JP4783281B2 - 圧力降下可変式燃料電池スタック - Google Patents

圧力降下可変式燃料電池スタック Download PDF

Info

Publication number
JP4783281B2
JP4783281B2 JP2006509877A JP2006509877A JP4783281B2 JP 4783281 B2 JP4783281 B2 JP 4783281B2 JP 2006509877 A JP2006509877 A JP 2006509877A JP 2006509877 A JP2006509877 A JP 2006509877A JP 4783281 B2 JP4783281 B2 JP 4783281B2
Authority
JP
Japan
Prior art keywords
fuel cell
cell stack
fluid
compression
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006509877A
Other languages
English (en)
Other versions
JP2006523933A (ja
Inventor
チャップマン,ダリル
ロック,ジェフ・エイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motors Liquidation Co
Original Assignee
Motors Liquidation Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motors Liquidation Co filed Critical Motors Liquidation Co
Publication of JP2006523933A publication Critical patent/JP2006523933A/ja
Application granted granted Critical
Publication of JP4783281B2 publication Critical patent/JP4783281B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/248Means for compression of the fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

本発明は、燃料電池に係り、より詳しくは、燃料電池の所望の作働が達成されるように作働中に様々な量で加圧された燃料電池に関する。
燃料電池は、多数の用途で電源として使用されてきた。例えば、燃料電池は、内燃エンジンに取って代わるため電気車両電源プラントで使用するため提案された。陽子交換膜(PEM)形式の燃料電池では、水素が燃料電池のアノードに供給され、酸素がカソードに供給される。PEM燃料電池は、薄い陽子伝達性の非導電固体ポリマー電解質膜を含む膜電極アッセンブリ(MEA)を有し、該ポリマー電解質膜は、該ポリマー電解質の面の一方にアノード触媒を有し、その反対側の面にカソード触媒を有している。MEAは、一対の導電要素の間に挟まれており、該一対の導電要素は、(1)アノード及びカソードのための電流コレクターとして機能し、(2)夫々のアノード及びカソード触媒の表面に亘って燃料電池ガス状反応物を分布させるため適切なチャンネル及び/又は開口部を備えている。
「燃料電池」という用語は、その文脈に応じて、典型的には、単一の電池又は複数の電池のいずれかに言及するため使用されている。複数の個々の電池は、燃料電池スタックを形成するため一緒に共通に束ねられ、一般に直列に配置されている。スタック内部の各々の電池は、前述したMEAを備え、そのようなMEAの各々は、電圧の増分を提供する。スタック内の隣接する電池のグループは、クラスターと称される。
PEM燃料電池では、水素(H)がアノード反応物(即ち燃料)であり、酸素がカソード反応物(即ち酸化剤)である。酸素は、純粋な形態(O)又は空気(O及びNの混合物)のいずれであってもよい。固体ポリマー電解質は、典型的には、過フッ化スルホン酸等のイオン交換樹脂から作られる。アノード/カソードは、典型的には、きめ細かく分割された触媒粒子を含み、該粒子は、しばしば炭素粒子上に担持され、陽子伝導性樹脂と混合される。触媒粒子は、典型的には、コスト高の貴金属粒子である。これらのMEAは、製造する上で比較的高価となり、効果的な作働のため、適切な水管理、加湿、一酸化炭素(CO)等の触媒汚染成分の制御を始めとした、幾つかの条件を必要とする。
MEAを挟む導電性プレートは、その面に溝列を備え、該溝列は、各々のカソード及びアノードの表面に亘って燃料電池のガス状反応物(即ち、水素、及び、空気の形態の酸素)を分配するため反応物流れ場を形成する。これらの反応物流れ場は、一般に、複数のランドを備え、該ランドの間に複数の流れチャンネルを形成し、該チャンネルを通ってガス状反応物が流れチャンネルの一端部における供給ヘッダーから流れチャンネルの反対側の端部における排気ヘッダーまで流れる。
反応物流れ場とMEAとの間に介在されているものは、幾つかの機能を奏する拡散媒体である。これらの機能の一つは、それぞれの触媒層と反応するため、拡散媒体を介した反応ガスの拡散である。別の機能は、燃料電池を横切って例えば水等の反応生成物を拡散することである。これらの機能を適切に実行するため、拡散媒体は、十分な強度を維持しつつ十分に多孔性でなければならない。燃料電池スタック内に組み付けられたとき拡散媒体が引き裂かれることを防止する強度が要求される。
流れ場は、反応物の一定の流量において、流れ場入口と流れ場出口との間の特定の圧力効果が得られるように、注意深くサイズが定められている。より高い流量では、圧力降下がより高くなり、その一方で、より低い流量では、圧力降下はより低くなる。しかし、流れ場入口と流れ場出口との間で経験される圧力降下は、設計された圧力降下からばらつき得る。そのようなばらつきは、燃料電池及びスタックの製造工程におけるばらつきによって、及び/又は、燃料電池及びスタックで使用される構成部品の許容誤差におけるばらつきによって引き起こされ得る。設計された圧力降下からのそのようなばらつきは、燃料電池及びスタックの作働及び/又は性能に有害となり得る。
加えて、燃料電池及びスタックは、低いパワーが引き出されるとき不安定となり得る。即ち、燃料電池及びスタックの低いパワー要求の間に、燃料電池及びスタックを介した反応物の流れは、減少され、流れ場を介した反応物の速度が減少され、ひいては燃料電池スタックを不安定にさせ得る。この不安定の一つの原因は、反応物の減少した速度にあり、これは燃料電池から反応生成物(HO)を輸送するため十分なせん断力も動的圧力も提供しない。不適切なせん断力又は動的圧力は、ガス状反応物が反応表面(触媒層)に余さず接触することを可能とせず、流れ場からの水及び/又は他の反応物が流れチャンネル内で蓄積することを可能にし得る。燃料電池スタックの低いパワー作働を改善する一つの方法は、低いパワーを引き出す間に、より高い流れ速度が生じるように、より高い圧力降下を持つように流れチャンネルを設計することである。しかし、これは、圧力降下が一般に流量に関して線形的に増大するが故に実際的ではない。かくして、圧力降下が低いパワーの時点で10%増大されるならば、圧力降下はより高いパワーの時点で10%増大される。圧力降下は浪費エネルギーを表しているので、燃料電池スタックのより高いパワー出力で圧力降下を増大させることは望ましくない。
従って、必要とされているものは、改善された燃料電池及び/又は改善された流れ場設計を有する燃料電池スタックである。
本発明は、燃料電池スタックを通した反応物流れで異なる圧力降下が生じるように動的に制御することができる燃料電池及び/又は燃料電池スタックを提供する。動的制御は、燃料電池及び/又はスタックの作働を所望の作働状態にカスタマイズすることを可能にする。
本発明に係る燃料電池スタックは、互いに隣接して配置された複数の燃料電池を有する。複数の燃料電池のうち少なくとも1つの燃料電池は、内部に流れ場が形成された電極プレートと、陽子交換膜と、該電極プレートに隣接して配置された圧縮可能な流体浸透性の拡散媒体とを有する。圧縮部材は、複数の燃料電池を一緒に可変に圧縮するように作働可能である。燃料電池は、少なくとも1つの燃料電池内の拡散媒体の一部分が隣接する電極プレート内の流れ場に進入するように圧縮部材によって一緒に圧縮される。
本発明は、燃料電池スタックが複数の燃料電池を有し、該複数の燃料電池のうち少なくとも1つの燃料電池が、流れ場が内部に形成された電極プレートと、陽子交換膜と、流れ場内へと圧縮可能である、電極プレートに隣接して配置された圧縮可能な流体浸透性拡散媒体と、を有する、前記燃料電池スタックを作働させる方法を更に提供する。本方法は、(a)燃料電池スタックに反応物供給流れを供給し、(b)該燃料電池スタックの作働条件に応じて拡散媒体がその有効流れ面積を変化させるため流れ場に対して移動するように前記燃料電池スタックの圧縮状態を調整する、各工程を備える。
理解することができるように、本発明は、圧力降下を変化させて燃料電池及びスタックの所望の作働状態を達成することができるように、燃料電池及びスタックが作働している間に変化させることができる調整可能な圧力降下手段を有する、燃料電池及びスタックを提供する。
本発明の用途の更なる領域は、以下に提供される詳細な説明から明らかとなろう。詳細な説明及び特定の例は、本発明の好ましい例を示しているが、図示の目的のみを意図しており、本発明の範囲を制限するものではないことが理解されるべきである。
本発明は、詳細な説明及び添付図面からより完全に理解されよう。
図1を参照すると、単一電池式の燃料電池10が、MEA12と、一対の導電性電極プレート14の間に挟まれた一対の拡散媒体32と、を有して示されている。しかし、本発明は、後述されるように、直列に配列され、当該技術分野で一般に知られている二極式電極プレートにより互いから分離された複数の単一電池を備える燃料電池スタック15に等しく適用可能であることが理解されよう。そのような燃料電池スタック15は、図4A及び図4Bに示されている。簡潔にするため、燃料電池スタック15又は個々の燃料電池10のいずれかを更に参照することができるが、燃料電池スタック15に関連する説明及び記載は、個々の燃料電池10にも適用可能であり、その逆も可能であって、いずれも本発明の範囲内にあることが理解されるべきである。
プレート14は、カーボン、グラファイト、被覆プレート又は腐食耐性金属から形成することができる。MEA12及び電極プレート14は、端部プレート16の間に一緒にクランプされている。電極プレート14は、MEA12の両面に反応ガス(即ち、H及びO)を分配するための流れ場22を形成する複数の流れチャンネルを画定する複数のランド18を各々備えている。多電池燃料電池スタック15の場合には、流れ場は、Hに対して一つ、Oに対して一つ、二極式プレートのいずれかの側に形成されている。非伝導ガスケット24は、燃料電池10の幾つかの構成部品の間で、シール部及び電気絶縁部を提供する。
図2及び図3を特に参照すると、MEA12は、アノード触媒層28と、カソード触媒層30との間に挟まれた膜26を備えている。アノード拡散媒体32a及びカソード拡散媒体32cは、MEA12及びプレート14の間に挟まれている。図示のように、H流れチャンネル20は、アノード側H流れ場を形成し、アノード拡散媒体32aに直ぐ隣接して配置され、該アノード拡散媒体と直接的に流体連通している。同様に、O流れチャンネル20は、カソード側O流れ場を形成し、カソード拡散媒体32cに直ぐ隣接して配置され、該カソード拡散媒体と直接的に流体連通している。膜26は、陽子交換膜(PEMに沈着)であるのが好ましく、PEMを有する電池は、PEM燃料電池と称される。
作働中には、H含有改質流れ、又は、純粋なH流れ(燃料供給流れ)は、アノード側流れ場の入口側へと流れ込み、これと同時にO含有改質流れ(空気)又は純粋なO流れ(酸化剤供給流れ)は、カソード側流れ場の入口側へと流れ込む。Hは、アノード拡散媒体32aを通って流れ、アノード触媒28の存在は、Hを、各々が電子を放出した状態の水素イオン(H)へと分解させる。電子は、アノード側から、作業を実行すること(即ち、電導モーターの回転)を可能にするための電子回路(図示せず)へと移動する。膜層26は、Hイオンが、該膜を通って流れることを可能にすると共に、電子が該膜を通過することを防止する。かくして、Hイオンは、直接、膜を通って流れ、カソード触媒28へと至る。カソード側では、Hイオンは、Oと及び電子回路から戻ってくる電子と結合し、これによって水を形成する。
図2及び図3をなおも参照すると、流れチャンネル20及びMEA12が示されている。流れチャンネル20は、供給流れが流れるところの特定の流れ領域34を有するようにサイズが定められている。流れ領域34は、流れチャンネル20を通過する供給流れの一定の流量で、流れ場22に亘って、特定の圧力降下が生じるようにサイズが定められている。即ち、一定の流量において、チャンネル20を通って流れるガス状反応物は、流れ場22の入口及び出口の間で圧力降下を受ける。流れ場22を通過する供給流れの流量は、例えば、より高い又はより低いパワー出力が要求されるとき等、燃料電池スタック15の作働に応じて変化し得る。上記したように、燃料電池スタック15の作働を調整及び/又は最適化するため流れ場22に亘って発生する特定の圧力降下を変えることができることが望ましい。
供給流れの特定の流量に対して流れ場22に亘って生じる圧力降下を変化させるため、拡散媒体32は、図2及び図3に示されるように、圧縮可能となっており、流れ場22の流れチャンネル20内へと圧縮させることができる。詳しくは、MEA12は、圧縮可能な媒体32の一部分が流れチャンネル20内に進入するように、隣接する電極プレート14の間に圧縮される。図4A及び4Bに示されるように、燃料電池スタック15は、調整可能な圧縮部材38により圧縮され、該圧縮部材は、圧縮力Fを印加し、複数の燃料電池10を一緒に圧縮させ、圧縮可能な拡散媒体32を、流れ場22の流れチャンネル20内へと圧縮し進入させる。好ましくは、圧縮可能な媒体32は、約0〜50%の間で弾性変形する。より詳しくは、圧縮可能媒体32の断面積は、約0〜50%の間で弾性変形するのが好ましい。拡散媒体32の一部分36の流れチャンネル20内への進入は、流れ面積34を減少させる。流れ面積34における減少は、流れチャンネル20及び流れ場22を通した供給流れの流れを制限する。この制限は、供給流れの与えられた流量に対する圧力降下の増大を生じさせる。媒体32の流れチャンネル20内への進入量は、例えば、拡散媒体32の特有の特徴と、流れチャンネル20の幾何学/寸法(深さ及び幅)と、印加された力Fの量等、様々な因子に依存している。流れチャンネル20の可変の制限は、流れチャンネル20を通って流れる供給流れの制御を可能にする。
拡散媒体32は、上述したように、アノード拡散媒体32a及びカソード拡散媒体32cの両方として使用される。拡散媒体32は、燃料電池スタック15に印加された典型的な力Fで圧縮可能であるか又は非圧縮性であるかのいずれであってもよい。典型的には、燃料電池スタック15は、燃料電池スタック15の総断面積に亘って約172乃至約1379kPa(約25乃至約200psi)の範囲にある圧力を経験させる量で圧縮される。燃料電池10及び燃料電池スタック15を備える様々な構成要素における隙間、空洞部及び空間の故に、総断面積のうち約50%だけが、典型的に、他の構成部品と接触している。従って、典型的な燃料電池スタック15は、約345乃至約2758kPa(約50乃至約400psi)の範囲の圧縮力又は圧力が燃料電池スタック15によって経験させられる量で圧縮される。しかし、他の圧縮力を印加し、それでもなお、本発明の範囲内である得ることが理解されるべきである。更に「圧縮可能」及び「非圧縮性」という用語は、各々、本明細書で使用されるとき、燃料電池スタック15内で遭遇されると予想される圧縮力の範囲で流れチャンネル20内に圧縮され、進入する一つの拡散媒体32の能力、並びに、遭遇されると予想される圧縮力の同じ範囲で有意な量では流れチャンネル20内に進入しない別の拡散媒体32の能力を記載するため使用される。流れチャンネル20内への有意な進入量は、流れチャンネル内の流れが、本明細書で記載されるように調整され、制御されることを可能にする進入量である。換言すれば、非圧縮性とは、媒体が、チャンネルを通過する流れに、識別可能な効果も機能的な効果のいずれの効果も本質的に有していないことを意味している。
図4A及び4Bを参照すると、調整可能な圧縮部材38は、燃料電池スタック15に圧縮力Fを印加している。圧縮部材38により印加された圧縮力Fの大きさは、燃料電池スタック15の作働(静的又は動的)及び非作働の両方の間でも調整することができる。圧縮部材38は、燃料電池スタック15が所望の作働状態で作働することを可能にする大きさの圧縮力Fを印加することができるようにサイズが定められている。様々に異なる圧縮部材38が、圧縮力Fを印加するように利用することができる。例えば、図4Aに示されるように、圧縮部材38は、流体ブラッダー40であってもよい。ブラッダー40は、与えられた圧力で、流体(例えば、空気、水)の様々な量で充填することができる内部を有している。ブラッダー40は、ブラッダー40の量及び/又は圧力に応じて伸縮する。流体が追加されるとき、ブラッダー40は膨張し、流体圧力が形成されて圧縮力Fを増大させ、その結果、燃料電池スタック15の圧縮状態を増大させる。その逆に、流体が除去されるとき、ブラッダー40は収縮し、流体圧力が減少して圧縮力Fを減少させ、その結果、燃料電池15の圧縮状態を減少させる。
使用することができる圧縮部材38の別の例は、図4Bに示されるように、ラム42である。ラム42は、調整可能な長さを有し、流体的に制御され、又は、機械的に制御され得る。流体制御式ラム42は、流体(例えば、液圧又は空気圧)に応答して移動するピストンを有する。流体がラム42に供給されたり、ラム42から除去されたりするとき、その長さは増減し、各々、圧縮力Fを増減させ、その結果、燃料電池15の増減された圧縮状態を生じさせる。機械制御式のラム42は、回転式カラーと、該カラーの回転に応じて移動する、ねじジャッキの形態でアクチュエータを持つことができる。代替例として、カム又はギア駆動式ロッドは、アクチュエータとして利用することができる。アクチュエータが移動するとき、圧縮力Fの大きさが変化し、燃料電池15の圧縮に変化を生じさせる。
圧縮部材38が、説明の目的のため、ブラッダー38又はラム42であるものとして示され、説明されている。作働中に制御信号に応答して燃料電池スタック15の圧縮の変化を可能にする他の装置及び/又は構成を、圧縮部材38のため利用することができるが、これらも本発明の範囲内にあることが理解されるべきである。
上記したように、燃料電池スタック10のための用途及び設計詳細事項に応じて、拡散媒体32を圧縮性形態又は非圧縮性形態のいずれの形態においても提供することができる。
拡散媒体32a又は32cのうち一つだけが圧縮可能であり、他方が非圧縮性であるのが好ましい。拡散媒体32の一つだけの型式(アノード又はカソード)を圧縮可能とさせることによって、1組の流れチャンネル20を、与えられた流量で特有の圧力降下のためにサイズを定めることができ、他方の組のチャンネル20を、燃料電池10の圧縮に従って変化する流れ面積34を有するようにすることができる。このことは、燃料電池スタック15の作働を、後述されるように、所望の作働状態へと調整することを可能にする。しかし、拡散媒体32a及び32cの両方は、圧縮可能であってもよく、それでもなお本発明の範囲内に属することが理解されるべきである。本発明の範囲内に属するために、燃料電池スタック15を備える燃料電池10の全てが必ずしも圧縮媒体32を有する必要はないことも理解されるべきである。即ち、燃料電池スタック15を備える圧縮媒体32を有する燃料電池10の数は、燃料電池スタック15の設計に応じて変化し得る。従って、圧縮可能媒体32を持っていない燃料電池10を含み、それでもなお本発明の範囲内にあることが可能となる。
圧縮可能アノード拡散媒体32a又は圧縮可能カソード拡散媒体32cを持つか否かの選択は、燃料電池スタック15の所望の作働及び制御に依存する。例えば、燃料電池10に供給された燃料が改質システムからのH含有改質流れであるとき、圧縮性アノード拡散媒体32aを提供することにより、アノード流れチャンネル20内の流れ面積34を調整することが好ましい。圧縮性アノード拡散媒体32aの使用は、アノード流れチャンネル20を通って流れる改質燃料電池の量を正確に制御することを可能にする。これは、改質燃料が、典型的には、該改質燃料を発生するため燃料電池システムにより生成されたエネルギーを使用する車内搭載改質システムにより提供されるが故に好ましい。エネルギーが改質燃料を生成するため費やされるので、浪費物を最小にするため改質燃料の必要とされる(要求)量のみを供給するのが好ましい。アノード排気物(浪費物)内の改質燃料の量における減少は、燃料電池10が作働するところの燃料電池システムのより効率的な作働を可能にする。従って、改質燃料が使用されるとき、アノード拡散媒体32aが圧縮可能であり、カソード拡散媒体32cが非圧縮性であることが好ましい。
これとは対称的に、搭載されているH貯蔵タンクからの燃料供給流れがHであるとき、圧縮可能カソード拡散媒体32cを提供することにより、カソード流れチャンネル20内の流れ面積34を調整することが好ましい。これは、燃料電池システムからのエネルギーが、コンプレッサ作業の形態で酸化物供給流れを提供するため使用される間に、貯蔵タンクからH燃料供給流れを提供するため燃料電池システムによっては、ほとんどか全くエネルギーを消費しないが故に好ましい。圧縮可能カソード拡散媒体32cを介したカソード流れチャンネル20を通した圧力降下を制御することによって、過剰のコンプレッサ仕事に伴うエネルギー損失が最小となるように、圧縮された酸化剤供給流れの使用を最小にし及び/又は最適化することができる。加えて、カソード流れチャンネル20を通過する流れを制御することによって、燃料電池スタック15を加湿された状態に維持することがより容易となる。
拡散媒体32の性能要求に関しては、拡散媒体32は、圧縮可能又は非圧縮性であると共に、十分に、導電性、熱伝導性及び流体浸透性であるべきである。拡散媒体32の流体浸透性は、流れチャンネル20の間に配置されたランド18の下で反応ガス及び/又はHOを輸送するために高くなければならず、導電性は、ランド18からMEA12へと流れチャンネル20に亘って電子を輸送するため高くなければならず、熱伝導性は、プレートに熱を輸送し、該熱は該プレートと接触する冷却剤を介して分散されるのに十分でなければならない。
拡散媒体32は、反応物(即ち、H及びO)、並びに、該拡散媒体を介した反応生成物(即ち、HO)の拡散を可能にする。この態様では、反応物は、流れチャンネル20から、拡散媒体32を通って、要求された反応を可能にするためそれらの各々の触媒と接触するようになる。上述されたように、反応の一つの生成物はHOである。燃料電池10に亘るHOの再分布は、燃料電池10の性能にかなりの重要性を持っている。拡散媒体32は、該拡散媒体を通して、燃料電池10を均等に水和するためより水和化された領域からより乾燥した領域へと、HOの流れを可能にしている。更には、電子の流れも、燃料電池10の性能にとって有意な因子である。電子流れの禁止は、乏しい性能及び非効率しか生み出さない。
上述した特徴を有する、例えば060TORAY(R)カーボンファイバー等の非圧縮性拡散媒体は、当該技術分野で知られており、よって、更に詳しくは説明しない。これらの特徴を有する圧縮可能媒体32は、様々な材料から作ることができる。例えば、ニュージャージー州、サマーセットのダ・ノラN.A.のE−TEK部門から市販されているV3エラット単一側部拡散器等の編んだカーボンペーパー、ドイツのヴィースバーゲンのSGLカーボンAGから市販されているCF布を、圧縮可能な拡散媒体として使用することができる。更には、上述した材料に類似した特性を有する他の材料も用いることができる。
燃料電池スタック15の圧縮状態は、与えられた作働状態のための特定の圧力降下を提供するため作働中に調整することができる。典型的な圧力降下は、プレートに亘って約0.69乃至約41kPa(約0.1乃至約6psi)の範囲にある。しかし、他の圧力降下を、本発明の範囲から逸脱すること無く用いることができる。供給流れにより経験される特定の圧力降下は、供給流れの流量及び流れチャンネル20を通した流れ領域34のサイズに応じて変化する。
燃料電池スタック15の圧縮状態を調整することによって、圧縮可能拡散媒体32の一部分36の流れチャンネル20内への進入が制御される。進入を制御することにより、圧力降下を制御することが可能となる。圧力降下を制御することにより、流れ場22を通って流れる供給流れの最小速度が維持され、又は、燃料電池スタック15の所望の作働状態が達成されることを確実にすることができる。例えば、低いパワーレベル(供給流れの減少した流れ)において、燃料電池スタック15の圧縮状態を増大させることができ、これによって圧縮媒体32の流れチャンネル20内への進入を増大させることができる。増大した進入は、流れチャンネル20に亘る圧力降下を増大させ、その結果、流れチャンネル20を通る供給流れの速度の増大を生じさせる。別の例として、高いパワーレベル(供給流れの増大した流れ)の間、燃料電池スタック15の圧縮状態を、減少させることができ、これによって、圧縮可能媒体32の流れチャンネル20内への進入を減少させることができる。減少した進入は、流れチャンネル20に亘る圧力降下を減少させ、その結果、エネルギー損失をより低くさせる。より大きい供給流れの流量は、最小流れ速度を維持するため、より低いパワーほどには圧力降下は必要としない。最小速度を維持することは、ガス状反応物の触媒層28及び30への隅々に亘る接触を可能にするため適切なせん断力又は動的圧力が燃料電池10から反応生成物(HO)を輸送するため供給流れによって発生されることを確実にする上で望ましい。かくして、燃料電池スタック15の作働をその作働状態に応じてカスタマイズすることができる。
圧縮可能拡散媒体32は、該圧縮可能拡散媒体32が利用されるところの用途により決定されるような様々な度合いにまで圧縮することができる。典型的な圧縮は、約10乃至約50%の範囲となると考えられる。しかし、本発明の範囲から逸脱すること無く、他の量の圧縮状態を用いることができることが理解されるべきである。実際の圧縮量は、とりわけ、チャンネル形状(チャンネルの幅及び深さ)、燃料電池スタック15の所望の作用(所望の圧力降下及び/又は所望の流れ速度)、及び、使用される特定の拡散媒体に応じて変化する。電極プレート14は、効果的に電流を伝達させるため圧縮状態を必要とする電導性コーティングを用いることができる。即ち、電極プレート14上のコーティングは、接触抵抗を示し、圧縮されない場合には十分には電導性ではない。考えられる10%の最小圧縮量は、燃料電池スタック15を含む構成部品の製造上のばらつき及び許容範囲の原因となり、圧縮可能拡散媒体32及び隣接する電極プレート14の間の適切な圧縮及び接触を確実にし、それにより、電極プレート14の接触抵抗は、公称値よりも小さくなる。そのようなコーティングの圧縮に対する要求事項は、コーティングの厳密な性質及びプレート14の設計に応じて変化し得る。
ここで、図4A及び図4Bを参照すると、本発明に係る調整可能圧縮状態を有する燃料電池スタック15が示されている。複数の燃料電池10は、互いに隣接して配置され、燃料電池アッセンブリ44へと構築される。燃料電池アッセンブリ44は、燃料電池アッセンブリ44に電流を伝達し又は燃料電池44からの電流を伝達するため使用される一対のターミナルプレート46の間に配置される。一対の端部プレート16は、燃料電池アッセンブリ44の両側にターミナルプレート46に隣接して配置される。1つ以上の圧縮部材38は、端部プレート16と燃料電池アッセンブリ44との間に配置されている。圧縮部材38は、圧縮部材38により燃料電池アッセンブリ44に分与された圧縮力Fを変更するため制御信号に応答して作働する。端部プレート16は、機械式締結手段62又は当該技術分野で知られている他の方法により側部プレート48に固定されている。
燃料電池スタック15の作働中には、反応物供給流れは、所望のパワー出力に対応する率で燃料電池スタック15に提供されている。燃料電池スタック15のパワー出力は、燃料電池スタック15に亘る供給流れの一方又は両方の圧力降下と共に、作働中に、測定され及び/又は監視されている。オプションで、燃料電池スタック15を通って流れる供給流れの一方又は両方の速度は、作働中に測定され及び/又は監視させることができる。制御信号は、燃料電池スタック15の測定作働状態に基づいて発生され、燃料電池スタック15の圧縮は、制御信号に応答して圧縮部材38により調整される。圧縮は、所望の作働状態(例えば、圧力降下、流れ速度)が達成されるまで調整される。燃料電池スタック15の圧縮の調整工程は、圧縮量を所望の作働状態を維持するため燃料電池スタック15の作働の変化に基づいて連続的に変化させることができる点で、動的である。例えば、上述されたように、制御フィードバックは、燃料電池スタック15に亘る圧力降下が所定の大きさとなるまで、又は、燃料電池スタック15を介した供給流れのうち一つ以上の最小流れ速度が超えられるまで、燃料電池スタック15の圧縮が調整されるように、用いることができる。
流れチャンネル20は、略矩形であるものとして示されているが、圧縮可能拡散媒体32が流れチャンネル20内に進入して流れ領域34を減少させることを可能にする他の形状及び形態を、本発明の範囲から逸脱すること無く利用することができることが理解されるべきである。更には、特定の圧力降下及びパワーレベルが、本発明を記載し、示すため使用されたが、燃料電池スタック15及び/又は燃料電池10の他の圧力降下及び他の作働状態を、本発明の範囲から逸脱すること無く利用することができることが理解されるべきである。
本発明の記載は、その本質上、単なる例示にしか過ぎず、かくして、本発明の要旨から逸脱しない変更が本発明の範囲内にあることが意図されている。そのような変更は、本発明の精神及び範囲からの逸脱とはみなされるできではない。
図1は、本発明の原理に係る単一電池式の燃料電池の分解斜視図である。 図2は、拡散媒体を備えた層形成を示す、図1の複数の燃料電池を含むPEM燃料電池スタックの一部分の部分斜視断面図である。 図3は、図2に示された一部分の詳細図である。 図4A及び図4Bは、本発明の原理に係る、流体ブラッダー等の調整式圧縮部材及びラムで圧縮される燃料電池スタックの簡単な断面図である。

Claims (18)

  1. 燃料電池スタックであって、
    互いに隣接して配置された複数の燃料電池であって、該複数の燃料電池の少なくとも1つの燃料電池は、内部に流れ場が形成された電極プレートと、膜電極アッセンブリと、該膜電極アッセンブリと前記電極プレートとの間に配置された、圧縮可能な流体浸透性拡散媒体と、を有する、前記複数の燃料電池と、
    前記複数の燃料電池の圧縮力を、前記燃料電池スタックの作働中に該燃料電池スタックの作働条件に応じて、連続的に変化させる圧縮部材であって、前記燃料電池は、前記少なくとも1つの燃料電池において、前記拡散媒体の一部分が、前記圧縮部材による圧縮力に応じて前記隣接する電極プレートの前記流れ場内に可変的に進入するように、前記圧縮部材により一緒に圧縮される、前記圧縮部材と、
    を備える、燃料電池スタック。
  2. 前記燃料電池スタックの前記作働条件は、
    (a)前記燃料電池スタックのパワー出力、
    (b)前記燃料電池スタックを通って流れる供給流れの圧力降下、及び、
    (c)前記燃料電池スタックを通って流れる供給流れの流れ速度
    のいずれかから選択される、請求項1に記載の燃料電池スタック。
  3. 前記圧縮部材は、内部が流体で満たされた流体ブラッダーを備える、請求項1に記載の燃料電池スタック。
  4. 前記圧縮部材は、流体制御式ラムを備え、該流体制御式ラムは、該流体制御式ラムに供給される流体及び該流体制御式ラムから除去される流体に応じて移動するピストンを有する、請求項1に記載の燃料電池スタック。
  5. 前記圧縮部材は、機械制御式ラムを備え、該機械制御式ラムは、回転式カラーと該回転式カラーの回転に応じて移動するねじジャッキ式のアクチュエータ、又は、カム若しくはギア駆動式ロッドのアクチュエータを有する、請求項1に記載の燃料電池スタック。
  6. 前記電極プレートは、アノードプレートである、請求項1に記載の燃料電池スタック。
  7. 前記電極プレートは、カソードプレートである、請求項1に記載の燃料電池スタック。
  8. 燃料電池スタックが複数の燃料電池を有し、該複数の燃料電池のうち少なくとも1つの燃料電池が、流れ場が内部に形成された電極プレートと膜電極アッセンブリ(MEA)と該MEA及び前記電極プレートの間に配置された流体浸透性拡散媒体とを有する、前記燃料電池スタックを作働させる方法であって、
    前記燃料電池スタックに反応物供給流れを供給する工程と
    前記燃料電池スタックの作働条件に応じて、前記燃料電池スタックの圧縮力を連続的に変化させる工程であって、前記拡散媒体は、前記燃料電池の作働中に前記圧縮力に応じて、その有効流れ面積を変化させるように前記流れ場に対して移動する、前記圧縮力を連続的に変化させる工程と、
    を備え、
    前記燃料電池スタックの前記作働条件は、
    (a)前記燃料電池スタックのパワー出力、
    (b)前記燃料電池スタックを通って流れる供給流れの圧力降下、及び、
    (c)前記燃料電池スタックを通って流れる供給流れの流れ速度
    のいずれかから選択される、前記燃料電池スタックを作働させる方法。
  9. 前記燃料電池スタックの作働条件を監視する工程と、前記作働条件に応じて前記燃料電池のスタックの前記圧縮状態を調整する工程とを更に備える、請求項に記載の方法。
  10. 前記監視工程は、前記燃料電池スタックのパワー出力、前記燃料電池スタックを通って流れる反応物供給流れの流量、及び、前記燃料電池スタックを通って流れる反応物供給流れの圧力降下のうち少なくともいずれか一つを監視する工程を備える、請求項に記載の方法。
  11. 前記圧縮力を連続的に変化させる工程は、前記燃料電池スタックのパワー出力が増大したとき、該燃料電池スタックの前記圧縮状態を減少させる工程を備える、請求項に記載の方法。
  12. 前記圧縮力を連続的に変化させる工程は、前記燃料電池スタックのパワー出力が減少するとき該燃料電池スタックの前記圧縮状態を増大させる工程を備える、請求項に記載の方法。
  13. 前記圧縮力を連続的に変化させる工程は、前記燃料電池スタックを通って流れる反応物供給流れの流れ速度が所定レベルを超えて維持されるように前記燃料電池スタックの前記圧縮状態を変化させる工程を備える、請求項に記載の方法。
  14. 前記圧縮力を連続的に変化させる工程は、前記燃料電池を通って流れる供給流れで所定の圧力が発生するように前記燃料電池スタックの前記圧縮状態を変化させる工程を備える、請求項に記載の方法。
  15. 前記所定の圧力降下は、0.69乃至41kPa(0.1乃至6psi)の範囲にある、請求項14に記載の方法。
  16. 前記圧縮力を連続的に変化させる工程は、内部が流体で満たされた流体ブラッダー内の流体圧力を変化させて前記燃料電池スタックを圧縮させる工程を備える、請求項に記載の方法。
  17. 前記圧縮力を連続的に変化させる工程は、前記燃料電池スタックを圧縮させる流体制御式ラム内の流体圧力を変化させる工程を備え、該流体制御式ラムは、該流体制御式ラムに供給される流体及び該流体制御式ラムから除去される流体に応じて移動するピストンを有する、請求項に記載の方法。
  18. 前記圧縮力を連続的に変化させる工程は、前記燃料電池スタックを圧縮させる機械制御式ラムを変化させる工程を備え、該機械制御式ラムは、回転式カラーと該回転式カラーの回転に応じて移動するねじジャッキ式のアクチュエータ、又は、カム若しくはギア駆動式ロッドのアクチュエータを有する、請求項に記載の方法。
JP2006509877A 2003-04-14 2004-04-12 圧力降下可変式燃料電池スタック Expired - Fee Related JP4783281B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/413,032 US6936362B2 (en) 2003-04-14 2003-04-14 Variable pressure drop stack
US10/413,032 2003-04-14
PCT/US2004/011028 WO2004093215A2 (en) 2003-04-14 2004-04-12 Variable pressure drop stack

Publications (2)

Publication Number Publication Date
JP2006523933A JP2006523933A (ja) 2006-10-19
JP4783281B2 true JP4783281B2 (ja) 2011-09-28

Family

ID=33131345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006509877A Expired - Fee Related JP4783281B2 (ja) 2003-04-14 2004-04-12 圧力降下可変式燃料電池スタック

Country Status (5)

Country Link
US (1) US6936362B2 (ja)
JP (1) JP4783281B2 (ja)
CN (1) CN100388544C (ja)
DE (1) DE112004000556B4 (ja)
WO (1) WO2004093215A2 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7396601B2 (en) * 2003-04-14 2008-07-08 General Motors Corporation Flow control for multiple stacks
JP2006040641A (ja) * 2004-07-23 2006-02-09 Canon Inc 燃料電池装置
US7261964B2 (en) * 2004-07-29 2007-08-28 General Motors Corporation Fuel cell stack housing
ES2376780T3 (es) * 2005-02-07 2012-03-16 Siemens Aktiengesellschaft Método y dispositivo para la unión duradera de una membrana de electrolito polimérico con, al menos, un electrodo de difusión gaseosa
US20060240312A1 (en) * 2005-04-25 2006-10-26 Tao Xie Diffusion media, fuel cells, and fuel cell powered systems
JP2006351323A (ja) * 2005-06-15 2006-12-28 Denso Corp 燃料電池および燃料電池システム
JP2007042441A (ja) * 2005-08-03 2007-02-15 Mitsubishi Materials Corp 燃料電池および運転方法
US8415076B2 (en) * 2005-11-10 2013-04-09 GM Global Technology Operations LLC Gas diffusion layer preconditioning for improved performance and operational stability of PEM fuel cells
US7946023B2 (en) * 2005-11-22 2011-05-24 Siemens Energy, Inc. Method and apparatus for measuring compression in a stator core
US7935455B2 (en) * 2006-02-27 2011-05-03 GM Global Technology Operations LLC Balanced hydrogen feed for a fuel cell
US20070207362A1 (en) * 2006-03-03 2007-09-06 Andreas Koenekamp Freeze capable compact fuel cell system with improved humidification and removal of excess water and trapped nitrogen
US7709120B2 (en) * 2007-06-28 2010-05-04 Gm Global Technology Operations, Inc. Method to maximize fuel cell stack shorting resistance
JP4766014B2 (ja) * 2007-08-08 2011-09-07 トヨタ自動車株式会社 膜電極接合体の製造方法
DE202011001161U1 (de) * 2011-01-05 2012-04-17 Reinhold Wesselmann Gmbh Galvanikzelleneinheit
KR102233600B1 (ko) 2013-06-28 2021-03-31 누베라 퓨엘 셀스, 엘엘씨 연료 전지 전력 시스템에서의 공기 흐름을 제어하는 방법
DE102013021466A1 (de) 2013-12-18 2015-06-18 Daimler Ag Brennstoffzellenanordnung, Fahrzeug und Verfahren zum Betrieb einer Brennstoffzellenanordnung
JP7067106B2 (ja) 2018-02-15 2022-05-16 トヨタ自動車株式会社 マスターセルの製造方法
DE102019219791A1 (de) * 2019-12-17 2021-06-17 Robert Bosch Gmbh Brennstoffzelle mit einer Nachstellvorrichtung zum Ausgleich des Setzverhaltens innerhalb eines Stapelaufbaus
WO2023132955A1 (en) * 2022-01-05 2023-07-13 Electric Hydrogen Co. Active electrolyzer stack compression
WO2023215605A1 (en) * 2022-05-06 2023-11-09 Electric Hydrogen Co. Methods, devices, and systems for controlling compression of an electrochemical cell stack

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0668898A (ja) * 1992-06-18 1994-03-11 Honda Motor Co Ltd 燃料電池セパレータおよび燃料電池のスタック内締め付け方法
JPH0750169A (ja) * 1990-01-09 1995-02-21 Gebr Sulzer Ag 燃料セルバッテリ
JPH0973914A (ja) * 1995-09-06 1997-03-18 Honda Motor Co Ltd 燃料電池の締付方法および装置
JPH09274926A (ja) * 1996-04-05 1997-10-21 Fuji Electric Co Ltd 固体高分子電解質型燃料電池
US6007933A (en) * 1998-04-27 1999-12-28 Plug Power, L.L.C. Fuel cell assembly unit for promoting fluid service and electrical conductivity
JP2000251909A (ja) * 1999-03-01 2000-09-14 Sofco 固形酸化物燃料電池用相互接続体
JP2001256985A (ja) * 2000-03-13 2001-09-21 Honda Motor Co Ltd 燃料電池
JP2002184422A (ja) * 2000-12-14 2002-06-28 Honda Motor Co Ltd 燃料電池のセパレータ

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61225779A (ja) 1985-03-29 1986-10-07 Shin Kobe Electric Mach Co Ltd 液体燃料電池
US4973531A (en) * 1988-02-19 1990-11-27 Ishikawajima-Harima Heavy Industries Co., Ltd. Arrangement for tightening stack of fuel cell elements
DE69015802T2 (de) 1990-03-01 1995-05-11 Tanaka Precious Metal Ind Struktur zum Einbau einer Brennstoffzelle.
US5185220A (en) * 1991-10-25 1993-02-09 M-C Power Corporation Fuel cell clamping force equalizer
US5547777A (en) * 1994-02-23 1996-08-20 Richards Engineering Fuel cell having uniform compressive stress distribution over active area
JPH0888018A (ja) 1994-09-16 1996-04-02 Toshiba Corp 固体高分子型燃料電池
US5484666A (en) * 1994-09-20 1996-01-16 Ballard Power Systems Inc. Electrochemical fuel cell stack with compression mechanism extending through interior manifold headers
US5789091C1 (en) * 1996-11-19 2001-02-27 Ballard Power Systems Electrochemical fuel cell stack with compression bands
US5707755A (en) * 1996-12-09 1998-01-13 General Motors Corporation PEM/SPE fuel cell
JPH1197054A (ja) 1997-09-22 1999-04-09 Sanyo Electric Co Ltd 積層体の締付構造及び締付方法
US6040072A (en) * 1997-11-19 2000-03-21 Lynntech, Inc. Apparatus and method for compressing a stack of electrochemical cells
US6210823B1 (en) 1998-08-19 2001-04-03 Matsushita Electric Industrial Co. Ltd. Polymer electrolyte fuel cell
EP0981175B1 (en) 1998-08-20 2012-05-02 Panasonic Corporation Polymer electrolyte fuel cell stack
US6428921B1 (en) * 1999-10-22 2002-08-06 General Motors Corporation Fuel cell stack compression method and apparatus
US6663996B2 (en) * 2000-12-22 2003-12-16 Ballard Power Systems Inc. Compression mechanism for an electrochemical fuel cell assembly
KR100525974B1 (ko) * 2002-08-07 2005-11-03 마쯔시다덴기산교 가부시키가이샤 연료전지

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750169A (ja) * 1990-01-09 1995-02-21 Gebr Sulzer Ag 燃料セルバッテリ
JPH0668898A (ja) * 1992-06-18 1994-03-11 Honda Motor Co Ltd 燃料電池セパレータおよび燃料電池のスタック内締め付け方法
US5419980A (en) * 1992-06-18 1995-05-30 Honda Giken Kogyo Kabushiki Kaisha Fuel cell stack and method of pressing together the same
JPH0973914A (ja) * 1995-09-06 1997-03-18 Honda Motor Co Ltd 燃料電池の締付方法および装置
JPH09274926A (ja) * 1996-04-05 1997-10-21 Fuji Electric Co Ltd 固体高分子電解質型燃料電池
US6007933A (en) * 1998-04-27 1999-12-28 Plug Power, L.L.C. Fuel cell assembly unit for promoting fluid service and electrical conductivity
JP2000251909A (ja) * 1999-03-01 2000-09-14 Sofco 固形酸化物燃料電池用相互接続体
JP2001256985A (ja) * 2000-03-13 2001-09-21 Honda Motor Co Ltd 燃料電池
JP2002184422A (ja) * 2000-12-14 2002-06-28 Honda Motor Co Ltd 燃料電池のセパレータ

Also Published As

Publication number Publication date
US20040202917A1 (en) 2004-10-14
US6936362B2 (en) 2005-08-30
WO2004093215A3 (en) 2005-06-09
CN1774828A (zh) 2006-05-17
WO2004093215A2 (en) 2004-10-28
CN100388544C (zh) 2008-05-14
DE112004000556T5 (de) 2006-03-02
WO2004093215B1 (en) 2005-07-21
JP2006523933A (ja) 2006-10-19
DE112004000556B4 (de) 2014-07-10

Similar Documents

Publication Publication Date Title
JP4783281B2 (ja) 圧力降下可変式燃料電池スタック
US7749634B2 (en) Flow control for multiple stacks
US8557466B2 (en) Fuel cell including separator with gas flow channels
AU756163B2 (en) Fuel cell with cooling system based on direct injection of liquid water
US7479341B2 (en) Fuel cell, separator plate for a fuel cell, and method of operation of a fuel cell
US6150049A (en) Fluid flow plate for distribution of hydration fluid in a fuel cell
US6821661B2 (en) Hydrophilic anode gas diffusion layer
US7303832B2 (en) Electrochemical fuel cell comprised of a series of conductive compression gaskets and method of manufacture
JPH10172587A (ja) 固体高分子型燃料電池
US7935455B2 (en) Balanced hydrogen feed for a fuel cell
EP1639668A2 (en) Electrochemical fuel cell with fluid distribution layer having non-uniform permeability
JP6745920B2 (ja) 活性領域の入口領域内の反応ガスチャネルにおいて幅が変化するバイポーラプレート、燃料電池スタック、このようなバイポーラプレートを有する燃料電池システム、および乗り物
US6682835B2 (en) Method and apparatus for increasing the operational efficiency of a fuel cell power plant
US7638227B2 (en) Fuel cell having stack structure
KR100543483B1 (ko) 연료 전지
JP2004253269A (ja) 高分子電解質型燃料電池およびその運転方法
JP4606038B2 (ja) 高分子電解質型燃料電池及びその運転方法
US20220246949A1 (en) Fuel cell stack comprising variable bipolar plates
KR100928041B1 (ko) 연료전지 분리판 및 이를 포함하는 연료전지
JP4503994B2 (ja) 固体高分子型燃料電池
KR100792869B1 (ko) 연료전지용 분리판
JP2005141994A (ja) 高分子電解質型燃料電池
CN108630968B (zh) 用于主动控制运行期间电池压降的方法
JP2004311056A (ja) 燃料電池スタック
JP2005108777A (ja) 燃料電池用セパレータおよびこれを用いた燃料電池

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090527

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090827

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100422

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100722

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100729

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100823

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100830

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100922

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees