JP2009068851A - 時刻修正装置、時刻修正装置付き計時装置及び時刻修正方法 - Google Patents

時刻修正装置、時刻修正装置付き計時装置及び時刻修正方法 Download PDF

Info

Publication number
JP2009068851A
JP2009068851A JP2007234399A JP2007234399A JP2009068851A JP 2009068851 A JP2009068851 A JP 2009068851A JP 2007234399 A JP2007234399 A JP 2007234399A JP 2007234399 A JP2007234399 A JP 2007234399A JP 2009068851 A JP2009068851 A JP 2009068851A
Authority
JP
Japan
Prior art keywords
time
time information
information
correction
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007234399A
Other languages
English (en)
Inventor
Osamu Urano
治 浦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2007234399A priority Critical patent/JP2009068851A/ja
Publication of JP2009068851A publication Critical patent/JP2009068851A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electric Clocks (AREA)

Abstract

【課題】演算能力等の処理能力が低い制御装置であっても、CDMA方式等の携帯電話通信網を利用して時刻修正をすることができる時刻修正装置等を提供する。
【解決手段】時刻修正装置付き腕時計10は、CDMA基地局15a、15b等が発信する一定時間経過後の未来時刻情報を含む特定信号を受信する受信部と、受信側時刻情報を管理する時刻情報管理部と、受信側時刻情報を修正時刻情報に基づいて修正する受信側時刻情報修正部と、を有し、修正時刻情報が、未来時刻情報及びこの未来時刻情報を変更する時刻変更情報に基づいて生成される。
【選択図】図1

Description

本発明は、例えばCDMA(Code Division Multiple Access、符号分割多重接続)方式の携帯電話通信網で基地局から発信される信号に含まれる時刻情報に基づいて時刻修正を行う時刻修正装置、時刻修正装置付き計時装置及び時刻修正方法に関するものである。
現在、CDMA方式の携帯電話通信網で基地局から携帯電話機に対して発信される信号には、時刻情報が含まれ、この時刻情報は、GPS(Global Positioning System)衛星の原子時計に基づくGPS時刻に合致した極めて精度の高い時刻情報となっている。
したがって、このCDMA方式の携帯電話通信網で基地局から送信されるGPS時刻データを端末が取得し、このGPS時刻データを用いて内蔵時計の時刻データを補正しようとする提案がなされている(例えば、特許文献1)。
そして、このようなCDMA方式の携帯電話通信網で基地局から送信される時刻データは、送信時の時刻データではなく、送信時から一定の時間、例えば320ms(ミリ秒)後のデータとなっている。これは、時刻データを受信した携帯電話機がそのデータを処理した後、時刻同期を行うことを考慮したものである。
すなわち、基地局から時刻データを取得した携帯電話機は、その内部で基地局からの信号と同期を取るための準備をし、その準備が終了した後、当該時刻データに基づき、当該基地局の信号と時刻同期を行う構成となっている。
そのため、基地局から送信されてくる時刻データをオフセットのない時刻データとしてしまうと、内部処理をして時刻同期をするには間に合わず、同期が取れず、その結果通信できないという問題がある。
そこで、CDMA方式の携帯電話通信網で基地局から送信される時刻データは、一定時間(320ms)後の時刻データとなっており、携帯電話機は、このような未来時間を受信する構成となっている。
特開2000−321383号公報(要約等)
携帯電話機の場合は、上述の320ms(ミリ秒)あれば、基地局からの信号を受信し、時刻データを演算等して、同期を取ることができる。しかし、時計等の計時装置の時刻を修正する時刻修正装置等には、時刻を計時するために必要な範囲の制御装置(CPU等)が搭載されているにすぎない。
このため、CDMA方式等で演算等の時間として考慮されている時間(320ms)では、演算が終了せず、その結果、正しい時刻タイミングで時刻を修正することができないという問題があった。
一方、CDMA方式等の携帯電話通信網を利用して時刻修正するには、高価で高性能な制御装置を搭載しなければならず、コスト高となるという問題があった。
そこで、本発明は、演算能力等の処理能力が低い制御装置であっても、CDMA方式等の携帯電話通信網を利用して時刻修正をすることができる時刻修正装置、時刻修正装置付き計時装置及び時刻修正方法を提供することを目的とする。
本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態又は適用例として実現することが可能である。
[適用例1]
基地局が発信する一定時間経過後の未来時刻情報を含む特定信号を受信する受信部と、受信側時刻情報を管理する時刻情報管理部と、前記受信側時刻情報を修正時刻情報に基づいて修正する受信側時刻情報修正部と、を有し、前記修正時刻情報が、前記未来時刻情報及びこの未来時刻情報を変更する時刻変更情報に基づいて生成されることを特徴とする時刻修正装置。
前記構成によれば、受信側時刻情報を管理する時刻情報管理部と、受信側時刻情報を修正時刻情報に基づいて修正する受信側時刻情報修正部と、を有し、修正時刻情報が、未来時刻情報及びこの未来時刻情報を変更する時刻変更情報に基づいて生成される構成となっている。
このため、例えば、未来時刻情報が、受信時から320ms(ミリ秒)後という、極めて近い未来時間であっても、この未来時刻情報に、時刻変更情報として、例えば、1.68s(秒)を加算することで、修正時刻情報は、全体として、受信時から2s(秒)後となり、時刻修正装置としては、時刻を修正するまで、2s(秒)という長い時間を確保することができる。
したがって、当該時刻修正装置の制御装置(CPU等)の処理能力が例え低く、未来時刻情報を取得するのに時間を長く要する場合でも、その時間に合わせた任意の処理時間を容易に設定することができる。
このため、演算能力等の処理能力が低い制御装置であっても、CDMA方式等の携帯電話通信網を利用して時刻修正をすることができ、コストをかけずに正確な時刻修正を行うことができる。
[適用例2]
好ましくは、前記時刻変更情報は、前記未来時刻情報を未来へ進めるための情報であることを特徴とする時刻修正装置。
前記構成によれば、時刻変更情報は、未来時刻情報を未来へ進めるための情報となるので、時刻修正装置に能力によって任意のタイミングに設定することができる。
[適用例3]
好ましくは、前記受信側時刻情報修正部が前記受信側時刻情報を修正する修正タイミング情報を生成する修正タイミング情報生成部を有することを特徴とする時刻修正装置。
前記構成によれば、時刻情報修正部が、時刻情報を修正する修正タイミング情報を生成する修正タイミング情報生成部を有するので、精度良く時刻修正をすることができる。
[適用例4]
好ましくは、前記受信部は、前記基地局から発信された前記特定信号と同期を取る信号同期部と、前記信号同期部で同期を取った前記特定信号から前記未来時刻情報を取得する時刻情報取得部と、を有すると共に、前記信号同期部が前記基地局からの前記特定信号を受信してから前記未来時刻情報を取得処理するまでの時間である受信処理遅延時間情報を格納する受信処理遅延時間情報格納部と、前記基地局を識別するための基地局識別時差情報を格納する基地局識別時差情報格納部と、を有し、前記修正タイミング情報の開始タイミングは、前記特定信号のメッセージ情報の受信終了時であることを特徴とする時刻修正装置。
前記構成によれば、受信部は、基地局から発信された特定信号と同期を取る信号同期部と、信号同期部で同期を取った特定信号から未来時刻情報を取得する時刻情報取得部と、を有すると共に、信号同期部が基地局からの特定信号を受信してから前記未来時刻情報を取得処理するまでの時間である受信処理遅延時間情報を格納する受信処理遅延時間情報格納部と、基地局を識別するための基地局識別時差情報を格納する基地局識別時差情報格納部と、を有し、修正タイミング情報の開始タイミングは、特定信号のメッセージ情報の受信終了時である。
修正タイミング情報は、特定信号のメッセージ情報の受信終了時のタイミングでカウントが開始され、例えば2s(秒)後のタイミングで、修正時刻情報に時刻情報を修正すると、以下のような誤差が生じる。
基地局からの信号は、基地局を識別するための基地局識別時差情報、例えば0.052ms(ミリ秒)×Nという時差が生じている。また、時刻修正装置は実際に信号を受信して、同期し、メッセージ情報である例えば、シンクチャネルメッセージを受信処理するまでに時間がかかる。これは受信処理遅延時間であり、例えば、53ms(ミリ秒)がかかる。
一方、修正タイミング情報は、例えばタイマーのカウント情報であり、それは、メッセージ情報の受信終了時からカウントされる情報である。
つまり、実際に修正タイミング情報生成部が修正タイミング情報を、例えばタイマーで生成を開始するまでの間に、基地局識別時差情報と受信処理遅延時間を足した時間が既に経過していることになり、この足した時間分だけ基地局の例えばGPS時刻と相違していることになる。これでは、正確な時刻修正ができない。
そこで、前記構成では、修正タイミング情報から、上述の受信処理遅延時間情報(53ms等)及び基地局識別時差情報(0.052ms(ミリ秒)×N)を減じることで、GPS時刻に極めて近い時刻に修正することができる構成としている。
[適用例5]
好ましくは、前記修正時刻情報は、1秒単位の前記未来時刻情報であることを特徴とする時刻修正装置。
前記構成によれば、修正時刻情報は、1秒単位の前記未来時刻情報であるため、時刻修正をし易い単位となっている。
[適用例6]
好ましくは、前記時刻情報取得部は、時刻情報抽出信号を介して前記特定信号から前記未来時刻情報を抽出する構成となっていると共に、この時刻情報抽出信号のみを供給する時刻情報抽出信号提供部が備わっていることを特徴とする時刻修正装置。
前記構成によれば、時刻情報取得部は、時刻情報抽出信号を介して特定信号から未来時刻情報を抽出する構成となっていると共に、この時刻情報抽出信号のみを供給する時刻情報抽出信号提供部が備わっている。このため、この時刻情報抽出信号提供部を形成する例えば、回路規模等を従来より小さくすることができ、時刻修正装置の消費電力を小さくすることができる。
[適用例7]
好ましくは、前記時刻情報抽出信号提供部は、前記時刻情報抽出信号を生成する時刻情報抽出信号生成部を有し、前記時刻情報抽出信号生成部は、前記特定信号の基本周波数を分周し、前記時刻情報抽出信号を生成する分周カウンタ部を有する構成となっていることを特徴とする時刻修正装置。
前記構成によれば、特定信号の基本周波数、例えば、1.2288MHzを、生成しようとする時刻情報抽出信号(例えば、walshコード(32))の長さ分(例えば、64chips)だけ分周カウンタ部で分周(64分周)することで、例えば、walshコード(32)の信号(信号「0」が32個連続し、その後、信号「1」が32個連続する)を生成できる。
このように、walshコード(32)等の時刻情報抽出信号を、極めて簡単な回路構成等で生成することができるので、消費電力を小さくすることができる。
[適用例8]
基地局が発信する一定時間経過後の未来時刻情報を含む特定信号を受信する受信部と、受信側時刻情報を管理する時刻情報管理部と、前記受信側時刻情報を修正時刻情報に基づいて修正する受信側時刻情報修正部と、を有し、前記修正時刻情報が、前記未来時刻情報及びこの未来時刻情報を変更する時刻変更情報に基づいて生成されることを特徴とする時刻修正装置付き計時装置。
[適用例9]
基地局が発信する一定時間経過後の未来時刻情報を含む特定信号を受信する受信部と、受信側時刻情報を管理する時刻情報管理部と、前記受信側時刻情報を修正時刻情報に基づいて修正する受信側時刻情報修正部と、を有し、前記修正時刻情報が、前記未来時刻情報及びこの未来時刻情報を変更する時刻変更情報に基づいて生成されることを特徴とする時刻修正方法。
以下、この発明の好適な実施の形態を添付図面等を参照しながら、詳細に説明する。
尚、以下に述べる実施の形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの態様に限られるものではない。
図1は、本発明に係る時刻修正装置付き計時装置である例えば、時刻修正装置付き腕時計10(以下「腕時計」という)を示す概略図であり、図2は、図1の腕時計10の内部の主なハードウエア構成等を示す概略図である。
図1に示すように、腕時計10は、その表面に文字板12、長針、短針等の針13等が配置されると共に、各種メッセージが表示されるLED等からなるディスプレイ14が形成されている。なお、ディスプレイ14は、LEDの他、LCD、アナログ表示等でも構わない。
図1に示すように、腕時計10は、アンテナ11を有しており、このアンテナ11は、基地局である例えば、CDMA基地局15a、15b等からの信号を受信する構成となっている。つまり、CDMA基地局15a等は、CDMA方式の携帯電話通信網の基地局となっている。
しかし、本実施の形態の腕時計10は携帯電話機能を有していないためCDMA基地局15a等と電話通信をするものではなく、CDMA基地局15a等から送信される信号から時刻情報等を受信し、その信号に基づいて時刻修正をしようとするものである。CDMA基地局15a等から送信される信号の内容については後述する。
また、図1に示すように、腕時計10には、その利用者が操作可能なりゅうず28が形成されている。このりゅうず28は、腕時計10の利用者が操作可能な外部入力部となっている。
先ず、図1の腕時計10のハードウエア構成等について説明する。図2に示すように、腕時計10はIF(interface(インターフェイス))、I/O(input/output(入出力))、電源ライン20を備え、IF、I/O、電源ライン20には、CPU(Central Processing Unit)21、RAM(Random Access Memory)22、ROM(Read Only Memory)23等が接続されている。
また、IF、I/O、電源ライン20には、CDMA基地局15a等からの信号を受信する受信部である例えば、CDMA基地局電波受信機24が接続されている。このCDMA基地局電波受信機24は、図1のアンテナ11を有している。
また、IF、I/O、電源ライン20には、時計機構であるIC(半導体集積回路)等からなるリアルタイムクロック(RTC)25や温度補償回路付き水晶発振回路(TCXO)26等も接続されている。
このように、図2のRTC25等は、受信側時刻情報を管理する時刻情報管理部の一例となっている。
また、IF、I/O、電源ライン20には、電池27、ディスプレイ14及びタイマー29等も接続されている。タイマー29の機能等については後述する。
このように、IF、I/O、電源ライン20は、すべてのデバイスを接続する機能を有し、アドレスやデータバス、電源ライン、各種I/Oを有する内部配線である。CPU21は、所定のプログラムの処理を行う他、IF、I/O、電源ライン20に接続されたROM23等を制御している。ROM23は、各種プログラムや各種情報等を格納している。
図3は、図2のCDMA基地局電波受信機24の主な構成を示す概略図である。
各構成について説明する前に、その前提となるCDMA方式で使用される「スペクトラム拡散」について説明する。
通常、信号を電波に乗せるために加工する作業を「変調」と呼んでいる。例えば、データ等は、デジタル信号に変換され、その後「変調」が実施される。通常の「変調」は、ある特定の周波数帯域を使い、信号を基準となる搬送周波数に乗せることになる。これでは、通信が特定周波数帯に限られてしまい、周波数帯の有効利用が困難となっていた。
そこで、広い周波数帯を利用する方法として採用されたのがCDMA方式である。CDMA方式では、上述の「変調」の後、さらに「拡散変調」を行う。
「拡散変調」には「PNコード」(+1と−1又は0と1がランダムに並ぶコード)とよばれる拡散符号が用いられる。
そして、拡散変調では、この拡散符号を信号と掛け合わせ、高周波のデジタル信号とする。この結果、信号が広帯域に拡散され、出力も小さくなる。
このように拡散された信号(高周波デジタル信号)を、受信機側が受信し、受信した信号に、もう一度、上述した「PNコード」と同じ拡散符号を掛け合わせ(逆拡散)、復調等をすることで、発信元の信号とすることができ、データ等を取得することができる構成となっている。
かかる前提で、図3を説明する。図3に示すように、アンテナ11には、高周波受信部16が接続されている。この高周波受信部16で、アンテナ11で受信されたCDMA基地局15a等の電波をダウンコンバートする構成となっている。
また、この高周波受信部16には、ベースバンド部17が接続されている。このベースバンド部17内には、パイロットPN同期部17aが設けられている。このパイロットPN同期部17aでは、後述するように、高周波受信部16でダウンコンバートされたパイロットチャネルの信号に、パイロットPNコードをミキシングして信号の同期をとる構成となっている。このように、パイロットPN同期部17aは、信号同期部の一例となっている。
このパイロットPNコードは、上述の「PNコード」のうち、同期用のコードを指す。
パイロットPN同期部17aには、図3に示すように、スタートタイミング発生装置17bが接続されている。
すなわち、パイロットPN同期部17aは、上述の信号の同期をとると、そのタイミングをスタートタイミング発生装置17bに入力し、この入力を受けて、スタートタイミング発生装置17bが、スタートタイミングを発生する構成となっている。
スタートタイミング発生装置17bは、図3に示すように、64分周カウンタ17cと接続されている。このため、スタートタイミング発生装置17bで生成されたスタートタイミングは、64分周カウンタ17cに入力され、分周が開始される構成となっている。
64分周カウンタ17cでは、後述するように、パイロットPNのチップレートである周波数(1.2288MHz)を64分周することで、walshコード(32)を生成する。このように生成されたwalshコード(32)は、アンテナ11が受信したシンクチャネルの信号にミキシングされ、時刻情報が取り出される。これらの信号の処理については、後述する。
スタートタイミング発生装置17bは、64分周カウンタ17cが、基本周波数である例えば、パイロットPNチップレート(1.2288MHz)の分周を開始する開始タイミングを供給する構成となっている。
また、64分周カウンタ17cは、パイロットPN信号の基本単位である、1.2288MHzという周波数を分周し、時刻情報抽出信号である例えば、walshコード(32)を生成する構成となっている。
また、ベースバンド部17は、図3に示すように、デジタルフィルタ17d及びデインターリーブ及び復号化部17eを備えている。つまり、アンテナ11で受信した電波は、上述のように、walshコード(32)がミキシングされた後、デジタルフィルタ17dを通してデインターリーブ及び復号化部17e等を経て、復調され、後述するシンクチャネルメッセージとして取得される構成となっている。
すなわち、デインターリーブ及び復号化部17eを経て、初めて送信された信号を復調等することができ、CDMA基地局15a等が発信した元のデータを取得することができる。
図4乃至図7は、腕時計10の主なソフトウエア構成等を示す概略図であり、図4は全体図である。
図4に示すように、腕時計10は、制御部18を有し、制御部18は、図4に示す各種プログラム格納部30内の各種プログラム、第1の各種データ格納部40内の各種データ及び第2の各種データ格納部50内の各種データを処理する構成となっている。
また、図4には、各種プログラム格納部30、第1の各種データ格納部40及び第2の各種データ格納部50と分けて示してあるが、実際に、このようにデータが分けて格納されているわけではなく、説明上の便宜のために分けて記載したものである。
なお、図4の第1の各種データ格納部40には、主に予め格納されているデータをまとめて示した。また、第2の各種データ格納部50には、第1の各種データ格納部40内のデータ等を各種プログラム格納部30内のプログラムで処理した後のデータ等を主に示した。
図5は、図4の各種プログラム格納部30内のデータを示す概略図であり、図6は、図4の第1の各種データ格納部40内のデータを示す概略図である。また、図7は、図4の第2の各種データ格納部50内のデータを示す概略図である。
図8及び図9は、本実施の形態にかかる腕時計10の主な動作等を示す概略フローチャートである。
以下、図8及び図9のフローチャートにしたがって本実施の形態に係る腕時計10の動作等を説明しつつ、その関連で図5乃至図7の各種プログラムや各種データ等を説明する。
フローチャートの説明に入る前にCDMA方式の携帯電話システムのうち、本実施の形態と関連ある部分を説明する。
CDMA方式の携帯電話システムは米国クアルコム社が開発した方式が1993年に米国の標準方式の一つ「IS95」に採用されたことから本格的な運用が開始されており、これ以降、IS95A、IS95B、CDMA2000という改訂を経て現在に至っている。また、日本国ではARIB STD−T64に準じて携帯電話システムが運用されている。
このようなCDMA方式は下り(CDMA基地局15a等から移動局、本実施の形態では腕時計10)は同期通信であるため、腕時計10がCDMA基地局15a等の信号と同期する必要がある。CDMA基地局15a等から送信される信号は、具体的には、パイロットチャネル信号と、シンクチャネル信号を有している。パイロットチャネル信号は、CDMA基地局15a等ごとに、異なったタイミングで発信されている信号であり、例えば、パイロットPN信号である。
図10は、CDMA基地局15a、15bから送信される信号の同期タイミング等を示す概略図である。
これらのCDMA基地局15a、15bから送信される信号は、同じであるため、この信号がどのCDMA基地局15a等から発信したかを識別するため、各CDMA基地局15a等は、それぞれ他のCDMA基地局15a等と異なるタイミングで信号を発信している。
具体的には、このタイミングの相違は、CDMA基地局15a等が発信するパイロットPN信号の相違として表れる。例えば、図10(b)のCDMA基地局15bの信号は、図10(a)のCDMA基地局15aの信号より僅かに遅れたタイミングで信号を発信している。具体的には、64chip(0.052ms(ミリ秒))分だけ、パイロットPNオフセットを設けている。
このように多数のCDMA基地局15a等が存在しても、各CDMA基地局15a等が64chipの整数倍だけ、それぞれ異なるパイロットPNオフセットを設けることで、受信する腕時計10は、どのCDMA基地局15a等からの信号を受信したかを容易に把握することができる構成となっている。
このパイロットPNオフセットが、基地局識別時差情報の一例となっている。
また、CDMA基地局15a等から発信される信号(特定信号の一例)には、シンクチャネル信号(メッセージ情報の一例)があり、これが図11のシンクチャネルメッセージである。図11は、シンクチャネルメッセージの内容を示す概略図である。
図11に示すように、シンクチャネルメッセージには、上述したパイロットPN信号のデータ、例えば、パイロットPNオフセットデータが64chip(0.052ms)×N(0〜512)であることを示すデータが含まれている。このデータは、図11では「PILOT_PN」で表されている。
また、シンクチャネルメッセージには、GPS時刻データであるシステム時間のデータも含まれている。
システム時間は、1980年1月6日0時からの80ms単位の積算時間となっている。このデータは、図11では「SYS_TIME」で表されている。
また、シンクチャネルメッセージには、世界協定時(UTC)に換算するための「うるう秒」のデータも含まれている。このデータは、図11では、「LP_SEC」で表されている。
また、シンクチャネルメッセージには、腕時計10が所在する国又は地域のUTCに対する時差データである、ローカルオフセット時間が含まれている。すなわち、例えば、日本の場合は、UTCに9時間プラスされた時間である旨のデータ等が格納されている。
このデータは、図11では、「LTM_OFF」で表される。
また、シンクチャネルメッセージには、腕時計10が所在する国や地域がサマータイム等を採用しているか否かのサマータイムデータも含まれている。日本の場合は、サマータイム制を採用していないため、そのデータは「0」となる。このデータは、図11では、「DAYLT」で表される。
図11のシンクチャネルメッセージには、以上のような内容のデータが含まれるが、具体的には、各データは時系列に順番に送信される、送信される信号は、図10に示す、80ms単位からなるスーパーフレーム単位で送信され、シンクチャネルメッセージの最後のデータが含まれるのが、図10のラストスーパーフレームとなる。
すなわち、図10のラストスーパーフレームの最後のタイミング(図10(a)の「E」及び(b)の「EE」で示す部分)が、シンクチャネルメッセージの受信完了のタイミングとなっている。
つまり、上述のシンクチャネルメッセージに含まれるシステム時間は、このラストスーパーフレームの最後のタイミング(「E」「EE」)を基準として定められている。
具体的には、CDMA方式では、図11のシンクチャネルメッセージの上述のシステム時刻は、図10の「E」「EE」における時刻とはなっておらず、4スーパーフレーム(320ms)後における時刻、すなわち、図10の「F」「FF」における時刻となっている。この時刻が未来時刻情報の一例となる。
これは、CDMAがそもそも携帯電話で通信するためのシステムであることに基づく。つまり、携帯電話機は、CDMA基地局15a等から図11に示す、シンクチャネルメッセージを受信した後、CDMA基地局15a等との同期通信をするための準備を携帯電話機内で行う必要がある。
具体的には、次のステージである「待ち受け状態」へ遷移するための準備をした後、CDMA基地局15a等と同期をとり通信することになる。
そこで、この準備時間を考慮して、CDMA基地局15a等は、予め未来の時刻である320ms後の時間を、事前に送信し、この時間を受信した携帯電話機が内部で処理を行い、準備が終わった後、この時刻でCDMA基地局15a等と同期を取りに行くと同期を取りやすくなるという構成となっている。換言すれば、この4スーパーフレーム(320ms)が携帯電話機側の準備時間となっている。
このように、腕時計10が基地局15bの信号を受信した場合で、パイロットPNオフセットを換算した際のラストスーパーフレームの最後のタイミングは、理論上、「EE」の時点となるはずである。
しかし、上述の4スーパーフレーム後の未来時刻情報を含む、図10(b)の基地局15b等の信号は、図3の腕時計10のアンテナ11で受信され、その高周波受信部16を介して、ベースバンド部17のパイロットPN同期部17aで同期され、デインターリーブ及び復号化部17eで処理されて初めて受信が可能となる。
このデインターリーブ及び復号化部17e等における処理時間が、図10(c)の復調、復号処理遅延時間であり、例えば53msとなっている。
したがって、この復調、復号処理遅延時間を勘案した場合、実際は、腕時計10が基地局15bの信号を受信した場合で、パイロットPNオフセットを換算した際のラストスーパーフレームの最後のタイミングは、理論上の「EE」の時点ではなく、図10(c)の「EEE」にずれることになる。
このような復調、復号処理遅延時間が、受信処理遅延時間情報の一例となっている。
以上が、本実施の形態におけるCDMA方式の携帯電話システムの概略であり、以上の前提で、以下、本実施の形態を説明する。
腕時計10の時刻修正をする場合は、先ず、腕時計10の図2に示すCDMA基地局電波受信機24は、図8のST1に示すように、図1のCDMA基地局15a等から送信される電波のうち、パイロットチャネルの信号電波を受信するためのパイロットチャネルスキャンを行う。
その後、ST2で、CDMA基地局電波受信機24は、CDMA基地局15a等からのパイロットチャネル信号を受信する。具体的には、図5のパイロットチャネル信号受信プログラム31が動作する。
次に、図8のST3で、受信したパイロットチャネル信号にパイロットPNコードをミキシングして同期をとり、walshコード(0)を重ねて(逆拡散)、データを取得する。
具体的には、図5のパイロットPN同期プログラム32が動作し、図3のパイロットPN同期部17aが、図6のパイロットPN同期用データ41であるパイロットPNコード(CDMA基地局15a等から送信されるパイロットPNコードと同じコード)及びwalshコード(0)を図3に示すようにミキシングして同期をとる。このとき、ミキシングされるwalshコードは(0)であるため、特別なコードを用意する必要がない。
このように、受信したパイロットチャネル信号には、パイロットPNコードが含まれているため、CDMA基地局電波受信機24側でも、同じパイロットPNコードと、受信するためのwalshコード(0)が必要となる。この構成によりCDMA基地局電波受信機24は、CDMA基地局15a等からのパイロットチャネル信号と同期を取り、逆拡散することができ、データを取得することができる。
図12(a)は、CDMA基地局電波受信機24が、パイロットチャネル信号と同期をとる状態を示す概略図である。
図12(a)に示すように、パイロットチャネル信号には、ゼロ「0」が15個連続して並ぶ部分があり、この最後のゼロ「0」の部分(図12(a)の縦矢印で示す部分)で同期をとる構成となっており、このような同期をとるためのデータが図6のパイロットPN同期用データ41に含まれている。
次にST4で、パイロットPN同期プログラム32が、CDMA基地局15a等のパイロットチャネル信号と同期が完了したか否かを判断し、同期が完了しない場合は、ST5で、腕時計10が有するサービスエリアテーブルを全て参照したか(一巡したか)判断し、全て参照していない場合は、ST6に進む。
ST6では、日本、アメリカ、中国、カナダ等におけるCDMA基地局15a等のデータである図6のサービスエリアデータ42を参照し、そのデータに基づきST1のパイロットチャネルスキャンを行う。
つまり、例えば、腕時計10は、日本のCDMA基地局15a等を探しているが、実際はアメリカに所在していたという場合は、ST3でパイロットチャネル信号と同期を取ることができない。そこで、ST6でアメリカのCDMA基地局15a等のデータを取得し、そのデータに基づき、ST1のパイロットチャネルスキャンを行う。
一方、ST6で、腕時計10が持っているサービスエリアデータ42を全て参照したにもかかわらずパイロットチャネル信号との同期を取ることができないときは、ST7に進む。ST7では、ユーザに時刻修正が行われていないことを示すため、例えば、図1の秒針を3秒動かすことで、その旨をユーザに知らせる。そして、時刻修正をユーザ判断に任せ、終了する。このようにすることで、通常とは違うことを腕時計10のユーザに知らせることができる。
一方、ST4で、パイロットチャネル信号との同期が完了したときは、ST8へ進み、ST8で、スタートタイミング発生装置17bがスタートタイミングを64分周カウンタ17cに入力する。
図5のスタートタイミング発生装置制御プログラム33が動作し、スタートタイミングが生成され、図3の64分周カウンタ17cに入力される。
図12(b)を示して具体的に説明する。図12(b)は、スタートタイミングと64分周カウンタ17cの動作の関係等を示す概略図である。
図12(b)の64分周カウンタ出力は、図示されているように、図12(a)のパイロットチャネル信号との同期タイミングである、図示された縦矢印部分となっており、スタートタイミングの信号も、この縦矢印部分で64分周カウンタ17cに入力される。
そして、ST9では、スタートタイミング発生装置17bから入力されたスタートタイミングで64分周カウンタ17cが動作し、分周を開始する。
つまり、図5の64分周カウンタ制御プログラム34によって64分周カウンタ17cが動作し、図6のパイロットPNチップレート周波数データ43である例えば、1.2288MHzを64分周し、図12(b)で示すようなコードを生成する。
このコードは、コード長が、64chipsで、前半の32chipsがゼロ「0」信号で、後半の32chipsが「1」信号となるため、図11のシンクチャネルメッセージのデータを取得するためのwalshコード(32)と同一となる。
図13は、64分周カウンタ17cがパイロットPNのチップレートである1.2288MHzを分周してwalshコード(32)を生成する過程を示す概略図である。
図13に示すように、パイロットPNのチップレートである1.2288MHzは、デジタルとしては、「0」と「1」の信号となる。
このような信号である、1.2288MHzを分周カウンタ17cで64分周すると、図13に示すように、前半の32chipsが「0」で、後半の32chipsが「1」からなる、walshコード(32)となる。
ST9では、その後、図5のwalshコード32データミキシングプログラム35が動作する。先ず、CDMA基地局15a等から受信した信号であるパイロットチャネル信号に、パイロットPNコードをミキシングして同期をとり、パイロットPNコードの先頭により認識できる同期タイミングで、64分周カウンタ17cが生成したwalshコード(32)を用いて逆拡散させる。さらに、デジタルフィルタ17dやデインターリーブ及び復号化部17e等を介して、図11のシンクチャネルメッセージを受信する。
このシンクチャネルメッセージには、図11に示すように未来時刻情報であるシステム時間(SYS_TIME等)が含まれている。このため、上述のCDMA基地局15a等から発信された信号は、未来時刻情報を含む特定信号の一例となっており、未来時刻情報は、walshコード(32)を介して、CDMA基地局15a等から発信された信号から抽出される構成となっている。
また、図3の64分周カウンタ17cは、walshコード(32)という時刻情報抽出信号のみを供給する時刻情報抽出信号提供部(時刻情報抽出信号生成部)の一例となっている。
次に、ST10では、図5のシンクチャネルメッセージ受信終了判断等プログラム36が動作し、シンクチャネルメッセージの受信が完了したか否かを判断し、シンクチャネルメッセージの受信が完了していないときは、ST11でタイムアウトか否かを判断し、タイムアウトの場合は、再び、ST9でシンクチャネルメッセージを受信し直す。
このように本実施の形態によれば、CDMA基地局15a等から発信されたシンクチャネル信号からシンクチャネルメッセージを抽出するに必要なwalshコード(32)を64分周カウンタ17c等によって生成することができるので、従来のように、64種類以上のwalshコードを生成するためのwalshコード生成装置を設ける必要がない。
このため、回路規模等を小さくすることができ、消費電力を小さくすることができる。
本実施の形態では、パイロットPNのチップレートである基本の周波数1.2288MHzを、64分周カウンタ17cで分周するだけで、図12(b)及び図13に示すような、walshコード(32)を生成することができるので、極めて簡単な回路構成等とすることができ、特に消費電力を小さくすることができる。
また、64分周カウンタ17cの分周は、パイロットPN信号との同期タイミングを基準としたスタートタイミング発生装置17bのスタートタイミング信号に基づいて行なわれるので、確実に、シンクチャネル信号からシンクチャネルメッセージを取得できる構成となっている。
一方、ST10でシンクチャネルメッセージの受信が完了したと判断されると、ST12へ進む。ST12では、タイマー29がカウントを開始する。具体的には、図5のタイマー制御プログラム133が動作し、タイマー29を動作させる。タイマー29のデータは、図7のタイマーデータ51として記憶される。また、ST12では、ST10で受信完了したシンクチャネルメッセージのシステム時間(GPS時刻)、うるう秒、ローカルオフセット時間等を演算する。
なお、この演算は図3のベースバンド部17内で処理しても良いし、ベースバンド部17以外の演算部で処理しても構わない。
具体的には、システム時間を基本に、うるう秒データ等に基づいてUTC時刻を算出し、このUTC時刻に基づき、ローカルオフセット時間で、例えば、9時間を加え、日本時刻等とする。また、日本の場合は、サマータイムを採用していないため、サマータイム時間の補正は実質的行わないが、アメリカのようにサマータイム制を採用する国にあっては、サマータイム時間の補正を行う。
そして、腕時計10が、例えば、図10(b)の基地局15bの信号を受信した場合は、受信後の4スーパーフレーム後の時刻、すなわち図10(b)の「FF」で示す時点での時刻である「基礎ローカル時刻」を算出し、図7の基礎ローカル時刻データ52として登録する。具体的には、図5の基礎ローカル時刻算出プログラム37が動作する。
この基礎ローカル時刻データ52は、腕時計10が受信した時点(図10(b)の「EE」時点)から4スーパーフレーム(320ms(ミリ秒))後の時刻である。
なお、基礎ローカル時刻算出プログラム38が、時刻情報取得部の一例となっている。
CDMA方式で使用される通常の携帯電話機器であれば、制御装置(CPU等)の処理能力が高いため、この320msの時間があれば、シンクチャネルメッセージから、時刻修正用の時刻情報を取得することはできる。
しかし、本実施の形態にかかる腕時計10は、携帯電話機等でないことから、コストを低減する必要性に鑑み、制御装置(CPU等)の処理能力は低くされている。
したがって、図10(b)の「EE」時点で受信が完了しても、その後320ms(ミリ秒)では、ST12の演算等が間に合わないこととなる。
特に、腕時計10の場合は、カレンダ、時刻の計算、受信インターフェイス、そして、後述する1s(秒)以下の端数処理等のタイミング補正等を瞬時に演算し、実行する必要があり、処理能力の低い制御装置では、実行が困難であった。
そこで、本実施の形態では、たとえ、処理能力が低い制御装置等であっても、上述の時刻修正を可能にするため、図9のST13以下の工程を実行する。
先ず、ST13では、ST12で求めた基礎ローカル時刻データ52に1.68s(秒)を加算し、全体で受信時から2s(秒)後の時刻データを求める。
これを図10で説明すると、ST12で求めた基礎ローカル時刻データ52は、図10(b)では、「FF」時点(「EE」から320ms(ミリ秒)後)の時刻であるため
この時刻に「1.68s(秒)」を足すことで、全体として2秒後(図10(b)では「GG」時点)のデータとする。
これにより、腕時計10は、上述の時刻修正の演算や実行等をする時間として「2s(秒)」という時間が確保されるので、たとえ、処理能力が低い制御装置を有する腕時計10でも、余裕を持って時刻修正をすることができることになる。
ただし、本実施の形態では、図10(b)の「GG」で示す時点を正確にするためや、時刻修正し易くするため、以下のような修正を行う。
先ず、上述の図10(b)の「GG」時点における、時刻が1s(秒)以下の端数を有する場合は、腕時計10の修正する際、不便であるため、その端数を切り捨てて、最終的な修正用の時刻である最終ローカル時刻を求め、図7の最終ローカル時刻データ53として登録する。
この「1.68s(秒)」のデータは、具体的には、図6の加算時間データ44として登録されており、図5の最終ローカル時刻算出プログラム38が、このデータを参照して実行する。
また、本実施の形態では、この加算時間データ44が時刻変更情報の一例となっているが、加算時間データ44は、ST12で求めた基礎ローカル時刻データ52より適正に決定しても良い。
ST13で、受信時から2s(秒)後(ただし、1s(秒)以下の端数切捨て)の時刻(最終ローカル時刻データ53)が明らかになったため、受信時から2秒後のタイミング(具体的には、タイマーデータ51を参照して2秒後を把握)で時刻修正をすればよいように思えるが、実際は、誤差が生じている。
すなわち、図10(b)の「GG」の時点では、図10(b)に示すように、基地局15bからの信号は、システム時刻に比べ基地局固有の時差であるパイロットPNオフセット分だけ遅延している。
また、このように遅延している基地局15bの信号を受信した腕時計10は、さらに、図10(c)に示すデインターリーブ及び復号化部17e等における処理時間である復調、復号処理遅延時間を足した分だけ、さらに遅延等することとなる。
すなわち、図10(c)の基地局15bの受信データ(腕時計10のデータ)は、システム時間に比べ、パイロットPNオフセット及び復調、復号処理遅延時間を足した分だけ遅延していることとなる(図10の「GGG」)。
このような、状況下で、ST13で求めた最終ローカル時刻データ53に、基地局15(b)のシンクチャネルメッセージの受信終了時から2秒後(ただし、1s(秒)以下の端数切捨て)のタイミングで、RTC25を修正すると、以下のようになる。
すなわち、図10(a)の「G」のタイミングの時刻であるにもかかわらず、図10(c)の「GGG」のタイミングで時刻修正することとなり、図10の「G」と「GGG」との差分だけ誤差が生じることになる。
そこで、ST14では、上述の2s(秒)から、基地局15bのパイロットPNオフセット(0.052ms×N)と、腕時計10の復調、復号処理遅延時間(53ms)を減算する工程を実施し、誤差を修正している。
また、最終ローカル時刻データ53を算出したときに切り捨てた端数がある場合には、端数も減算することにより、タイミング時刻を求める。
具体的には、パイロットPNオフセット(0.052ms×N)は、図6のパイロットPNオフセット時間データ45として登録され、復調、復号処理遅延時間(53ms)は、図6の復調、復号処理遅延時間データ46として登録されている。このため、図5のタイミング時刻算出プログラム39がこれらのデータを参照して、タイミング時刻データを求め、図7のタイミング時刻データ54として登録する。
このようにST14で求められたタイミング時刻データ54は、2秒(ただし、最終ローカル時刻データ53を算出したときに1s(秒)以下切り捨てた端数がある場合には、端数を減算)から、基地局15bのパイロットPNオフセット(0.052ms×N)と、腕時計10の復調、復号処理遅延時間(53ms)を減算し、図10の「GGG」と「G」の誤差を修正したデータとなっている。
このため、基地局15(b)のシンクチャネルメッセージ受信終了時を基準として、このタイミング時刻データ54の時間で、RTC25を修正すれば、図10の「G」のタイミングで、最終ローカル時刻データ52の時刻で時刻修正をすることができることになる。
そこで、ST15では、タイマーデータ51が、タイミング時刻データ54と合致したタイミングで最終ローカル時刻データ53にRTC25の時刻を修正すれば、極めて正確に時刻修正をすることができることとなる。
このように、精度良く修正されたRTC25に基づいて、図1の針13等も修正され、腕時計10の利用者は、正しく修正された時刻を利用することができる。
ところで、この時刻修正は、320msという限られた時間ではなく2sという余裕のある時間内に実行されるため、腕時計10に処理能力の高い制御装置等を搭載する必要がない。
また、腕時計10の生産コスト等を低減しつつ、CDMA方式の精度の高い時刻情報に基づいて時刻修正をすることもできる。
ST15は、図5のRTC時刻修正プログラム131が動作して実行されると共に、CDMA基地局電波受信機24の電源をOFFとする。また、RTC時刻修正プログラム131が、受信側時刻情報修正部の一例であり、基礎ローカル時刻データ52が、未来時刻情報及び時刻変更情報に基づいて生成される修正時刻情報の一例である。
また、タイマー29が、修正タイミング情報を生成する修正タイミング情報生成部の一例である。タイミング時刻データ54が、修正タイミング情報の一例となっている。
次に、図9のST16に進む。ST16ではタイマー29が動作する。すなわち、図5の時刻修正開始判断プログラム132が動作し、図6の時刻修正間隔データ47を参照する。この時刻修正間隔データ47は、例えば24時間となっている。
このため、ST17で、前回の時刻修正から24時間経過後に次の時刻修正が開始され、ST1以下の工程が実行される。
また、図8及び図9は、うるう秒、ローカルオフセット時間及びサマータイムデータは、CDMA基地局15a等から受信したシンクチャネルメッセージに基づいて自動的に修正される工程としたが、これに限らず、図1のりゅうず28等を用いて腕時計10のユーザが設定可能としてもよい。
この場合は、上述のST12では、この入力されたデータに基づいて基礎ローカル時刻が算出されるので、ユーザの希望通りの時刻修正が可能となる。
本発明は、上述の実施の形態に限定されない。
本発明に係る時刻修正装置付き計時装置である例えば、時刻修正装置付き腕時計を示す概略図である。 図1の腕時計の内部の主なハードウエア構成等を示す概略図である。 図2のCDMA基地局電波受信機の主な構成を示す概略図である。 腕時計の主なソフトウエア構成等を示す概略全体図である。 図4の各種プログラム格納部内のデータを示す概略図である。 図4の第1の各種データ格納部内のデータを示す概略図である。 図4の第2の各種データ格納部内のデータを示す概略図である。 本実施の形態にかかる腕時計の主な動作等を示す概略フローチャートである。 本実施の形態にかかる腕時計の主な動作等を示す他の概略フローチャートである。 CDMA基地局から送信される信号の同期タイミング等を示す概略図である。 シンクチャネルメッセージの内容を示す概略図である。 (a)は、CDMA基地局電波受信機が、パイロットチャネル信号と同期をとる状態を示す概略図であり、(b)は、スタートタイミングと64分周カウンタの動作の関係等を示す概略図である。 64分周カウンタがパイロットPNのチップレートである1.2288MHzを分周してwalshコード(32)を生成する過程を示す概略図である。
符号の説明
10・・・時刻修正装置付き腕時計、11・・アンテナ、12・・・文字板、13・・・針、14・・・ディスプレイ、15a及び15b・・・CDMA基地局、16・・・高周波受信部、17・・・ベースバンド部、17a・・・パイロットPN同期部、17b・・・スタートタイミング発生装置、17c・・・64分周カウンタ、17d・・・デジタルフィルタ、17e・・・デインターリーブ及び復号化部、18・・・制御部、24・・・CDMA基地局電波受信機、25・・・リアルタイムクロック(RTC)、27・・・電池、29・・・タイマー、30・・・各種プログラム格納部、31・・・パイロットチャネル信号受信プログラム、32・・・パイロットPN同期プログラム、33・・・スタートタイミング発生装置制御プログラム、34・・・64分周カウンタ制御プログラム、35・・・walshコード32データミキシングプログラム、36・・・シンクチャネルメッセージ受信終了判断等プログラム、37・・・基礎ローカル時刻算出プログラム、38・・・基礎ローカル時刻算出プログラム、39・・・タイミング時刻算出プログラム、40・・・第1の各種データ格納部、41・・・パイロットPN同期用データ、42・・・サービスエリアデータ、43・・・パイロットPNチップレート周波数データ、44・・・加算時間データ、45・・・パイロットPNオフセット時間データ、46・・・復調、復号処理遅延時間データ、47・・・時刻修正間隔データ、50・・・第2の各種データ格納部、51・・・タイマーデータ、52・・・基礎ローカル時刻データ、53・・・最終ローカル時刻データ、54・・・タイミング時刻データ

Claims (9)

  1. 基地局が発信する一定時間経過後の未来時刻情報を含む特定信号を受信する受信部と、
    受信側時刻情報を管理する時刻情報管理部と、
    前記受信側時刻情報を修正時刻情報に基づいて修正する受信側時刻情報修正部と、を有し、
    前記修正時刻情報が、前記未来時刻情報及びこの未来時刻情報を変更する時刻変更情報に基づいて生成されることを特徴とする時刻修正装置。
  2. 前記時刻変更情報は、前記未来時刻情報を未来へ進めるための情報であることを特徴とする請求項1に記載の時刻修正装置。
  3. 前記受信側時刻情報修正部が前記受信側時刻情報を修正する修正タイミング情報を生成する修正タイミング情報生成部を有することを特徴とする請求項1又は請求項2に記載の時刻修正装置。
  4. 前記受信部は、前記基地局から発信された前記特定信号と同期を取る信号同期部と、前記信号同期部で同期を取った前記特定信号から前記未来時刻情報を取得する時刻情報取得部と、を有すると共に、
    前記信号同期部が前記基地局からの前記特定信号を受信してから前記未来時刻情報を取得処理するまでの時間である受信処理遅延時間情報を格納する受信処理遅延時間情報格納部と、
    前記基地局を識別するための基地局識別時差情報を格納する基地局識別時差情報格納部と、を有し、
    前記修正タイミング情報の開始タイミングは、前記特定信号のメッセージ情報の受信終了時であることを特徴とする請求項3に記載の時刻修正装置。
  5. 前記修正時刻情報は、1秒単位の前記未来時刻情報であることを特徴とする請求項1乃至請求項4のいずれか1項に記載の時刻修正装置。
  6. 前記時刻情報取得部は、時刻情報抽出信号を介して前記特定信号から前記未来時刻情報を抽出する構成となっていると共に、この時刻情報抽出信号のみを供給する時刻情報抽出信号提供部が備わっていることを特徴とする請求項4又は請求項5に記載の時刻修正装置。
  7. 前記時刻情報抽出信号提供部は、前記時刻情報抽出信号を生成する時刻情報抽出信号生成部を有し、
    前記時刻情報抽出信号生成部は、前記特定信号の基本周波数を分周し、前記時刻情報抽出信号を生成する分周カウンタ部を有する構成となっていることを特徴とする請求項6に記載の時刻修正装置。
  8. 基地局が発信する一定時間経過後の未来時刻情報を含む特定信号を受信する受信部と、
    受信側時刻情報を管理する時刻情報管理部と、
    前記受信側時刻情報を修正時刻情報に基づいて修正する受信側時刻情報修正部と、を有し、
    前記修正時刻情報が、前記未来時刻情報及びこの未来時刻情報を変更する時刻変更情報に基づいて生成されることを特徴とする時刻修正装置付き計時装置。
  9. 基地局が発信する一定時間経過後の未来時刻情報を含む特定信号を受信する受信部と、
    受信側時刻情報を管理する時刻情報管理部と、
    前記受信側時刻情報を修正時刻情報に基づいて修正する受信側時刻情報修正部と、を有し、
    前記修正時刻情報が、前記未来時刻情報及びこの未来時刻情報を変更する時刻変更情報に基づいて生成されることを特徴とする時刻修正方法。
JP2007234399A 2007-09-10 2007-09-10 時刻修正装置、時刻修正装置付き計時装置及び時刻修正方法 Pending JP2009068851A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007234399A JP2009068851A (ja) 2007-09-10 2007-09-10 時刻修正装置、時刻修正装置付き計時装置及び時刻修正方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007234399A JP2009068851A (ja) 2007-09-10 2007-09-10 時刻修正装置、時刻修正装置付き計時装置及び時刻修正方法

Publications (1)

Publication Number Publication Date
JP2009068851A true JP2009068851A (ja) 2009-04-02

Family

ID=40605289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007234399A Pending JP2009068851A (ja) 2007-09-10 2007-09-10 時刻修正装置、時刻修正装置付き計時装置及び時刻修正方法

Country Status (1)

Country Link
JP (1) JP2009068851A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107623904A (zh) * 2016-07-14 2018-01-23 卡西欧计算机株式会社 通信装置、电子时钟、时刻校正方法、以及计算机可读存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107623904A (zh) * 2016-07-14 2018-01-23 卡西欧计算机株式会社 通信装置、电子时钟、时刻校正方法、以及计算机可读存储介质
CN107623904B (zh) * 2016-07-14 2020-11-03 卡西欧计算机株式会社 通信装置、电子时钟、时刻校正方法、以及计算机可读存储介质

Similar Documents

Publication Publication Date Title
US7813225B2 (en) Time adjustment device, timepiece with a time adjustment device, and time adjustment method
JP2008170229A (ja) 時刻修正装置、時刻修正装置付き計時装置及び時刻修正方法
RU2195075C2 (ru) Радиотелефон и способ калибровки тактового сигнала для режима поискового вызова во временных интервалах в радиотелефонной системе многостанционного доступа с кодовым разделением (мдкр)
US20080165627A1 (en) Time Adjustment Device, Timepiece with a Time Adjustment Device, and Time Adjustment Method
US20080165624A1 (en) Time Adjustment Device, Timepiece with a Time Adjustment Device, and Time Adjustment Method
JP2008051697A (ja) 計時装置及び計時装置の時刻修正方法
CN109085615A (zh) 一种bpc北斗多模授时方法及系统
US6574200B1 (en) CDMA receiver comprising a synchronous timing notifying section capable of reaching low consumption of current
US7782716B2 (en) Time adjustment device, timepiece with a time adjustment device, and time adjustment method
CN213585795U (zh) 一种基于gps/cdma的双模ntp授时器
CN1726404B (zh) 用于预定进度以搜索并截获全球定位卫星的方法和装置
WO2010073441A1 (ja) 同期装置、受信装置、同期方法、及び受信方法
JP2009068851A (ja) 時刻修正装置、時刻修正装置付き計時装置及び時刻修正方法
JP4793361B2 (ja) 時刻修正装置、時刻修正装置付き計時装置及び時刻修正方法
JP2009085604A (ja) 時刻修正装置、時刻修正装置付き計時装置及び時刻修正方法
JP2009085726A (ja) 時刻修正装置、時刻修正装置付き計時装置及び時刻修正方法
JP2009085605A (ja) 時刻修正装置、時刻修正装置付き計時装置及び時刻修正方法
JP2008051526A (ja) 時刻修正装置、時刻修正装置付き計時装置及び時刻修正方法
JP4862557B2 (ja) 時刻修正装置及び時刻修正装置付き計時装置
JP2008051528A (ja) 時刻修正装置、時刻修正装置付き計時装置及び時刻修正方法
CN100476686C (zh) 移动通信终端与个人计算机的时间信息同步化装置及方法
JP4289425B2 (ja) 受信装置、電波時計、受信モジュールおよび受信方法
JP2002118501A (ja) 無線通信装置
JP2009097946A (ja) 受信装置、電波時計および受信方法
Yang et al. Experiment research of Europe-Asia TWSTFT link