図5の地域データ抽出プログラム135が、図7のシステムID(SID)データ56とシステムID(SID)/地域対応データ48との比較から、地域データを抽出して、図7の抽出地域データ55に記憶するようになっている。
そして、ST18に進み、図5のサマータイム情報判断プログラム134が、図6の地域/サマータイム補正期間対応表データ49と図7の抽出地域データ55及び現在の時刻データとを比較する。
次に、ST19で、図5のサマータイム情報判断プログラム134が、この抽出地域データ55の地域では、サマータイムを実施地域か否かを判断する。これは、図6の地域/サマータイム補正期間対応表データ49に抽出地域データ55と一致する地域が記憶されている否かで判断する。
そして、サマータイムの実施地域でないと判断されると、サマータイムの補正は行う必要が無いので、後述するST22に進む。
一方、サマータイムの実施されている地域であると判断されると、次にその時期が問題となるので、ST20に進み、図5のサマータイム情報判断プログラム134が、現在、サマータイム情報が有効期間内であるかを判断するようになっている。
つまり、図6の地域/サマータイム補正期間対応表データ49には、例えば、図15のような、地域情報と、その地域におけるサマータイム実施時期のデータとなっている。そして、現在の時刻データが、この実施の時期に該当する場合には、サマータイムの補正をする必要がある。
そこで、ST20で判断された結果、サマータイム情報が有効な期間で無い場合は、サマータイム補正の必要は無いので、後述するST22に進む。
一方、ST20で、サマータイム情報が有効な期間であると判断されると、サマータイムの補正が必要であるので、ST21に進む。
すると、ST21では、図5のRTC時刻サマータイム修正プログラム136が、図7のサマータイム情報(DAYLT)データ57に基づき、ST16で補正された時刻を最終的に補正する。例えば、DAYLT=1の場合は、1時間加算し、DAYLT=0の場合は、0時間を加算する。このようにすると、確実にサマータイムの補正を行うことができるので、利用者は、当該地域における正しい、正確な時刻を表示した腕時計10を利用することができるようになっている。
ここで、図7のシステムID(SID)データ56は基地局識別情報の一例となっている。また、図7のサマータイム情報(DAYLT)データ57は、季節時間修正情報の一例となっている。そして、図5のシステムID/サマータイム情報取得プログラム137は、特定情報取得部の一例となっている。また、図5のサマータイム情報判断プログラム134は、基地局識別情報に基づいて季節時間修正情報の一例である図7のサマータイム情報(DAYLT)データ57の有効性を判断する季節時間情報判断部の一例となっている。
そして、受信側時刻情報を受信側時刻修正部(RTC時刻修正プログラム131、図5参照)により修正した後に、季節時間修正情報判断部(サマータイム情報判断プログラム134、図5参照)が季節時間修正情報(サマータイム情報(DAYLT)データ57、図7参照)を有効と判断した場合には、更に、季節時間修正情報(サマータイム情報(DAYLT)57、図7参照)を反映して、修正するようになっている。
従がって、仮に、基地局から発信される信号に、季節時間修正情報が誤って挿入されている場合でも、季節時間情報判断部により判断して、有効期間である場合に季節時間修正情報で修正するので、高精度な時刻修正が可能となる。
そして、受信側時刻情報は、未来時刻情報に基づいて生成される修正時刻情報により修正されるようになっているので、受信側は、未来時刻になるまで通信しながら待つ必要がなく、時刻修正を行うことができるので、低消費電力が実現できる。
また、基地局識別情報に基づいて識別される地域情報と、前記地域情報に対応する季節時間修正情報の有効期間情報の一例として、図6の地域/サマータイム補正期間対応表データ49が記憶されている。
図5の地域データ抽出プログラム135は、基地局識別情報(システムID(SID)データ56、図7参照)に対応する地域情報を抽出し、その抽出した地域情報は、抽出地域データ55として記憶するようになっている。
そして、季節時間情報判断部(サマータイム情報判断プログラム134、図5参照)は、抽出した前記地域情報(抽出地域データ55、図7参照)に対応する前記季節時間情報の前記有効期間情報(地域/サマータイム補正期間対応表データ49、図6参照)から、季節時間修正情報(サマータイム情報 (DAYLT)データ57、図7参照)の有効性を判断するようになっている。
従がって、基地局識別情報に対応する地域情報を抽出して、その抽出した地域情報に対応した有効期間情報から季節時間情報の有効性が判断できる。
また、季節時間修正情報の一例である図7のサマータイム情報(DAYLT)データ57は、基地局の設置地域における季節時間の採用の有無を表示する情報、例えば、DAYLT=0、DAYLT=1となっている。ここで、DAYLT=0は、サマータイムがoff、つまり、実施していない地域であることを表示している。そして、DAYLT=1は、サマータイムがon、つまり、実施している地域であることを表示する情報となっている。
従って、季節時間情報判断部(サマータイム情報判断プログラム134、図5参照)が季節時間修正情報(サマータイム情報(DAYLT)データ57、図7参照)を有効と判断した場合には、季節時間修正情報(サマータイム情報(DAYLT)データ57、図7参照)の季節時間の採用の有無(DAYLT=0、DAYLT=1)を反映して前記受信側時刻情報を修正する構成となっている。
このため、季節時間、例えば、サマータイムの採用している地域の基地局からの情報により、受信側時刻情報を修正する場合には、その基地局の設置されている地域で、サマータイムの実施期間(つまり、有効期間)であるかの判断を行い、有効期間である場合には、その情報を反映できるようになっている。
次に、図10のST22に進む。ST22ではタイマー29が動作する。すなわち、図5の時刻修正開始判断プログラム132が動作し、図6の時刻修正間隔データ47を参照する。この時刻修正間隔データ47は、例えば24時間となっている。
このため、ST23で、前回の時刻修正から24時間経過後に次の時刻修正が開始され、ST1以下の工程が実行される。
このように、サマータイムの実施地域及び時期が、システムID(SID)データ56から識別された地域情報に基づいて、まず、その当該地域が、サマータイムの実施地域であるかが判断され、次に、その実施の時期が図7の地域/サマータイム補正期間対応表データ49に基づいて判断されるので、正確に判断することができるようになっている。
このため、サマータイムの実施の有無及び時期を含めた正確な時刻修正が行うことができるようになっている。
また、図8及び図10は、うるう秒、ローカルオフセット時間及びサマータイムデータは、CDMA基地局15a等から受信したシンクチャネルメッセージに基づいて自動的に修正される工程としたが、これに限らず、図1のりゅうず28等を用いて腕時計10のユーザが設定可能としてもよい。
この場合は、上述のST12では、この入力されたデータに基づいて基礎ローカル時刻が算出され、そして、サマータイムの修正を行うので、ユーザの希望通りの時刻修正が可能となる。
本発明は、上述の実施の形態に限定されない。
本発明に係る時刻修正装置付き計時装置である例えば、時刻修正装置付き腕時計を示す概略図である。 図1の腕時計の内部の主なハードウエア構成等を示す概略図である。 図2のCDMA基地局電波受信機の主な構成を示す概略図である。 腕時計の主なソフトウエア構成等を示す概略全体図である。 図4の各種プログラム格納部内のデータを示す概略図である。 図4の第1の各種データ格納部内のデータを示す概略図である。 図4の第2の各種データ格納部内のデータを示す概略図である。 本実施の形態にかかる腕時計の主な動作等を示す概略フローチャートである。 本実施の形態にかかる腕時計の主な動作等を示す他の概略フローチャートである。 本実施の形態にかかる腕時計の主な動作等を示す他の概略フローチャートである。 CDMA基地局から送信される信号の同期タイミング等を示す概略図である。 シンクチャネルメッセージの内容を示す概略図である。 (a)は、CDMA基地局電波受信機が、パイロットチャネル信号と同期をとる状態を示す概略図であり、(b)は、スタートタイミングと64分周カウンタの動作の関係等を示す概略図である。 64分周カウンタがパイロットPNのチップレートである1.2288MHzを分周してwalshコード(32)を生成する過程を示す概略図である。 地域情報とサマータイム補正期間(有効期間)対応データの一例を示す概略図である。
符号の説明
10・・・時刻修正装置付き腕時計、11・・アンテナ、12・・・文字板、13・・・針、14・・・ディスプレイ、15a及び15b・・・CDMA基地局、16・・・高周波受信部、17・・・ベースバンド部、17a・・・パイロットPN同期部、17b・・・スタートタイミング発生装置、17c・・・64分周カウンタ、17d・・・デジタルフィルタ、17e・・・デインターリーブ及び復号化部、18・・・制御部、24・・・CDMA基地局電波受信機、25・・・リアルタイムクロック(RTC)、27・・・電池、29・・・タイマー、30・・・各種プログラム格納部、31・・・パイロットチャネル信号受信プログラム、32・・・パイロットPN同期プログラム、33・・・スタートタイミング発生装置制御プログラム、34・・・64分周カウンタ制御プログラム、35・・・walshコード32データミキシングプログラム、36・・・シンクチャネルメッセージ受信終了判断等プログラム、37・・・基礎ローカル時刻算出プログラム、38・・・基礎ローカル時刻算出プログラム、39・・・タイミング時刻算出プログラム、134・・・サマータイム情報判断プログラム、135・・・地域データ抽出プログラム、136・・・RTC時刻サマータイム修正プログラム、137・・・システムID(SID)/サマータイム情報(DAYLT)データ取得プログラム、40・・・第1の各種データ格納部、41・・・パイロットPN同期用データ、42・・・サービスエリアデータ、43・・・パイロットPNチップレート周波数データ、44・・・加算時間データ、45・・・パイロットPNオフセット時間データ、46・・・復調、復号処理遅延時間データ、47・・・時刻修正間隔データ、48・・・システムID(SID)/地域対応データ、49・・・地域/サマータイム補正期間対応表データ、50・・・第2の各種データ格納部、51・・・タイマーデータ、52・・・基礎ローカル時刻データ、53・・・最終ローカル時刻データ、54・・・タイミング時刻データ、55・・・抽出地域データ、56・・・システムID(SID)データ、57・・・サマータイム情報(DAYLT)データ

Claims (8)

  1. 基地局が発信する一定時間経過後の未来時刻情報を含む特定信号を受信する受信部と、
    受信側時刻情報を管理する時刻情報管理部と、
    前記特定信号に含まれる基地局識別情報と季節時間修正情報を取得する特定情報取得部と、
    前記受信側時刻情報を修正時刻情報に基づいて修正する受信側時刻修正部と、
    前記基地局識別情報に基づいて前記季節時間修正情報の有効性を判断する季節時間情報判断部と、を有し、
    前記修正時刻情報は、前記受信部の受信した前記特定信号の前記未来時刻情報に基づいて生成される情報となっており、
    前記受信側時刻情報を前記受信側時刻修正部が修正した後に、前記季節時間修正情報判断部が前記季節時間修正情報を有効と判断した場合には、更に、前記季節時間修正情報を反映して、修正することを特徴とする時刻修正装置。
  2. 前記基地局識別情報に基づいて識別される地域情報と、前記地域情報に対応する前記季節時間修正情報の有効期間情報とが記憶されており、
    前記季節時間情報判断部は、前記基地局識別情報に対応する前記地域情報を抽出して、その抽出した前記地域情報に対応する前記季節時間情報の前記有効期間情報から、前記特定信号に含まれる前記季節時間修正情報の有効性を判断するようになっていることを特徴とする請求項1に記載の時刻修正装置。
  3. 前記季節時間修正情報は、前記基地局の設置地域における季節時間の採用の有無を表示する情報となっており、
    前記季節時間情報判断部が前記季節時間修正情報を有効と判断した場合には、前記季節時間修正情報の前記季節時間の採用の有無を反映して前記受信側時刻情報を修正する構成となっていることを特徴とする請求項2に記載の時刻修正装置。
  4. 前記修正時刻情報は、前記未来時刻情報と前記未来時刻情報を変更する時刻変更情報に基づいて生成されていることを特徴とする請求項1乃至請求項3のいずれかに記載の時刻修正装置。
  5. 前記受信部は、前記基地局から発信された前記特定信号と同期を取る信号同期部と、前記信号同期部で同期を取った前記特定信号から前記未来時刻情報を取得する時刻情報取得部と、を有すると共に、
    前記信号同期部が前記基地局からの前記特定信号を受信してから前記未来時刻情報を取得処理するまでの時間である受信処理遅延時間情報を格納する受信処理遅延時間情報格納部と、
    前記基地局を識別するための基地局識別時差情報を格納する基地局識別時差情報格納部と、
    前記受信側時刻情報修正部により前記受信側時刻情報を修正する修正タイミング情報を生成する修正タイミング情報生成部と、を有し、
    前記修正タイミング情報の開始タイミングは、前記特定信号のメッセージ情報の受信終了時であることを特徴とする請求項4に記載の時刻修正装置。
  6. 前記時刻情報取得部は、時刻情報抽出信号を介して前記特定信号から前記未来時刻情報を抽出する構成と共に、この時刻情報抽出信号を生成する時刻情報抽出信号生成部を備える構成となっており、
    前記時刻情報抽出信号生成部は、前記特定信号の基本周波数を分周し、前記時刻情報抽出信号を生成する分周カウンタ部を有する構成となっていることを特徴とする請求項5に記載の時刻修正装置。
  7. 基地局が発信する一定時間経過後の未来時刻情報を含む特定信号を受信する受信部と、
    受信側時刻情報を管理する時刻情報管理部と、
    前記特定信号に含まれる基地局識別情報と季節時間修正情報を取得する特定情報取得部と、
    前記受信側時刻情報を修正時刻情報に基づいて修正する受信側時刻修正部と、
    前記基地局識別情報に基づいて前記季節時間修正情報の有効性を判断する季節時間情報判断部と、を有し、
    前記修正時刻情報は、前記受信部の受信した前記特定信号の前記未来時刻情報に基づいて生成される情報となっており、
    前記受信側時刻情報を前記受信側時刻修正部が正した後に、前記季節時間修正情報判断部が前記季節時間修正情報を有効と判断した場合には、更に、前記季節時間修正情報を反映して、修正することを特徴とする時刻修正装置付き計時装置。
  8. 基地局が発信する一定時間経過後の未来時刻情報を含む特定信号を受信する受信部と、
    受信側時刻情報を管理する時刻情報管理部と、
    前記特定信号に含まれる基地局識別情報と季節時間修正情報を取得する特定情報取得部と、
    前記受信側時刻情報を修正時刻情報に基づいて修正する受信側時刻修正部と、
    前記基地局識別情報に基づいて前記季節時間修正情報の有効性を判断する季節時間情報判断部と、を有し、
    前記修正時刻情報は、前記受信部の受信した前記特定信号の前記未来時刻情報に基づいて生成される情報となっており、
    前記受信側時刻情報を前記受信側時刻修正部が修正した後に、前記季節時間修正情報判断部が前記季節時間修正情報を有効と判断した場合には、更に、前記季節時間修正情報を反映して、修正することを特徴とする時刻修正方法。
JP2007251747A 2007-09-27 2007-09-27 時刻修正装置、時刻修正装置付き計時装置及び時刻修正方法 Expired - Fee Related JP4793361B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007251747A JP4793361B2 (ja) 2007-09-27 2007-09-27 時刻修正装置、時刻修正装置付き計時装置及び時刻修正方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007251747A JP4793361B2 (ja) 2007-09-27 2007-09-27 時刻修正装置、時刻修正装置付き計時装置及び時刻修正方法

Publications (2)

Publication Number Publication Date
JP2009085606A JP2009085606A (ja) 2009-04-23
JP4793361B2 true JP4793361B2 (ja) 2011-10-12

Family

ID=40659250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007251747A Expired - Fee Related JP4793361B2 (ja) 2007-09-27 2007-09-27 時刻修正装置、時刻修正装置付き計時装置及び時刻修正方法

Country Status (1)

Country Link
JP (1) JP4793361B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6172168B2 (ja) * 2015-01-16 2017-08-02 カシオ計算機株式会社 電子時計

Also Published As

Publication number Publication date
JP2009085606A (ja) 2009-04-23

Similar Documents

Publication Publication Date Title
US7813225B2 (en) Time adjustment device, timepiece with a time adjustment device, and time adjustment method
KR20080065931A (ko) 시각 수정 장치, 시각 수정 장치 부착 계시 장치 및 시각수정 방법
CA2429159C (en) System and methodology for automatically setting a clock
US20080165627A1 (en) Time Adjustment Device, Timepiece with a Time Adjustment Device, and Time Adjustment Method
US20080165624A1 (en) Time Adjustment Device, Timepiece with a Time Adjustment Device, and Time Adjustment Method
JP2008051697A (ja) 計時装置及び計時装置の時刻修正方法
JP3796380B2 (ja) 時刻修正用情報出力装置および自動時刻修正時計
CN213585795U (zh) 一种基于gps/cdma的双模ntp授时器
US7782716B2 (en) Time adjustment device, timepiece with a time adjustment device, and time adjustment method
JP4793361B2 (ja) 時刻修正装置、時刻修正装置付き計時装置及び時刻修正方法
JP4867669B2 (ja) 時刻修正装置及び時刻修正装置付き計時装置
JP2009085726A (ja) 時刻修正装置、時刻修正装置付き計時装置及び時刻修正方法
JP2009085604A (ja) 時刻修正装置、時刻修正装置付き計時装置及び時刻修正方法
JP2009068851A (ja) 時刻修正装置、時刻修正装置付き計時装置及び時刻修正方法
JP2009085605A (ja) 時刻修正装置、時刻修正装置付き計時装置及び時刻修正方法
US9229435B2 (en) Electronic timepiece and satellite signal receiving method
JP4862557B2 (ja) 時刻修正装置及び時刻修正装置付き計時装置
JP2008051526A (ja) 時刻修正装置、時刻修正装置付き計時装置及び時刻修正方法
JP4289425B2 (ja) 受信装置、電波時計、受信モジュールおよび受信方法
JP2008051528A (ja) 時刻修正装置、時刻修正装置付き計時装置及び時刻修正方法
US7899108B2 (en) Receiving apparatus, electromagnetic wave timepiece, receiving module and receiving method
KR100661557B1 (ko) 이동통신 단말기와 개인용 컴퓨터의 시간정보 동기화 장치및 그 방법
JP2011226867A (ja) 電波時計および電波時計の受信方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110711

R150 Certificate of patent or registration of utility model

Ref document number: 4793361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees