以下、本発明の実施の形態を図面に基づいて説明する。
実施の形態1.
図1は、本発明の実施の形態1である略地図生成装置の構成を示すブロック図である。記憶部10は、道路や建物等のオブジェクトの3次元データや道路ネットワークデータを格納する記憶部である。この記憶部10には、ランドマーク、銀行、コンビニエンスストア等の属性情報等も記憶されている。情報取得部20は、出発地や目的地の位置情報を取得する。経路探索部30は、出発地から目的地に至る経路検索を行う。
検索部40は、交差点の付近に存在する建物等、経路に関して目印となる建物や、経路に関わる道路の3次元データを検索する。略地図情報生成部100は、出発地から目的地に至る経路を立体的に表現できる略地図を作成する。この略地図情報生成部100は、道路デフォルメ部110、視点情報生成部120、オブジェクトデフォルメ部130、および略地図作成部140で構成される。
道路デフォルメ部110は、経路探索部30から経路データを受け取ると、経路中の各道路長の伸張を行い、経路が見やすくなるようにデフォルメするデフォルメ手段111と、デフォルメ後の経路データを用いて道路の簡易形状を作成する簡易形状作成手段112で構成される。
視点情報生成部120は、略地図の地図要素(建物や道路)の3次元モデルを3次元空間内で見る際に、次の目印地点への移動方向や目印オブジェクトが分かり易い視点情報を生成する機能を有し、初期視点情報生成手段121と移動部分対応視点情報生成手段122とで構成される。
初期視点情報生成手段121は、出発地からの移動方向が分かり易い位置・方向の視点情報を生成する。また、移動部分対応視点情報生成手段122は、出発地から目的地に至る経路において、経路中の各移動部分に対して、移動部分における移動方向や次の移動部分への曲がり角の目印が分かり易い視点位置・方向から略地図を表示可能な視点情報を生成する。
オブジェクトデフォルメ部130は、道路デフォルメ部110で生成されたデフォルメ後の道路に対応して、建物等のオブジェクトが見やすいスケールとなるように大きさを拡大縮小し、オブジェクトを交差点等の位置に対応して再配置する機能を有し、配置情報算出手段131とノード間距離に基づく拡大縮小手段132とで構成される。
配置情報算出手段131は、道路デフォルメ部110においてデフォルメした道路に対応して、オブジェクトの配置位置と配置方向を算出する手段である。また、ノード間距離に基づく拡大縮小手段132は、デフォルメ後の道路形状のノード間距離に基づいてオブジェクトの拡大縮小を行い、デフォルメ後の道路形状中の配置位置と配置方向に応じたデフォルメ後のオブジェクト3次元座標を算出する手段である。さらに、略地図作成部140は、経路中の主要な道路及び建物を立体的に表現した略地図を生成する。
次に動作について説明する。
記憶部10は、道路ネットワークデータや歩行者用のネットワークデータ、2次元地図データ、道路や建物等を立体的に表現可能な3次元地図データ、属性情報等を記憶している。
情報取得部20は、出発地や目的地の位置情報を取得する。出発地や目的地の地点は、操作員がマウスやキーボード、ペン、ダイヤル、キー等の操作により、入力することができる。地点情報を直接入力する方法のほか、あらかじめ用意されている地点の中から選択してもよい。
また、略地図生成装置200がGPS等の位置取得可能な機能を備えている場合には、この機能により取得した位置情報を出発地の位置情報とすることができる。取得した位置情報は、経路探索部30に渡される。
経路探索部30は、情報取得部20から出発地と目的地の位置情報を受け取ると、記憶部10に格納されている地図データやネットワークデータを用いて、出発地から目的地に至る経路を検索する。検索は、最短経路を検索する手法として知られているDijkstraの方法を用いてもよいし、他の方法でもよい。また、歩道上を優先したり、歩道上のみを通る経路に限定したりしてもよい。
経路検索の結果、出発地から目的地に至る経路が経路データとして獲得できる。経路データは、例えば、ノードとリンク(ノードとノードをつなぐ線)から成るデータである。例を図2に示す。経路探索部30は、獲得した経路データを記憶部10に格納し、道路デフォルメ部110のデフォルメ手段111に渡す。
検索部40は、経路探索部30から経路データを受け取ると、記憶部10に格納されている3次元地図データから経路中の主要なオブジェクト(目印となる建物や信号等)や、経路に関わる道路等、経路に関連するオブジェクトの3次元データを検索して取得する。検索部40は、経路に沿う領域の中から建物を検索する。また、検索部40は、出発地や目的地付近の建物、交差点付近の建物、ランドマークや銀行・コンビニ等のシンボル的な建物等を検索することができる。そして、検索部40は、検索結果をオブジェクトデフォルメ部130に渡す。
道路デフォルメ部110は、経路探索部30から経路データを受け取ると、経路中の各道路長の伸張や交差点道路の簡易作成等を行い、経路に関するデフォルメした道路形状を作成する。
まず、デフォルメ手段111は、経路が見やすくなるように経路を構成する道路長を変更する。図3のように、経路データにおいて経路を構成する道路の長さに極端な長さの違いがある場合には、デフォルメ手段111は、極度に短い道路の長さを伸張することで、経路全体を表示した際に分かりにくい部分がないようにする。
以下に、道路の長さを伸張する動作を図4のフローチャートに従って説明する。まず始めに、ステップS401において、デフォルメ手段111は、ノード間距離の算出を行う。デフォルメ手段111は、経路データを参照し、経路を構成する各ノード間の距離を算出する。
次に、ステップS402において、デフォルメ手段111は、経路のスケールの算出を行う。デフォルメ手段111は、ステップS401で算出したノード間距離の中からノード間距離の最小値と最大値を求め、最大値に対する最小値の比率を求め、経路のスケールとする。
次に、ステップS403において、デフォルメ手段111は、ノード間距離の変更を行う。デフォルメ手段111は、経路のスケールの値を閾値と比較し、閾値よりも小さい場合には、ノード間距離の差が大きく、見にくい地図になるとみなしてノード間距離の伸張を行う。
デフォルメ手段111は、このノード間距離の伸張を、経路を構成するノードのうち、ノード間距離が短いノード間に対して行う。具体的には、デフォルメ手段111は、経路を構成する各ノード間距離が、ノード間距離の最大値に比べてどの程度異なるかを調べ、ノード間距離の最大値に比べて極度に短い場合には、そのノード間距離を伸張する。
例えば、図5(A)の経路の場合、経路を構成するノード間距離に大きな差がないため、デフォルメ手段111は、ノード間の伸張は行わない。また、図5(B)の経路の場合、ノードN3・N4間の距離が他のノード間距離に比べて極度に短いため、デフォルメ手段111は、ノードN3・N4間の長さを伸張し、その結果として図5(C)を生成する。
デフォルメ手段111は、伸張を行う際には、経路を構成するノード間距離の相対的な大小関係を維持する範囲で行う。例えば図5(B)の場合、デフォルメ手段111は、ノードN3・N4間の長さが他のノード間距離の長さを超えない範囲でノードN3・N4間の長さを伸張する。
さらに、デフォルメ手段111は、ノード間距離の伸張を行う際に、短いノード間の距離を伸張する他に、ノード間距離の最大値の長さを変更し、その変更後の値に応じてその他のノード間距離も相対的に変更することができる。すなわち、図5(B)の場合、デフォルメ手段111は、ノード間距離が最大となるノード間N2・N3の距離LをL'に変更し、その他のノード間距離を、L'の長さに応じたスケールとなるように変更する。
次に、ステップS404において、デフォルメ手段111は、ノードの再配置を行う。デフォルメ手段111は、ステップS403において変更した変更後のノード間距離の値を用いて、各ノードの配置位置を算出する。そして、デフォルメ手段111は、ノード間距離を伸張して再配置した、デフォルメ後の経路データを記憶部10に格納し、簡易形状作成手段112、オブジェクトデフォルメ部130に渡す。
簡易形状作成手段112は、デフォルメ手段111からデフォルメ後の経路データを受け取ると、経路データを軸線とする領域により、道路の簡易的な形状を作成し、3次元座標を算出してポリゴンを作成する。さらに、簡易形状作成手段112は、作成した、デフォルメ後の道路形状データを記憶部10に格納し、オブジェクトデフォルメ部130に渡す。
図6、図7を用いてデフォルメ後の道路形状データの作成例を説明する。図6において、a〜cは、デフォルメ手段111においてノード間距離を伸張して再配置した後のノードであり、ルートは、歩道上のルートを示している。
簡易形状作成手段112は、ノードa、ノードbを結ぶ線分を軸線とし、軸線の左右に幅Lw、Rwだけ広げた矩形領域を作成する。このとき、「ノードaの、ノードbに接続していない側」や、「ノードbの、ノードaに接続していない側」に各々Δ1やΔ2だけ領域を広げることで、簡易形状作成手段112は、ノードa、ノードb間に関する矩形領域を図6(A)に示す領域のように作成することができる。同様にして、簡易形状作成手段112は、ノードb、ノードc間に関する矩形領域を図6(B)に示す領域として作成することができる。
一つの車道に関して、車道左側の歩道から車道右側の歩道に移動する経路の場合の矩形領域の作成例を図7に示す。ノードaおよびノードbは、車道左側の歩道上の地点であり、ノードcおよびノードdは、車道右側の歩道上の地点である。
簡易形状作成手段112は、デフォルメ後の経路データに基づいて道路の簡易形状を作成する他に、経路データ中の任意のノードに関して、移動方向に対して交差する道路を作成することができる。これにより、簡易形状作成手段112は、主要な交差点を、交差する道路によって示すことができる。
簡易形状作成手段112は、道路ネットワークデータのリンク同士の交差角度を算出することで交差する道路の交差角度を取得できる。また、簡易形状作成手段112は、図6や図7に示した、デフォルメ後の経路データに基づいて作成する矩形領域の幅も、道路ネットワークデータから幅員を取得して設定できる。交差角度や幅は、任意の値としてもよい。
視点情報生成部120は、記憶部10から、デフォルメ後の経路データを取得すると、略地図を表示する3次元空間内の視点情報(視点位置や視線方向等)を生成する。初期視点情報生成手段121は、記憶部10から、デフォルメ後の経路データを取得すると、略地図の地図要素(建物や道路等)の3次元モデルを3次元空間内で見る際の初期視点情報として、出発地からの移動方向と最初の曲がり角の様子が分かり易い位置・方向の視点情報を生成する。
生成手順のフローチャートを図8に示す。ステップS801において、初期視点情報生成手段121は、経路全体の外接矩形と中心の算出を行う。図9(A)において、ノードa〜cは、デフォルメ後のノードであり、出発地は、ノードaに、目的地は、ノードcに対応している。まず、初期視点情報生成手段121は、デフォルメ後の経路に対して、最初の移動方向(出発地から最初に移動する方向)をv軸、最初の移動方向の道路に直交する方向をu軸とし、経路全体の外接矩形をu軸及びv軸に沿う方向で求め、その結果、(図9(B)を得る。そして、初期視点情報生成手段121は、求めた外接矩形に関して、外接矩形の中心座標を算出する。
次に、ステップS802において、初期視点情報生成手段121は、視点座標の算出を行う。まず、初期視点情報生成手段121は、図10において、外接矩形の中心座標Pから−v軸方向にδだけ伸ばした点Qの座標を求める。次に、初期視点情報生成手段121は、線分PQが最初の移動方向の道路線分(出発地を含む線分)に交差するように、点Pを中心として線分PQを角度φだけ回転し、回転後の点Qの位置を点Rとして点Rの座標を求める。
図10の場合、最初の移動方向の道路線分は、線分abであるため、線分abに交差するようにベクトルPQを回転させる。図11で示される経路の場合には、初期視点情報生成手段121は、最初の移動方向の道路線分abに交差するようにベクトルPQを回転させた結果、図11の位置として点Rの位置を求める。
次に、図12に示すように、点Rから鉛直上方向にHvだけ移動した位置Vを視点として、道路や地表面からの高度である視点高度Hvを下式(1)により算出し、視点座標を算出する。なお、Dvはデフォルメ後の経路の外接矩形の一辺(出発地からの進行方向に対応する部分で、図10のv軸方向の成分)、θは外接矩形を視点高度Hvで見たときの視野角を示す。
Hv=Dv/2tan(θ/2) (1)
さらに、ステップS803において、初期視点情報生成手段121は、注視点座標の算出を行う。初期視点情報生成手段121は、図12において、外接矩形の中心点Pから鉛直上方向にHaだけ移動した位置P'を注視点とし、注視点の座標を算出する。なお、上述した算出処理において、δ、φ、θ、Haは、操作員が任意の値を設定することができる。初期視点情報生成手段121は、算出した視点座標、注視点座標を、記憶部10に格納する。
移動部分対応視点情報生成手段122は、記憶部10から、デフォルメ後の経路データを取得すると、出発地から目的地に至る経路において、経路中の各移動部分に対して、移動部分における移動方向や次の移動部分への曲がり角の目印が分かり易い視点位置・方向から略地図を表示可能な視点情報を生成する。移動部分対応視点情報生成手段122は、生成した視点情報を、記憶部10に格納する。
図13(A)、(B)を用いて移動部分対応視点情報生成手段122が生成した視点情報について説明する。図13(A)において、ノードN1〜N4は、出発地から目的地に至る経路を示している。この経路の場合、移動部分は、「移動部分1:出発地から次の曲がり角への移動部分(ノードN1からN2への移動部分)」、「移動部分2:ノードN2から次の曲がり角(ノードN3)への移動部分」、「移動部分3:ノードN3から目的地までの移動部分」の3つが存在する。
移動部分対応視点情報生成手段122は、移動部分2、移動部分3の移動に関して、移動方向や次の曲がり角の目印オブジェクトが分かり易い視点位置から略地図を表示できるように、視点情報を生成する。
移動部分対応視点情報生成手段122は、経路を構成する移動部分のうち、注目している移動部分から目的地に至る移動部分のみの経路データを対象として、初期視点情報生成手段121で説明した外接矩形を設定し、初期視点情報生成手段121で示した方法と同様にして視点情報を生成する。例えば図13(A)において、移動部分2の移動に関して分かり易い視点情報を生成する場合には、移動部分対応視点情報生成手段122は、ノードN2、N3、N4を対象とした外接矩形を設定し(図13(B)参照)、初期視点情報生成手段121と同様の方法により視点情報を生成する。
オブジェクトデフォルメ部130は、検索部40から、経路付近の主要な建物等の3次元データを受け取り、道路デフォルメ部110からデフォルメ後の経路データとデフォルメ後の道路形状を受け取ると、デフォルメ後のノードの位置や道路の形状に対応して、建物等のオブジェクトが見やすいスケールとなるように大きさを拡大縮小するとともにオブジェクトを交差点の位置に応じて再配置する。
以下では、オブジェクトとして建物を再配置した例について説明する。まず、配置情報算出手段131は、道路デフォルメ部110においてデフォルメした道路に対応して、デフォルメ前のノード位置と建物との距離に基づいて建物の配置距離を算出し、経路に対する配置方向を算出する。
配置距離の算出は、記憶部10に格納されている経路データを参照し、検索部40から取得した各建物に対し、経路中のノードからの距離を算出することで行う。例えば、図14(A)において、ノードn1〜n4は、経路探索部30で探索した経路中のノードであり、建物Aは、検索部40において、経路中のノードn2(交差点n2)付近の建物として検索された建物であるとする。建物Aは、デフォルメ前のノードn2との距離Laだけ、デフォルメ後のノードn2'から離れた位置に配置されることとなる。
配置方向は、経路中のノードと建物を結ぶ線分と、経路とのなす角度に基づいて算出される。図14(A)の建物Aの場合、配置情報算出手段131は、図中の角度αの値と、方向ベクトル(n2−P)を算出する。さらに、配置情報算出手段131は、配置距離と配置方向を、ノード間距離に基づく拡大縮小手段132に渡す。
次に、ノード間距離に基づく拡大縮小手段132は、配置情報算出手段131からデフォルメ後の道路形状に対するオブジェクトの配置距離と配置方向を受け取ると、デフォルメ後の道路形状のノード間距離に基づいてオブジェクトの拡大縮小を行い、デフォルメ後の経路中ノードから配置距離分離した位置、配置方向の向きにオブジェクトを配置して、デフォルメ後のオブジェクトの3次元座標を算出する。
オブジェクトの拡大縮小は、デフォルメ後のノード間距離と比較しながら拡大縮小率を調整することで行なわれる。
建物の例を以下に示す。図15において、ノードn1'、n2'は、デフォルメ後のノード配置位置である。また、建物A〜Fは、経路に関する建物として抽出された建物であり、図15に示される位置に配置されたとする。
ノード間距離に基づく拡大縮小手段132は、ノードn1'、n2'間に存在する建物を比率Mで拡大または縮小した際の、ノードに沿う方向の距離(図中矢印に相当する距離)の和を求め、この和がノードn1'n2'間の距離以下となるように、拡大縮小を行う。さらに、ノード間距離に基づく拡大縮小手段132は、拡大縮小率を決定後、検索部40から取得した建物の3次元データを拡大縮小し、配置位置と配置方向を上記で求めた位置及び方向として、建物デフォルメ後の3次元座標を算出する。
略地図作成部140は、記憶部10に格納された、デフォルメ後の道路形状データ、デフォルメ後のオブジェクトデータを統合し、経路や建物等から成る略地図データを作成する。略地図作成部140は、視点情報生成部120において算出された視点情報(視点座標や注視点座標)も含めた略地図データを作成するものとする。略地図作成部140は、作成した略地図データを、記憶部10に格納する。
この略地図データを3次元表示可能なディスプレイに表示させた場合、経路付近に存在する建物等を立体的に(3次元的に)表現した略地図を、視点情報生成部120で生成した視点情報から表示することができる。略地図の例を図16(A)(B)に示す。図16(A)は、初期視点情報生成手段121において生成した、出発地からの移動方向及び最初の曲がり角の目印オブジェクトが分かり易い視点情報を用いて略地図を表示した例である。
図16(B)は、移動部分対応視点情報生成手段122において生成した、図13(A)のノードN2からノードN3に向かう移動に関して移動方向及び次の曲がり角の目印オブジェクトが分かり易い視点情報を用いて略地図を表示した例である。
以上のように、実施の形態1における略地図生成装置は、経路を表示する際に、経路を構成する道路の長さが極度に異なる場合であっても、短い部分の道路が見にくくなることを回避し、携帯電話のように画面が小さい場合であっても分かり易い経路を作成・表示することができる。さらに、ノード間距離に基づいて建物の拡大縮小を行うことができるので、経路中の道路に比べて建物が極度に小さすぎて見にくくなることを回避できる。
さらに、略地図を表示する際の視点座標を2次元平面上に投影した地点と、注目する経路領域(出発地からの最初の移動方向に関する略地図を表示する場合には、注目する経路領域は経路全体である。出発地から直進して曲がり角を曲がった後、次の交差点までの移動に関する略地図表示する場合には、注目する経路領域は、出発地から最初の曲がり角までの移動部分を除いた残りの経路となる。)の外接矩形の中心点とを結ぶ線分が、注目する移動部分の線分に交差する方向となるように視点位置を算出することにより、図16(A)、(B)に示すように、これからの移動方向や、曲がり角において、建物の曲がる方向に対する側面が見える方向から表示することができる。
これにより、2次元案内図とは異なる、3次元表示の特性を活かした略地図の作成・表
示が可能になる。さらに、注目する移動部分から目的地に至るまでの経路全体を一画面で表示できるので、歩行者は、出発地から目的地に至るまでの移動手順を簡単に把握することができる。
なお、上述の実施の形態1は、情報取得部20において出発地と目的地を取得するものであるが、実施の形態1の構成に地図表示部を加えて2次元地図を表示し、情報取得部20において、操作員が地図上で指定した出発地や目的地を取得するようにしてもよい。また、出発地から目的地に至る経路を操作員が2次元地図上で線分等により指定してもよい。経路を直接指定する場合には、経路探索部30は、不要となる。
また、出発地や目的地の3次元座標、あるいは、出発地から目的地に至る経路の経路データをあらかじめ記憶部10に格納しておいてもよい。
実施の形態1は、ノード間距離に基づく拡大縮小手段において建物を拡大する実施例を示しているが、拡大縮小するオブジェクトは、建物に限定されない。
実施の形態1は、道路や建物等を立体的に表示することのできる略地図作成において、道路線分の長さを変更する方法を説明しているが、実施の形態1で述べた道路形状のデフォルメ方法は、3次元の略地図を作成する場合に限らない。すなわち、2次元の経路案内図において使用する道路形状のデフォルメに対しても適用することができる。
実施の形態1は、歩道上を通る経路データに基づいて略地図を作成する例を示したが、車道上の経路データに基づいて略地図を作成してもよい。
実施の形態1は、出発地や目的地付近の建物、経路中の交差点付近の建物等を検索する実施例であるが、オブジェクトの形状や色彩等から特徴量を算出した結果に基づいてオブジェクトに重要度を設定して記憶部に格納し、重要度を用いて、経路の付近に存在する建物の中から形状や色彩が目立つ建物等、視覚的に重要なオブジェクトを優先的に検索する実施の形態でもよい。
実施の形態2.
図17は、本発明の実施の形態2である略地図生成装置200の構成を示すブロック図である。実施の形態2は、建物等のオブジェクトを拡大縮小してデフォルメする際に、表示結果に基づいて拡大縮小を行う実施の形態である。
オブジェクトデフォルメ部130において、表示に基づく拡大縮小手段133は、オブジェクトの表示結果に基づいてオブジェクトの拡大縮小を行い、デフォルメ後の道路形状中の配置位置と配置方向に応じたデフォルメ後のオブジェクト3次元座標を算出する手段である。
表示部50は、建物等のオブジェクトをレンダリングして表示する。その他の構成要素である記憶部10、情報取得部20、経路探索部30、検索部40、道路デフォルメ部110、視点情報生成部120、略地図作成部140、オブジェクトデフォルメ部130における配置情報算出手段131の各処理内容は、実施の形態1と同様である。
次に、動作について述べる。
記憶部10、情報取得部20、経路探索部30、略地図情報生成部100における道路デフォルメ部110、視点情報生成部120の各部、および略地図作成部140のそれぞれの動作は、実施の形態1と同様である。また、オブジェクトデフォルメ部130における配置情報算出手段131の動作は、実施の形態1と同様である。
オブジェクトデフォルメ部130において、表示に基づく拡大縮小手段133では、建物等のオブジェクトの表示結果に基づいてオブジェクトの拡大縮小を行い、デフォルメ後の道路形状中の配置位置と配置方向に応じたデフォルメ後のオブジェクト3次元座標を算出する。表示に基づく拡大縮小手段133は、算出した座標を記憶部10に格納する。
図18(A)、(B)を用いて具体的に説明する。
図18(A)は、初期視点情報生成手段121において生成された視点情報に基づいて略地図を表示した様子である(A〜Eは、説明用の注記)。この状態において、表示に基づく拡大縮小手段133は、まず、最初の移動方向に対する道路線分付近に存在する建物の表示画素数の和を算出する。図18(A)の場合、表示に基づく拡大縮小手段133は、建物A〜Eの表示画素数の和を算出する。
そして、表示に基づく拡大縮小手段133は、算出した和を理想値と比較し、和<理想値であり、かつ、和と理想値との差が閾値以上である場合には、建物A〜Eの各建物の拡大率を上げる。例えば、表示に基づく拡大縮小手段133は、各建物を1.2倍に拡大し、再度、表示する。さらに、表示に基づく拡大縮小手段133は、表示後、同様に、建物A〜Eの表示画素数の和を算出し、算出した和を理想値と比較する。和<理想値であり、かつ、和と理想値との差が閾値以上である場合には、表示に基づく拡大縮小手段133は、建物A〜Eの各建物の拡大率を上げ、例えば、各建物を1.4倍に拡大する。
このようにして、最初の移動方向に対する道路線分付近に存在する建物の表示画素数の和が理想値に近づくまで、表示に基づく拡大縮小手段133は、表示による判定と拡大率の増加を繰り返す。また、表示に基づく拡大縮小手段133は、大きく表示されすぎた場合には、適宜縮小する。
同様にして、経路中の他の道路線分付近に存在する建物に関しても、表示に基づく拡大縮小手段133は、拡大縮小を行う。例えば、図18(A)の2本目の道路線分に関して、表示に基づく拡大縮小手段133は、建物F、G、Hを拡大する。理想値や閾値は、任意の値をあらかじめ記憶部10に格納しておく。経路を構成する道路線分毎に異なる値を設定することで、表示に基づく拡大縮小手段133は、注目する道路線分付近の建物のみを他の建物よりも強調して表示することができる。
なお、本実施例では、建物C〜Eを、最初の移動方向に対する道路線分の付近に存在する建物とみなして拡大率を算出しているが、2本目の道路線分に関する建物とみなしてもよく、どのオブジェクトをどの道路線分の付近とみなして拡大縮小するのかは任意である。
また、上記は、初期視点情報生成手段121において生成した視点情報に基づいて略地図を表示した結果を利用し、オブジェクトの拡大縮小を行う例を示したが、移動部分対応視点情報生成手段122において生成した視点情報に基づいて略地図を表示した結果を利用し、オブジェクトの拡大縮小を行ってもよい。例えば、図18(A)において、2本目の道路線分に関して、建物F、G、Hを拡大する際には、2本目の道路線分に関する移動方向が分かり易い視点位置からの表示(図16(B)参照)を用いてもよい。
略地図作成部140の動作は、実施の形態1と同様である。
表示部50は、建物等のオブジェクトをレンダリングして表示する。表示部50は、記憶部10に格納された略地図データを用いて略地図を表示する。また、オブジェクトデフォルメ部130の表示に基づく拡大縮小手段において、表示部50は、オブジェクトの拡大率を決める際に略地図を表示できる。
以上のように、実施の形態2における略地図生成装置は、表示に基づいてオブジェクトの拡大縮小を行うことができるので、道路に比べて建物等の目印オブジェクトが小さすぎて見にくいことを回避し、見やすい略地図を作成することができる。
さらに、経路中の道路線分に基づいて各オブジェクトの拡大率を変えることができるので、利用者が注目する部分のみを他の部分よりも強調した略地図を作成することができる。さらに、経路中の移動方向に対する分かり易い表示に対応して、オブジェクトの拡大縮小を行うことができるので、移動方向のみだけではなく、その移動方向に関わるオブジェクトを見やすい大きさで表示することができる。
なお、実施の形態2では、表示に基づく拡大縮小手段133において建物を拡大する実施例を示しているが、拡大縮小するオブジェクトは、建物に限定されない。
また、実施の形態2では、経路中の各移動方向に対応する道路線分毎に建物の表示画素数の和を用いて建物を拡大する実施例を示しているが、曲がり角の建物の、曲がり角に沿った面に対してのみ画素数の総和を求め、この値を理想値と比較することによって建物を拡大してもよい。
また、実施の形態2では、視点情報生成部120において視点情報を1回の操作で確定した後に、この視点情報を用いて建物を表示し、建物を拡大する実施例を示しているが、視点情報生成部120とオブジェクトデフォルメ部130の移行を複数回繰り返してもよい。すなわち、初回に視点情報生成部120において視点情報を生成した後に、この視点情報を用いて建物を表示し、その後に再度、視点情報生成部120に戻り、視点位置を求める際のパラメータ(回転角度等)を変更し、この値を用いて建物を拡大してもよい。
実施の形態3.
図19は、本発明の実施の形態3である略地図生成装置の構成を示すブロック図である。実施の形態3は、携帯電話網等の無線通信ネットワーク網を含むインターネット等の通信ネットワークを用いて携帯等のモバイル端末を含む端末装置と通信する実施の形態である。
記憶部10、情報取得部20、経路探索部30、検索部40、道路デフォルメ部110、視点情報生成部120の各処理内容は実施の形態1と同様である。表示部50は、実施の形態2と同様である。オブジェクトデフォルメ部130は、実施の形態1または実施の形態2の構成であり、処理内容は、各々、実施の形態1または実施の形態2と同様である。
移動部分取得部150は、通信制御部60から位置情報を受け取ると、受け取った位置情報の地点が、経路全体の中のどの移動部分に対応するのかを取得する。通信制御部60は、ネットワークを介して端末装置とデータの送受信を行う。現在地算出部160は、位置情報に基づいて、略地図上に表示する、現在地に対応する地点の3次元座標を算出する。さらに、現在地付与略地図作成部170は、経路中に現在地に相当する地点を示した略地図を作成する。
次に、動作について述べる。
記憶部10、情報取得部20、経路探索部30、検索部40、道路デフォルメ部110、視点情報生成部120の動作は、実施の形態1と同様である。オブジェクトデフォルメ部130の動作は、実施の形態1または実施の形態2と同様である。また、表示部50の動作は、実施の形態2と同様である。
通信制御部60は、ネットワークを介して端末装置とデータの送受信を行う。移動部分取得部150は、通信制御部60から端末装置が送信した現在地の位置情報を受け取ると、受け取った現在地が、経路中のどの移動部分に対応するのかを取得する。移動部分取得部150は、受け取った現在地の座標とデフォルメ前の経路データを用い、経路を構成する各移動部分と現在地との距離を算出して、現在地に最も近い移動部分を判定して、その移動部分を取得する。
例えば、図20(A)において、経路NMVWは、デフォルメ前の3次元データを用いて出発地から目的地に至る経路を示したものであり、実空間の3次元座標に対応している。現在地として地点Aの位置座標を受け取った場合、移動部分取得部150は、経路を構成する移動部分(NM間、MV間、VW間)のうち、地点Aに最も近い移動部分としてNM間の移動部分を取得する。そして、移動部分取得部150は、取得した移動部分を現在地算出部160、現在地付与略地図作成部170に渡す。
現在地算出部160は、通信制御部60から端末装置が送信した現在地の位置情報を受け取ると、デフォルメ後の経路上に表示する、現在地に対応する地点の3次元座標を算出する。図20(A)、(B)を用いて具体的に説明する。今、現在地算出部160は、通信制御部60から、端末装置が送信した現在地として、図20(A)の地点Aに関する位置情報を受け取り、移動部分取得部150から、地点Aに相当する移動部分であるNM間を取得している。
この場合に、現在地算出部160は、記憶部10に格納されている、デフォルメ後の経路データ及び道路形状データを参照して、デフォルメ後の略地図上で地点Aに相当する地点Pの座標を下式(2)により算出する(図20(A)、(B)を参照)。
ここで、ベクトルOPはデフォルメ前の地点Aに対応するデフォルメ後の地点Pの座標、ベクトルOIは地点Iの座標(地点Aは、図20(A)のデフォルメ前の状態でノード間NMに対応し、図20(B)のデフォルメ後の状態ではノード間IJに対応するため、このノード間の基準として地点Iの座標を算出する)、|NM|はノードNM間の距離、|NA|はノードNA間の距離を示す。
同様にして、現在地算出部160は、端末装置から受信した現在地が図20(A)の地点Bである場合には、略地図上で表示する、地点Bに相当する地点Qの座標を下式(3)で算出することができる(図20(A)、(B)を参照)。
ここで、ベクトルOQは地点Qの座標、ベクトルOJは地点Jの座標、|MB|はノードMB間の距離、|MV|はノードMV間の距離を示す。
図20(B)において、経路IJKLは、デフォルメ後の経路データを示したものであり、ノードI、J、K、Lの各ノードは、図20(A)に示すデフォルメ前のノードN、M、V、Wの各ノードに対応している。現在地算出部160は、算出した現在地に相当する地点の座標を、記憶部10に格納するとともに、現在地付与略地図作成部170に渡す。
現在地付与略地図作成部170は、現在地算出部160から、略地図上に表示する、現在地に相当する地点の座標を受け取ると、現在地に相当する地点を表記した略地図を作成する。デフォルメした道路形状データ・オブジェクトデータを用いて略地図を作成する動作は、実施の形態1と同様である。
略地図を表示する視点情報は、移動部分取得部150から受け取った、現在地に対応する移動部分に関して分かり易い視点情報とする。各移動部分に対する分かり易い視点情報は、視点情報生成部120における移動部分対応視点情報生成手段122において生成されており、記憶部10に格納されている。
現在地に相当する地点を表記した略地図の例を図21に示す。現在地付与略地図作成部170は、作成した略地図を通信制御部60に渡す。通信制御部60は、略地図を受け取るとネットワークを介して端末装置に送信する。
以上のように、実施の形態3における略地図作成装置は、端末装置の現在地の位置に応じた略地図を作成し、送信することができる。端末装置では、経路上に表記された現在地表記により、経路中において現在地がどの辺りに相当するか、また、目的地までどれくらいであるかを視覚的に把握することができる。
実施の形態4.
実施の形態4は、歩行者ナビゲーションを行う際に、経路中の移動方向や目印となるオブジェクトを分かりやすく表示可能とする略地図情報を生成するとともに、歩行者が実風景と見比べて現在地の様子を確認することができるように、広範囲のデータの中からオブジェクトを選択的に抽出可能とするための重要度情報を生成することのできる情報生成装置の実施の形態である。
図22は、本発明の実施の形態4である情報生成装置の構成を示すブロック図である。記憶部10は、道路や建物等のオブジェクトの3次元データや道路ネットワークデータを記憶している。
情報取得部20は、出発地や目的地の位置情報を取得する。経路探索部30は、出発地から目的地に至る経路検索を行う。検索部40は、交差点の付近に存在する建物等、経路に関して目印となる建物や、経路に関わる道路の3次元データを検索する。
略地図情報生成部100は、出発地から目的地に至る経路を立体的に表現できる略地図を作成する。この略地図情報生成部100は、道路デフォルメ部110、視点情報生成部120、オブジェクトデフォルメ部130、および略地図作成部140で構成される。
道路デフォルメ部110は、経路探索部30から経路データを受け取ると、経路中の各道路長の伸張を行い、経路が見やすくなるようにデフォルメし、道路の簡易形状を作成する。道路デフォルメ部の構成は実施の形態1と同様である。
視点情報生成部120は、略地図の地図要素(建物や道路)の3次元モデルを3次元空間内で見る際に、次の目印地点への移動方向や目印オブジェクトが分かり易い視点情報を生成する。視点情報生成部120の構成は、実施の形態1と同様である。
オブジェクトデフォルメ部130は、道路デフォルメ部110で生成されたデフォルメ後の道路に対応して、建物等のオブジェクトが見やすいスケールとなるように大きさを拡大縮小し、オブジェクトを交差点等の位置に対応して再配置する。オブジェクトデフォルメ部130の構成は、実施の形態1と同様である。略地図作成部140は、経路中の主要な道路及び建物を立体的に表現した略地図を生成する。
重要度生成部300は、複数のオブジェクトや個々のオブジェクトのポリゴンに設定する重要度を3次元モデルの視認性評価に基づいて算出する。この重要度生成部300は、オブジェクト群重要度生成部310とオブジェクト重要度生成部320とで構成される。さらに、オブジェクト群重要度生成部310は、画像解析手段311、オブジェクト群作成手段312およびオブジェクト群重要度算出手段313で構成される。
オブジェクト群重要度生成部310は、オブジェクトから離れた視点位置からオブジェクトを見た際に、表示上のシルエットとなるオブジェクトに基づいて、複数のオブジェクトをまとめたまとまり(オブジェクト群)を生成し、まとまりから離れた視点位置からまとまりを見た際の視認性評価に基づいてまとまりに対する重要度を算出する。
詳細としては、画像解析手段311は、記憶部10に格納されている画像を用いて、表示におけるシルエットとなるオブジェクトを抽出する。次に、オブジェクト群作成手段312は、遠方から表示した際にシルエットとならないオブジェクトを、その視線方向で表示した際に視線方向遠方側に存在するシルエットオブジェクト(シルエットとなるオブジェクト)に分類し(遠方から表示した際にシルエットとならないオブジェクトを、その視線方向で表示した際にシルエットオブジェクトが遠方側となるように分類し)、シルエットオブジェクトを基本とした、複数個のオブジェクトからなるオブジェクトのまとまり(オブジェクト群)を作成する。
さらに、オブジェクト群重要度算出手段313は、オブジェクト群作成手段312において作成した各オブジェクト群に対する視認性評価に基づき、オブジェクト群の重要度を算出する。そして、オブジェクト重要度生成部320は、オブジェクトのポリゴンに対する重要度を算出する。
次に動作について説明する。
経路を分かりやすく表示することのできる略地図情報を作成する動作は、実施の形態1と同様である。
以下では、重要度を生成する動作について説明する。
記憶部10は、道路や建物等からなる都市の3次元形状データの他、建物の3次元モデルを表示した3次元空間内で主要な道路上を視点移動した際の表示結果(レンダリング画像等)を複数枚記憶している。このとき、各レンダリング画像は、レンダリング画像生成時の視点情報(視点位置や視線方向)と対応付けて記憶されている。
オブジェクト群重要度生成部310における画像解析手段311は、記憶部10に格納されているレンダリング画像を用いて、景観におけるシルエットとなる建物(以下、境界建物と表記)を抽出する。境界建物は、レンダリング画像上で空に接する建物として抽出することができる。この時、画像中のすべての領域を対象としてもよいし、画像中の特定の領域を対象としてもよい。
また、複数の領域を設定してもよい。特定領域において境界建物を抽出する例を図23に示す。この場合、境界建物は、建物Aと建物Bとなる。画像解析手段311は、エッジ抽出等の画像処理により、境界建物を抽出することができる。
なお、3次元空間内で道路上等を視点移動した際の時系列画像を用いる場合には、境界建物を抽出するための領域を全時系列画像で統一してもよいし、各々の画像で別の領域を対象としてもよい。画像解析手段311は、抽出した境界建物をオブジェクト群作成手段312に渡す。
オブジェクト群作成手段312は、画像解析手段311から景観のシルエットとなる建物(境界建物)を受け取ると、遠方から表示した際にシルエットとならないオブジェクトを、その視線方向で表示した際に視線方向側に存在するシルエットオブジェクト(シルエットとなるオブジェクト)に分類し(遠方から表示した際にシルエットとならないオブジェクトを、その視線方向で表示した際にシルエットオブジェクトが遠方側となるように分類し)、シルエットオブジェクトを基本とした、複数個のオブジェクトからなるオブジェクトのまとまり(オブジェクト群)を作成する。
以下では、このまとまりを「建物群」と呼ぶ。画像解析手段311において非抽出である建物(以下、非境界建物と表記)に関して、オブジェクト群作成手段312は、各建物に最も近い境界建物を見つけ、この境界建物に非境界建物を分類することで建物群を作成する。オブジェクト群作成手段312は、非境界建物を境界建物に分類する際には、境界建物の抽出に使用する画像作成時の視点移動において、非境界建物よりも移動方向に対して遠方側に位置する境界建物に分類する。
例を図24に示す。図24において、建物A、建物Bは、境界建物であり、建物C、建物Dは、非境界建物である。画像作成時の視点移動方向が、図24において画像手前から奥方向である場合、非境界建物C、Dは、移動方向に対して遠方側、すなわち、建物Bに分類する。この結果、建物B、C、Dを合わせた建物群が作成される。オブジェクト群作成手段312は、作成した建物群をオブジェクト群重要度算出手段313に渡す。
オブジェクト群重要度算出手段313は、オブジェクト群作成手段312において作成した各建物群に関して、遠方からの視認性評価に基づく重要度を算出する。重要度は、建物群毎(複数の建物をまとめたまとまり毎)に算出される。具体的には、オブジェクト群重要度算出手段313は、各建物群を遠方から表示した際の建物群ごとの表示画素数を求め、遠方から表示した際に一定値以上の大きさで表示される3次元空間内の位置を建物群毎に求める。
さらに、オブジェクト群重要度算出手段313は、この位置を用いて、遠方からでも大きく表示される建物群ほど重要度の数値が大となるように、建物群毎の重要度を算出する。オブジェクト群重要度算出手段313は、算出した重要度を、算出時に利用したレンダリング画像作成時の視点移動方向と対応付けて記憶部10に格納する。以下では、建物群に対して算出した重要度を「建物群重要度」と呼ぶ。
オブジェクト重要度生成部320は、オブジェクトのポリゴンに対する重要度を算出する。重要度は、3次元モデルの可視性評価に基づく方法と、それ以外の方法で決定される。可視性評価に基づく決定方法を用いる場合には、オブジェクト重要度生成部320は、記憶部10に格納されているレンダリング画像、または、特徴量を取得して、ポリゴンに設定する重要度を算出する。
このとき算出される重要度は、建物の3次元モデルを表示した際の可視性に基づいて決めた景観再現上の重要性であり、例えば、ウォークスルー表示において画面上で大きく表示される建物は、重要度の値を大きくし、画面上で小さく表示される建物は、重要度の値を小さくするように算出される。なお、重要度の算出は、画面上で表示される大きさに基づいて決める方法に限らない。
以上において、表示される大きさ等の特徴量は、記憶部10に格納されているレンダリング画像を用いて抽出されるか、あるいは、記憶部10に格納されている特徴量を用いる。
一方、可視性評価以外の方法で決定する場合には、オブジェクト重要度生成部320は、建物の形状データや属性データ、色情報等を用いて重要度を算出する。オブジェクト重要度生成部320は、例えば、高い建物や、色彩が目立つ建物、形状が複雑で目立つ建物等には高い重要度を設定する。また、オブジェクト重要度生成部320は、ランドマークやコンビニエンスストア、銀行、曲がり角の建物等、歩行者ナビゲーションにおいて目印となる建物のポリゴンに高い重要度を設定してもよい。
なお、重要度の設定においては、同一ポリゴンに対して、3次元空間内における方向に応じた複数種類の重要度を設定することができる。例えば、同一のランドマークでも、ある方向から見た場合には目立つが別の方向から見た場合には目立たない場合があり、このようなときに、方向と対応付けた複数種類の重要度を設定することができる。オブジェクト重要度生成部320は、算出した重要度を、3次元空間内における方向と対応付けて記憶部10に格納する。以下では、建物に対して算出した重要度を「建物重要度」と呼ぶ。
以上のように、実施の形態4における情報生成装置は、歩行者ナビゲーション等の経路案内を行う際に、経路を俯瞰的に分かりやすく表示することのできる略地図を作成できるだけではなく、移動中に、歩行者が実風景と見比べて周囲の様子を確認することのできる景観表示を高速に行うための重要度情報を生成することができる。
広範囲の都市には多数のオブジェクトが存在するため、一般的に描画性能が低い端末で表示する際には、描画データを効率的に選択する必要があるが、景観のシルエットを考慮した重要度を用いることにより、景観の把握に必要なオブジェクトを欠落させることなく表示に必要なデータのみを効率的に選択できる。
実施の形態5.
実施の形態5は、歩行者ナビゲーションを行う際に、経路中の移動方向や目印となるオブジェクトを分かりやすく表示可能とする略地図情報を生成するとともに、歩行者が実風景と見比べて現在地の様子を確認することができるように、広範囲のデータの中からオブジェクトを選択的に抽出可能とするための重要度情報を生成することのできる情報生成装置の実施の形態である。
実施の形態4では、記憶部10に格納されている画像を用いて重要度を算出する実施の形態であるが、実施の形態5は、3次元空間内で任意の視点移動を行った際の視認性評価に基づいて重要度を生成することのできる実施の形態である。
図25は、本発明の実施の形態5である情報生成装置の構成を示すブロック図である。記憶部10、情報取得部20、経路探索部30、検索部40、表示部50は、実施の形態2と同様である。略地図情報生成部100は、実施の形態2と同様である。
重要度生成部300は、複数のオブジェクトや個々のオブジェクトのポリゴンに設定する重要度を3次元モデルの視認性評価に基づいて算出する。この重要度生成部300は、オブジェクト群重要度生成部310、オブジェクト重要度生成部320、および特徴量抽出部330で構成される。さらに、オブジェクト群重要度生成部310は、オブジェクト群作成手段312、オブジェクト群重要度算出手段313、および境界オブジェクト抽出手段314で構成される。
特徴量抽出部330は、オブジェクト群や個々のオブジェクトに対して重要度を算出する際に用いる特徴量を、3次元モデルをレンダリングした結果から抽出し、記憶部10に格納する。
オブジェクト群重要度生成部310において、境界オブジェクト抽出手段314は、表示においてシルエットとなるオブジェクトを抽出する手段である。オブジェクト群作成手段312、オブジェクト群重要度算出手段313、オブジェクト重要度生成部320は、実施の形態4と同様である。
略地図情報生成部100の構成は、実施の形態2(図17)と同様である、各部及び各手段の処理内容は、実施の形態2と同様である。視点視線情報生成部70は、3次元空間内における視点位置や視線方向等、視点に関する情報を生成する。
次に動作について述べる。経路を分かりやすく表示することのできる略地図情報を作成する動作は、実施の形態2と同様である。以下では、重要度を任意の視点移動に伴う表示に基づいて生成する動作について説明する。
まず、視点視線情報生成部70は、操作員がマウスやキーボード等を用いて視点の位置や視線方向、視点の移動方向や1秒あたりの移動変位量等を入力すると、入力された情報に基づいて視点に関する情報を生成する。
表示部50は、視点視線情報生成部70が生成した視点位置と方向に基づいて、3次元モデルをレンダリングし、表示する。レンダリングの処理内容は、世の中一般のレンダリングと同様である。表示部50は、表示が完了すると、特徴量抽出部330にメッセージを送る。
特徴量抽出部330は、表示部50からメッセージを受け取ると、レンダリング結果に基づいて画素数等の特徴量を抽出し、記憶部10に格納する。特徴量は、境界建物の抽出や、建物群及び建物に対して設定する重要度の算出に必要な特徴量である。
オブジェクト群重要度生成部310において境界オブジェクト抽出手段314は、建物の3次元モデルをレンダリングした際の各種特徴量(各オブジェクトの表示位置や表示画素数等)や境界オブジェクトを検出する領域を記憶部10から取得し、シルエットとなる建物を検出する。
オブジェクト群作成手段312、オブジェクト群重要度算出手段313、オブジェクト重要度生成部320の各処理内容は、実施の形態4と同様であり、特徴量抽出部330が抽出して記憶部10に格納した特徴量を用いて重要度を算出する。
以上のように、実施の形態5における情報生成装置は、複数の建物をまとめた建物群や各建物に設定する重要度を算出する際に、画像を蓄積する必要がないため、低性能の端末であっても重要度を算出することができる。
実施の形態6.
実施の形態6は、LANやインターネット、無線LAN等により、データの送受信を行う配信装置と表示装置を有する情報配信システムに関する情報配信システムの実施の形態である。
図26は、この発明の実施の形態6である情報配信システムにおいて、配信装置の構成を示すブロック図である。記憶部10は、道路や建物等のオブジェクトの3次元データ、2次元地図、道路ネットワークデータ、パラメータ等を記憶する。
重要度生成部300は、複数のオブジェクトや個々のオブジェクトのポリゴンに設定する重要度を3次元モデルの視認性評価に基づいて算出する。重要度生成部300の構成は、実施の形態4または実施の形態5と同様であり、各部及び各手段の処理内容は実施の形態4または実施の形態5と同様である。
検索部40は、空間データを検索する。視点視線情報生成部70は、3次元空間内における視点位置や視線方向等、視点に関する情報を生成する。表示部50は、オブジェクトの3次元モデルをレンダリングして表示する。方向定義部80は、3次元空間内における地点と方向との対応関係を生成する。通信制御部60は、ネットワークを介して端末装置とデータの送受信を行う。
インデックス生成部500は、3次元モデルに関する情報や、オブジェクト群やオブジェクトのポリゴンに対して算出した重要度を管理するインデックスを生成し、記憶部10に格納する。このインデックス生成部500は、形状管理インデックス生成手段510と重要度管理インデックス生成手段520とで構成される。
形状管理インデックス生成手段510は、3次元形状データやテクスチャデータ等の3次元モデルに関する情報を管理するインデックスを生成する。また、重要度管理インデックス生成手段520は、複数のオブジェクトをまとめたオブジェクト群やオブジェクトのポリゴンに対して算出した重要度を管理するインデックスを生成する。
選択的抽出部600は、3次元空間内における方向と関連づいた複数種類の重要度を用いて、オブジェクトのデータを抽出する。この選択的抽出部600は、領域決定手段610、視線方向取得手段620、境界オブジェクトに基づくオブジェクト群抽出手段630、視認位置に基づくオブジェクト群抽出手段640、およびデータ抽出手段650で構成される。
領域決定手段610は、インデックスが管理する3次元空間の中から、視点情報を用いてオブジェクトの抽出領域を決定する。視線方向取得手段620は、重要度と関連付けられている3次元空間内の方向の中から、視線方向に最も近い方向を取得する。境界オブジェクトに基づくオブジェクト群抽出手段630は、視点の付近の領域に境界オブジェクトが含まれるオブジェクト群を抽出する手段である。
視認位置に基づくオブジェクト群抽出手段640は、3次元空間内で視点が定まった際に視点位置からも大きく表示されるオブジェクト群を端末の画面サイズに適応して抽出する手段である。データ抽出手段650は、境界オブジェクトに基づくオブジェクト群抽出手段630と視認位置に基づくオブジェクト群抽出手段640からオブジェクト群を受け取ると、各オブジェクト群の中から重要性が高いオブジェクトを抽出し、3次元形状やテクスチャ等の空間データを抽出する。
経路探索部30は、出発地から目的地に至る経路検索を行う。略地図情報生成部100は、出発地から目的地に至る経路を立体的に表現できる略地図を作成する。この略地図情報生成部100は、道路デフォルメ部110、視点情報生成部120、オブジェクトデフォルメ部130、移動部分取得部150、現在地算出部160、および現在地付与略地図作成部170で構成される。
道路デフォルメ部110は、経路探索部30から経路データを受け取ると、経路中の各道路長の伸張を行い、経路が見やすくなるようにデフォルメし、道路の簡易形状を作成する。道路デフォルメ部110の構成及び処理内容は、実施の形態1と同様である。
視点情報生成部120は、略地図の地図要素(建物や道路)の3次元モデルを3次元空間内で見る際に、次の目印地点への移動方向や目印オブジェクトが分かり易い視点情報を生成する。視点情報生成部120の構成および処理内容は、実施の形態1と同様である、
オブジェクトデフォルメ部130は、道路デフォルメ部110で生成されたデフォルメ後の道路に対応して、建物等のオブジェクトが見やすいスケールとなるように大きさを拡大縮小し、オブジェクトを交差点等の位置に対応して再配置する。オブジェクトデフォルメ部130の構成は、実施の形態1または実施の形態2と同様であり、処理内容は、実施の形態1または実施の形態2と同様である。
移動部分取得部150は、通信制御部60から位置情報を受け取ると、受け取った位置情報の地点が、経路全体の中のどの移動部分に対応するのかを取得する。現在地算出部160は、位置情報に基づいて、略地図上に表示する、現在地に対応する地点の3次元座標を算出する。現在地付与略地図作成部170は、経路中に現在地に相当する地点を示した略地図を作成する。
図27は、この発明の実施の形態6である情報配信システムにおいて、表示装置800の構成を示すブロック図である。この表示装置800は、記憶部810、表示部820、視点情報生成部830、検出部840、視点判定部850、および通信制御部860で構成される。
記憶部810は、配信装置から受信した3次元データや、設定情報等のデータを記憶している。表示部820は、3次元モデルをレンダリングして表示する。視点情報生成部830は、3次元空間内における視点位置や方向等、視点に関する情報を生成する。検出部840は、表示装置の表示性能や表示装置が接続しているネットワークの通信速度等、表示装置の環境に関するデータを検出する。
視点判定部850は、視点情報生成部830から視点位置や方向等、視点に関する情報を受け取ると、3次元空間内の特定の地点及び地点間の方向ベクトルと、視点情報生成部830から受け取った視点との位置及び移動方向とを比較し、配信装置へのデータ要求を行うか否かの判定を行う。通信制御部860は、配信装置とデータの送受信を行う。データの送受信に用いる通信路の形態や通信方式は任意である。
次に、動作について説明する。
まず、配信装置700は、表示装置800が描画するデータを選択する際に、膨大な3次元モデルの中から表示に必要な3次元モデルのデータを選択抽出可能とするための重要度を生成し、重要度を用いた抽出を行うためのインデックスを生成する。また、表示装置800からの要求に応じて、出発地から目的地までの経路探索を行い、経路中の移動方向や目印となるオブジェクトを分かり易く表現することのできる略地図を生成する。
以下では、まず、重要度及びインデックスを生成する事前処理について説明する。続いて、重要度を用いた景観表示と略地図表示とを併用した歩行者ナビゲーションの動作を説明する。まず、配信装置において、重要度及びインデックスを生成する事前処理について説明する。
操作員がマウスやキーボード等を用いて視点の位置や視線方向、視点の移動方向や1秒あたりの移動変位量等を入力すると、視点情報生成部830は、入力された情報に基づいて視点に関する情報を生成する。視点情報生成部830は、生成した情報を、記憶部810に格納するとともに表示部820に渡す。
表示部820は、視点情報生成部830が生成した視点位置と方向に基づいて、3次元モデルをレンダリングし、表示する。レンダリングの処理内容は、世の中一般のレンダリングと同様である。表示部820は、表示が完了すると、重要度生成部300にメッセージを送る。
重要度生成部300は、3次元モデルの遠方からの視認性評価に基づき、複数のオブジェクトをまとめたまとまり(オブジェクト群)に設定する重要度を3次元空間の方向と対応付けて算出し、また、可視性評価や属性情報等を用いてオブジェクトのポリゴンに対する重要度を算出して、記憶部10に格納する。重要度の設定に関する具体的な動作は、実施の形態4または実施の形態5と同様である。
方向定義部80は、視点に関する情報を視点視線情報生成部70や記憶部10に格納されている、画像生成時の視点情報から取得すると、3次元空間内における地点と方向との対応関係を生成し、記憶部10に格納する。
対応関係の例を図28に示す。図28において、ルートIDは、視点視線情報生成部70において視点を移動させた際の移動ルートを特定するIDである。例えば、道路上で視点を移動させた場合には、道路のIDとなる。方向IDは、移動ルートにおいてどの方向に視点を移動させたかを区別するIDである。例えば、図29に示す道路に関して視点を移動させる場合、地点Aから地点Bに向かう方向と、地点Bから地点Aに向かう方向の2種類の方向に対してIDを作成する。
IDを決める際には、南から北に向かう方向や西から東に向かう方向を方向1、北から南に向かう方向や東から南に向かう方向を方向2などと、方位を利用してIDを簡易的に作成してもよい。地点座標及び、地点座標における視線方向ベクトルは、視点視線情報生成部70が生成した視点情報から取得することができる。
インデックス生成部500は、記憶部10から3次元形状データや重要度生成部300が算出した重要度を取得し、3次元モデルに関する情報や重要度を管理するインデックスを生成し、記憶部10に格納する。
形状管理インデックス生成手段510では、3次元モデルに関する情報を管理するインデックスを生成し、記憶部10に格納する。テーブルを用いて管理する例を図30に示す。図30には、領域管理テーブル3001、道路テーブル3002、建物概要テーブル3003、建物詳細テーブル3004の4つのテーブルが示されている。
領域管理テーブル3001は、3次元モデルを領域に基づいて管理するテーブルの例である。領域IDは、例えば、3次元空間を図郭等の領域に分割した際の分割単位のIDであり、領域代表座標は、例えば、分割単位の領域に外接する矩形の頂点座標である。建物IDや道路IDは、領域IDに含まれる建物や道路のIDである。
道路テーブル3002は、道路に関するデータを管理するテーブルの例である。道路IDは、図28においてルートIDが道路IDの場合には図28のルートIDに示した道路IDと対応している。ノード情報やリンク情報は、一般的な道路データのノード・リンク情報と同様である。
建物概要テーブル3003は、建物に関するデータを管理するテーブルの例である。隣接道路IDは、建物が道路に面して配置する場合に、建物に隣接する道路のIDを示す項目である。隣接している道路の数に応じて適宜増やすことができる。建物詳細テーブル3004は、建物の頂点座標やポリゴン情報等、3次元モデルに関するデータを管理するテーブルの例である。
重要度管理インデックス生成手段520は、建物や建物群に関する重要度を管理するインデックスを生成し、記憶部10に格納する。テーブルを用いて管理する例を図31に示す。図31には、建物重要度テーブル3101、境界建物に基づく建物群重要度管理テーブル3102、視認位置に基づく建物群重要度管理テーブル3103の3つのテーブルが示されている。
建物重要度テーブル3101は、重要度生成部300において算出した、建物に関する重要度を3次元空間内における方向と対応付けて管理するテーブルの例である。隣接道路IDは、建物概要テーブルの隣接道路IDに対応している。
また、方向IDは、重要度を算出した際の3次元空間内における方向に対応しており、建物重要度は、隣接道路ID上を方向IDの方向に視点移動した際の可視性評価に基づいて算出した建物ポリゴンの重要度である。重要度生成部300において重要度を算出していないポリゴンに対しては、建物重要度に0の値を格納する。
境界建物に基づく建物群重要度管理テーブル3102は、複数の建物をまとめた建物群に設定した重要度を管理するテーブルの例であり、建物群の中の境界建物に基づいて建物群を管理するテーブルである。各建物群を、建物群における境界建物が存在する領域IDに分類する。
視認位置に基づく建物群重要度管理テーブル3103は、複数の建物をまとめた建物群に設定した重要度を管理するテーブルの例であり、各建物群を、建物群の画素数が一定値以上の大きさで表示された際の表示位置(以下、視認位置と表記)が含まれる領域IDに分類する。
次に、歩行者ナビゲーションにおける動作を説明する。歩行者は、携帯電話等のモバイル端末を表示装置として有している。歩行者は、出発地において、ペンやダイヤル、キー等の操作により、出発地と目的地を入力する。2次元地図が表示可能な場合には、2次元地図上で出発地や目的地を指定してもよい。また、あらかじめ用意されている地点の中から選択してもよい。
また、表示装置がGPS等の位置取得可能な機能を備えている場合には、この機能により取得した位置情報を出発地の位置情報としてもよい。このようにして取得した出発地と目的地に関する位置情報は、配信装置700に送信される。
配信装置700は、通信制御部60が表示装置800から出発地と目的地に関する位置情報を受け取ると、経路探索部30に渡す。経路探索部30は、配信装置700の通信制御部60が受信した出発地と目的地の位置情報を受け取ると、記憶部10に格納されている地図データやネットワークデータを用いて、出発地から目的地に至る経路を検索する。具体的な動作は、実施の形態1と同様である。
検索部40は、経路探索部30から経路データを受け取ると、記憶部10に格納されている3次元地図データから経路中の主要なオブジェクト(目印となる建物や信号等)や、経路に関わる道路等、経路に関連するオブジェクトの3次元データを検索して取得する。具体的な動作は、実施の形態1と同様である。
略地図情報生成部100は、経路及び経路に関するオブジェクトを分かりやすく表現した略地図を作成する。具体的な動作は実施の形態1または実施の形態2と同様である。このようにして、作成した略地図は、通信制御部60から表示装置800に配信して表示することができ、歩行者は出発地において、経路を簡易的に示した略地図を用いて経路を視覚的に把握することができる。
また、歩行者は、現在地の付近の様子を3次元の景観表示で確認することができる。3次元景観表示において描画する空間データは、配信装置700が生成したインデックスを用いて抽出する。以下に、インデックスを用いた検索時処理について説明する。
歩行者が、キー操作等により、3次元空間内で視点を移動させると、表示装置800の視点情報生成部830が入力された情報に基づいて視点に関する情報を生成する。さらに、視点情報生成部830で生成された情報は、通信制御部860から配信装置700に送信される。
配信装置700は、表示装置800から3次元景観表示を行う際の視点に関する情報を受け取ると3次元空間内における方向と関連づいた建物群重要度、建物重要度を用いてオブジェクトのデータを抽出する。
領域決定手段610は、視点視線情報生成部70から視点位置や視線方向を受け取ると、3次元空間内における視点の付近の領域を限定し、視線方向取得手段620に渡す。図30、図31に示すテーブルを用いて、建物を抽出する動作の具体例を説明する。
まず、視線方向取得手段620は、記憶部10に格納されているインデックスにおいて、図30に示す領域管理テーブル3001を参照し、視点視線情報生成部70から受け取った視点位置を含む領域IDを取得する。
次に、視線方向取得手段620は、道路テーブル3002を参照して、取得した領域IDに属する道路IDの中から視点位置に対応する道路IDを取得する。視線方向取得手段620は、視点位置に対応する道路IDを取得する際に付近の道路IDも同時に取得することで、視点付近の領域を拡大することができる。
視点付近の領域は、メッシュ等の矩形に限らず、他の幾何形状を利用して決めてもよい。また、IDで管理された細分化された道路の単位で決めてもよい。視点付近としてみなす領域の大きさは、端末の表示性能や画面サイズに応じて変えることができる。例えば、視点付近の領域を、円を用いて決める場合、どのくらいの画面サイズの場合に円の半径をどれくらいの値にするのかを、事前に対応付けて記憶部10に格納しておく。
視線方向取得手段620は、視点視線情報生成部70から視線方向を受け取り、領域決定手段610から視点付近の領域を受け取ると、まず、記憶部10に格納してある、3次元空間内における地点と方向との対応関係を参照し、視点付近の領域であり、なおかつ視線方向に最も近い方向ベクトルを取得する。
なお、3次元空間内における地点と方向との対応関係は、例えば、図28であり、方向定義部80が生成して記憶部10に格納している。視線方向取得手段620は、この取得した方向ベクトルから、対応する道路IDや方向ID(方向1等)を取得し、これを視線方向に対応する道路の方向とする。視線方向取得手段620は、取得した道路の方向を、データ抽出手段650に渡す。
境界オブジェクトに基づくオブジェクト群抽出手段630は、視点視線情報生成部70から視点位置、視線方向を受け取り、領域決定手段610から視点付近の領域を受け取り、視線方向取得手段620から視線方向に対応する道路の方向を受け取ると、インデックス生成部500で作成したインデックスを参照し、視点の付近の領域に境界建物が含まれる建物群を抽出する。境界オブジェクトに基づくオブジェクト群抽出手段630は、抽出した建物群を、データ抽出手段650に渡す。
視認位置に基づくオブジェクト群抽出手段640は、視点視線情報生成部70から視点位置、視線方向を受け取ると、建物群を抽出する際に用いる基準(建物群重要度範囲または建物群個数)を決定し、視点視線情報生成部70から受け取った視線方向に対応した方向の建物群重要度を用いて、現在の視点位置から大きく表示されるオブジェクト群を端末の画面サイズに適応して抽出し、建物群重要度と合わせてデータ抽出手段650に渡す。
建物群重要度範囲を用いた抽出方法と、建物群個数を用いた抽出方法のうち、まず、建物群重要度範囲を用いた抽出方法について説明する。この方法では、特定範囲内の建物群重要度を有する建物群のみを抽出する。抽出に用いる建物群重要度範囲は、操作員が任意の範囲に設定してもよいし、視点位置に基づいて決めてもよい。
後者の場合では、視点位置付近が視認位置となっている建物群を取得することにより、視点位置から大きく表示される可能性が高い建物群を選択的に抽出できる。例を図32に示す。図32において、建物群A〜建物群Fは、オブジェクト群作成手段312において作成された建物のまとまりである。
例えば、建物群Dと建物群Fの視認位置が図32中の菱形の位置であるとする。現在の表示視点位置が図中のVの位置であり、視線方向が矢印方向である場合、視点位置の付近に視認位置が存在する建物群として建物群Dを取得する(建物群Fは取得しない)。
次に、建物群個数を用いた抽出方法について説明する。
抽出に用いる建物群個数は、操作員が任意の個数を設定することができる。データ抽出手段650は、視点視線情報生成部70から受け取った視線方向に対応する方向の建物群重要度を参照し、視線方向に対応する方向の建物群重要度が高い順にN個の建物群を抽出する。このとき、抽出範囲とする建物群重要度の範囲は任意に設定してもよいし、視点位置に基づいて決めてもよい。
選択的抽出部600において、データ抽出手段650は、視点視線情報生成部70から視点位置、視線方向を受け取り、境界オブジェクトに基づくオブジェクト群抽出手段630と視認位置に基づくオブジェクト群抽出手段640から建物群と、対応する建物群重要度を受け取ると、各建物群の中から建物を抽出し、頂点座標やテクスチャ頂点座標、テクスチャデータ等の空間データを記憶部10に格納されているインデックスを用いて抽出する。
各建物群の中からの建物の抽出では、重要度の高いポリゴンを有する建物を優先的に抽出することができる。また、各建物群から境界建物を必須で抽出することもできる。また、視点からの距離に応じて各建物群からの抽出軒数を変え、視点付近からは多数の建物を抽出することができる。
抽出したデータは、通信制御部60から表示装置800に送信される。これにより、歩行者は、出発地及び歩行中に、3次元空間内の任意地点の景観表示を表示装置800で行うことができる。歩行者は、歩行開始後、3次元景観表示と略地図表示を併用して現在地の周辺や経路中の移動方向、途中で立ち止まった地点と経路との位置関係等を確認することができる。以下に、具体的に説明する。
まず、歩行者が、キー操作等により、3次元空間内で視点を移動させると、表示装置800の視点情報生成部830が入力された情報に基づいて視点に関する情報を生成し、配信装置700に送信する。これにより、歩行者は3次元景観表示において、3次元空間内で視点を移動させることができる。
次に、配信装置700が、表示装置800から3次元景観表示における視点に関する情報を受け取ると、移動部分取得部150に渡す。移動部分取得部150は、受け取った視点情報に対応する地点が、経路中のどの移動部分に対応するのかを取得する。どの移動部分に対応するのかの判定は、地点の座標とデフォルメ前の経路データを用い、経路を構成する各移動部分と現在地との距離を算出して、現在地に最も近い移動部分を取得することで行う。
例えば、図33(A)において、経路NMVWは、デフォルメ前の3次元データを用いて出発地から目的地に至る経路を示したものであり、実空間の3次元座標に対応している。現在地として地点Aの位置座標を受け取った場合、経路を構成する移動部分(NM間、MV間、VW間)のうち、地点Aに最も近い移動部分としてNM間の移動部分を取得する。移動部分取得部150は、取得した移動部分を、現在地算出部160、現在地付与略地図作成部170に渡す。
現在地算出部160は、表示装置800の視点情報生成部830が生成した視点に関する情報を受け取ると、受け取った視点情報に対応する地点を略地図上に表示できるようにするために、デフォルメ後の経路上での3次元座標を算出する。
図33(A)、(B)を用いて具体的に説明する。今、表示装置800から受け取った視点情報に対応する地点が、図33(A)の地点Aであったとする。また、移動部分取得部150から、地点Aが相当する移動部分がNM間であることを取得しているとする。
この場合に、現在地算出部160は、記憶部10に格納されている、デフォルメ後の経路データ及び道路形状データを参照して、デフォルメ後の略地図上で地点Aに相当する地点Pの座標を下式(4)により算出する(図33(A)、(B)を参照)。
ここで、ベクトルOPはデフォルメ前の地点Aに対応するデフォルメ後の地点Pの座標、ベクトルOIは地点Iの座標(地点Aは、図33(A)のデフォルメ前の状態でノード間NMに対応し、図33(B)のデフォルメ後の状態ではノード間IJに対応するため、このノード間の基準として地点Iの座標を算出する)、|NM|はノードNM間の距離、|NA|はノードNA間の距離を示す。
同様にして、現在地算出部160は、端末装置から受信した現在地が図33(A)の地点Bである場合には、略地図上で表示する、地点Bに相当する地点Qの座標を下式(5)で算出することができる(図33(A)、(B)を参照)。
ここで、ベクトルOQは地点Qの座標、ベクトルOJは地点Jの座標、|MB|はノードMB間の距離、|MV|はノードMV間の距離を示す。
図33(B)において、経路IJKLは、デフォルメ後の経路データを示したものであり、ノードI、J、K、Lの各ノードは、図33(A)に示すデフォルメ前のノードN、M、V、Wの各ノードに対応している。現在地算出部160は、算出した現在地に相当する地点の座標を、記憶部10に格納するとともに、現在地付与略地図作成部170に渡す。
現在地付与略地図作成部170は、現在地算出部160から、現在地を略地図上に表示する際の3次元座標を受け取ると、この地点を表記した略地図データを作成する。作成した略地図データは、通信制御部60から表示装置800に配信し、表示装置800は、経路中に地点を表記した略地図を表示することができる。
以上のように、実施の形態6における情報配信システムは、歩行者ナビゲーションにおいて、出発地から目的地に至る経路や経路中の目印オブジェクトを分かりやすく表現できる略地図を生成できる他に、歩行者が実風景と見比べて位置関係を把握することが可能な3次元景観表示を行うことができる。
広範囲の都市には多数のオブジェクトが含まれるため、データ量が膨大であるが、景観のシルエットとなるオブジェクトに基づいて複数のオブジェクトをまとめたまとまりやオブジェクトのポリゴンに対して生成した重要度を用いて、景観再現において重要な空間データを選択的に抽出できるため、携帯電話等、描画性能の低いモバイル端末を利用する場合においても高速に描画することができる。また、3次元景観表示を行っている位置を略地図上に表記でき、景観表示と略地図表示を連携して使用できるため、歩行者にとって分かり易い経路案内を行うことができる。
なお、実施の形態1〜実施の形態6では、道路や建物等の3次元データを記録した略地図データを作成しているが、略地図データを用いてディスプレイに表示した結果を画像ファイルとして保存し、画像ファイルを表示することで略地図を表示できるようにしてもよい。
また、実施の形態1〜実施の形態6では、略地図を表示する際の視点情報を自動的に算出する実施の形態であるが、略地図を表示する端末で、3次元データの略地図を表示する場合には、一般的にオブジェクトの3次元モデルを表示する場合と同様に、3次元空間内の任意の視点位置から略地図を表示することができる(視点位置を変更することができる)。
10 記憶部、20 情報取得部、30 経路探索部、40 検索部、50 表示部、60 通信制御部、70 視点視線情報生成部、80 方向定義部、100 略地図情報生成部、110 道路デフォルメ部、111 デフォルメ手段、112 簡易形状作成手段、120 視点情報生成部、121 初期視点情報生成手段、122 移動部分対応視点情報生成手段、130 オブジェクトデフォルメ部、131 配置情報算出手段、132 ノード間距離に基づく拡大縮小手段、133 表示に基づく拡大縮小手段、140 略地図作成部、150 移動部分取得部、160 現在地算出部、170 現在地付与略地図作成部、200 略地図生成装置、300 重要度生成部、310 オブジェクト群重要度生成部、311 画像解析手段、312 オブジェクト群作成手段、313 オブジェクト群重要度算出手段、314 境界オブジェクト抽出手段、320 オブジェクト重要度生成部、330 特徴量抽出部、500 インデックス生成部、510 形状管理インデックス生成手段、520 重要度管理インデックス生成手段、600 選択的抽出部、610 領域決定手段、620 視線方向取得手段、630 境界オブジェクトに基づくオブジェクト群抽出手段、640 視認位置に基づくオブジェクト群抽出手段、650 データ抽出手段、700 配信装置、800 表示装置、810 記憶部、820 表示部、830 視点情報生成部、840 検出部、850 視点判定部、860 通信制御部。