JP4782316B2 - 処理方法及びプラズマ装置 - Google Patents
処理方法及びプラズマ装置 Download PDFInfo
- Publication number
- JP4782316B2 JP4782316B2 JP2001199413A JP2001199413A JP4782316B2 JP 4782316 B2 JP4782316 B2 JP 4782316B2 JP 2001199413 A JP2001199413 A JP 2001199413A JP 2001199413 A JP2001199413 A JP 2001199413A JP 4782316 B2 JP4782316 B2 JP 4782316B2
- Authority
- JP
- Japan
- Prior art keywords
- processing container
- plasma
- antenna
- processing
- electromagnetic field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Chemical Vapour Deposition (AREA)
Description
【発明の属する技術分野】
本発明は、プリ・コート方法、処理方法及びプラズマ装置に関し、特に、プラズマを用いるプリ・コート方法、処理方法及びプラズマ装置に関する。
【0002】
【従来の技術】
従来、半導体素子のゲート絶縁膜は、熱酸化法により形成されていた。しかし、この方法では、膜厚制御が難しく、また、将来必要とされる1nm台の薄いゲート絶縁膜を形成することは困難であった。そこで、膜厚制御が容易で、かつ、上記の膜厚を形成可能なプラズマCVD法が、ゲート絶縁膜の形成に利用され始めている。
【0003】
プラズマCVD法は、処理容器内にプラズマを生成し、このプラズマを用いて処理容器内のガスを活性化させ、その反応性を利用して薄膜を形成する方法である。このプラズマCVD法による成膜装置の一つに、平行平板電極の間に放電を起こしてプラズマを生成する平行平板形のプラズマ装置がある。この平行平板形のプラズマ装置に関し、処理容器から離脱した汚染物質が処理対象であるウェーハの表面に付着することを防止するため、ウェーハ処理を行う前に処理容器の内表面に絶縁膜を形成する技術が提案されている。この技術をプリ・コートと呼ぶ。
【0004】
【発明が解決しようとする課題】
しかしながら、平行平板形のプラズマ装置では、プラズマの電子温度が高いため、プリ・コートで緻密かつ均一な絶縁膜を形成することができない。このため、処理容器の内表面に形成された絶縁膜は密着性が悪く、剥離しやすいという問題があった。
また、平行平板形のプラズマ装置では、プラズマのイオン密度が低いため、プリ・コートで絶縁膜を堆積するのに長時間を要するという問題があった。
本発明はこのような課題を解決するためになされたものであり、その目的は、処理容器内に強固なプリ・コートを施すことにある。
また、他の目的は、プリ・コートに要する時間を短縮することにある。
【0005】
【課題を解決するための手段】
このような目的を達成するために、本発明のプリ・コート方法は、アンテナから高周波の電磁界を処理容器内に供給してプラズマを生成し、このプラズマを用いて少なくとも処理容器の内表面にプリ・コートする第1の工程と、処理容器内にウェーハを配置し、アンテナから高周波の電磁界を処理容器内に供給してプラズマを生成し、このプラズマを用いてウェーハの表面に絶縁膜を成膜する第2の工程とを有し、第1の工程と第2の工程とでは、プラズマを生成する条件が異なり、アンテナはラジアルラインアンテナであり、ラジアルラインアンテナは、ラジアル導波路を形成する互いに平行な2枚の導体板と、導体板の外周部を接続してシールドする導体から構成され、ラジアル導波路の下面となる導体板には、ラジアル導波路内を伝播する電磁界を処理容器内に供給するスロットが複数形成されていることを特徴とする。これにより、処理容器の内表面へのプリ・コートと、ウェーハ表面に形成される絶縁膜とのぞれぞれに、適切な機能をもたせることができる。
【0006】
ここで用いる高周波プラズマ装置は、例えば1GHz以上という高周波の電磁界を用いることにより、平行平板型のプラズマ装置よりも電子温度が低いプラズマを生成することができる。このため、処理容器の内表面には従来より緻密かつ均一な絶縁膜が形成される。この絶縁膜は処理容器に対して密着性がよく、剥離しにくい。
また、高周波プラズマ装置は、例えば10Pa以下という低圧力下でプラズマを生成するので、平行平板型のプラズマ装置より同等の圧力下ではプラズマのイオン密度が高くなる。このため、従来より短時間で処理容器の内表面に絶縁膜を堆積させることができる。
【0007】
このプリ・コート方法において、処理容器内に供給するガスを、Six Hy Fz (xは自然数;y,zは0と自然数)と酸素との混合ガスとしてもよい。この場合、処理容器の内表面に成膜される絶縁膜はシリコン酸化膜となる。
また、処理容器内に供給するガスを、Six Hy Fz (xは自然数;y,zは0と自然数)と窒素との混合ガスとしてもよい。この場合、処理容器の内表面に成膜される絶縁膜はシリコン窒化膜となる。
また、処理容器内に供給するガスを、Six Hy Fz (xは自然数;y,zは0と自然数)と酸素と窒素との混合ガスとしてもよい。この場合、処理容器の内表面に成膜される絶縁膜はシリコン酸窒化膜となる。
なお、処理容器の内表面に絶縁膜を成膜する際、絶縁膜の堆積が促進される温度に処理容器を加熱してもよい。
【0010】
なお、第1の工程において、処理容器の内表面の他に、載置台の表面等にプリ・コートを施してもよいことは言うまでもない。
【0011】
この処理方法において、第1の工程では、第2の工程よりも処理容器内の圧力を低くしてプラズマを生成するようにしてもよい。第1の工程において、比較的低い圧力でプラズマを生成することにより、プラズマのイオン密度を高くすることができる。これにより、処理容器の内壁面への絶縁膜の堆積速度を速くして、堆積時間を短縮することができる。また、第2の工程において、比較的高い圧力でプラズマを生成し、プラズマのイオン密度を低くすることにより、ウェーハ表面に形成される絶縁膜が受けるダメージを低減することができる。
なお、第1の工程では、絶縁膜の堆積が促進される温度に処理容器を加熱し、第2の工程では、活性種が付着しにくい温度に処理容器を加熱してもよい。
【0012】
また、本発明のプラズマ装置は、ウェーハを載置する載置台と、この載置台を収容する処理容器と、この処理容器内に高周波の電磁界を供給するアンテナと、このアンテナの放射面に対向配置された第1の誘電体板とを備えたプラズマ装置において、処理容器を加熱する加熱手段と、第1の誘電体板に対して載置台と異なる側に配置され第1の誘電体板と共に密閉空間を形成する第2の誘電体板と、密閉空間に流体を流通させて第1の誘電体板を加熱する流通手段とを備え、アンテナはラジアルラインアンテナであり、ラジアルラインアンテナは、ラジアル導波路を形成する互いに平行な2枚の導体板と、導体板の外周部を接続してシールドする導体から構成され、ラジアル導波路の下面となる導体板には、ラジアル導波路内を伝播する電磁界を処理容器内に供給するスロットが複数形成されていることを特徴とする。
なお、本発明では、アンテナとして例えばラジアルラインアンテナを用いてもよい。ラジアルラインアンテナの放射面は平板状であっても、凹面状又は凸面状であってもよい。
【0013】
【発明の実施の形態】
次に、図面を参照して、本発明の実施の形態について詳細に説明する。
【0014】
(第1の実施の形態)
図1は、本発明の第1の実施の形態で用いる高周波プラズマ装置の要部構成を示す断面図である。
この高周波プラズマ装置は、上部が開口している有底円筒形の処理容器11を有している。この処理容器11はAl等の金属で形成されている。処理容器11の底面中央部には絶縁板21を介して載置台22が固定され、この載置台22の上面にウェーハ(図示せず)が載置される。処理容器11の底面外周部には排気手段としての真空ポンプ13に接続された排気口12が複数設けられ、処理容器11内を排気することにより所望の真空度にすることができる。処理容器11の側壁上部にはノズル14が設けられ、このノズル14にはマスフローコントローラ15A,15B及び開閉弁16A,16Bを介してガス源17A,17Bが接続されている。ここではガス源17A,17BをそれぞれモノシランSiH4 、酸素O2 のガス源とする。ノズル14とマスフローコントローラ15A,15Bと開閉弁16A,16Bとガス源17A,17Bとにより、処理容器11内にガスを供給するガス供給手段が構成される。処理容器11の上部開口は、処理容器11内で生成されるプラズマが外部に漏れないように、誘電体板18で塞がれている。
【0015】
この誘電体板18の上にラジアルラインアンテナ30が配置されている。このラジアルラインアンテナ30は、誘電体板18によって処理容器11の内部から隔離されており、処理容器11内で生成されるプラズマから保護されている。
ラジアルラインアンテナ30は、ラジアル導波路33を形成する互いに平行な2枚の円形導体板31,32と、これらの導体板31,32の外周部を接続してシールドする導体リング34とから構成されている。ラジアル導波路33の上面となる導体板32の中心部には、ラジアル導波路33内に電磁界を導入する電磁界導入口35が形成され、ラジアル導波路33の下面となる導体板31には、ラジアル導波路33内を伝播する電磁界を処理容器11内に供給するスロット36が複数形成されている。スロット36が形成されている導体板31がラジアルラインアンテナ30の放射面を構成する。
【0016】
ラジアルラインアンテナ30には同軸導波管41が接続されている。この同軸導波管41の外導体41Aは導体板32の電磁界導入口35に接続され、内導体41Bは導体板31の中心に接続されている。また、同軸導波管41は、矩形・同軸変換器42、矩形導波管43及びマッチング回路44を介して、1GHz〜十数GHzの範囲内の所定周波数の高周波電磁界を発生する高周波発生器45が接続されている。
なお、誘電体板18及びラジアルラインアンテナ30の外周は、処理容器11の側壁上に配置された環状のシールド材19によって覆われ、電磁界が外部に漏れない構造になっている。
【0017】
次に、図1に示した高周波プラズマ装置を用いた処理方法について説明する。
図2は、この処理方法の主要な工程の流れを示すフローチャートである。図2に示されているように、この処理方法は、処理容器11の内表面に絶縁膜を成膜するプリ・コートの工程S1と、処理対象であるウェーハ表面に絶縁膜を成膜するデポジションの工程S2とを有している。
図3は、各工程S1,S2における高周波プラズマ装置の断面図である。以下、この図を参照して説明する。
【0018】
まず、プリ・コートの工程S1から説明する。
載置台22の上面に処理対象のウェーハが載置されていない状態で、処理容器11内の圧力を1〜10Paにする。なお、載置台22の上面に処理対象でないダミーウェーハが載置されていてもよい。
上記の圧力を維持しつつ、ノズル14からモノシランSiH4 と酸素O2 との混合ガスを流量制御して処理容器11内に導入する。ここで、高周波発生器45で発生させた周波数2.45GHzの高周波電磁界Fをラジアルラインアンテナ30から誘電体板18を介して処理容器11内に導入すると、O2 が解離してOプラズマPとOラジカルが生成される。Oラジカルは処理容器11の内表面と載置台22の表面に付着し、後から到着するSiH4 を分解して反応しSiO2 となる。この処理を所定時間続け、図3(a)に示すように膜厚が0.1〜10μmの範囲内で均一なSiO2 膜51を成膜する。
【0019】
ここではプラズマPの生成に2.45GHzという高周波の電磁界Fを用いているので、平行平板型のプラズマ装置よりも電子温度が低いプラズマPを生成することができる。このため、処理容器11の内表面と載置台22の表面に従来より緻密かつ均一なSiO2 膜51を形成することができる。緻密かつ均一なSiO2 膜51は、処理容器11に対して密着性がよいので、本来的に剥離しにくいという特徴がある。また、従来より膜厚を薄くしても十分なコーティング作用が得られるので、SiO2 膜の膜厚を10μm以上としたときに生じる処理容器11との線熱膨張率の差に基づく剥離を抑制することもできる。
また、1〜10Paという低圧力下でプラズマPを生成するので、平行平板型のプラズマ装置より電子の平均自由行程が長く、イオン密度が高くなる。このため、従来よりSiO2 の堆積速度が速くなるので、プリ・コートに要する時間を短縮することができる。
【0020】
次に、デポジションの工程S2について説明する。
載置台22の上面に処理対象のウェーハ23を配置し、処理容器11内の圧力をプリ・コートの工程S1よりもやや高い5〜100Paにする。この圧力下でプラズマPを生成し、図3(b)に示すようにウェーハ23の表面にSiO2 膜52を成膜する。圧力以外の処理条件はプリ・コートの工程S1と同じである。比較的高い圧力でプラズマPを生成し、イオン密度を低くすることにより、ウェーハ23の表面に形成されるSiO2 膜52が受けるダメージを低減することができる。したがって、半導体素子のゲート絶縁膜形成に適用すれば、誤動作の少ない半導体素子を形成することができる。
このように、本実施の形態の処理方法では、各工程S1,S2で処理条件を変えることにより、SiO2 膜51,52のぞれぞれに適切な機能をもたせることができる。
【0021】
なお、デポジションの工程S2を繰り返し行なった後、再度プリ・コートの工程S1を行うようにしてもよい。デポジションの工程S2においても処理容器11の内表面等にSiO2 が堆積し、SiO2 膜51が剥離しやすいしやすい膜厚を超える場合があるので、処理容器11内をクリーニングし一旦SiO2 膜51を除去してから再度プリ・コートの工程S1を行うようにしてもよい。
【0022】
本実施の形態では、SiO2 膜51,52を成膜する場合に、モノシランSiH4 と酸素O2 との混合ガスを用いた例を示したが、Six Hy Fz (xは自然数;y,zは0と自然数)とO2 との混合ガスを用いてもよい。
また、プリ・コートにおいて絶縁膜としてSiO2 膜51を成膜する例を説明したが、絶縁膜としてSi3 N4 膜を成膜してもよい。Si3 N4 膜を成膜するには、ガス供給手段に例えばモノシランSiH4 と窒素N2 のガス源を用意し、これらの混合ガスを処理容器11内に導入して成膜すればよい。なお、Six Hy Fz とN2 との混合ガスを用いてもよい。
また、プリ・コートにおいて、Six Hy Fz (例えばSiH4 )とO2 とN2 との混合ガスを用いて、シリコン酸窒化膜を成膜してもよい。
【0023】
(第2の実施の形態)
図4は、本発明の第2の実施の形態で用いる高周波プラズマ装置の要部構成を示す断面図である。この図に示されている高周波プラズマ装置は、図1に示した高周波プラズマ装置の処理容器11の周囲に、加熱手段としてのヒーター61が巻かれたものである。このヒーター61は、ヒーター電源62から電源供給を受けて発熱することにより処理容器11を加熱し、プリ・コートの工程S1において絶縁膜の堆積が促進される温度にする。例えば、処理容器11の内表面等に絶縁膜としてSiO2 膜51を成膜する場合には、処理容器11を100〜300℃に加熱することにより、SiO2 の堆積速度を速くして堆積時間を短縮することができる。
【0024】
また、図5に示すように、処理容器11Aを加熱する加熱手段を、処理容器11Aの側壁内部に全周にわたって形成された溝63と、この溝63に高温の液体を流通させる導入管64及び排出管65とから構成してもよい。この場合、溝63に流通させる液体には、例えばパーフルオロポリエーテル(ガルデン)等を用いることができる。なお、図5にはガス供給手段は省略されている。
加熱手段の加熱温度は変更自在であってもよい。この場合、デポジションの工程S2において処理容器11を更に高温に加熱して活性種を付着しにくくすることにより、この工程S2で処理容器11の内壁面に絶縁膜が堆積することを妨げ、絶縁膜が剥離しやすい膜厚に成長するのを抑制することができる。
【0025】
(第3の実施の形態)
図6は、本発明の第3の実施の形態で用いる高周波プラズマ装置の要部構成を示す断面図である。この図では、図4と同一部分又は相当部分を同一符号で示している。
図6に示されている高周波プラズマ装置では、図4に示した誘電体板18が二重構造になっている。すなわち、処理容器11の上部開口を塞ぐ第1の誘電体板18Aの上方位置にこれと離間して第2の誘電体板18Bが配置されている。2つの誘電体板18A,18Bは、共に厚さ20〜30mm程度の石英ガラス又はセラミック(例えばAl2 O3 、AlN)等で形成される。
【0026】
また、2つの誘電体板18A,18Bとシールド材19Aとによって囲まれた密閉空間に高温の流体を流通させる流通手段として、導入管71と排出管72とがシールド材19Aに設けられている。上記密閉空間に導入される流体は、処理容器11内に臨む第1の誘電体板18Aを加熱して活性種が付着しにくい温度(ただし、600℃以下)にする。例えば、SiO2 膜51,52を成膜する場合には、第1の誘電体板18Aを400〜600℃に加熱することにより、第1の誘電体板18Aの表面にOラジカルが付着しSiO2 が堆積することを妨げることができる。
【0027】
なお、上記密閉空間に導入される流体には、高周波電磁界Fを吸収しにくいものが用いられる。気体であれば窒素N2 等、液体であればパーフルオロポリエーテル等が用いられる。
また、第1の誘電体板18Aと共に密閉空間を形成する第2の誘電体板18Bは、第1の誘電体板18Aに対して載置台22と異なる側に配置されればよい。したがって、ラジアルラインアンテナ30の給電線である同軸導波管41の途中に第2の誘電体板を詰めて密閉空間を形成してもよい。この場合、ラジアルラインアンテナ30の内部にも流体が流通することになる。
【0028】
(第4の実施の形態)
以上の第1〜第3の実施の形態では、プリ・コートとして処理容器の内表面等にSiO2 又はSi3 N4 等の絶縁膜を成膜するが、処理容器等がAl系の材料で形成されている場合、その内表面等をフッ化処理して表面改質するようにしてもよい。その形態を説明する。
図7は、本発明の第4の実施の形態で用いる高周波プラズマ装置の要部構成を示す断面図である。この図に示されている高周波プラズマ装置は、図1に示した高周波プラズマ装置のガス供給手段に、フッ素系のガスであるSiF4 のガス源17Cと、これに対応するマスフローコントローラ15C及び開閉弁16Cとを付加したものである。ただし、処理容器11B及び載置台22BはAlで形成されているものとする。
図7に示した高周波プラズマ装置を用いた処理方法は、プリ・コートの工程S11とデポジションの工程S12とを有している。
【0029】
図8は、各工程における高周波プラズマ装置の断面図である。以下、この図を参照して説明する。
プリ・コートの工程S11では、載置台22Bの上面に処理対象のウェーハ23が載置されていない状態で、処理容器11B内の圧力を1〜15Paにする。なお、載置台22Bの上面に処理対象でないダミーウェーハが載置されていてもよい。
上記の圧力を維持しつつ、ノズル14からSiF4 ガスを流量制御して処理容器11B内に導入し、ラジアルラインアンテナ30から周波数2.45GHzの高周波電磁界Fを処理容器11B内に導入し、プラズマPを生成する。このとき、Alが露出する処理容器11Bの内表面及び載置台22Bの表面では、次のような反応が進行する。
2SiF4+2Al→2AlF3+2Si+F2
【0030】
この処理容器11Bの内表面及び載置台22Bの表面のフッ化処理を所定時間続け、図8(a)に示すように膜厚が0.1〜10μmの範囲内で均一なAlF3 膜81を形成する。
AlF3 は極めて安定な物質であるから、AlF3 膜81で処理容器11Bの内表面等をコーティングすることにより、処理容器11B等からその構成金属が離脱し処理容器11B内を汚染することを防止することができる。
このように処理容器11の内表面等をフッ化処理してコーティングする方法でも、第1の実施の形態と同様の効果が得られる。すなわち、電子温度が低いプラズマPにより、AlF3 膜81を緻密かつ均一に形成し、AlやFが離脱しにくいものとすることができる。また、高密度のプラズマPにより、高速でフッ化処理を行い、プリ・コートを短時間で行うことができる。
【0031】
デポジションの工程S12は、第1の実施の形態におけるデポジションの工程S2と同様である。すなわち、載置台22Bの上面に処理対象のウェーハ23を配置し、処理容器11B内の圧力を5〜100Paに維持しつつ、処理容器11B内にモノシランSiH4 と酸素O2 との混合ガスを導入してプラズマPを生成し、図8(b)に示すようにウェーハ23の表面にSiO2 膜52を成膜するのである。
【0032】
本実施の形態では、処理容器11B及び載置台22BのAl表面をフッ化処理する場合に、処理ガスとしてSiF4 を用いる例を示したが、Six Hy Fz (x,zは自然数;yは0と自然数)を用いてもよい。また、これ以外にF2 ガス、HFガス、又は、CF4 とO2 との混合ガスを用いてもよい。また、処理容器11B及び載置台22Bの酸化されたAl2O3表面をフッ化処理する場合には、処理ガスとしてHFガス又はNF3 ガスを用いればよい。また、処理容器11B及び載置台22Bの窒化されたAlN表面をフッ化処理する場合には、処理ガスとしてClFガス又はNF3 ガスを用いればよい。
【0033】
また、プリ・コートの工程S12において、処理容器11Bの内表面及び載置台22Bの表面をフッ化処理してAlF3 膜81を形成した後で、このAlF3 膜81上にSiO2 膜51又はSi3 N4 膜等の絶縁膜を形成するようにしてもよい。この絶縁膜の形成方法は、第1の実施の形態におけるプリ・コートの工程S1に示した方法と同じでよい。このように二重コーティングすることにより、プラズマポテンシャルが高い場合でも、処理容器11B内の汚染を低減することができる。
【0034】
【発明の効果】
以上説明したように、本発明のプリ・コート方法は、高周波プラズマ装置を用い、少なくとも処理容器の内表面に絶縁膜を成膜する。高周波プラズマ装置は、プラズマの電子温度が低いので、従来より緻密かつ均一な絶縁膜を形成し、剥離しにくくすることができる。また、低圧力下でプラズマを生成すれば、プラズマのイオン密度が高くなるので、処理容器の内表面への絶縁膜の堆積速度を速くし、プリ・コートに要する時間を短縮することができる。
また、本発明のプリ・コート方法は、高周波プラズマ装置を用い、少なくともAl系の処理容器の内表面をフッ化処理する。この方法でも、上記のプリ・コート方法と同様の効果が得られる。
【0035】
また、本発明の処理方法は、アンテナから高周波の電磁界を処理容器内に供給してプラズマを生成し、このプラズマを用いて少なくとも処理容器の内表面にプリ・コートする第1の工程と、処理容器内にウェーハを配置し、アンテナから高周波の電磁界を処理容器内に供給してプラズマを生成し、このプラズマを用いてウェーハの表面に絶縁膜を成膜する第2の工程とを有し、第1の工程と第2の工程とで、プラズマを生成する条件が異なる。これにより、処理容器の内表面へのプリ・コートと、ウェーハ表面に形成される絶縁膜とのぞれぞれに、適切な機能をもたせることができる。
【0036】
また、本発明のプラズマ装置は、載置台を収容する処理容器を加熱する加熱手段と、アンテナの放射面に対向配置された第1の誘電体板と共に密閉空間を形成する第2の誘電体板と、密閉空間に流体を流通させて第1の誘電体板を加熱する流通手段とを備えている。プリ・コートの工程において、処理容器を加熱して絶縁膜の堆積が促進される温度にすることにより、処理容器の内表面への絶縁膜の堆積時間を短縮することができる。また、第1の誘電体板を加熱して活性種が付着しにくい温度にすることにより、第1の誘電体板への絶縁膜の堆積を低減することができる。更に、加熱手段の加熱温度を変更自在とし、デポジションの工程において、処理容器を更に高温に加熱して活性種を付着しにくい温度にすることにより、処理容器の内表面への余剰な絶縁膜の堆積を抑制することができる。
【図面の簡単な説明】
【図1】 本発明の第1の実施の形態で用いる高周波プラズマ装置の要部構成を示す断面図である。
【図2】 図1に示した高周波プラズマ装置を用いた処理方法の主要な工程の流れを示すフローチャートである。
【図3】 プリ・コートの工程及びデポジションの工程における高周波プラズマ装置の断面図である。
【図4】 本発明の第2の実施の形態で用いる高周波プラズマ装置の要部構成を示す断面図である。
【図5】 本発明の第2の実施の形態で用いる他の高周波プラズマ装置の要部構成を示す断面図である。
【図6】 本発明の第3の実施の形態で用いる高周波プラズマ装置の要部構成を示す断面図である。
【図7】 本発明の第4の実施の形態で用いる高周波プラズマ装置の要部構成を示す断面図である。
【図8】 プリ・コートの工程及びデポジションの工程における高周波プラズマ装置の断面図である。
【符号の説明】
11,11A,11B…処理容器、12…排気口、13…真空ポンプ(排気手段)、14…ノズル、15A〜15C…マスフローコントローラ、16A〜16C…開閉弁、17A〜17C…ガス源、18,18A,18B…誘電体板、19,19A…シールド材、21…絶縁板、22,22B…載置台、23…ウェーハ、30…ラジアルラインアンテナ、31,32…導体板、33…ラジアル導波路、34…導体リング、35…電磁界導入口、36…スロット、41…同軸導波管、41A…外導体、41B…内導体、42…矩形・同軸変換器、43…矩形導波管、44…マッチング回路、45…高周波発生器、51,52…SiO2 膜(絶縁膜)、61…ヒーター(加熱手段)、62…ヒーター電源、63…溝、64,71…導入管、65,72…排出管、81…AlF3 膜、S1,S11…プリ・コートの工程、F…高周波電磁界、P…プラズマ、S2,S12…デポジションの工程。
Claims (3)
- アンテナから高周波の電磁界を処理容器内に供給してプラズマを生成し、このプラズマを用いて少なくとも前記処理容器の内表面にプリ・コートする第1の工程と、
前記処理容器内にウェーハを配置し、前記アンテナから高周波の電磁界を前記処理容器内に供給してプラズマを生成し、このプラズマを用いて前記ウェーハの表面に絶縁膜を成膜する第2の工程とを有し、
前記第1の工程と前記第2の工程とでは、プラズマを生成する条件が異なり、
前記アンテナはラジアルラインアンテナであり、
前記ラジアルラインアンテナは、
ラジアル導波路を形成する互いに平行な2枚の導体板と、
前記導体板の外周部を接続してシールドする導体から構成され、
前記ラジアル導波路の下面となる前記導体板には、前記ラジアル導波路内を伝播する電磁界を前記処理容器内に供給するスロットが複数形成されていることを特徴とする処理方法。 - 請求項1記載の処理方法において、
前記第1の工程では、前記第2の工程よりも前記処理容器内の圧力を低くして前記プラズマを生成することを特徴とする処理方法。 - ウェーハを載置する載置台と、この載置台を収容する処理容器と、この処理容器内に高周波の電磁界を供給するアンテナと、このアンテナの放射面に対向配置された第1の誘電体板とを備えたプラズマ装置において、
前記処理容器を加熱する加熱手段と、
前記第1の誘電体板に対して前記載置台と異なる側に配置され前記第1の誘電体板と共に密閉空間を形成する第2の誘電体板と、
前記密閉空間に流体を流通させて前記第1の誘電体板を加熱する流通手段と
を備え、
前記アンテナはラジアルラインアンテナであり、
前記ラジアルラインアンテナは、
ラジアル導波路を形成する互いに平行な2枚の導体板と、
前記導体板の外周部を接続してシールドする導体から構成され、
前記ラジアル導波路の下面となる前記導体板には、前記ラジアル導波路内を伝播する電磁界を前記処理容器内に供給するスロットが複数形成されていることを特徴とするプラズマ装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001199413A JP4782316B2 (ja) | 2001-06-29 | 2001-06-29 | 処理方法及びプラズマ装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001199413A JP4782316B2 (ja) | 2001-06-29 | 2001-06-29 | 処理方法及びプラズマ装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003017479A JP2003017479A (ja) | 2003-01-17 |
JP4782316B2 true JP4782316B2 (ja) | 2011-09-28 |
Family
ID=19036713
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001199413A Expired - Fee Related JP4782316B2 (ja) | 2001-06-29 | 2001-06-29 | 処理方法及びプラズマ装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4782316B2 (ja) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006339253A (ja) * | 2005-05-31 | 2006-12-14 | Toshiba Corp | プラズマ処理装置及びプラズマ処理方法 |
JP5331389B2 (ja) * | 2007-06-15 | 2013-10-30 | 株式会社半導体エネルギー研究所 | 表示装置の作製方法 |
JP5324837B2 (ja) * | 2007-06-22 | 2013-10-23 | 株式会社半導体エネルギー研究所 | 表示装置の作製方法 |
US7659184B2 (en) * | 2008-02-25 | 2010-02-09 | Applied Materials, Inc. | Plasma immersion ion implantation process with chamber seasoning and seasoning layer plasma discharging for wafer dechucking |
JP6360770B2 (ja) | 2014-06-02 | 2018-07-18 | 東京エレクトロン株式会社 | プラズマ処理方法及びプラズマ処理装置 |
JP6914918B2 (ja) * | 2016-04-05 | 2021-08-04 | 関東電化工業株式会社 | 材料、この材料を用いた保存容器、この保存容器に取り付けられるバルブ、並びに、ClFの保存方法、ClFの保存容器の使用方法 |
JP7403382B2 (ja) * | 2020-05-01 | 2023-12-22 | 東京エレクトロン株式会社 | プリコート方法及び処理装置 |
US11646216B2 (en) | 2020-10-16 | 2023-05-09 | Applied Materials, Inc. | Systems and methods of seasoning electrostatic chucks with dielectric seasoning films |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3712898B2 (ja) * | 1998-05-28 | 2005-11-02 | 株式会社日立製作所 | プラズマエッチング装置 |
JP3549739B2 (ja) * | 1998-08-27 | 2004-08-04 | 忠弘 大見 | プラズマ処理装置 |
JP3430053B2 (ja) * | 1999-02-01 | 2003-07-28 | 東京エレクトロン株式会社 | プラズマ処理装置 |
JP4255563B2 (ja) * | 1999-04-05 | 2009-04-15 | 東京エレクトロン株式会社 | 半導体製造方法及び半導体製造装置 |
JP3496560B2 (ja) * | 1999-03-12 | 2004-02-16 | 東京エレクトロン株式会社 | プラズマ処理装置 |
JP3668079B2 (ja) * | 1999-05-31 | 2005-07-06 | 忠弘 大見 | プラズマプロセス装置 |
JP2001123271A (ja) * | 1999-10-25 | 2001-05-08 | Hitachi Ltd | プラズマcvd装置のプリコート方法 |
JP4547744B2 (ja) * | 1999-11-17 | 2010-09-22 | 東京エレクトロン株式会社 | プリコート膜の形成方法、成膜装置のアイドリング方法、載置台構造及び成膜装置 |
-
2001
- 2001-06-29 JP JP2001199413A patent/JP4782316B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003017479A (ja) | 2003-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI391034B (zh) | 用於感應耦合室的減少污染襯墊 | |
US5954887A (en) | Cleaning processing method of a film forming apparatus | |
JP4694108B2 (ja) | 酸化膜形成方法、酸化膜形成装置および電子デバイス材料 | |
JP2000150498A (ja) | 化学的気相成長装置及び薄膜成膜方法 | |
JPH04123257U (ja) | バイアスecrプラズマcvd装置 | |
KR20100029041A (ko) | 성막 방법 및 성막 장치 | |
WO2009148859A2 (en) | Method and apparatus for uv curing with water vapor | |
JP2005166716A (ja) | 絶縁膜の形成方法及び絶縁膜形成システム | |
WO2013146278A1 (ja) | 半導体装置の製造方法、基板処理方法及び基板処理装置 | |
JP2017508891A (ja) | 拡散接合されたプラズマ耐性のある化学気相堆積(cvd)チャンバヒータ | |
JP4782316B2 (ja) | 処理方法及びプラズマ装置 | |
JPH0864540A (ja) | 薄膜形成方法及び装置 | |
JP4069966B2 (ja) | シリコン酸化膜の成膜方法および装置 | |
CN112166490A (zh) | 基板处理装置及喷淋头 | |
JP2003037105A (ja) | プラズマ処理装置及び方法 | |
JP2014192484A (ja) | 半導体装置の製造方法及び基板処理装置 | |
JP4931770B2 (ja) | シリコン酸化膜の成膜方法および装置 | |
JPH0270066A (ja) | プラズマcvd装置 | |
JP2003193239A (ja) | ガラス膜の形成方法及びガラス膜形成装置 | |
JP2008276984A (ja) | プラズマ処理装置及び誘電体窓 | |
JPS62218577A (ja) | 気相反応装置用電極 | |
TWI855430B (zh) | 沈積系統及方法 | |
JPH01298169A (ja) | 膜形成方法 | |
JPH10223620A (ja) | 半導体製造装置 | |
JPH0361377A (ja) | マイクロ波プラズマ膜堆積装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080630 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101220 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110104 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110304 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110405 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110530 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110705 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110707 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140715 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4782316 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |